
Multithreading
in Geant4

Geant4 tutorial

JUNO GEANT4 SCHOOL

Beijing (北京)
15-19 May 2017

Contents

• Motivation for multi-threading

• Implementation in Geant4

• Coding for MT safety

2

3

Part I:
Motivation

Motivation: performance/$
• Multi-core CPUs • Expensive memory

fast

slower

⇒ Memory optimization is more and more important!

Threads vs processes

Processes are separate instances of running
computer programs that have their exclusive
execution context, memory* and other system
resources.

Threads are parallel “independent” executions
within a process. They share the same memory
space and system resources (of the process).

5

Situation of Monte Carlo

• Single-particle simulation is trivially parallelizable!

• Each event can be simulated independently

– not too much per-event state

– not too much memory necessary for computation

• A lot of “static” data

– complicated geometries (+ their optimization)

– physics tables (cross-section data)

– electromagnetic fields (if present)

⇒ We can benefit a lot from efficient memory sharing!

Solution: threads

Advantages:

• memory & resource effectivity (sharing)

• in-process synchronization

Disadvantages:

• difficult to write properly

• difficult to debug (indeterministic behaviour)

• race conditions / dead-locks

• thread synchronization costs

7

Memory in MT application

(C) A. Dotti

Performance in MT mode

Real physical
cores

No further gain

10

Part II:
Multithreading

in Geant4

Execution modes in Geant4
• Sequential mode

– everything run in one thread only
– accepts both user actions and action initialization to

support old code (Geant4 < 10.0)

• Multithreaded mode
– “master” thread for the application
– events simulated in multiple “worker” threads
– accepts only action initialization
– not supported in Windows OS 

Good news: The same code may support both modes!

11

Multithreading in Geant4

Main thread
• initialization of geometry and physics
• user interface
• start worker threads
• distribute events
• merge results

Worker threads
• event simulation
• partial results
• user actions

12

SPLIT

RESPONSIBILITIES

Multithreaded processing of events

Master thread Worker 1 Worker 2 Worker 3

G4Run (100 evts)

G4Run (33 evts) G4Run (33 evts)G4Run (34 evts)

G4Run::Merge()

Event 0 Event 33 Event 67

Event 32 Event 66 Event 99

...

Results Results Results

Results Note: The diagram is simplifying a bit: events are distributed
in seemingly random (though optimized) chunks,
not split among workers one-by-one or in equal parts.

G4MTRunManager

• Substitute for sequential G4RunManager

– inherits from it

– disables the SetUserAction() methods

• Additional responsibilities

– start worker threads

– distribute events among the workers

– take care about merging of runs

14

Run manager relations

15

User classes in MT

G4VUserDetectorConstruction
✔ ()
✔ Construct()
✘ ConstructSDAndField()

G4VUserActionInitialization
✔ ()
✔ BuildForMaster()
✘ Build()

G4UserSteppingAction

G4VUserPrimaryGeneratorAction

G4UserRunAction

G4UserTrackingAction

G4UserStackingAction

G4UserEventAction

G4VUserPhysicsList

main()

and thread safety

Single instance
(read-only for workers)

One instance / worker thread

✔ called in master
✘ called in workers

G4UserRunAction in MT mode

This action (unlike the rest) can apply in both
worker and master threads:

– To distinguish where you are, use IsMaster() method

– If you have behaviour for master, register the instance
in G4VUserActionInitialization::BuildForMaster()

17

void MyActionInitialization::Build() const {
SetUserAction(new MyRunAction());
// ...other actions

}

void MyActionInitialization::BuildForMaster() const {
SetUserAction(new MyRunAction());
// Only run action

}

Note: This, in principle, can be a different class

Merging of runs

• Geant4-native tools automatically

– command-based scoring

– g4analysis (histograms summed, trees in
separate files)

• Custom data require manual approach

– in G4Run::Merge() (of your custom “MyRun”)

– in G4RunEventAction::EndOfRunAction
void MyRunAction::EndOfRunAction(const G4Run* run) {

// ...

// Merge accumulables

G4AccumulableManager* accumulableManager = G4AccumulableManager::Instance();

accumulableManager->Merge();

// ...

main() for both modes
• CMake setting

-DGEANT4_BUILD_MULTITHREADED=ON/OFF

• Preprocessor macro G4MULTITHREADED

19

#include <G4MTRunManager.hh>
#include <G4RunManager.hh>

int main() {
#ifdef G4MULTITHREADED

G4MTRunManager* runManager = new G4MTRunManager;
#else

G4RunManager* runManager = new G4RunManager;
#endif
// ..

}

Set the number of threads
• Default number of threads: 2
• Change this using

– UI command:
• /run/numberOfThreads 6
• /run/useMaximumLogicalCores

– C++ code:
runManager->SetNumberOfThreads(4)

– Environment variable (highest priority):
G4FORCENUMBEROFTHREADS=4

• G4Threading::G4GetNumberOfCores() tells the actual
number of logical cores

• Further tweaking options available (advanced)

20Note: Must be done in pre-initialize stage

Multithreaded G4cout

• If you use G4cout for output, it’s relatively
synchronized and each message is
prepended with the thread number.

