
 advanced geometry

Luciano Pandola
INFN – Laboratori Nazionali del Sud

IHEP, China

Based on presentations by M. Asai (SLAC) and M. Antonello (INFN-LNGS)

EM Fields

Tracking in EM fields
 Divide the trajectory of the particle in "steps"

 Straight free-flight tracks between consecutive
physics interactions

 In presence of EM fields, the free-flight part
between interactions is not straight
 Change of direction (B-field) or energy (E-field)
 Effect of fields must be incorporated into the tracking

algorithm  CPU-demanding
 Notice: most codes handle only weak fields

 An e- at rest will not accelerate, no syncrothron
radiation, no avalanche

Tracking in fields
 In order to propagate a particle inside a field the equation of

motion of the particle in the field is integrated numerically
 In general this is best done using a Runge-Kutta (RK) method

for the integration of ordinary differential equations
 Other methods are also available

 Once the curved path is calculated, Geant4 breaks it up into
linear chord segments

 The chord segments are determined to closely approximate the

curved path
 In some cases, one step could be split in several helix-turns

sagitta

Example: how to create a
magnetic field: uniform

 Uniform field in the entire world volume: easy recipe

 In general, one can customize the precision of the
stepper and method used for the numerical
integration of the equations

G4ThreeVector field(0,1.*tesla,0);
G4GlobalMagFieldMessenger* fMagFieldMessenger =
 new G4GlobalMagFieldMessenger(field)

G4UniformMagField* magField = new G4UniformMagField(field);
G4FieldManager* fieldMgr =
G4TransportationManager::GetTransportationManager()
 ->GetFieldManager();
fieldMgr->SetDetectorField(magField);
fieldMgr->CreateChordFinder(magField);

re
gi

st
er

Example: how to create a
magnetic field: non-uniform



void MyField::GetFieldValue(const double
Point[4], double *field) const

 MyField* myField = new MyField();
G4FieldManager* fieldMgr =
G4TransportationManager::GetTransportationManager()
 ->GetFieldManager();
fieldMgr->SetDetectorField(myField);
fieldMgr->CreateChordFinder(myField);

Example: how to create a local
magnetic field

 It is possible to define a field inside a logical volume
(and its daughters)
 This can be done creating a local G4FieldManager

and attaching it to a logical volume
MyField* myField = new MyField();
G4FieldManager* localFieldMgr =
 new G4FieldManager(myField);
G4bool allLocal = true;
logicVolWithField
 ->SetFieldManager(localFieldMgr, allLocal);

If true, field assigned to all daughters
If false, field assigned only to daughters w/o their own field manager

miss distance

Step
Chords

real trajectory

Customization
 A few parameters to customize the precision of the

tracking in EM fields. Most critical: "miss distance"
 Upper bound for the value of the sagitta (default: 3 mm)
 May be highly CPU consuming

 Integration calculated by 4th-order Runge-Kutta
(G4ClassicalRK4), robust and general purpose
 If the field is not smooth (e.g. field map), lower-order (and

faster) integrators can be appropriate
 3rd order G4SimpleHeum, 2nd order G4ImplicitEuler, 1st

order G4ExplicitEuler

(Bird's eye view) Replicas and
parametrized volumes

Physical volumes
 Placement volume (G4PVPlacement): one positioned

volume
 One physical volume represents one "real" volume

 Repeated volume: a volume placed many times
 One physical volume represents any number of "real"

volumes
 Reduced use of memory
 Very convenient for large voxelized geometries

 Parametrized (repetitions w.r.t. copy number)
 Replicas and Divisions

 Notice: a repeated volume is not equivalent to a loop
of placements
 All placements of the loop exists individually in the memory

Replicated volumes
(G4PVReplica)

 The mother volume is completely filled with
replicas, all having same size and shape
 If you need gaps, use G4PVDivision

instead (less CPU-efficient)
 Replication may occur along:

 Cartesian axes (kXAxis, kYAxis, kZAxis)
 Coordinate system at the center of each replica

 Radial axis (cilindrical polar) (kRho) - onion
rings
 Coordinate system same as the mother

 Phi axis (cylindrical polar) (kPhi) – cheese
wedges
 Coordinate system rotated so that the X axis

bisects the angle made by each wedge

a daughter
logical volume to
be replicated

mother volume

G4PVReplica

 Features and restrictions:
 CSG solids only
 G4PVReplica must be the only daughter
 Replicas may be placed inside other replicas
 Normal placement volumes may be placed inside replicas
 No volume can be placed inside a radial replication
 Parameterised volumes cannot be placed inside a replica

G4PVReplica(const G4String &pName,
 G4LogicalVolume* pLogical,
 G4LogicalVolume* pMother,
 const EAxis pAxis,
 const G4int nReplicas,
 const G4double width,
 const G4double offset=0.);

Center of nth daughter is given as
 Cartesian axes - kXaxis, kYaxis, kZaxis
-width*(nReplicas-1)*0.5+n*width

