Atmospheric Neutrino Experiments

Part-I

Roger Wendell Kyoto University CCEPP Summer School on Neutrino Physics Daya Bay

2017.07.06

Introductory Remarks

- Lecture organization
 - History of Atmospheric Neutrino Measurements
 - Discovery of Oscillations
 - Systematic Errors for Atmospheric Neutrinos
 - Other Types of Oscillation Physics
 - Future for atmospheric neutrino oscillations

- Intrinsic bias(es)
 - I will mostly discuss the Super-Kamiokande and IceCube
 - (With some mention of other experiments)

Main Messages:

- Atmospheric neutrinos are a useful probe many interesting (potential) phenomena because:
- Wide range of energies
- Wide variety of their baselines
- Constant source
- But precision measurements are challenging because:
- Wide range of energies
- True neutrino direction is unknown
- Constant source
 - Form a background for many other interesting phenomena

Flux Reminders

Reminders about the Atmospheric Neutrino Flux

□ Cosmic rays strike air nuclei and the decays of the outgoing hadrons produce neutrinos P + A → N + π^+ + X ↓ μ^+ + ν_{μ} → e⁺ + ν_e + $\overline{\nu_{\mu}}$

Isotropic about the Earth
 Path length to the detector spans 10 – 10,000 km

□ Spans many decades in energy ~100 MeV – PeV⁺

Reminders about the Atmospheric Neutrino Flux

History

EVIDENCE FOR HIGH-ENERGY COSMIC-RAY NEUTRINO INTERACTIONS*

F. Reines, M. F. Crouch, T. L. Jenkins, W. R. Kropp, H. S. Gurr, and G. R. Smith

Case Institute of Technology, Cleveland, Ohio

and

J. P. F. Sellschop and B. Meyer

University of the Witwatersrand, Johannesburg, Republic of South Africa (Received 26 July 1965)

PRL 15, (1965) 429, dated 30 Aug. 1965

Neutrino detector at East Rand Proprietary Mine, <u>South Africa</u> –1965

At a depth of 3200 meters (8800 meters water equivalent)

East-Rand Property Experiment Results (1978)

We conclude that there is fair agreement between the total observed and expected neutrinoinduced muon flux (Table II), i.e.,

 $\frac{I_{h\mu}^{(\nu)} \text{(predicted)}}{I_{h\mu}^{(\nu)} \text{(observed)}} = 1.6 \pm 0.4 .$

It all begins with the search for proton decay

Theories of grand unification (unifying the strong, weak, and EM forces) were proposed in the late 1970's

- Prediction: protons and neutrons (nucleons) should decay with lifetimes ~10²⁸ – 10³¹ years
- Experiments built to test this prediction in the early 1980's

Proposal for the Kamiokande Experiment

Kamioka, Japan

	研究目的 Research Objective
to test theories of grand unification by direct direction of their predicted nucleon decay phenomena	研究目的 Research Objective 本研究の目的は、素粒子の大統一理論が予言する核子崩壊現 象を直接実験することにより検証すること、その崩壊モードを 詳しく調べることを主要課題とし、更に理論的研究と協力しつ つ、より究極的統一理論が左右対称か否かを検定するため、ニ
	一理論が必然的に予言する磁気単極子など質量の大きい粒子を 探索することにある。 昭和56年9月 September 1981 3

Proposal for the Kamiokande Experiment

Kamioka, Japan

phenomena

		研究目的 Research Objectiv	ve
		本研究の目的は、素粒子の大統一理論が予言する核子崩壊現象を直接実験することにより検証すること。その崩壊エードな	見
experimentally search for the existence, or lack thereof, of neutrino oscillation phenomena	,	家を直接実験することにより検証すること、その崩壊モートを 詳しく調べることを主要課題とし、更に理論的研究と協力しつ つ、より究極的統一理論が左右対称か否かを検定するため、ニ	ר כ ב
	,	ユートリノ振動現象の有無を実験的に探索すること、また大統< 一理論が必然的に予言する磁気単極子など質量の大きい粒子を	充
		探索することにある。	

