Neutrino school at Daya Bay, July 1-2, 2017

T2K Experiment

- The accelerator neutrino oscillation experiment -

T. Nakaya (Kyoto University)

T2K Neutrino Oscillation ExperimentVery Intense Neutrino Beam for $(\overline{\nu})_{\mu} \rightarrow (\overline{\nu})_{e}$ studyJ-PARC

100 km

toplankton —

~500 members, 59 Institutes, 11 countries

The T2K Collaboration

Canada

TRIUMF U. B. Columbia U. Regina U. Toronto U. Victoria U. Winnipeg York U.

France

CEA Saclay IPN Lyon LLR E. Poly. **LPNHE** Paris

Germany

Aachen

~500 members, 59 Institutes, 11 countries Italy INFN, U. Bari INFN, U. Napoli INFN, U. Padova INFN, U. Roma Japan **ICRR Kamioka ICRR RCCN** Kavli IPMU **KEK** Kobe U. Kyoto U. Miyagi U. Edu. Okayama U. Osaka City U. Tokyo Institute of Tech Tokyo Metropolitan U. U. Tokyo Tokyo U. of Science Yokohama National U.

Poland IFJ PAN, Cracow NCBJ, Warsaw U. Silesia, Katowice U. Warsaw Warsaw U. T. Wroclaw U.

Russia

INR

Spain

IFAE, Barcelona IFIC, Valencia U. Autonoma Madrid

Switzerland U. Bern

A.

U. Geneva

United Kingdom

Imperial C. London Lancaster U. Oxford U. Queen Mary U.L. Royal Holloway U.L. STFC/Daresbury STFC/RAL U. Liverpool

U. Sheffield

U. Warwick

USA

Boston U. Colorado S. U. Duke U. Louisiana State U. Michigan S.U. Stony Brook U. U. C. Irvine U. Colorado U. Pittsburgh U. Rochester U. Washington

T2K

Outline

- 1. Physics (addressed by the accelerator experiment)
- 2. Proton Accelerator: J-PARC
- 3. Neutrino Beam
- 4. Neutrino Cross section
- 5. Near Detectors: ND280
- 6. Far Detector: Super-Kamiokande
- 7. Oscillation Analysis
- 8. Latest OA results
- 9. Future Prospect

1. Physics

- addressed by the accelerator experiment -

Introduction

- Neutrino mass and mixing (right handed neutrinos) are physics beyond the standard model.
- Tiny Neutrino mass
 - \cdot What is the origin of the mass?
- · Flavor Symmetry
 - Between leptons and quarks
 - · mass pattern
 - · mixing pattern
 - \cdot the number of generations
- · CP violation

•

- · the origin?
- \cdot matter dominant universe with
 - Leptogenesis

A window to Ultra High Energy

Neutrino Oscillation

Mass and mixing are addressed by neutrino oscillation

- \cdot In the framework of 3 neutrinos, the unknowns are
 - mass ordering
 - · CP violation parameter: δ_{CP}

by restill for from knowledge we have on UT in quark sector

$$\mathcal{L} = \mathcal{L}_{SM} + i\bar{\nu}_R \partial \!\!\!/ \nu_R - \bar{L}_L y \nu_R \tilde{H} - \bar{\nu}_R y^{\dagger} L \tilde{H}^{\dagger} - \frac{1}{2} (\bar{\nu}^c R M_M \nu_R + \bar{\nu}_R M_M^{\dagger} \nu_R^c)$$

Minkowski 1979, Gell-Mann/Ramond/Slansky 1979, Mohapatra/Senjanovic 1979, Yanagida 1980

$$\Rightarrow \frac{1}{2} (\overline{\nu_L} \ \overline{\nu_R^c}) \begin{pmatrix} 0 & m_D \\ m_D^T & M_M \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}$$

The GUT seesaw

Pros:

- theoretically well-motivated GUTs, e.g. SO(10)
- "naturally" explains small neutrino masses
- "naturally" leads to leptogenesis Fukugita/Yanagida
- indirect experimental access to very high scales

Cons:

- new states experimentally inaccessible
- adds to hierarchy problem

by M. Draws @ NuFact2014

The electroweak / TeV seesaw

Pros:

- some theoretical arguments
 - no new scale Asaka/Shaposhnikov
 - classical scale invariance Khoze/Ro,..
- allows for leptogenesis

The GeV seesaw

Pros:

- some theoretical arguments
 - no new scale Asaka/Shaposhnikov
 - classical scale invariance Khoze/Ro,..

The keV seesaw

Pros:

- can in principle explain neutrino masses
- can be Dark Matter (cold, warm, non-thermal...)

- very tiny Yukawa couplings *y*, cancellations
- a state can only either be DM or contribute to neutrino mass
- simplest scenario (Dodelson/Widrow) disfavoured by data

$E_6 \longrightarrow SO(10) \longrightarrow SU(5)$ Example *a* GUT by N. Maekawa

- 1. Unification
 - 1. Force (w/ SUSY)

2. Quark and Leptons

- \cdot 10(Q_i) has more hierarchy than 5(L)
- 2. Hierarchy
 - 1. mixing: lepton (large) >> quark (small)
 - 2. mass: u-type quark >> d-type quark, charged lepton >> neutrino

Forces Merge at High Energies

weak

10⁴

electromagnetic

 10^{8}

Strength of Force

0.00

10⁰

Proton Decay

 10^{12}

Energy in GeV

 10^{16}

10²

Neutrino CPV

- Neutrino Oscillations with CP violation
 - Weak (flavor) state ≠ Mass state
 - · 3 generations \Rightarrow Imaginary Phase in a mixing matrix
 - \cdot [Neutrino] MNS matrix \sim [Quark] CKM matrix
 - · Example: Prob.($\nu_{\mu} \rightarrow \nu_{e}$) \neq Prob.($\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$)
- · Heavy Majorana Neutrino (N) [if exists] with CP violation
 - NOT easy to access (very very difficult)
 - · The decay of N
 - · Prob.($N \rightarrow \overline{I_{L}} + \phi$) \neq Prob.($N \rightarrow I_{L} + \overline{\phi}$)
 - Or, the oscillations of N

Leptogenesis and Neutrino CPV

· Saharov conditions for Baryon Asymmetry

- · [B] Baryon Number Violation
- \cdot [CP] C and CP violation
- · [T] Interactions out of thermal equilibrium
- · Leptogenesis and Low Energy CP violation in Neutrinos
 - · [B] Sphaleron process for $\Delta(B+L)\neq 0$
 - · [CP] Heavy Majorana Neutrino decay and/or Neutrino oscillations
 - |sin θ₁₃sin δ|>0.09 is a necessary condition for a successful "flavoured" leptogenesis with hierarchical heavy Majorana neutrinos when the CP violation required for the generation of the matterantimatter asymmetry of the Universe is provided entirely by the Dirac CP violating phase in the neutrino mixing matrix [Phys. Rev. D75, 083511 (2007)].
 - $\cdot \sin\theta_{13} \sim 0.15 \Rightarrow |\sin\delta| > 0.6$