Offset shall not be used

 Radial axis – kRho
width*(n+0.5)+offset

Offset must be the inner radius of the mother

 Phi axis – kPhi
width*(n+0.5)+offset

Offset must be the starting angle of the mother offset

width

offset

width

width

Replica: axes,
width and offset

G4PVDivision

 The G4PVDivision is similar to the
G4PVReplica but
 Allows for gaps between mother and

daughter volumes
 Less CPU-effective than replica

 Shape of all daughter volumes must be
the same as of the mother volume

 A number of shapes / axes patterns are
supported, e.g.
 G4Box : kXAxis, kYAxis, kZAxis
 G4Tubs : kRho, kPhi, kZAxis
 G4Cons : kRho, kPhi, kZAxis
 …

Parametrized volumes
(G4VPVParameterisation)

 Repeated volumes can differ by size, shape,
material and transformation matrix, that can all
be parameterised by the user as a function of the
copy number

0
1

2
3

6

User is asked to derive her/his own parameterisation class from
the G4VPVParameterisation class implementing the methods:
 void ComputeTransformation(const G4int copyNo,
 G4VPhysicalVolume
 *physVol) const;
void ComputeDimensions(G4Tubs& trackerLayer,
 const G4int copyNo, const
 G4VPhysicalVolume *physVol) const;

Optional methods:
 ComputeMaterial(…)
 ComputeSolid(…)

Parametrized volumes
 All daughters must be fully contained in the mother

 Daughters should not overlap to each other
 Limitations:

 Applies to simple CSG solids only
 Grand-daughter volumes allowed only for special cases

 Typical use-cases
 Complex detectors with large repetition of volumes,

regular or irregular
 Medical applications: the material in tissue is modeled

as parametrixed voxels with variable density
 Limited memory footprint

G4PVParametrized

 Replicates the volume nReplicas times using the
parameterization pParam, within the mother volume pMother

 pAxis specifies the tracking optimisation algorithm to apply:
 kXAxis, kYAxis, kzAxis  1D voxelisation algorithm
 kUndefined  3-D voxelisation algorithm

 Each replicated volume is a touchable detector element

G4PVParameterised(const G4String& pName,

 G4LogicalVolume* pLogical,

 G4LogicalVolume* pMother,

 const EAxis pAxis,

 const G4int nReplicas,

 G4VPVParameterisation *pParam

 G4bool pSurfChk=false);

Assembly & reflections
 Possible to represent a regular pattern of positioned volumes,

composing a more or less complex structure
 structures which are hard to describe with simple replicas or

parameterised volumes
 Assembly volume (G4AssemblyVolume)

 acts as an envelope for its daughter volumes

 G4ReflectedSolid (derived from G4VSolid)
 Utility class representing a solid shifted from its original

reference frame to a new mirror symmetric one

GDML exchange format and
CAD

GDML
 Geometry Description Markup Language

 application-indepedent geometry description format based on
XML

 Not limited to Geant4
 General geometry description

 Implements "geometry trees" allowing for the description of
hierarchical geometries

 Contains material definitions and volume placements
 Profitably used for geometry exchange between:

 Fluka and Geant4  physics validation
 Geant4 and ROOT  geometry visualization
 CAD and Geant4  geometry import (with care)

 Allows running the same application with different geometries

Requires the Xerces-
C++ libraries

GDML document example
positions,
rotations

materials

solids

geometry
tree

'world'
volume

<?xml version="1.0" encoding="UTF-8"?>
<gdml xsi:noNamespaceSchemaLocation="GDMLSchema/gdml.xsd">
 <define>
 …
 <position name="TrackerinWorldpos" unit="mm" x="0" y="0" z="100"/>
 </define>
 <materials>
 …
 <material formula=" " name="Air" >
 <D value="1.290" unit="mg/cm3"/>
 <fraction n="0.7" ref="Nitrogen" />
 <fraction n="0.3" ref="Oxygen" />
 </material>
 </materials>
 <solids>
 …
 <box lunit="mm" name="Tracker" x="50" y="50" z="50"/>
 </solids>
 <structure>
 …
 <volume name="World" >
 <materialref ref="Air" />
 <solidref ref="world" />
 <physvol>
 <volumeref ref="Tracker" />
 <positionref ref="TrackerinWorldpos"/>
 <rotationref ref="TrackerinWorldrot"/>
 </physvol>
 </volume>
 </structure>
 <setup name="Default" version="1.0" >
 <world ref="World" />
 </setup>
</gdml>

 Similar to HTML,
explicit tags for
elements, …

 ASCII file: easy to
create, read,
debug, modify,…

GDML solids

And booleans

GDML components
GDML Schema

- self-consistent definition of GDML
syntax

- defines document structure and the list
of legal elements

GDML Reader
- Creates 'in-memory' representation of

the geometry description
GDML Writer

- Allows exporting geometry on a file
- Files can be also edited by hand

Reader and Writer are integrated in
packages like Geant4 and ROOT
providing GDML compliant interfaces

GDML
Schema GDML file

user application (1)

GDML writer

GDML reader

user application (2)