昭和56年9月

September 1981

3

Proposal for the IMB Experiment

A PROPOSAL TO TEST FOR BARYON STABILITY TO A LIFETIME OF 10³³ YEARS

Abstract

We have studied the properties of, and the expected backgrounds in, a totally active, 10,000 ton water Cerenkov detector located deep underground and sensitive to many of the conjectured decay modes of the nucleons in it. Sensitivity to π , μ and γ secondaries, good energy resolution, and good angular resolution provide sufficient background rejection in the proposed device and will permit us to obtain significant information about several decay channels, should they

be observe beyond the level suggested by many unifying theories. The in one yea on the par sensitivity predicted for this instrument is within an order modes. De of magnitude of that achievable in an arbitrarily large of magnitu beyond the detector of this general type, since known background from sensitivit of magnitu atmospheric neutrinos imposes an inherent limit. detector o atmospheri

Atmospheric Neutrino Flux

M. Honda, et. Al Phys.Rev.D75:043006,2007

$$p + A \rightarrow N + \pi + + x$$

$$\Rightarrow \mu^{+} + \nu_{\mu} \rightarrow e^{+} + \nu_{e} + \overline{\nu_{\mu}}$$

A Simple Nucleon Decay rate calculation

- Assume SU(5) lifetime is 10²⁸ < τ < 10³¹ years
 Number of targets λ = 3.34 × 10³⁵ [p•Mton⁻¹]
- For a 10 kton detector (3.3 kton fiducial)

 $\square N = T \times \lambda \times \varepsilon \times (1/\tau)$

Efficiency $\varepsilon = 45\%$ (at best) for p -> e⁺ π^0 in water Cherenkov

Therefore
 150 < N < 150,000 ev•year⁻¹

Expect about 0.5 atm. v ev/kton/day

Example Event From the IMB Experiment

Each colored mark represents a hit PMT

- The color indicates the hit timing
 - Red: early
 - Late: blue

 Size of the marks indicates the collected charge

Very clearly an upward-going event! Must be neutrino-induced

www-personal.umich.edu/~jcv/imb/imb.html

Atmospheric Neutrinos in Water Cherenkov Detectors

IMB Atmospheric Neutrino Results

IMB (3300 tons)

Nuclear Physics B (Proc. Suppl.) 38 (1995) 331-336

Atmospheric Neutrinos in Iron Calorimeters

0.2

0.2 0.6 1.0 1.4 1.8

E_(GeV)

4.2

3.4

2.6 E.(GeV)

1.8

1.0

Atmospheric Neutrino Anomaly

Measured flavor ratio in atmospheric neutrino flux:

$$\frac{[(\nu_{\mu} + \bar{\nu_{\mu}})/(\nu_{e} + \bar{\nu_{e}})]_{observed}}{[(\nu_{\mu} + \bar{\nu_{\mu}})/(\nu_{e} + \bar{\nu_{e}})]_{predicted}}$$

Double ratio:

- Many systematic uncertainties cancel
- If no neutrino oscillations, expect this ratio to be consistent with 1

Anomaly

- Simulations wrong?
- Flux prediction of 2:1 wrong?
- PID incorrect?

e: electromagnetic shower, multiple Coulomb scattering μ: straight-line propagation,loose energy by ionization loss

Kamiokande

The probability of misidentifying the particle species of single-ring events was estimated to be $2.2 \pm 0.9\%$ and $1.4 \pm 0.7\%$ for KAM-I and KAM-II, respectively, using Monte Carlo simulated neutrino events ^{#1}. The method was checked empirically by means of cosmic ray muons which were stopped in the detector. The analysis of stopping muons showed that the misidentification probability of muon-like events was 2% ^{#1}, and therefore consistent with the Monte Carlo result. Accordingly it is unlikely that the particle identification program gives substantially incorrect assignments to the real fully contained events.

e: electromagnetic shower, multiple Coulomb scattering

μ: straight-line propagation,loose energy by ionization loss

e: electromagnetic shower, multiple Coulomb scattering μ: straight-line propagation,loose energy by ionization loss

Atmospheric Neutrino Oscillations (Two-Flavors)

Atmospheric Neutrino Oscillations (Two-Flavors)

Results from Kamioka and IMB Experiments

Hints of oscillation, but not conclusive E < 1330.0 MeV

Angular Correlation Between v and Lepton At Low Energies

Need higher energy events to better study zenith angle dependence

J.Phys.G29,2569,2003

- Incidentally, no signs of proton decay
- SU(5) is dead
 - Limit for p -> $e^+\pi^0$: τ < 2.6 x 10³² years (90%C.L)

Discovery of Oscillations

In order to resolve the atmospheric neutrino anomaly definitively a larger experiment was needed...

