Atmospheric Neutrino Experiments

Part-II

Roger Wendell Kyoto University CCEPP Summer School on Neutrino Physics Daya Bay

2017.07.07

Introductory Remarks

Lecture organization

- History of Atmospheric Neutrino Measurements
- Discovery of Oscillations
- Three Flavor Oscillations
- Systematic Errors for Atmospheric Neutrinos
- Other Types of Oscillation Physics
- Future for atmospheric neutrino oscillations

Bias towards Super-K still present, but better coverage of other experiments

The Three Flavor Era

Thanks to measurements of reactor neutrinos, θ₁₃ is known to be nonzero and there is a connection between the "solar" and "atmospheric" mixing

Atmospheric Neutrino Experiments:

Super-Kamiokande	IceCube	
50,000 Ton Ultrapure Water	1 km ³ of Antarctic <i>Ice</i>	
11,000 20" PMTs (ID) 1885 8" (OD)	5100 Digital Optical Modules (DOM)	
Ring-Imaging	"String" Imaging	
40% Cathode Coverage	86 Strings, 17m / 7m DOM Spacing	
0.1 ~ 10 ³ GeV	10 ~ 10 ⁵ GeV	
Excellent e/ μ PID, MIS PID 1%	Cascade (e/NC) and Track (μ)	

Both are Cherenkov detectors without event-by-event v/v separation

Atmospheric Neutrino Experiments:

Both are Cherenkov detectors without event-by-event v/v separation

Open Questions in Neutrino Physics

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atmospheric

- Three mixing angles, two independent mass differences (Δm_{21}^2 , Δm_{32}^2), and a CP violating phase δ_{cp}
- Currently, *all* parameters have been measured, though δ_{cp} is the least well constrained and the topic of much interest
- However, several open questions remain
 - Neutrino Mass hierarchy

Mass Ordering is Unknown

Solar

 $\Delta m_{32}^2 > 0$

 $\Delta m_{32}^2 < 0$

Open Questions in Neutrino Physics

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atmospheric

Three mixing angles, two independent mass differences (Δm_{21}^2 , Δm_{32}^2), and a CP violating phase δ_{cp}

- Currently, *all* parameters have been measured, though δ_{cp} is the least well constrained and the topic of much interest
- However, several open questions remain
 - Maximal Mixing?

Is Atmospheric Mixing Maximal

Solar

7

Open Questions in Neutrino Physics

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atmospheric

- Three mixing angles, two independent mass differences (Δm_{21}^2 , Δm_{32}^2), and a CP violating phase δ_{cp}
- Currently, *all* parameters have been measured, though δ_{cp} is the least well constrained and the topic of much interest
- However, several open questions remain
 - CP violation?

Is CP Violated in Neutrino Mixing?

Solar

Esteban, I et al: 1611.01514

Matter Effects Matter

$$V_{cc}^{\nu_e} = \pm \sqrt{2} G_F N_e = \pm 7.56 \times 10^{-14} \left(\frac{\rho}{g/cm^3}\right) Y_e eV$$

 G_F is Fermi Constant, N_e is electron density ρ is matter density Y_e is electron to nucleon ratio (≈ 0.5 in Earth)

+ for v_e , - for \overline{v}_e

Hamiltonian of neutrino passing through matter affected by coherent v_e CC scattering

Matter Effects Matter

Matter Effects Matter

Mass Hierarchy Determination: Matter-Effects

Normal Hierarchy

Presence of electrons (as opposed to muons) induces asymmetric oscillations between electron-type neutrinos and antineutrinos

Mass Hierarchy Determination: Matter-Effects

- Earth is not constant density, but density causes resonant oscillations
- Expect slightly more muon neutrino disappearance for neutrinos travelling through the core of the earth

Mass Hierarchy Determination: Matter-Effects

- Resonance effects are expected to enhance the number of upward-going electron neutrinos
- Size of the effect depends on θ_{13} , which has been measured precisely by reactor experiments

Matter Effects Versus Vaccuum

Normal Hierarchy

If we temporarily assume the Earth is made of vacuum (or there were no matter effect) resonance disappears

Still have oscillations via θ_{12} , Δm_{12}^2 , and θ_{13}

Mass Hierarchy Determination: Antineutrinos

Normal Hierarchy

- Resonance effects are expected to enhance the number of upward-going electron neutrinos
- Enhancement expected for antineutrinos if the hierarchy is inverted