Formula of Oscillation Probability with CP violation

$$P(\nu_{\mu} \rightarrow \nu_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \sin^{2} \Delta_{31} \text{ Leading} \text{ CP violating (flips sign for } \overline{V}) \\ +8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23} \cos \delta - S_{12}S_{13}S_{23}) \cdot \cos \Delta_{32} \cdot \sin \Delta_{31} \cdot \sin \Delta_{21} \\ -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23} \sin \delta \sin \Delta_{32} \cdot \sin \Delta_{31} \cdot \sin \Delta_{21} \\ +4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13} \cos \delta) \cdot \sin^{2} \Delta_{21} \\ -8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{aL}{4E_{\nu}}(1 - 2S_{13}^{2}) \cdot \cos \Delta_{32} \cdot \sin \Delta_{31} \\ +8C_{13}^{2}S_{13}^{2}S_{23}^{2} \frac{a}{\Delta m_{13}^{2}}(1 - 2S_{13}^{2}) \sin^{2} \Delta_{31} \\ \text{Leading} \qquad sin^{2}\theta_{23}sin^{2}2\theta_{13}sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) \\ \frac{\sin^{2}\theta_{23}sin^{2}2\theta_{13}sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right)}{2\sin\theta_{13}} \\ \frac{\cos^{2}\theta_{13}sin^{2}\theta_{23}sin^{2}2\theta_{13}sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right)}{2\sin\theta_{13}} \\ \frac{\cos^{2}\theta_{13}sin^{2}\theta_{23}sin\theta_{23}}{\sin^{2}\theta_{23}sin\theta_{3}} \\ \frac{\cos^{2}\theta_{13}sin^{2}\theta_{23}sin\theta_{3}}{\sin^{2}\theta_{23}sin\theta_{3}} \\ \frac{\cos^{2}\theta_{13}sin^{2}\theta_{23}sin\theta_{3}}{\sin^{2}\theta_{23}sin\theta_{3}} \\ \frac{\cos^{2}\theta_{13}sin^{2}\theta_{23}sin\theta_{3}}{\sin^{2}\theta_{23}sin\theta_{3}} \\ \frac{\cos^{2}\theta_{13}sin^{2}\theta_{23}sin\theta_{3}}{\sin^{2}\theta_{23}sin\theta_{3}} \\ \frac{\cos^{2}\theta_{23}sin\theta_{3}}{\sin^{2}\theta_{23}sin\theta_{3}} \\ \frac{\cos^{2}\theta_{23}sin\theta_{3}}{\sin^{2}\theta_{23}sin\theta_{3}} \\ \frac{\cos^{2}\theta_{23}sin\theta_{3}}{27\%} \\ \frac{\cos$$

A door to Neutrino CP violation is opened

- $\nu_{\mu} \rightarrow \nu_{e}$ oscillation w/ Δm_{atm}^{2} discovered by the T2K experiment
 - Indication in 2011 [PRL 107, 041801 (2011)]
 - Observation in 2013 [PRL 112, 061802 (2014)]

		Parameters	Asimov A		
	$sin^2 2\theta_{12}$	0.846			
FKAIVIEVVOF	$sin^2 2\theta_{13}$	0.0849			
Equir model of above	$sin^2 heta_{23}$	0.528			
 Four modes of observation 	Δm_{21}^2	7.53×10^{-5}			
• $v \rightarrow v$, $\overline{v} \rightarrow \overline{v}$, appear	Δm_{32}^2	2.509×10^{-3}			
ν_{μ} , ν_{e} , ν_{μ} , ν_{e} appear	δ_{cp}	-1.601			
	Systematic	$\Delta N_{SK}/N_{SK}$	$\Delta N_{SK}/N_{SK}$		
$_{0}$ \bullet Data $_{35}$ \bullet Data $_{36}$ \bullet Data $_{36}$ \bullet Data $_{37}$	Systematic	before ND fit	after ND fit		
	Flux	7.7%	3.1%		
	Cross section	7.6%	3.8%		
	Flux and cross section	10.9%	2.5%		
	Final state/secondary interactions at SK	1.8%			
	SK detector	4.6%			
0 0.5 1 1.5 2 2.5 3 Reconstructed Neutrino Energy (GeV)	Total	12.1%	4.9%		
M. Fre u nd, Phys.Rev. D64 (2001) 053003	$ \Delta m_{31}^2 $ 30 4E		m ₃₁		
$P(\nu_{\mu} \to \nu_{\mu}) \sim 1 - (\cos^{4} 2\theta_{13} \sin^{2} 2\theta_{23} + \sin^{2} 2\theta_{13} \sin^{2} \theta_{23}) \sin^{2} \Delta m_{31}^{2} \frac{L}{AE}$					

- Large θ_{23} : enhances both $v_{\mu} \rightarrow v_e$ and $\bar{v}_{\mu} \rightarrow \bar{v}_e$
- $\delta_{CP} = -\pi/2$: enhance $v_{\mu} \rightarrow v_e$, suppress $\overline{v}_{\mu} \rightarrow \overline{v}_e$
- $\Delta m_{31}^2 > 0$ (normal hierarchy): enhance $v_{\mu} \rightarrow v_e$, suppress $\overline{v}_{\mu} \rightarrow \overline{v}_e$

2. J-PARC

- Proton Accelerator -

J-PARC (Japan-Proton-Accelerator Research Complex)

RCS (Rapid Cycling Synchrotron)

Main parameters of MR

Mid-term plan of MR (Revised in Jan. 2017)

JFY	2015	2016	2017	2018	2019	2020	2021	2022
		New bui	Idings	HD Target	Long shutdown	G	oal of RI	M2013
FX power [kW]	390	470	480-500	> 500	700	800	900	1060
SX power [kW]	42	42	50	50-60	60-80	80 🤇	80-100	100
Cycle time of main magnet PS New magnet PS	2.48 s	Mas insta	s production allation/test	2.48 s	1.3 s	1.3 s	1.3 s	1.3 s
High gradient rf system 2 nd harmonic rf system	Installat	ion Mar	nufacture, insta	llation/test				
Ring collimators	Add.coll imators (2 kW)				Add.colli. (3.5kW)			
Injection system	Kicker PS improvement, Septa manufacture /test							
SX collimator / Local shields	Kicker PS	improvement, F	-X septa manufact	ture / test		Local shiel	ds	
Ti ducts and SX devices with Ti chamber			ESS					

High Intensity beam study in June 2015 (cont'd)

- at the new betatron tune (22.239, 21.310) -

Extracted beam : 3.41e13 ppb 6.82e13 ppp (132 kW eq. ,2 bunches)

Beam loss Watt				
INJ(K1+K2+K3+K4)	144	7.43e+11		
P2> +90ms	241	1.00e+12		
P2+90ms> +120ms	31	1.30e+11		
P2+100ms> EXT		1.83e+11		

Total beam loss ~ 420 W

Near future tunable knobs to reduce the beam loss: Injection kicker, BxB feed-back, 2nd harmonic cavity, VHF cavity, etc.