– Note: this does not work with std::cout (another
reason not to use it!)

Run 0 starts.
G4WT1 > EventAction: absorber energy/time scorer ID: 0
G4WT1 > EventAction: scintillator energy/time scorer ID: 1
G4WT0 > EventAction: absorber energy/time scorer ID: 0
G4WT0 > EventAction: scintillator energy/time scorer ID: 1
Run terminated.
Run Summary
Number of events processed : 10000
User=21s Real=11.36s Sys=1.59s

Multithreaded G4cout
• to buffer the output from each thread at a time, so

that the output of each thread is grouped and printed
at the end of the job

/control/cout/useBuffer true|false

• to limit the output from threads to one selected
thread only:
/control/cout/ignoreThreadsExcept 0

• to redirect the output from threads in a file:
/control/cout/setCoutFile coutFileName
/control/cout/setCerrFile cerrFileName

22

23

Part III:
Thread-aware coding

Good news!
You don’t have to care (too much) about threading issues,
provided that you:

• Don’t manually open external files (more on that later)
• Use g4analysis / command-based scoring for output
• Avoid static variables and fields
• Correctly merge runs if using accumulables or hits
• Use the G4(MT)RunManager trick in main() (see above)
• Use G4ActionInitialization
• Don’t experiment with Geant4 kernel

(especially not in user actions)

If you don’t meet these conditions, you must write thread-safe
code.

24

Writing thread-safe code
• Find out which variables are modified inside the

worker threads:
– these must not be static!
– use G4ThreadLocal if possible
– split the classes if necessary

• Variable “locality”:
– don’t use global variables
– don’t use static class fields
– prefer local variables to class fields

• Be careful about deleting pointers
• Use mutexes & locks when you access a shared

resource

Shared resources + mutexes

• Mutex is an object variable that can be
locked so that only one thread can use it at
the same time.

• Lock is an act of locking the mutex:
– locking an open mutex succeeds immediately

– locking a locked mutex blocks and waits until it
is available again

• Manipulation with shared resources should
be encapsulated by locking/unlocking a
particular mutex

Mutexes and locks in Geant4

• Mutex is best created as static object inside an
anonymous namespace (class G4Mutex)

• G4AutoLock is a “clever” implementation of the
locking mechanism:

– you just create it with mutex address as parameter

– when the object is destroyed (end of function or
block), the mutex is automatically freed

27

namespace { G4Mutex myMutex = G4MUTEX_INITIALIZER; }

{

G4AutoLock(&myMutex);

// ... (do something)

} // Now, the mutex is freed.

Locking disadvantages

• Synchronization & locking is not CPU costly
• Using multiple locks can lead to a dead-lock:

– Threads need mutexes A and B to proceed
– Thread1 has locked mutex A
– Thread2 has locked mutex B
– No thread can acquire the second lock!!!

Alternatives:
• There are more sophisticated threading tools
• Avoid using shared resources as much as

possible

28

G4AutoDelete

• If you don’t know when to properly delete an
object in threads (typical case!), you can
register it with G4AutoDelete

• This will ensure that the object is deleted
when the worker thread ends.

29

#include "G4AutoDelete.hh"
// ...
G4AutoDelete::Register(aPointer);
// ...

Thread-safe I/O

• Geant4’s scoring and g4analysis are thread-safe.

• Custom output (alternatives):
– Have one file per thread (or per each instance of user

action class)

– Have only one file and guard the procedure by
mutex, add some caching mechanism

• Custom input:
– Read everything in master thread and share the data

as read-only

– Reading on demand – protect by mutex, add some
caching mechanism

30

31E
xa

m
p

le
:

re
ad

 p
ar

ti
cl

es namespace { G4Mutex myMutex = G4MUTEX_INITIALIZER; }

MyFileReader* MyPrimaryGenAction::fileReader = nullptr;

MyPrimaryGenAction::MyPrimaryGenAction(G4String fileName) {

G4AutoLock lock(&myMutex);

if (!fileReader) fileReader = new MyFileReader(fileName);

particleGun = new G4ParticleGun(1);

// ...Define particle properties

}

MyPrimaryGenAction::~MyLowEPrimaryGenAction() {

G4AutoLock lock(&myMutex);

if (fileReader) { delete fileReader; fileReader = 0; }

}

void MyPrimaryGenAction::GeneratePrimaries(G4Event* anEvent) {

G4ThreeVector momDirection;

G4AutoLock lock(&myMutex);

momDirection = fileReader->GetAnEvent();

particleGun->SetParticleMomentumDirection(momDirection);

// ...Set other particle properties

}

Conclusion

• Geant4 offers an optimized multithreaded
mode (optional)

• Multithreading is powerful but a complex
and potentially dangerous tool

谢谢

Multithreading resources

• https://twiki.cern.ch/twiki/bin/view/Geant4/
QuickMigrationGuideForGeant4V10

• http://geant4.web.cern.ch/geant4/UserDocu
mentation/UsersGuides/ForToolkitDeveloper
/html/ch02s14.html (advanced stuff)

33

https://twiki.cern.ch/twiki/bin/view/Geant4/QuickMigrationGuideForGeant4V10
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForToolkitDeveloper/html/ch02s14.html