Muon nuetrinos also sensitive (ICAL-INO)

Mass Hierarchy Determination: Antineutrinos

Normal Hierarchy

Event rate relative to 2 Flavor oscillation

$\sin^2\theta_{23} = 0.4 \text{ vs } 0.6$	$P(v_{\mu} \rightarrow v_{\mu})$	P($ u_{\mu} \rightarrow u_{e}$)
E ~ Sub-GeV	More disappearance	More appearance
E ~ Multi -GeV	Less disappearance	Less appearance

P(1st Octant) - P(2nd Octant)

Affect of δ_{cp} giving ~maximum and minimum appearance

Super-Kamiokande Analysis Samples

- Total of 520 analysis bins
- 154 sources of systematic error (!!)

Super-Kamiokande Analysis Samples

154 sources of systematic error (!!)

- Tagging the nucleon from a neutrino interaction seems like a great way to separate neutrino and antineutrinos
- In practice this is a difficult problem, with many potentially large systematic errors
- A magnetic field would not* make life easier for Super-K

Neutrino Interaction

- Proton be seen if momentum > 1.07 GeV
- Hadronic interactions tend to create short tracks with thin cherenkov rings
- Expect only ~ 0.1 events/day with both proton and lepton above threshold

- Neutron tagging in Super-K (without Gd) is possible and has been demonstrated
- Efficiency is low, but could in principle be used for neutrino/antineutrino separation
- Buyer beware! Neutron production uncertainties and secondary interactions

uncertainties and secondary interactions

What about neutrino/neutrino separation?

- Counting decay electrons allows for some enhancement due to negative pion absorption
- Try to measure transverse momentum relative to lepton in multi-ring events and build a likelihood

What about neutrino/neutrino separation?

- Counting decay electrons allows for some enhancement due to negative pion absorption
- Try to measure transverse momentum relative to lepton in multi-ring events and build a likelihood

Hierarchy Sensitivity

Mass hierarchy sensitivity depends strongly on the assumed value of θ23

This effect can be reduced by combining the atmospheric neutrino measurements with constraints on these parameters

Best if a fit can be done with both beam and atmospheric neutrinos

Atmospheric Mixing + δ_{cp} : Super-Kamiokande

Comparatively weak constraint on atmospheric mixing
 Observe an excess of upward-going electron neutrino events weakly

favoring the *normal hierarchy*

- $\Delta \chi^2$ (NH IH) = -4.3
- P(NH|IH) : 3.1% (depends on assumed value of θ 23!)
- Weak hint for $\delta_{cp} \sim 1.33\pi$

Signature of the Mass hieararchy

Preliminary

Visible Energy [MeV]

Some indication of expected upward-going electron neutrino appearance, but not conclusive

Testing For Matter Effects

Here θ₁₃ is assumed to be reactor value with uncertainties
 Reject no-matter effects at 1.6σ

Atmospheric Mixing

Preliminary

MINOS Combined Beam and Atmospheric v Measurement

PRL 112, 191801 (2014)

First experiment to combine atmospheric and beam neutrino dataImproves hierarchy sensitivity

This result weakly favors the inverted hierarchy

Systematic Errors

For the hierarchy search in Super-K, statistics are the dominant error but ...

Neutrino Interactions Relevant for Atmospheric Neutrinos

Mass Hierarchy Systematics

Worse sensitivity

- Sensitivity to the hierarchy is largely affected by uncertainties interaction of high energy neutrinos
 - particularly the CC $v\tau$ background component

Tau Background for Mass Hierarchy

- Tau neutrino events often look electron-like
 Upward-going, so they are the main background for hierarchy
- Tau interaction cross section is not very well known
 Systematic error is taken to be 25% based on differences in models

Mitigating the Background Uncertainty

- In principle the neural network used to find tau neutrino interactions can be used to separate those events in the oscillation analysis
 - This is an idea that is currently being implemented

Mitigating the Background Uncertainty

Mass Hierarchy Sensitive $v_{\rm c}$ Events

- In principle the neural network used to find tau neutrino interactions can be used to separate those events in the oscillation analysis
- This is an idea that is currently being implemented

Particle ID for Multi-Ring Topologies

- The largest detector systematic comes from the mis-ID of CC $\nu\mu$ interactions in multi-ring e-like events
- Difficult to constrain no genuine control samples
- Data studies suggest the uncertainty is between 4 and 9% depending on the data set

Deep Inelastic Scattering

- DIS cross section systematics are taken as model differences
 Default model with and without CKMT parameterization below
- In addition, a 5% normalization uncertainty is taken from accelerator measurements

Systematics effecting δcp Measurement (Large Stat.)