	Bunch number	repetition period (sec)	Beam power (kW)	Beam Ioss (kW)	Notes	
1	2	2.48	132	0.42	measurement	
2	8	2.48	529	1.7	estimation	
3	8	1.3	1009	3.2	estimation	

The MR has capability to reach 1MW with the high repetition rate operation.

How to make neutrinos

• Proton Punch : J-PARC's special.

Target : will be hit by powerful protons

J-PARC ν beam line :Primary-line

31

J-PARC ν beam line: secondary line

More neutrinos with more beam Original Design: 7 5 0 k W beam!

- 3×1014 Protons-On-Target (POT) every 2.5 sec.
- > 1000Sv/h If the target made of iron, 10 cm 1000 5 800 600 0 400 -5 200 -10 20 80 40 60 100 n Temperature Rise (K/pulse)
 - \checkmark melting

✓ broken ≈ $E\alpha\Delta T$ ≈ 3GPa

(cf. melting point 1536°C)

1100°C

Any metal heavier than Ti will be broken.

radiation

cm

*Beam Power is proportional to #protons/sec × proton Energy

(cf. ~300 MPa)

Predicted Neutrino Flux

 v_{μ} (anti- v_{μ}) : pions at low E_{ν} , kaons at large E_{ν}

ν μ parents:
 1. π
 2. K+

 v_e : muons at at low E_{v_e} kaons at high E_v anti- v_e : kaons for all E_v

 ν_e parents: 1. μ 2. K⁺
NA61/SHINE Experimental Setup

new FTPC installed for 2017 run

Fixed target experiment at CERN SPS with the large acceptance spectrometer

- **Time Projection Chambers :** tracking and particle identification
 - Momentum resolution $\sigma(p)/p^2 \approx 10^{-4} (GeV/c)^{-1}$
 - Particle identification : $\sigma(dE/dx)/ < dE/dx > \approx 4\%$ \succ
- **Time of Flight :** particle identification
 - New ToF-F array installed to fully cover T2K acceptance
 - Time resolution $\sigma(t)$ ToF-F \approx 120ps, $\sigma(t)$ ToF-L/R \approx 80ps \triangleright

TPC and ToF detectors provide very good particle identification

Combined dE/dx + ToF for π^+

NA61

Arb. Units 10⁵ Hadron Measurements on Thin Target 04 2009 Coverage р $[rad] \theta$ The phase space contributing to the predicted neutrino flux at SK and the NA61 data coverage. 5 $\times 10^{2}$ Arb. Units Arb. Units 2009 Coverage 0.4 2009 Coverage 0.4 0^{-} p_{p}^{10} [GeV/c] 20 2007 Coverage 200 2007 Coverage $\theta_{\pi^{-}}$ [rad] θ_{π^+} [rad] π^+ Arb. Units π 10 0.2 0.2 2009 Coverage 0.4 100 2007 Coverage $[\operatorname{rad}_{k_0^{\circ}}^{\circ}]$ [rad] **K**⁰ S 0" $\frac{10}{p_{\pi}} [GeV/c]$ 20 20 10 $p_{\pi^+}^{10}$ [GeV/c] Arb. Units Arb. Units 2009 Coverage 2009 Coverage 0.4 0.4 40 $p_{k^0s}^{10}$ [GeV/c] 2007 Coverage 20 $\theta_{K^{\text{-}}} \, [\text{rad}]$ $[h_{K^{+}}]_{K^{+}}$ K⁻ Arb. Units 20 **K**⁺ 0.2 2009 Coverage 20 0.4 2007 Coverage $\theta_{\Lambda} \, [rad]$ Λ^0 $0^{\mathsf{L}}_{\mathsf{O}}$ 10 p_k [GeV/c] 20 20 $p_{K^+}^{10}$ [GeV/c] 0.2 NA61 provides good coverage of required Proton beam phase-space 10 0 10 p_Λ [GeV/c] 20 2 cm 38

Measurements with Thin Target Data π^{-} Multiplicities K⁻ Multiplicities

Flux Uncertainties at SK

Fractional Error

Flux correlations before ND280 fit : zoom

4. Neutrino Cross section

Neutrino Interactions in T2K (NEUT and GENIE)

- CC (Charged-Current) quasi elastic (CCQE)
 - $v + n \rightarrow \mu^- + p$ (n in N)
- CC (resonance) single π (CC-1 π)
 - $\nu + n(p) \rightarrow \mu^{-} + \pi^{+} + p(n)$ (n,p in N)
- DIS (Deep Inelastic Scattering)
 - $\nu + N \rightarrow \mu^{-} + m\pi^{+/-/0} + N'$
- CC coherent $\pi (\nu + A \rightarrow \mu^{-} + \pi^{+} + A)$
- NC (Neutral-Current) copious process (NC- $1\pi^0$, etc..)

+ Nuclear Effects

CCQE

• SIGNAL: reconstruct neutrino energy from lepton momentum and scattering angle.

$$E^{rec} = \frac{m_p^2 - (m_n - E_b)^2 - m_e^2 + 2(m_n - E_b)E_e}{2(m_n - E_b - E_e + p_e \cos \theta_e)}$$

CC Deep-Inelastic-Scattering

- Oscillation depends on energy
 - Estimate from hadronic and/or leptonic information

$$E_{\nu}^{QE} = \frac{m_{p}^{2} - m_{n}'^{2} - m_{\mu}^{2} + 2m_{n}'E_{\mu}}{2(m_{n}' - E_{\mu} + p_{\mu}\cos\theta_{\mu})} \qquad E_{\nu} = E_{\mu} + \sum E_{hadronic}$$

Near Detector (ND280) Far Detector (Super-K)

- Even with a near detector, critical reliance on model
 - 2p2h feed-down to oscillation peak from [Ref 4]

σ_{ν} -cc/ E_{ν}

51

$\sigma \overline{\nu}$ -cc/ $E_{\overline{\nu}}$

5. ND280 - Near Detectors -

52

Side-Muon-Range Detector

Performance of ND280

 $u_{\mu} \ \mathsf{CC0}\pi$

 u_{μ} CC other

Selection in ND280

(oscillation

background)

Anti-neutrino beam mode

14 ND280 event samples

Detector	Beam	CC-0 <i>π</i>	CC-1 π	CC-other	
FGD1	ν	1	2	3	
	anti- <i>v</i>	4	5		
		6	7		
FGD2 (Water)	ν	8	9	10	
	anti- <i>v</i>	11	12		
		13	14		

- Binned Likelihood fit of MC expectations with flux, crosssection and detector parameters to data observation.
 - $P_{\mu} vs cos \theta_{\mu}$

Fit ND280 data with flux and cross-section parameters

How many type of flux parameters?

