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EM Fields 



Tracking in EM fields 
 Divide the trajectory of the particle in "steps" 

 Straight free-flight tracks between consecutive 
physics interactions 

 In presence of EM fields, the free-flight part 
between interactions is not straight 
 Change of direction (B-field) or energy (E-field) 
 Effect of fields must be incorporated into the tracking 

algorithm  CPU-demanding 
 Notice: most codes handle only weak fields 

 An e- at rest will not accelerate, no syncrothron 
radiation, no avalanche 

 



Tracking in fields 
 In order to propagate a particle inside a field  the equation of 

motion of the particle in the field is integrated numerically 
 In general this is best done using a Runge-Kutta (RK) method 

for the integration of ordinary differential equations 
 Other methods are also available  

 Once the curved path is calculated, Geant4 breaks it up into 
linear chord segments 
 
 
 

 
 The chord segments are determined to closely approximate the 

curved path 
 In some cases, one step could be split in several helix-turns 

 

sagitta 



Example: how to create a 
magnetic field: uniform 

 Uniform field in the entire world volume: easy recipe 
 
 

 In general, one can customize the precision of the 
stepper and method used for the numerical 
integration of the equations 
 
 

G4ThreeVector field(0,1.*tesla,0); 
G4GlobalMagFieldMessenger* fMagFieldMessenger =  
  new G4GlobalMagFieldMessenger(field) 

G4UniformMagField* magField = new G4UniformMagField(field); 
G4FieldManager* fieldMgr = 
G4TransportationManager::GetTransportationManager()  
 ->GetFieldManager();  
fieldMgr->SetDetectorField(magField);  
fieldMgr->CreateChordFinder(magField);  

re
gi

st
er

 



Example: how to create a 
magnetic field: non-uniform 



void MyField::GetFieldValue(const double 
Point[4], double *field) const 

 MyField* myField = new MyField(); 
G4FieldManager* fieldMgr = 
G4TransportationManager::GetTransportationManager()  
 ->GetFieldManager();  
fieldMgr->SetDetectorField(myField);  
fieldMgr->CreateChordFinder(myField);  
  



Example: how to create a local 
magnetic field 

 It is possible to define a field inside a logical volume 
(and its daughters)  
 This can be done creating a local G4FieldManager 

and attaching it to a logical volume 
MyField* myField = new MyField(); 
G4FieldManager* localFieldMgr =   
  new G4FieldManager(myField); 
G4bool allLocal = true; 
logicVolWithField 
 ->SetFieldManager(localFieldMgr, allLocal); 
 

If true, field assigned to all daughters 
If false, field assigned only to daughters w/o their own field manager  



miss distance 

Step 
Chords 

real trajectory 

Customization 
 A few parameters to customize the precision of the 

tracking in EM fields. Most critical: "miss distance"  
 Upper bound for the value of the sagitta (default: 3 mm) 
 May be highly CPU consuming 
 

 
 

 Integration calculated by 4th-order Runge-Kutta 
(G4ClassicalRK4), robust and general purpose 
 If the field is not smooth (e.g. field map), lower-order (and 

faster) integrators can be appropriate 
 3rd order G4SimpleHeum, 2nd order G4ImplicitEuler, 1st 

order G4ExplicitEuler 
 

 
 



(Bird's eye view) Replicas and 
parametrized volumes 



Physical volumes 
 Placement volume (G4PVPlacement): one positioned 

volume 
 One physical volume represents one "real" volume 

 Repeated volume: a volume placed many times 
 One physical volume represents any number of "real" 

volumes 
 Reduced use of memory 
 Very convenient for large voxelized geometries 

 Parametrized (repetitions w.r.t. copy number) 
 Replicas and Divisions 

 Notice: a repeated volume is not equivalent to a loop 
of placements 
 All placements of the loop exists individually in the memory 



Replicated volumes 
(G4PVReplica) 

 The mother volume is completely filled with 
replicas, all having same size and shape 
 If you need gaps, use G4PVDivision 

instead (less CPU-efficient) 
 Replication may occur along: 

 Cartesian axes (kXAxis, kYAxis, kZAxis) 
 Coordinate system at the center of each replica 

 Radial axis (cilindrical polar) (kRho)  - onion 
rings 
 Coordinate system same as the mother 

 Phi axis (cylindrical polar) (kPhi) – cheese 
wedges 
 Coordinate system rotated so that the X axis 

bisects the angle made by each wedge 

a daughter 
logical volume to 
be replicated 

mother volume 



G4PVReplica 

 Features and restrictions: 
 CSG solids only 
 G4PVReplica must be the only daughter 
 Replicas may be placed inside other replicas 
 Normal placement volumes may be placed inside replicas 
 No volume can be placed inside a radial replication 
 Parameterised volumes cannot be placed inside a replica 

 

G4PVReplica(const G4String &pName, 
            G4LogicalVolume* pLogical, 
            G4LogicalVolume* pMother, 
            const EAxis pAxis, 
            const G4int nReplicas, 
            const G4double width, 
            const G4double offset=0.); 
 
 