Reading GDML files in Geant4
 Importing a geometry from a GDML file, only

requires
DetectorConstructor::Construct(){

// gdml parser
#include "G4GDMLParser.hh”
G4GDMLParser fParser;

// importing geometry

fParser.Read(“detectorgeometry.gdml”); // reads and stores
 // in memory

G4VPhysicalVolume* fWorldPhysVol = fParser.GetWorldVolume();
// get world

}

Writing a GDML files from
Geant4

 Converserly, one can export a Geant4 geometry
(e.g. C++ coded) in a GDML file

DetectorConstructor::Construct(){

// gdml parser
#include "G4GDMLParser.hh”
G4GDMLParser fParser;
G4VPhysicalVolume* fWorldPhysVol;

// exporting geometry
fParser.Write(“geometrydump.gdml”, fWorldPhysVol);

}

Tessellated solids

 The geometry imported from GDML will be made by
tessellated solids G4TessellatedSolid
 Generic solid defined by a number of facets (G4VFacet)
 Facets can be triangular or quadrangular

CMS detector: G4 GDML
ROOT

snapshot provided by
R.Maunder

~19000 physical
volumes

LHCb detector: G4 GDML
ROOT

snapshot provided by
R.Maunder

~5000 physical
volumes

CAD import
 Typical request: import CAD technical drawings as

Geant4 geometries
 Difficulties:

 Proprietary, undocumented or changing CAD formats
 Usually no connection between geometry and materials
 CAD is never as easy as you might think

 Possible solution (a lot of work!)
 Convert CAD into STEP (no material information)
 Convert STEP into GDML and restore manually material

information
 Needs commercial software (ST-viewer, FastRAD)

CADMesh
 CADMesh is a direct CAD

model import interface for
Geant4 optionally leveraging
VCGLIB, and ASSIMP by
default.
 Currently it supports the

import of triangular facet
surface meshes defined in
formats such as STL and
PLY

 A G4TessellatedSolid
is returned and can be
included in a standard
user detector construction

https://code.google.com/p/cadmesh/
http://arxiv.org/pdf/1105.0963.pdf

Hands-on session
 Task1c

 Magnetic fields

 http://202.122.35.46/geant/task1

Backup

Parallel world

Parallel world
 The possibility to define a scoring volume different from the

physical volumes available since the old times of Geant4
(ROGeometry)

 Occasionally, it is not straightforward to define sensitivity,
importance or envelope to be assigned to volumes in the mass
geometry.
 Typically a geometry built machinery by CAD, GDML, DICOM, etc.

has this difficulty. Mass geometry is composed by voxels or
tessels (difficult to be treated individually for sensitivity)

 Other concurrent/similar requirements emerged since then
 Ghost volume for shower parameterization
 Importance field geometry for geometry importance biasing

assigned to importance biasing process
 Scoring geometry assigned to scoring process

 New design  everything merged into G4ParallelWorld

Parallel world
 New parallel navigation functionality allows the user to

define more than one worlds simultaneously.
 New G4Transportation process sees all worlds

simultaneously.
 A step is limited not only by the boundary of the mass

geometry but also by the boundaries of parallel
geometries: a step will never cross a boundary of any
volume in any parallel world

 Materials, production thresholds and EM field are used
only from the mass geometry

 In a parallel world, the user can define volumes in
arbitrary manner with sensitivity, regions with shower
parameterization, and/or importance field for biasing.
 Volumes in different worlds may overlap.

Parallel world and navigation
 G4VUserParallelWorld is the new base class

where the user implements a parallel world.
 The world physical volume of the parallel world is

provided by G4RunManager as a clone of the mass
geometry
 The same world volume applies to all parallel worlds

 All UserParallelWorlds must be registered to
UserDetectorConstruction.

 Each parallel world has its dedicated G4Navigator
object, that is automatically assigned

 The user has to have
G4ParallelWorldProcess in his physics list.

example/extended/runAndEvent/RE06
 Mass geometry

 sandwich of
rectangular absorbers
and scintilators

 Parallel scoring
geometry
 Cylindrical layers

Shower parametrization

			 advanced geometry
	EM Fields
	Tracking in EM fields
	Tracking in fields
	Example: how to create a magnetic field: uniform
	Example: how to create a magnetic field: non-uniform
	Example: how to create a local magnetic field
	Customization
	(Bird's eye view) Replicas and parametrized volumes
	Physical volumes
	Replicated volumes (G4PVReplica)
	G4PVReplica
	Replica: axes, width and offset
	G4PVDivision
	Parametrized volumes (G4VPVParameterisation)
	Parametrized volumes
	G4PVParametrized
	Assembly & reflections
	GDML exchange format and CAD
	GDML
	GDML document example
	GDML solids
	GDML components
	Reading GDML files in Geant4
	Writing a GDML files from Geant4
	Tessellated solids
	CMS detector: G4 GDML ROOT
	LHCb detector: G4 GDML ROOT
	CAD import
	CADMesh
	Hands-on session
	Backup
	Parallel world
	Parallel world	
	Parallel world
	Parallel world and navigation
	example/extended/runAndEvent/RE06