		${oldsymbol u}$ $_{\mu}$	${m u}$ e	anti- $ u_{\mu}$	anti- $ u_{ m e}$
ν	ND280				
	SK				
anti- $ u$	ND280				
	SK				

		${\cal V}$ $_{\mu}$	${\cal V}$ e	anti- $ u_{\mu}$
77	ND280			
ν	SK			

		${oldsymbol u}$ $_{\mu}$	${m u}$ e	anti- $ u_{\mu}$	anti- $ u_{ m e}$
anti- $ u$	ND280				
	SK				

SK parameter correlation matrix

• Flux para[1-50]

- ν para[1-25]
 - ν_μ[1-1]]
 - anti-ν_μ[12-16]
 - ν_e[17-23]
 - anti-ν_e[24-25]
- anti-ν para[26-50]
 - ν_μ[26-30]
 - anti-ν_μ[31-41]
 - ν_e[42-43]
 - anti-ν_e[44-50]

Cross-Section Para[51-65]

Cross Section Parameters

Cross section	Prefit	ND280 postfit	
parameter			
$M_{ m A}^{ m QE}~({ m GeV}/c^2)$	1.20	1.12 ± 0.03	
$p_{\rm F}~^{12}{ m C}~({ m MeV/c})$	217.0	243.9 ± 16.6	
2p2h ¹² C	100.0	154.5 ± 22.7	
$E_{\rm b}$ ¹² C (MeV)	25.0 ± 9.00	16.5 ± 7.53	
$p_{\rm F}$ $^{16}{\rm O}~({\rm MeV/c})$	225.0	234.2 ± 23.7	
2p2h ¹⁶ O	100.0	154.6 ± 34.3	
$E_{\rm b}$ ¹⁶ O (MeV)	27.0 ± 9.00	23.8 ± 7.61	
$C_{ m A}^5$	1.01 ± 0.12	0.80 ± 0.06	
$M_{\rm A}^{ m RES}~({ m GeV}/c^2)$	0.95 ± 0.15	0.84 ± 0.04	
$I_{\frac{1}{2}}$ background	1.30 ± 0.20	1.36 ± 0.17	
CC other shape	0.00 ± 0.40	-0.02 ± 0.21	
CC coherent	1.00 ± 0.30	0.86 ± 0.23	
NC coherent	1.00 ± 0.30	0.93 ± 0.30	
2p2h $\bar{\nu}$	1.00	0.58 ± 0.18	
NC other	1.00 ± 0.30	Not constrained	
NC 1- γ	1.00 ± 1.00	Not constrained	
$ u_e/ u_\mu$ ratio	1.00 ± 0.02	Not constrained	
$\bar{\nu}_e/\bar{\nu}_\mu$ ratio	1.00 ± 0.02	Not constrained	
FSI elastic low-E	0.00 ± 0.41	Not constrained	
FSI elastic high-E	0.00 ± 0.34	Not constrained	
FSI pion production	0.00 ± 0.50	Not constrained	
FSI pion absorption	0.00 ± 0.41	Not constrained	
FSI charge exchange low-E	0.00 ± 0.57	Not constrained	
FSI charge exchange high-E	0.00 ± 0.28	Not constrained	

67

Cross Section tuning

ND280 ν data comparison after FIT

Reconstructed muon momentum (MeV/c)

ND280 $\overline{\nu}$ data comparison after FIT

6. Super-Kamiokande - Far Detector -

T2K-Far Detector: Super-Kamiokande

39.3m

- Water Cherenkov detector with 50 kton mass (22.5 kton Fiducial volume) located at 1km underground
- Good performance (momentum and position resolution, PID, 0 charged particle counting) for sub-GeV neutrinos.
 - [Typical] 61% efficiency for T2K signal v_e with 95% NC-1 π^0 rejection
 - Inner tank (32 kton) :11,129 20inch PMT 0
 - Outer tank:1,885 8inch PMT 0
- **Dead-time-less DAQ**
 - GPS timing information is recorded January 120 Numpu 100 real-time at every accelerator spill T2K recorded events: All interactions® within a ±500µsec window centered on the the neutrino arrival time.

Cherenkov Imaging

 $\beta > 1/n (n=1.)$

 $\cos \theta = 1/n\beta$

- · Particle ID.
 - By the Cherenkov ring edge and the opening Angle.
- Momentum
 - The amount of light-yield inside a ring with PID
- Vertex
 - Timing of the PMT at the ring edge with PID

Neutrino Detection at SK Far Detector

Initial Data Reduction

Timing Selection of accelerator neutrinos

Electron Neutrino Selection

Runs 1-7			Expected	ed			Data
	$\nu_{\mu} + \bar{\nu_{\mu}} CC$	$\nu_e + \bar{\nu_e} \ CC$	NC	$\bar{ u_{\mu}} ightarrow ar{ u_{e}}$	BG Total	$\nu_{\mu} \rightarrow \nu_{e}$	
Interactions in FV	365.2332	18.5971	326.9786	0.3919	711.2008	35.5567	654
FCFV	280.5837	18.1317	98.9675	0.3825	398.0655	34.8647	438
Single ring	153.7866	11.1750	28.7556	0.3161	194.0334	30.0231	220
Electron-like PID	6.4809	11.0915	19.5762	0.3138	37.4625	29.6420	70
Evis > 100 MeV	4.6030	11.0352	16.8511	0.3122	32.8016	29.1320	66
No Decay-e	0.9714	8.9912	14.2791	0.3070	24.5487	26.1802	51
E_{ν}^{rec}	0.2532	4.2693	10.8768	0.2168	15.6161	25.1998	46
fiTQun π^0 cut	0.0892	3.6846	1.3528	0.1812	5.3078	23.3110	32
Efficiency from Interactions [%]	0.0	19.8	0.4	46.2	0.7	65.6	-
Efficiency from FCFV [%]	0.0	20.3	1.4	47.4	1.3	66.9	-