Generally sensitivity is affected by systematics in the low energy flux

Figure shows uncertainty on measurement of δ_{cp} assuming δ_{cp} is $-\pi/2$

Systematics effecting δcp Measurement (Large Stat.)

Generally sensitivity is affected by systematics in the low energy flux

Figure shows uncertainty on measurement of δ_{cp} assuming δ_{cp} is $-\pi/2$

Atmospheric Neutrino Flux Uncertainties (Honda 2011)

- Systematic Errors on the Neutrino flux at Super-K (Hyper-K) are based on both direct estimates from the authors of the Honda 2011 Flux and by comparisons with other models
 - Flavor Ratio uncertainty is 2% below 1 GeV
 - Electron ratio uncertainty is 5% below 10 GeV

Honda Flux Systematics (HKMMS07)

Systematic Errors on the Neutrino flux at Super-K (Hyper-K) are based on both direct estimates from the authors of the Honda 2011 Flux and by comparisons with other models

- Flavor Ratio uncertainty is 2% below 1 GeV
- Electron ratio uncertainty is 5% below 10 GeV

Other Systematic Error Estimates

- Systematic errors for the Bartol flux have been estimated using variations in the hadron production model
- Electron ratio uncertainty between 5% and 7% below 5 GeV
- Differing approaches with basically consistent results
- Atmospheric neutrino flux models at low can be improved by
 - Better hadron production measurements at low momenta
 - Most 500 MeV v are produced by cosmic ray protons with between 3 and 30 GeV
 - Better muon measurements at momenta around 500 MeV

IceCube Systematics (Oscillations and Flux)

- Dominant source of systematics comes from the detector energy scale
 - Combination of PMT efficiency (σ=7.7%) and muon interaction cross section (σ=4%)
- Uncertainty in scattering and absorption properties of the ice (σ=10%) for both

IceCube Systematics (Oscillations and Flux) JPS Conf. Proc. 12, 010014 (2016)

- Dominant source of systematics comes from the detector energy scale
 - Combination of PMT efficiency (σ=7.7%) and muon interaction cross section (σ=4%)
- Uncertainty in scattering and absorption properties of the ice (σ=10%) for both

Flux Measurements

Atmospheric neutrinos are still the dominant background for many other processes...

Atmospheric Neutrino Flux:

PHYSICAL REVIEW D 94, 052001 (2016)

Low Energies (Super-K)

 Predicted asymmetries at low energy due to geomagnetic field observed

Forward direction of lepton

Model Preference?

Data are consistent with several flux models

Dominant systematic errors are from the neutrino interaction model

High Energy Muon Flux at IceCube

Good agreement with models up until around 60 TeV

Deviation of data is roughly 2σ , consistent with astrophysical flux

Exotic Oscillations

- Indications for the presence of a sterile neutrino state with $\Delta m_{43}^2 \simeq 1 \text{eV}^2$
- For atmospheric neutrinos these oscillations appear "fast"
 < sin² ∆m²₄₃> = 0.5
- Also largely insensitive to the number of sterile neutrinos
 3+1, 3+N models have basically the same signature

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & \cdots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} & \cdots \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} & \cdots \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