Center of nth daughter is given as  
 Cartesian axes - kXaxis, kYaxis, kZaxis  
-width*(nReplicas-1)*0.5+n*width 

Offset shall not be used 

 Radial axis – kRho 
width*(n+0.5)+offset 

Offset must be the inner radius of the mother 

 Phi axis – kPhi 
width*(n+0.5)+offset 

Offset must be the starting angle of the mother offset 

width 

offset 

width 

width 

Replica: axes, 
width and offset 



G4PVDivision 

 The G4PVDivision is similar to the 
G4PVReplica but 
 Allows for gaps between mother and 

daughter volumes 
 Less CPU-effective than replica 

 Shape of all daughter volumes must be 
the same as of the mother volume 

 A number of shapes / axes patterns are 
supported, e.g. 
 G4Box : kXAxis, kYAxis, kZAxis 
 G4Tubs : kRho, kPhi, kZAxis 
 G4Cons : kRho, kPhi, kZAxis 
 … 



Parametrized volumes 
(G4VPVParameterisation) 

 Repeated volumes can differ by size, shape, 
material and transformation matrix, that can all 
be parameterised by the user as a function of the 
copy number  
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User is asked to derive her/his own parameterisation class from 
the G4VPVParameterisation class implementing the methods: 
 void ComputeTransformation(const G4int copyNo, 
    G4VPhysicalVolume  
    *physVol) const;  
void ComputeDimensions(G4Tubs& trackerLayer, 
 const G4int copyNo, const 
 G4VPhysicalVolume *physVol)  const; 

Optional methods: 
 ComputeMaterial(…) 
 ComputeSolid(…) 

 



Parametrized volumes 
 All daughters must be fully contained in the mother 

 Daughters should not overlap to each other 
 Limitations: 

 Applies to simple CSG solids only 
 Grand-daughter volumes allowed only for special cases 

 Typical use-cases 
 Complex detectors with large repetition of volumes, 

regular or irregular 
 Medical applications: the material in tissue is modeled 

as parametrixed voxels with variable density 
 Limited memory footprint 



G4PVParametrized 

 Replicates the volume nReplicas times using the 
parameterization pParam, within the mother volume pMother 

 pAxis specifies the tracking optimisation algorithm to apply: 
 kXAxis, kYAxis, kzAxis   1D voxelisation algorithm 
 kUndefined  3-D voxelisation algorithm 

 Each replicated volume is a touchable detector element 
 

G4PVParameterised(const G4String& pName, 

                  G4LogicalVolume* pLogical, 

                  G4LogicalVolume* pMother, 

                  const EAxis pAxis, 

                  const G4int nReplicas, 

                  G4VPVParameterisation *pParam 

                  G4bool pSurfChk=false);  

 
 



Assembly & reflections 
 Possible to represent a regular pattern of positioned volumes, 

composing a more or less complex structure 
 structures which are hard to describe with simple replicas or 

parameterised volumes 
 Assembly volume (G4AssemblyVolume) 

 acts as an envelope for its daughter volumes 

 G4ReflectedSolid (derived from G4VSolid) 
 Utility class representing a solid shifted from its original 

reference frame to a new mirror symmetric one 



GDML exchange format and 
CAD 



GDML 
 Geometry Description Markup Language  

 application-indepedent geometry description format based on 
XML 

 Not limited to Geant4 
 General geometry description 

 Implements "geometry trees" allowing for the description of 
hierarchical geometries  

 Contains material definitions and volume placements 
 Profitably used for geometry exchange between: 

 Fluka and Geant4  physics validation 
 Geant4 and ROOT  geometry visualization 
 CAD and Geant4  geometry import (with care) 

 Allows running the same application with different geometries 
 

Requires the Xerces-
C++ libraries 



GDML document example 
positions, 
rotations 

materials 

solids 

geometry 
tree 

'world' 
volume 

<?xml version="1.0" encoding="UTF-8"?> 
<gdml xsi:noNamespaceSchemaLocation="GDMLSchema/gdml.xsd"> 
 <define> 
  … 
  <position name="TrackerinWorldpos" unit="mm" x="0" y="0" z="100"/> 
 </define> 
 <materials> 
  … 
  <material formula=" " name="Air" > 
   <D value="1.290" unit="mg/cm3"/> 
      <fraction n="0.7" ref="Nitrogen" /> 
      <fraction n="0.3" ref="Oxygen" /> 
    </material> 
 </materials> 
 <solids> 
  … 
  <box lunit="mm" name="Tracker" x="50" y="50" z="50"/> 
 </solids> 
 <structure> 
  … 
  <volume name="World" > 
   <materialref ref="Air" /> 
      <solidref ref="world" /> 
      <physvol> 
       <volumeref ref="Tracker" /> 
       <positionref ref="TrackerinWorldpos"/> 
       <rotationref ref="TrackerinWorldrot"/> 
      </physvol> 
  </volume> 
 </structure> 
 <setup name="Default" version="1.0" > 
   <world ref="World" /> 
  </setup> 
</gdml> 