Electron Anti-Neutrino Selection

Runs 5-7	Expected							
	$ u_{\mu} + \bar{ u_{\mu}} \ \mathrm{CC}$	$\nu_e + \bar{\nu_e} \ \mathrm{CC}$	NĈ	$ar{ u_{\mu}} ightarrow ar{ u_{e}}$	BG Total	$ u_{\mu} ightarrow u_{e}$		
Interactions in FV	164.0430	9.0049	132.7521	2.2885	308.0886	4.2956	263	
FCFV	123.2438	8.7503	42.0523	2.2411	176.2875	4.1961	170	
Single ring	73.2145	5.5119	11.8747	1.7265	92.3276	3.7371	94	
Electron-like PID	2.3068	5.4784	8.3577	1.7060	17.8489	3.6989	16	
Evis > 100 MeV	1.8266	5.4625	7.3923	1.6866	16.3680	3.6791	14	
No Decay e	0.3284	4.7127	6.2416	1.4595	12.7421	3.6571	12	
E_{ν}^{rec}	0.0828	1.8870	4.8261	1.1858	7.9816	3.4192	9	
fiTQun π^0 cut	0.0190	1.5754	0.5968	1.0456	3.2368	3.0432	4	
Efficiency from Interactions [%]	0.0	17.5	0.4	45.7	1.1	70.8	-	
Efficiency from FCFV [%]	0.0	18.0	1.4	46.7	1.8	72.5	-	

Fiducial Volume

2m away from the wal

80

Number of Rings (=1)

Ring-counting Likelihood

Particle ID (= e-like)

Visible Energy (> 100 MeV)

#Decay-electrons (=0)

Reconstructed ν energy (<1250 MeV)

fitQun π^0 CUT

87

fiTQun π^0 CUT (before)

FINAL Electron (anti-)neutrino events

- Neutrino:
 - Data: 32
 - MC: 28.55

- Anti-neutrino:
 - Data: 4
 - MC: 6.28

FINAL Electron (anti-)neutrino events

		$ u_{\mu}+\overline{ u}_{\mu}$	$ u_e + \overline{ u}_e$	$\nu + \bar{\nu}$	$\overline{ u}_{\mu} ightarrow \overline{ u}_{e}$	$ u_{\mu} ightarrow u_{e}$	
ν -beam mode	MC total	CC	CC	NC	CC	CC	Data
interactions in FV	744.89	364.32	18.55	326.16	0.39	35.47	-
FCFV	431.85	279.88	18.09	98.72	0.38	34.78	438
$\operatorname{single} \operatorname{ring}^{\mathrm{a}}$	223.49	153.40	11.15	28.68	0.32	29.95	220
$electron-like^{b}$	66.94	6.46	11.06	19.53	0.31	29.57	70
$E_{\rm vis} > 100 {\rm MeV^c}$	61.78	4.59	11.01	16.81	0.31	29.06	66
$N_{\rm Michel-e} = 0^{\rm d}$	50.60	0.97	8.97	14.24	0.31	26.11	51
$E_{\nu}^{\rm rec} < 1250 {\rm MeV^e}$	40.71	0.25	4.26	10.85	0.22	25.14	46
not π^0 -like ^f	28.55	0.09	3.68	1.35	0.18	23.25	32
$\bar{\nu}$ -beam mode							
interactions in FV	312.38	164.04	9.00	132.75	4.30	2.29	-
FCFV	180.48	123.24	8.75	42.05	4.20	2.24	170
single ring	96.06	73.21	5.51	11.87	3.74	1.73	94
electron-like	21.55	2.31	5.48	8.36	3.70	1.71	16
$E_{\rm vis} > 100 {\rm MeV}$	20.05	1.83	5.46	7.39	3.68	1.69	14
$N_{ m Michel-e}=0$	16.40	0.33	4.71	6.24	3.66	1.46	12
$E_{\nu}^{rec} < 1250 \mathrm{MeV}$	11.40	0.08	1.89	4.83	3.42	1.19	9
not π^0 -like	6.28	0.02	1.58	0.60	3.04	1.05	4

Muon Neutrino Selection

Runs 1-7	Data		Expected					
		MC Total	$\nu_{\mu} CCQE$	$\bar{\nu_{\mu}}$ CCQE	$\nu_{\mu} + \bar{\nu_{\mu}} \text{ CC non-QE}$	$\nu_e + \bar{\nu_e} \ CC$	NC	
Interactions in FV	654	746.7575	100.4284	6.4638	258.3411	54.5457	326.9786	
FCFV	438	432.9301	78.9518	4.8621	196.7698	53.3789	98.9675	
Single ring	220	224.0565	73.6820	4.7067	75.3979	41.5143	28.7556	
Muon-like PID	150	156.9520	72.4042	4.6641	70.2374	0.4669	9.1794	
$p_{\mu} > 200 \mathrm{MeV/c}$	150	156.6329	72.2183	4.6613	70.1791	0.4669	9.1073	
$N_{decay-e} \leq 1$	135	138.1053	71.4660	4.6381	52.7374	0.4657	8.7981	
Efficiency from Interactions [%]	-	18.5	71.2	71.8	20.4	0.8	2.7	
Efficiency from FCFV [%]	-	31.9	90.5	95.4	26.8	0.9	8.9	

Muon Anti-Neutrino Selection

Runs 5-7	Data	Expected					
		MC Total	ν_{μ} CCQE	$\bar{\nu_{\mu}}$ CCQE	$\nu_{\mu} + \bar{\nu_{\mu}} \text{ CC non-QE}$	$\nu_e + \bar{\nu_e} \ { m CC}$	NC
Interactions in FV	263	312.3842	20.0413	30.7730	113.2287	15.5890	132.7521
FCFV	170	180.4835	15.0375	24.9456	83.2607	15.1875	42.0523
Single ring	94	96.0647	13.5195	24.2846	35.4103	10.9755	11.8747
Muon-like PID	78	74.5169	13.3959	23.9567	33.5551	0.0922	3.5170
$p_{\mu}>200{ m MeV/c}$	78	74.4175	13.3862	23.9221	33.5368	0.0922	3.4802
$\dot{N}_{decay-e} \leq 1$	66	68.2621	13.1816	23.8472	27.7887	0.0917	3.3528
Efficiency from Interactions [%]	-	21.9	65.8	77.5	24.5	0.6	2.5
Efficiency from FCFV [%]	-	37.8	87.7	95.6	33.4	0.6	8.0

0

FCFV

1-ring

µ-like

 p_{μ}

Decay-e

Fiducial Volume

2m away from the wall

95

#Rings (=1); Particle ID (= μ -like)

