JUNO GEANT4 SCHOOL

Beijing (AL R)
15-19 May 2017

Build a Geants application

Geant4 tutorial (_ Geants

Application build process

1) Properly organize your code into directories

)
2) Prepare a CMakelLists.txt file
3) Create a build directory and run CMake
)
)

4) Compile (make) the application
5) Run the application

Note: Recommended, not enforced!

(1) Application source structure in Geants

Official basic/B1 example:

2,4K
475B
2,8K
7,5K
4,0K
226B

35K
272B
338B
553B
448B
2728
3,8K

S S R S s i e i R S

Dic
Dic
Dic
Dic
Dic
Dic
Dic
Dic
Dic
Dic
Dic
Dic
Dic

14:48
14:48
14:48
14:48
14:48
14:48
14:48
14:49
14:48
14:48
14:48
14:49
14:48

(Makelists.txt{

GNUmakefile
History
README

exampleBl.cc—|

exampleBl. in

exampleBl.out |

include
init_vis.mac
runl.mac
run2.mac

Src _

vis.mac

The text file CMakelLists.txt is the
CMake script containing commands

" which describe how to build the

exampleB1 application

~contains main() for

the application

Macro file containing the
commands

Header files
2,2K 4 Dic 14:48 BlActionInitialization.hh
2,4K 4 Dic 14:48 BlDetectorConstruction.hh
2,4K 4 Dic 14:48 BlEventAction.hh
2,7 4 Dic 14:48 BlPrimaryGeneratorAction.hh
2,5K 4 Dic 14:48 B1RunAction.hh
2,4K 4 Dic 14:48 Bl1SteppingAction.hh

Source files
2,9K 4 Dic 14:48 BlActionInitialization.cc
7,7 4 Dic 14:48 BlDetectorConstruction.cc
2,6K 4 Dic 14:48 BlEventAction.cc
4,3K 4 Dic 14:48 B1lPrimaryGeneratorAction.cc
5,8K 4 Dic 14:48 B1RunAction.cc
3,2K 4 Dic 14:48 B1SteppingAction.cc

(2) CMake (again)

« CMake is a build configuration tool
- it takes configuration file (CMakeLists.txt)
- it finds all dependencies (in our case, Geant4)
— creates Makefile to run the compilation itself

« You have to write this CMakelLists.txt file

— take inspiration in examples directories

- be sure to set the name of your application
correctly

- specify all auxiliary files you need

Note: It is possible but discouraged to base build on GNU make instead of CMake.

CMakeLists.txt

cmake_minimum_required(VERSION 2.6 FATAL_ERROR)
project(B1)
option(WITH_GEANT4_UIVIS "Build example with Geant4 Ul and Vis drivers" ON)
if(WITH_GEANT4_UIVIS)
find_package(Geant4 REQUIRED ui_all vis_all)

else()

find_package(Geant4 REQUIRED) .
endif() File structure
include(${Geant4_USE_FILE}) 1 C k .. .
include_directories(${PROJECT_SOURCE_DIR}/include)) Mmake minimum version

and project name

2) Find and configure G4

file(GLOB sources ${PROJECT_SOURCE_DIR}/src/*.cc)
file(GLOB headers ${PROJECT_SOURCE_DIR}/include/*.hh)

add_executable(exampleB1 exampleB1.cc ${sources} ${headers})
target_link_libraries(exampleB1 ${Geant4_LIBRARIES})

3) Configure the project to
set(EXAMPLEB1_SCRIPTS use G4 and Bl headers

exampleBl.in
exampleB1.out

init_vis.mac 4) List the sources

runl.mac

run2.mac m o

vis.mac 5) Define and link the

) executable

foreach(_script ${EXAMPLEB1_SCRIPTS})

configure_file(i
${PROJECT_SOURCE_DIRY/${_script} 6) Copy any macro files to
${PROJECT_BINARY_DIR}/${_script} the build directo ry

COPYONLY
)

(3) Build directory and CMake

1) If modifying the Geant4 examples, copy
them to your SHOME first:

cp -r /usr/local/geantd4/geant4.10.03.p01/examples/basic/Bl ~

2) Create a build directory*, where the
compiled application will be put:

mkdir -p ~/Bl-build
cd ~/Bl-build

*Note: It is possible (though not recommended) to compile inside source directory.

Run CMake

« Inthe build directory you just created,
run CMake:

cmake -DGeant4 DIR=/usr/local/geant4/geant4.10.03.p0l-install/1ib64/Geant4-
10.3.1/ ~/B1/

The C compiler identification is GNU 4.8.5

The CXX compiler identification is GNU 4.8.5

Check for working C compiler: /usr/bin/cc

Check for working C compiler: /usr/bin/cc -- works
Detecting C compiler ABI info

Detecting C compiler ABI info - done

Detecting C compile features

Detecting C compile features - done

Check for working CXX compiler: /usr/bin/c++

Check for working CXX compiler: /usr/bin/c++ -- works
Detecting CXX compiler ABI info

Detecting CXX compiler ABI info - done

Detecting CXX compile features

Detecting CXX compile features - done
Path to source Configuring done

Generating done
Build files have been written to: /path/to/build/directory

(4) Compilation

 Inthe build directory, run

(and don’t get a cup of coffee)

- You have only a couple of files, it should be ready in a
minute or two

- An executable with the name of your application is
created (e.g. exampleB1) in build directory

- Macros and other auxiliary files are copied into build

directory

Scanning dependencies of target exampleBl make JZ
[12%] Building CXX object CMakeFiles/exampleBl.dir/exampleBl.cc.o

[25%] Building CXX object CMakeFiles/exampleBl.dir/src/BlRunAction.cc.o

[37%] Building CXX object CMakeFiles/exampleBl.dir/src/BlSteppingAction.cc.o

[50%] Building CXX object CMakeFiles/exampleBl1l.dir/src/BlDetectorConstruction.cc.o
[62%] Building CXX object

CMakeFiles/exampleBl.dir/src/B1PrimaryGeneratorAction.cc.o

[75%] Building CXX object CMakeFiles/exampleBl.dir/src/BlEventAction.cc.o

[87%] Building CXX object CMakeFiles/exampleBl.dir/src/BlActionInitialization.cc.o
[100%] Linking CXX executable exampleB1l

[100%] Built target exampleB1l

® Run the application - GUI

 Just type the name of your application, including the
.[identifier of current directory (e.g. ./exampleB1)

« By default, graphical user interface is started”

./exampleBl S@8 05 a
eeeeeeeeeeeee p, History @
eeeeeeeeeeee P ' History

Available UI session types: [Qt, GAG, tcsh, csh]

mmmmmmm
uuuuuuuu
LLLLLL
process
analysis
qui

article

Z eeeeeee . exampleB1l
tracki
eeeee

ccccc

run

|||||||
mater
physics_lists
qun

vis

heptst
physic q

sssssss

*Note: Depends on your application main(), Geant4 configuration, etc.

Conclusion

Building an application is easy ©