■ | U_{µ4} |²

 Induces a decrease in event rate of µlike data of all energies and zenith angles

■ | U_{τ4} |²

 Shape distortion of angular distribution of higher energy µ-like data

arXiv:1702.05160v1 Icecube/DeepCore Data 35099% C 2 2 LLH $\nu_e CC$ Data ν_{τ} CC 300 Expectation (best fit) 90% C. ν_{μ} CC All v NC 250 0.30SK (2015), 90 % C.L ----Events 150 SK (2015), 99 % C.L. 0.25ceCube (2016), 90 % C.L loeCube (2016), 99 % C.L $\begin{aligned} \left| U_{\tau 4} \right|^2 &= \sin^2 \theta_{34} \cdot \cos^2 \theta_{24} \\ 010 \\ 010 \\ 01 \end{aligned} \qquad 070 \\ 071 \\ 010 \\ 010 \end{aligned}$ 1050 N_{data}/N_{exp} 0.050.00-0.4-1.0-0.8-0.6-0.20.0 10^{-2} 10^{-3} 10^{-1} $\cos(\theta_{\text{zenith, reco}})$ $-2\Delta LLH$ $\left|\mathbf{U}_{\mu4}\right|^2 = \sin^2\theta_{24}$

No indication of a positive sterile signal in either IceCube or Super-K

 $|U_{\mu 4}|^2 < 0.11 (90\% \text{ C.L.})$ $|U_{\tau 4}|^2 < 0.15 (90\% \text{ C.L.})$

No indication of a positive sterile signal in either IceCube or Super-K

For 3+N models constraint on $|U_{\mu4}|^2 \longrightarrow d_{\mu} = \sum |U_{\mu i}|^2$

Test of Lorentz Invariance

Coefficient	Unit	d	CPT	Oscillation effect
Isotropic				
$a_{\alpha\beta}^T$	GeV	3	Odd	$\propto L$
$c_{\alpha\beta}^{TT}$		4	Even	$\propto LE$
Directional				
$a^X_{\alpha\beta}, a^Y_{\alpha\beta}, a^Z_{\alpha\beta}$	GeV	3	Odd	Sidereal variation
$c_{\alpha\beta}^{XX}, c_{\alpha\beta}^{YZ}, \dots$		4	Even	Sidereal variation

- As an interferrometric effect neutrino oscillations can be a very sensitive probe of small effects
- Study Lorentz invariance violating effects within the "Standard Model Extension" (SME)
 - Effective field theory containing the standard model lagrangian and all types of Lorentz- and CPT-violating operators

Test of Lorentz Invariance (LI) : Sidereal Variations

- The existence of a "preferred" direction in space could influence neutrinos as they propagate to the detector
- In the absence of such a direction expect a flat event rate as a function

Test of Lorentz Invariance (LI) : Sidereal Variations

- Use track-like sample of muon neutrinos for the analysis
- Event rate is consistent with no lorentz invariance violating signal
- Establish very tight limits on model parameters

IceCube	MINOS PhysF		RevLett.105.151601		
$\begin{array}{c} a_L^X, a_L^Y < 1.8 \times 10^{-23} {\rm GeV} \\ c_L^{TX}, c_L^{TY} < 3.7 \times 10^{-27}. \end{array}$	Coeff. $(a_L)_{\mu\tau}^X$ $(c_L)_{\mu\tau}^{TX}$ $(c_L)_{\mu\tau}^{XX}$ $(c_L)_{\mu\tau}^{XY}$	Limit 5.9×10^{-23} 0.5×10^{-23} 2.5×10^{-23} 1.2×10^{-23}	$\begin{array}{c c} \mathcal{I} & \text{Coeff.} \\ 510 & (a_L)_{\mu\tau}^Y \\ 20 & (c_L)_{\mu\tau}^{TY} \\ 220 & (c_L)_{\mu\tau}^{YY} \\ 220 & (c_L)_{\mu\tau}^{YZ} \end{array}$	Limit 6.1×10^{-23} 0.5×10^{-23} 2.4×10^{-23} 0.7×10^{-23}	<i>I</i> 490 20 230 170
	$(c_L)_{\mu au}^{\mu au} (c_L)_{\mu au}^{XZ}$	1.2×10^{-23} 0.7×10^{-23}	$\frac{230}{190} (c_L)_{\mu\tau}$	-	-

$$H = UMU^{\dagger} + V_{e} + H_{LV}$$

$$\pm \begin{pmatrix} 0 & a_{e\mu}^{T} & a_{e\tau}^{T} \\ (a_{e\mu}^{T})^{*} & 0 & a_{\mu\tau}^{T} \\ (a_{e\tau}^{T})^{*} & (a_{\mu\tau}^{T})^{*} & 0 \end{pmatrix} - E \begin{pmatrix} 0 & c_{e\mu}^{TT} & c_{e\tau}^{TT} \\ (c_{e\mu}^{TT})^{*} & 0 & c_{\mu\tau}^{TT} \\ (c_{e\tau}^{TT})^{*} & (c_{\mu\tau}^{TT})^{*} & 0 \end{pmatrix}$$