#Decay-electrons (<=1)</pre>

Muon Neutrino events

Muon Anti-Neutrino events

FINAL muon (anti-)neutrino events

- Neutrino:
 - Data: 135
 - MC: 137.76

- Anti-neutrino:
 - Data: 66
 - MC: 68.26

FINAL muon (anti-)neutrino events

ν -beam mode	MC total	$ \frac{ \nu_{\mu}}{ m CCQE} $	$\overline{ u}_{\mu}$ CCQE	$ $	$ \begin{array}{c} \nu_e + \overline{\nu}_e \\ ext{CC} \end{array} $		Data
interactions in FV	744.89	100.17	6.45	257.70	54.41	326.16	-
FCFV	431.85	78.75	4.85	196.28	53.25	98.72	438
single ring ^g	223.49	73.49	4.70	75.21	41.41	28.68	220
muon-like ^h	156.56	72.22	4.65	70.06	0.47	9.16	150
$p_{\mu} > 200 \mathrm{MeV}/c^{\mathrm{i}}$	156.24	72.03	4.65	70.00	0.47	9.08	150
$N_{\rm Michel-e} \leq 1^{j}$	137.76	71.28	4.63	52.61	0.46	8.78	135
$\bar{\nu}$ -beam mode							
interactions in FV	312.38	20.04	30.77	113.23	15.59	132.75	-
FCFV	180.48	15.04	24.95	83.26	15.19	42.05	170
single ring	96.06	13.52	24.28	35.41	10.98	11.87	94
muon-like	74.52	13.40	23.96	33.56	0.09	3.52	78
$p_{\mu} > 200 \mathrm{MeV}/c$	74.42	13.39	23.92	33.54	0.09	3.48	78
$\dot{N}_{ m Michel-e} \leq 1$	68.26	13.18	23.85	27.79	0.09	3.35	66

FINAL ν and $\overline{\nu}$ events

Beam mode	Sample	$\delta_{CP} = -1.601$	$\delta_{CP} = 0$	Exp. Not Osc	Observed
neutrino	μ -like	135.815	135.459	521.777	135
neutrino	$e ext{-like}$	28.687	24.170	6.147	32
antineutrino	μ -like	64.205	64.059	184.837	66
antineutrino	e-like	6.004	6.902	2.335	4
neutrino	$CC1\pi^+$ -like	3.126	2.744	3.258	5

New in 2017

7. Oscillation Analysis

Near Detector measurements → constraints

Electron Neutrino Predictions

Muon Neutrino Predictions

Systematic uncertainties

Total $\delta N_{SK}/N_{SK}$								
Beam mode	sample	ND280	$\operatorname{constra}$	ained	W/o ND280			
neutrino	μ -like	5	.11%		12.02%			
neutrino	e-like	5	0.53%		12.06%			
antineutrino	μ -like	5	0.19%		12.88%			
antineutrino	e-like	6	5.31%		14.06%			
neutrino	$CC1\pi^+$ -like	14	4.84%		21.84%			

uncertainties

	×10	-3
1.2	90	
	- 80	
	-70	nts
0.8	-60	eve
	50	$\overline{\overset{\circ}{\mathrm{CC1}}}_{\pi^+}$
	-40	$\frac{1}{N} \frac{N}{N}$
•.4	30	$\overline{\mathbf{R}}$ $\overline{3.6\%}$
	20	
	_ 10	$\overline{4.9\%}$
	160 180	
0 20 40 00 30 100 120 14 A (degrees)	0 100 100	
0 (degrees)		6.4%
(w/ND280 constraint) 4.	2% 2.9%	5.0%
FSI+SI+PN at SK 2.	5% 1.5%	10.5%
SK detector 2.	4% 3.9%	9.3%
All		
(w/o ND280 constraint) 12	.7% 12.0%	6 21.9%
(w/ND280 constraint) 5.	5% 5.1%	14.8%

Source of uncertainty	$\overline{\nu}_e$ CCQE-like	$\overline{ u}_{\mu}$
	$\delta N/N$	$\delta N/N$
Flux	3.8%	3.8%
(w/ND280 constraint)		
Cross section	5.5%	4.2%
(w/ND280 constraint)		
Flux+cross-section		
(w/o ND280 constraint)	12.9%	11.3%
(w/ND280 constraint)	4.7%	3.5%
FSI+SI+PN at SK	3.0%	2.1%
SK detector	2.5%	3.4%
All		
(w/o ND280 constraint)	14.5%	12.5%
(w/ND280 constraint)	6.5%	5.3%

Oscillation FIT

Oscillation FIT w/ CC ν_e -1 π^+

9. Latest OA results

$\nu_{\mu}/\overline{\nu}_{\mu}$ Disappearance Analysis

- CPT test by comparing $(\nu_{\mu} \rightarrow \nu_{\mu})$ and $(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu})$ modes

135 events observed

(135.8 events expected)

 $\overline{
u}_{\mu}$

Reconstructed Energy [MeV]

66 events observed

(64.2 events expected)

θ_{23} and Δm_{32}^2 Comparison

- No hint of CPT violation

 $\Delta \overline{m}_{32}^2 = [2.16, 3.02] \times 10^{-3} eV^2 (NH) \text{ at } 90\% \text{ CL}$ $\sin^2 \overline{\theta}_{23} = [0.32, 0.70] (NH) \text{ at } 90\% \text{ CL}$

 $\Delta m_{32}^2 = [2.34, 2.75] \times 10^{-3} eV^2 (NH)$ at 90% CL $\sin^2 \theta_{23} = [0.42, 0.61] (NH)$ at 90% CL

Full Joint Fit Analysis v_e

32 events observed

4 events observed

 $\overline{\nu}_e$

	$\delta_{cp} = -\pi/2$ (NH)	$\delta_{cp} = 0$ (NH)	$\delta_{cp} = +\pi/2$ (NH)	$\delta_{cp} = \pi$ (NH)	Observed
ν_e	28.7	24.2	19.6	24.1	32
$\overline{\nu}_{e}$	6.0	6.9	115 7.7	6.8	4

OA Fit results with T2K only data

FIT neutrino and anti-neutrino data separately.

3.6

θ_{23} and Δm_{32}^2

- Consistent with maximal mixing

	NH	IH
$\sin^2 \theta_{23}$	$0.532^{+0.046}_{-0.068}$	$0.534^{+0.043}_{-0.066}$
$ \Delta m^2_{32} [10^{-3} { m eV}^2]$	$2.545^{+0.081}_{-0.084}$	$2.510^{+0.081}_{-0.083}$

$\delta_{\rm CP}$ with reactor θ_{13}

Measurement (Data)

Tru	e: $\delta_{CP} = \delta_{CP}$	$-\pi/2 - r$	normal ordering
δ_{CP}	Ordering	90% CL	2σ CL
0	Normal	0.243	0.131
π	Normal	0.216	0.105
0	Inverted	0.542	0.425
π	Inverted	0.559	0.436
Т	rue: δ_{CP} =	= 0 - nor	mal ordering
δ_{CP}	Ordering	90% CL	2σ CL
0	Normal	0.104	0.0490
π	Normal	0.130	0.0591
0	Inverted	0.229	0.137
π	Inverted	0.205	0.122
True	e: $\delta_{CP} = -$	$-\pi/2$ — ir	nverted ordering
δ_{CP}	Ordering	90% CL	2σ CL
0	Normal	0.124	0.0515
π	Normal	0.102	0.0413
0	Inverted	0.290	0.194
π	Inverted	0.308	0.207

with $\sin^2 2\theta_{13} = 0.085 \pm 0.005$

A constraint of neutrino CPV at 90% CL

· $\delta_{CP} = [-3.13, -0.39]$ (NH), [-2.09, -0.74] (IH) at 90% CL

Posterior probability on δ_{CP}

Posterior probabilities for the mass ordering and $\sin^2 \theta_{23}$

	$\sin^2\theta_{23} < 0.5$	$\sin^2\theta_{23} > 0.5$	Line Total
Inverted ordering	0.060	0.152	0.212
Normal ordering	0.235	0.553	0.788
Column total	0.295	0.705	1