 Similar to HTML, 
explicit tags for 
elements, … 

 ASCII file: easy to 
create, read,  
debug, modify,… 



GDML solids 

And booleans 



GDML components 
GDML Schema  

- self-consistent definition of GDML 
syntax 

- defines document structure and the list 
of legal elements 

GDML Reader 
- Creates 'in-memory' representation of 

the geometry description 
GDML Writer  

- Allows exporting geometry on a file 
- Files can be also edited by hand 

 
Reader and Writer are integrated in 
packages like Geant4 and ROOT 
providing GDML compliant interfaces 

 

GDML 
Schema GDML file 

user application (1) 

GDML writer 

GDML reader 

user application (2) 



Reading GDML files in Geant4 
 Importing a geometry from a GDML file, only 

requires 
DetectorConstructor::Construct(){ 

// gdml parser  
#include "G4GDMLParser.hh” 
G4GDMLParser fParser; 

// importing geometry  

fParser.Read(“detectorgeometry.gdml”);    // reads and stores
        // in memory 

G4VPhysicalVolume* fWorldPhysVol = fParser.GetWorldVolume(); 
// get world 

} 



Writing a GDML files from 
Geant4 

 Converserly, one can export a Geant4 geometry 
(e.g. C++ coded) in a GDML file 

DetectorConstructor::Construct(){ 

// gdml parser  
#include "G4GDMLParser.hh” 
G4GDMLParser fParser; 
G4VPhysicalVolume* fWorldPhysVol; 

// exporting geometry 
fParser.Write(“geometrydump.gdml”, fWorldPhysVol); 
 

} 



Tessellated solids 

 The geometry imported from GDML will be made by 
tessellated solids G4TessellatedSolid  
 Generic solid defined by a number of facets (G4VFacet) 
 Facets can be triangular or quadrangular 

 



CMS detector: G4 GDML 
ROOT 

 

snapshot provided by 
R.Maunder 

~19000 physical 
volumes 



LHCb detector: G4 GDML 
ROOT 

snapshot provided by 
R.Maunder 

~5000 physical 
volumes 



CAD import 
 Typical request: import CAD technical drawings as 

Geant4 geometries 
 Difficulties: 

 Proprietary, undocumented or changing CAD formats 
 Usually no connection between geometry and materials 
 CAD is never as easy as you might think 

 Possible solution (a lot of work!) 
 Convert CAD into STEP (no material information) 
 Convert STEP into GDML and restore manually material 

information 
 Needs commercial software (ST-viewer, FastRAD) 



CADMesh 
 CADMesh is a direct CAD 

model import interface for 
Geant4 optionally leveraging 
VCGLIB, and ASSIMP by 
default.  
 Currently it supports the 

import of triangular facet 
surface meshes defined in 
formats such as STL and 
PLY 

 A G4TessellatedSolid 
is returned and can be 
included in a standard 
user detector construction 

https://code.google.com/p/cadmesh/ 
http://arxiv.org/pdf/1105.0963.pdf 



Hands-on session 
 Task1c 

 Magnetic fields 
 

 http://202.122.35.46/geant/task1 



Backup 



Parallel world 



Parallel world  
 The possibility to define a scoring volume different from the 

physical volumes available since the old times of Geant4 
(ROGeometry) 

 Occasionally, it is not straightforward to define sensitivity, 
importance or envelope to be assigned to volumes in the mass 
geometry. 
 Typically a geometry built machinery by CAD, GDML, DICOM, etc. 

has this difficulty. Mass geometry is composed by voxels or 
tessels (difficult to be treated individually for sensitivity) 

 Other concurrent/similar requirements emerged since then 
 Ghost volume for shower parameterization  
 Importance field geometry for geometry importance biasing 

assigned to importance biasing process 
 Scoring geometry assigned to scoring process 

 New design  everything merged into G4ParallelWorld 



Parallel world 
 New parallel navigation functionality allows the user to 

define more than one worlds simultaneously. 
 New G4Transportation process sees all worlds 

simultaneously. 
 A step is limited not only by the boundary of the mass 

geometry but also by the boundaries of parallel 
geometries: a step will never cross a boundary of any 
volume in any parallel world 

 Materials, production thresholds and EM field are used 
only from the mass geometry 

 In a parallel world, the user can define volumes in 
arbitrary manner with sensitivity, regions with shower 
parameterization, and/or importance field for biasing. 
 Volumes in different worlds may overlap. 



Parallel world and navigation 
 G4VUserParallelWorld is the new base class 

where the user implements a parallel world. 
 The world physical volume of the parallel world is 

provided by G4RunManager as a clone of the mass 
geometry 
 The same world volume applies to all parallel worlds 

 All UserParallelWorlds must be registered to 
UserDetectorConstruction. 

 Each parallel world has its dedicated G4Navigator 
object, that is automatically assigned  

 The user has to have 
G4ParallelWorldProcess in his physics list. 



example/extended/runAndEvent/RE06 
 Mass geometry 

 sandwich of 
rectangular absorbers 
and scintilators 

 Parallel scoring 
geometry 
 Cylindrical layers 

Shower parametrization 
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