- The effect of "isotropic" parameters from the SME on neutrino oscillations can be very dramatic
- The Super-K analysis uses the full data set to search for effects over all energies

- Effects of LIV controlled by two sets of complex parameters
 - $a_{\alpha\beta}^{T}$ dim = 3 induces oscillation effects ~ L
 - $\mathbf{c}_{\alpha\beta}^{\mathsf{TT}}$ dim = 4 induces oscillation effects ~ $\mathbf{L} \times \mathbf{E}$

Long baselines and high energies of atmospheric neutrinos provide stringent constraints

LV para	meter	Limit at 95% C.L.	Best fit	No LV $\Delta \chi^2$	Previous limit 🗸
	$\operatorname{Re}(a^T)$ $\operatorname{Im}(a^T)$	$1.8 \times 10^{-23} \text{ GeV}$ $1.8 \times 10^{-23} \text{ GeV}$	$1.0 \times 10^{-23} \text{ GeV}$ $4.6 \times 10^{-24} \text{ GeV}$	1.4	$4.2 \times 10^{-20} \text{ GeV} [61]$
еµ	$\frac{\operatorname{Re}(c^{TT})}{\operatorname{Im}(c^{TT})}$	$8.0 imes 10^{-27} \ 8.0 imes 10^{-27}$	$1.0 imes 10^{-28}\ 1.0 imes 10^{-28}$	0.0	$9.6 imes 10^{-20}$ [61]
	$\operatorname{Re}(a^T)$ $\operatorname{Im}(a^T)$	$4.1 \times 10^{-23} \text{ GeV}$ $2.8 \times 10^{-23} \text{ GeV}$	$2.2 \times 10^{-24} \text{ GeV}$ $1.0 \times 10^{-28} \text{ GeV}$	0.0	$7.8 \times 10^{-20} \text{ GeV} [62]$
ет	$\operatorname{Re}(c^{TT})$ $\operatorname{Im}(c^{TT})$	$\begin{array}{c} 9.3\times 10^{-25} \\ 1.0\times 10^{-24} \end{array}$	$\begin{array}{c} 1.0\times 10^{-28} \\ 3.5\times 10^{-25} \end{array}$	0.3	1.3 × 10 ⁻¹⁷ [62]
	$\operatorname{Re}(a^T)$ $\operatorname{Im}(a^T)$	$6.5 \times 10^{-24} \text{ GeV}$ $5.1 \times 10^{-24} \text{ GeV}$	$3.2 \times 10^{-24} \text{ GeV}$ $1.0 \times 10^{-28} \text{ GeV}$	0.9	
μτ	$\operatorname{Re}(c^{T\hat{T}})$ $\operatorname{Im}(c^{TT})$	$\begin{array}{c} 4.4 \times 10^{-27} \\ 4.2 \times 10^{-27} \end{array}$	$\begin{array}{c} 1.0 \times 10^{-28} \\ 7.5 \times 10^{-28} \end{array}$	0.1	

Dramatic improvement in several limits (3 to 7 orders of magnitude)

New limits on several parameters of the standard model extension

MiniBooNE

Into the FUTURE

Near Future : Hierarchy with Atmospheric Neutrinos

* N.B. : Similar project in mediteranean sear, ORCA, also expects 4σ sensitivity (backup)

- 20 kton LS detector capable of containing and reconstructing atmospheric neutrinos
- Track reconstruction possible with timing information on the PMTs
 - Relies on information from Cherenkov photons in the scintillator

Atmospheric Neutrinos with JUNO

arXiv:1507.0561	3
-----------------	---

 Statistical separation of neutrino-like and antineutrino-like using decay electron and transverse momentum information (hadronic energy deposit)

First atmospheric+reactor combined measurement?!