10. Future Prospect

Seamless program to νCPV

From T2K to T2K-II and Hyper-Kamiokande

CP Violation Sensitivity in T2K-II

T2K-II w/ improved stat. (10E21 POT for nu and 10E21 POT for anti-nu)

			Signal	Signal	Beam CC	Beam CC	
	True δ_{CP}	Total	$ u_{\mu} \rightarrow \nu_{e} $	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	$\nu_e + \bar{\nu}_e$	$ u_{\mu} + \bar{ u}_{\mu} $	NC
ν -mode	0	454.6	346.3	3.8	72.2	1.8	30.5
ν_e sample	$-\pi/2$	545.6	438.5	2.7	72.2	1.8	30.5
$\bar{\nu}$ -mode	0	129.2	16.1	71.0	28.4	0.4	13.3
$\bar{\nu}_e$ sample	$-\pi/2$	111.8	19.2	50.5	28.4	0.4	13.3

- 3σ sensitivity to CP violation for favorable parameters based on
 - 20×10^{21} Protons on Target with the g upgrade of J-PARC to 1.3MW (~10 $\frac{9}{2}$ year long run) before year 2026.
- J-PARC PAC gives Stage 1 approval. We are preparing the Technical Design Report.

Accelerator Improvement

J-PARC Secondary Beamline Upgrades

However, need upgrades to improve cooling capacity, radiation containment, and irradiated cooling water disposal for 1+ MW

Component	Limiting Factor	Current	Upgraded
		Acceptable Value	Acceptable Value
Targat	Thermal Shock	$3.3 imes10^{14}$ ppp	$3.3 imes10^{14}$ ppp
Target	Cooling Capacity	0.75 MW	>1.5 MW
	Conductor Cooling	2 MW	2 MW
	Stripline Cooling	0.54 MW	>1.25 MW
погл	Hydrogen Production	1 MW	>1 MW
	Operation	2.48 s & 250 kA	1 s & 320 kA
	Thermal Stress	4 MW	4 MW
He vessel	Cooling Capacity	0.75 MW	>1.5 MW
Decay	Thermal Stress	4 MW	4 MW
Volume	Cooling Capacity	0.75 MW	>1.5 MW
Beam	Thermal Stress	3 MW	3 MW
Dump	Cooling Capacity	0.75 MW	>1.5 MW
Dediction	Radioactive Air Disposal	1 MW	>1 MW
	Radioactive Water	0.5 MW	$0.75 \rightarrow 1.3 \text{ or } 2 \text{ MW}$
He Vessel Decay Volume Beam Dump Radiation	Operation Thermal Stress Cooling Capacity Thermal Stress Cooling Capacity Thermal Stress Cooling Capacity Radioactive Air Disposal Radioactive Water	2.48 s & 250 kA 4 MW 0.75 MW 4 MW 0.75 MW 3 MW 0.75 MW 1 MW 0.5 MW	1 s & 320 k 4 M' >1.5 M' 4 M' >1.5 M' >1.5 M' >1.5 M' >1 M' 0.75→1.3 or 2 M'

Improvement of Neutrino Flux with Upgrade

 320kA horn current, Radio-active water disposal, cooling, cooling, and cooling

+10% more neutrino flux expected

ND280 (NOW)

UA1 Magnet Yoke SMRD TPCs FGDs P0D (rt% detector) Solend

ND280 (Upgrade)

This is just an image, and the details are under discussions in the T2K collaboration.

· T2K steadily improves the systematic uncertainty.

· ~18% (2011) \rightarrow ~9% (2014) \rightarrow ~6% (2016) [\rightarrow ~3% (2020)]

 Understanding of Neutrino Interactions is essential for future experiments (T2K-II and Hyper-K)

Systematic errors

Neutrino Interactions

- · We will improve the near detector performance
 - with the better efficiency (and purity)
 - with the lower threshold to detector all hadrons, mainly protons.
- A plan is to install new horizontal TPCs which will be developed by utilizing the CERN neutrino plat form.

T2K-II Physics Sensitivity

- For which true δ_{CP} values can we find CP violation assuming true sin $\theta_{23}=0.43$, 0.50, 0.60?
 - The fractional region for which $\sin \delta_{CP}=0$ can be excluded at the 99% (3 σ) C.L. is 49% (36%) of possible true values of δ_{CP} assuming the MH is known.

(Note) Although T2K alone can't measure MH, we can help with the MH measurement by, ie, combining T2K + NOVA

T2K-II Physics Sensitivity

• As a function of POT in the case of $\sin^2 \theta_{23}=0.5$, $\delta_{CP}=-\pi/2$ and normal MH

 More physics for Neutrino Interactions and non-standard models

New Intermediate Detector

- Good Near/Far flux ratio to predict the neutrino events at Kamioka (TITUS)
- $\cdot\,$ A new technique to predict the neutrino events at Kamioka (NuPRISM).
 - Under design intensively and being combined!
 - With the intense neutrino beam, a Water Cherenkov detector can be only operable in the intermediate distance (> ~1km from the target).
 NuPRISM

Kamiokande family

Kamiokande (1983-1996) 3000 ton

- Neutrinos from SN1987a.
- Atmospheric neutrino deficit.
- Solar neutrinos.

Super-Kamiokande (1996-) 50,000 ton

- Atmospheric neutrino oscillation.
- Solar neutrino oscillation with SNO.
- Far detector for KEK-PS (K2K) and J-PARC beam (T2K): electron neutrino appearance.
- World leading limit on proton lifetime $> 10^{34}$ years.

Hyper-Kamiokande (\sim 2026-) $2\times$ 260,000 ton

Physics programme:

- Neutrino oscillations: Mass Hierarchy, Leptonic CP violation, θ₂₃ Octant,...
- Nucleon decay: $p \rightarrow e^+ \pi^0$, $p \rightarrow K^+ \overline{\nu}$,...
- Neutrino astrophysics:
 Solar neutrinos, Supernova neutrinos, WIMP searches

Hyper-Kamiokande (New Design) http://www.hyperk.org

138

One tank

- 60m (high) × 74m (diameter)
- ► Total Volume: 260 kton.
- Fiducial Volume: 190 kton (~ 10× Super-K).
- ► 40% PMT coverage.
- 40,000 50cm ID PMTs,
 6,700 20cm OD PMTs.