	ν_{μ} events	$\bar{\nu}_{\mu}$ events	Total events	ν_{μ} purity
FC ν_{μ} -like	656	83	739	88.8%
FC $\bar{\nu}_{\mu}$ -like	652	541	1193	54.6%
PC ν_{μ} -like	577	166	743	77.7%
PC $\bar{\nu}_{\mu}$ -like	383	384	767	50.0%

= faster hiearchy sensitivity

Hyper-Kamiokande

Hyper-Kamiokande

Staged design: 186 kton 6 years, 372 kton thereafter 186 (\times 2) kton fiducial volume (2 \times 8.3 \times SK)

- Optically separated into
 - Inner Detector 40,000 (×2) PMTs (2×4×SK)
 - 40% Coverage (same as SK)
 - Outer Detector 12,000 (×2) PMTs (2×6×SK)
- ID Photosensors will be high QE
- Single photon detection : 24% (2 × SK)
- Receive 1.3 MW beam from J-PARC
 - Accumulate 2.7 × 10²² POT (3 × T2K)
- Multipurpose machine
 - All of the physics of Super-K and T2K
 - Plus more! Geophysics
 - Accessible only with very large detectors
- Not just a larger version of Super-K
- Improved performance: photosensors, tank materials
Hyper-Kamiokande Beam+Atmosheric v Sensitivity

Combined analysis of beam and atmospheric neutrinos improves sensitivity to mass hierarchy and θ23 octant

- Matter effects are small with J-PARC beam
- Beam measurement determines atmospheric mixing parameters

A Word about Tau Neutrinos

per/ 100 kton yr.	Hyper-K	LAr
Signal CC $v\tau$	40.2	28.5
Background	448.7	44.8
S / $\!\!\sqrt{B}$, 10 years	9.6	8.5

- HK Numbers are upward-going event rate
- LAr numbers based on PRD82, 093012

- Achieve 7% uncertainty on tau cross section normalization with 560 Mton-year exposure of Hyper-K
- PINGU is similar, but faster
- These samples will be useful for testing cross section modeling as well as providing direct probe of |U₁₃|²

Chemical Composition of Earth's Outer Core (SK 500 years)

- Density profile of the Earth is well known from seismic measurements
- Outer core is thought to be liquid iron+Ni and another light element (Unmeasured!)
- Z/A ratio is important to understanding formation of Earth and its magnetic field
- With 10 years of data Hyper-K can open the field of Earth Spectroscopy
- First Z/A measurement, can exclude lead-based and water-based outer core
- Longer exposures more useful (want to discriminate iron from pyrolite)

Dune Experiment

- 40 kton liquid argon TPC
- Beam from FNAL to Sanford Lab
- Large enough to observe atmospheric neutrinos
- Exquisite reconstruction of neutrino interactions

Particle	Resolution		
Angular Resolutions			
Electron	1°		
Muon	1°		
Hadronic System	t em 10°		
Energy Resolutions			
Stopping Muon	3%		
Exiting Muon	15%		
Electron	$1\%/\sqrt{E(GeV)}\oplus 1\%$		
Hadronic System	$30\%/\sqrt{E(GeV)}$		

Dune Experiment

Similar hierarchy sensitivity to Hyper-K despite smaller volume

Dune Experiment: Octant and CP

- Combination of beam and atmospheric neutrinos
- N.B. not much improvement in CP violation sensitivity (true for Hyper-K also)

Mass Hierarchy Sensitivity Summary

• Assuming 2^{nd} octant of θ_{23}

Experiment	2020	2025-6	2030	2035
Super-K	2.5σ	3.0σ		
Т2К /-ІІ		~10		
NOvA	3.4σ	4.4σ		
KM3NeT	0.5σ	4.0σ		
IceCube (Pingu)		>4.00		
JUNO		4.0σ		
ICAL-INO		2.0σ	3.0σ	~40
DUNE		3.0σ	5.0σ	~70
Hyper-K			4.0σ	~60

Currently , not all are funded but good chance for a determination in 10 years 79

Main Messages:

- Atmospheric neutrinos are a useful probe many interesting (potential) phenomena because:
- Wide range of energies
- Wide variety of their baselines
- Constant source
- But precision measurements are challenging because:
- Wide range of energies
- True neutrino direction is unknown
- Constant source
 - Form a background for many other interesting phenomena

Summary

- Due to their range of both path lengths and energies atmospheric neutrinos have proven a useful probe of standard and exotic oscillation physics
 - Currently flux and cross section systematics are the main challenges for detectors trying to use them to study CP violation and the mass hierarchy
 - The flux is increasingly well known but as the search for increasingly rare phenomena (relic neutrinos, proton decay), more work will be needed
 - They can be expected to complement precision measurements at future facilities

Supplements

Atmospheric Neutrinos as Background

Indirect Dark Matter Searches

χ

Annihilation in the Galactic Center

Indirect Dark Matter Searches (Galactic Center)

Look for excess of neutrinos in the direction of the galactic center as a signature of WIMP self-annihilation

Indirect Dark Matter Searches (Earth)

Look for excess of neutrinos from the center of the Earth as a signature of WIMP self-annihilation

Supplements

Atmospheric Mixing + δ_{cp} : Super-Kamiokande+T2K Model

Introducing a model of T2K (not a two-collaboration fit!)

 Significance of electron neutrino excess increases still favoring the normal hierarchy

- $\Delta \chi^2$ (NH IH) = -5.2 (SK only: -4.3)
- P(NH|IH) : 2.8% (depends on assumed value of θ 23!)
- Weak hint for $\delta_{cp} \sim 1.33\pi$

Pingu

(a) Normal neutrino mass ordering assumed.

(b) Inverted neutrino mass ordering assumed.

(a) Normal neutrino mass ordering assumed.

(b) Inverted neutrino mass ordering assumed. 89

Zenith Angle Distributions

PHYSICAL REVIEW D 94, 052001 (2016)

Farther Future: Next Generation Experiments

	Hyper-K	DUNE	
Location	Japan / J-PARC	U.S.A. / FNAL	
Proton Energy	30 GeV	120 GeV	
Beam Power	1.2 MW	1.2MW	
Baseline Length	295 km	1300 km	
Near Detector	Tracker: FGD, TPC	FGT, STT, Pl. Sci.	
Target	Carbon, Water	Ar, C, Fe	
Far Detector	360 kton WC	40 kton Lq. Ar TPC	
Target	Water	Argon	
Off-axis Angle	2.5 deg / 44 mrad	0 deg (on-axis)	
Peak v Energy	~600 MeV	2.5 GeV	
Neutrino Data	2025~26	2025~26	

N.B. Both projects are more than oscillation experiments

Nucleon Decay, Astrophysical neutrinos, precision cross section

7 strings funded for ORCA

Orca/KM3NeT

 Total ORCA cost: 40 M€ KM3NeT preliminary Sensitivity after 3 years, 9m vertical spacing $\delta_{cp}\,{\rm fixed}$ $\sin^2(\theta_{23})$ NIVISINET 0.4 8 7 7 8 0.55 0.6 0.45 0.5 - NH, θ₂₃ = 42° Mass hierarchy significance [σ] _ NH, δ_{CP}=0° Median Significance [o] IH, $\theta_{23} = 42^{\circ}$ _ IH ,δ_{CP}=0° 6 •••• NH, θ₂₃ = 48 6 --- NH, δ_{CP}=180° IH, $\theta_{p_3} = 48$ 5 5 3 3 0 42 50 40 44 46 48 2020 2021 2022 2023 2024 2025 θ₂₃ [degrees] 5.7 Mt instrumented 115 strings (~50 kt ~ 2 × SK) Poland • 18 DOMs / str (~3 kt ~ MINOS) >200 scientists 31 PMTs / DOM Total: 64k PMTs >40 Institutions -**9** Countries Romania 1 **ÓRCA Site** 40km_from Toulon 31 May 20:

IceCube Oscillation Systematics

Source of Uncertainty		Nominal Value	Uncertainty
Experimental Uncertainty	DOM absolute efficiency	Muons and flashers [16, 18]	±10%
	DOM angular acceptance	Flashers and laser [16]	±10% to ±30%
	Bulk ice model	Flashers [16]	Models in [16] [17]
Atmospheric flux ¹	Overall scaling	Honda 2015 [25]	Free
	Spectrum index		$E^{\pm 0.04}$
	$\nu/\bar{\nu}$ flux ratio		±20%
	v_e/v_μ flux ratio		±3%
Neutrino Interaction	Total cross section scaling	GENIE model [20]	Free
	Energy dependence		$E^{\pm 0.03}$
	DIS cross section		±5%
	RES axial mass		-15% to +25%
	QE axial mass		±20%

High Energy Electron Flux at IceCube/DeepCore