- Improving the performance
 - · A new PMT has x2 better Photon sensitivity
- A new design was reviewed by the international advisory committee, and endorsed.

KEK Preprint 2016-21

Broad science program with Hyper-K

139

- Neutrino oscillation physics
 - Comprehensive study with beam and atmospheric neutrinos
- Search for nucleon decay
 - Possible discovery with ~×10 better sensitivity than Super-K
- Neutrino astrophysics
 - Precision measurements of solar v
 - High statistics measurements of SN burst V
 - Detection and study of relic SN neutrinos
- Geophysics (neutrinography of interior of the Earth)
- Maybe more (unexpected)

Hyper-K construction timeline

- Assuming funding from 2018
- The 1st detector construction in 2018~2025
 - Cavern excavation: ~5 years
 - Tank (liner, photosensors) construction: ~3 years
 - Water filling: 0.5 years

Expected events

 $\delta=0$ and 180° can be distinguished using shape information

CPV sensitivity

- Exclusion of sinδ_{CP}=0
 >8σ(6σ) for δ=-90°(-45°)
 ~80% coverage of δ parameter space with >3σ
- From discovery to δ_{CP} measurement:
 - ~7° precision possible

sinδ=0 e	sinδ=0 exclusion error		or
>3თ	>5σ	δ=0°	δ=90°
78%	62%	7.2°	21°

Towards leptonic CP asymmetry

CPV significance for δ =-90°, normal hierarchy

Note: "exact" comparison sometimes $_{4}$ difficult due to different assumptions

- \bullet Complementary information from beam and atm v
- Sensitivity enhanced by combining two sources!

Proton Decay

- **Keep looking for GUT with neutrinos.**
- Example: $p \rightarrow e^+ \pi^0$ in Hyper-K

Mediated by gauge bosons

10

20

Years

15

Hyper-K Status in Japan

- J-PARC upgrade for Hyper-K is the first priorities in KEK (KEK PIP).
- A proposal of the Hyper-K project is under review by several council, managements and committees in Japan.
 - Science Council of Japan (SCJ)
 - The result will be in public around the beginning of year 2017.
 - MEXT (funding agency) will make the roadmap based on the SCJ report around the middle of 2017.
- The budget request of the far detector is under preparation for 2017.

HiggsTan http://higgstan.com

HOME

HiggsTan Cartoon

登録情報 単行本 (ソフトカバー): 143ページ 出版社: 洋泉社 (2016/5/24) 言語: 日本語 ISBN-10: 4800309174 ISBN-13: 978-4800309174 発売日: 2016/5/24 商品パッケージの寸法: 21 x 14.8 x 1.6 cm おすすめ度: ★★★★★ × 2件のカスタマーレビュー

amazon co.p		রাশকে 📼	素粒子実験の世界				<mark>Q</mark> 🕞 🕅	ライム :画・1	
カラ	v	,	Amazonポイ マイストフ	ント: 0 ? ギフト券 タイムセー	-ル Amazonで売る	5	JP ∰ ∓	中家 剛さん アカウントサー	ビス・
本	詳細検索	ジャンループ	電 新刊・	予約 Amazonランキング	コミック・ラノベ	雑誌	文庫・新書	Amazon Student	パー-
* • 1	19. FO / F	at Meaning	2						

素粒子実験の世界単行本(ソフトカバー) - 2016/5/24 秋本 祐希 (著)

★★★★★ ▼ 2件のカスタマーレビュー

その他()の形式およびエディションを表示する

単行本(ソフトカバー) ¥ 1,404 ¥ 1.717 より 3 中古品の出品 ¥ 1.404 より 1 新品

10/22 土曜日 にお届けするには、今から3 時間 12 分以内に「お急ぎ便」または「当 日お急ぎ便」を選択して注文を確定してください(有料オプション。Amazonプライム会 員は無料)

$N_{signal} = \Phi \times \sigma \times N_{target}(\times \varepsilon)$

- *o*: cannot be made larger for fixed neutrino energy.
- Ntarget: Gigantic Detector
- ε : High Efficiency.

Background to be under control:
Nbackground

Nsignal

- Examples
 - $N_{signal} = \Phi \times \sigma \times N_{target} (\times \varepsilon)$
 - LHC@7TeV/ATLAS(7kton): W $\rightarrow \mu$ (e) $\nu_{\mu(e)}$
 - $\Phi \sim 100$ Hz W $\rightarrow \mu$ (e) $\nu_{\mu(e)}$ production÷Surface area (22×22×44m³)~5×10⁻⁹ ν /cm²/sec
 - $\sigma \sim 10^{-36} \text{ cm}^2/\text{nucleon}@100 \text{GeV}$
 - $N_{target} = 4 \times 10^{33}$ nucleon/ATLAS
 - $N_{signal} = 2 \times 10^{-11}$ events/s = 6×10^{-4} events/year
 - Solar ν (⁸B)+ Super-K (22.5kton)
 - $\Phi \sim 5 \times 10^{6} / \text{cm}^{2} / \text{s}$
 - $\sigma \sim 10^{-43} \text{ cm}^2/\text{electron}@10\text{MeV}$
 - N_{target}=7×10³³electron/Super-K
 - N_{signal}=3.5×10⁻³ events/s = 300 events/day [Reality: ~30 events/day]
 - [HW1]: Find the source of neutrinos and define the target, and calculate the event rate.
 - Daya Bay, T2K, Super-K atmospheric, SNO solar neutrino

Exercise 1

 Calculate the neutrino event rate in a day by assuming the source of neutrinos, the target mass and distance from the source.

Exercise 2

- Calculate the neutrino beam energy as a function of the parent pion energy, momentum and the emitting angle of neutrino relative to the pion direction.
- (2) Calculate the maximum neutrino energy as a function of the parent pion energy.
- (3)Explain the off-axis effect with small θ (such as θ = 2.5 degrees in the case of T2K).

TABLE I.	T2K data-taking	g periods and collected POT used						
in the analyses presented in this paper.								
Dun	Datas	u modo POT u modo POT						

Run	Dates	$\nu\text{-mode}$ POT	$\bar{\nu}\text{-mode POT}$
Period		$(\times 10^{20})$	$(\times 10^{20})$
Run 1	Jan. 2010-Jun. 2010	0.323	_
$\operatorname{Run} 2$	Nov. 2010-Mar. 2011	1.108	-
Run 3	Mar. 2012-Jun. 2012	1.579	—
$\operatorname{Run}4$	Oct. 2012-May 2013	3.560	-
$\operatorname{Run}5$	May 2014-Jun. 2014	0.242	0.506
Run 6	Nov. 2014-Jun. 2015	0.190	3.505
$\operatorname{Run}7$	Feb. 2016-May 2016	0.480	3.460
Total	Jan. 2010-May 2016	7.482	7.471