Super-Kamiokande:

Four Run Periods:

SK-I (1996-2001) SK-II (2003-2005) SK-III (2005-2008) SK-IV (2008-Present)

- 22.5 kton fiducial volume
- Optically separated into
 - Inner Detector 11,146 20" PMTs
 - Outer Detector 1885 8" PMTs
- No net electric or magnetic fields
- Neutrino direction and energy are unknown
 - Hard to reconstruct directly
- Excellent PID between showering (e-like) and non-showering (m-like)
 - ~ 1% MIS ID at 1 GeV
- As of Today: 4972 days of data
 - 51,000 Events
- Multipurpose machine
 - Solar and Supernova Neutrinos
 - Atmospheric Neutrinos (this talk)
 - Nucleon Decay
 - Far detector for T2K

Super-K Event Types

Super-K Event Types

Atmospheric Neutrino Interactions

The flux spans 100 MeV to 100 GeV, so each of these processes are important

Atmospheric Neutrino Interactions

- Basic strategy is to divide data up by number of rings and PID of leading ring (~lepton)
 - Further divide by energy, decay electrons, etc
- Caution: These pictures are not necessarily the final visible state in the detector

Angular Resolution of the Neutrino

Basic Analysis Strategy

- The Flux is Up/Down Symmetric above a few GeV
- Choose Up/Down Symmetric Binning
- Event Samples binned in several momentum ranges

Slides from T.Kajita Neutrino 1998

Atmospheric Neutrino Oscillations (Two-Flavors)

Atmospheric Neutrino Oscillations (Two-Flavors)

Atmospheric Neutrino Oscillations (Two-Flavors)

Neutrino Oscillation?

Estimating the Oscillation Parameters

Estimating the Oscillation Parameters

Neutrino Oscillation

Neutrino 1998, Takayama, Japan 33 kton years of data (535 days)

After Neutrino 1998

- Super-K saw definitive evidence for the disappearance of atmospheric muon neutrinos
 - No distortion seen in the electron samples
- Data are well fit by $v_{\mu} \rightarrow v_{\tau}$ oscillations

Atmospheric

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

- But there are other possibilities
- Oscillations into a sterile state?
- Neutrino Decoherence?
- Neutrino Decay?
- Can we find the tau neutrinos?
- Need to fully test oscillation hypothesis:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 (\text{eV}^2)L(\text{km})}{E_{\nu}(\text{GeV})}\right)$$

Sterile Oscillations, Hard to Enrich in NC

Oscillations into a sterile neutrino would also decrease the number of observed µ-like events

Look for a decrease in NC interactions...

Sterile Oscillations, Hard to Enrich in NC

- Event Selection
 - Fiducial Volume
 - Multiple rings
 - Most energetic ring is showering
 - Visible energy greater than 400 MeV
- Hard to enrich in NC interactions

NC

CC

Super Kamiokande IV 2519.9 days : Monitoring

2000

Rejecting Oscillations into a Sterile State

Constraints on (100%) Sterile Oscillations 2000 $\nu_{\mu} \leftrightarrow \nu_{\tau}$ **Sterile Oscillations** -2 -2 10 10 n²(eV e -3 -3 10 10 2 P 0.75 0.8 0.85 0.9 0.95 0.7 0.75 0.8 0.85 0.9 0.95 0.7 $\sin^2 2\theta$ sin²20

Clear preference for standard oscillations

Excluded at 99% C.L.

Excluded at 90% C.L.

FC Single-Ring Allowed 99%

After Neutrino 1998

- Super-K saw definitive evidence for the disappearance of atmospheric muon neutrinos
 - No distortion seen in the electron samples
- Data are well fit by $v_{\mu} \rightarrow v_{\tau}$ oscillations

Atmospheric

$$\begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{pmatrix}$$

- But there are other possibilities
- Oscillations into a sterile state?
- Neutrino Decoherence?
- Neutrino Decay?
- Can we find the tau neutrinos?
- Need to fully test oscillation hypothesis:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 (\text{eV}^2)L(\text{km})}{E_{\nu}(\text{GeV})}\right)$$

Searching for An Oscillatory Signature

- To strengthen evidence for oscillations search of the "L/E" oscillation shape
- (This technique will be used in other modern experiments)

Searching for An Oscillatory Signature

- To strengthen evidence for oscillations search of the "L/E" oscillation shape
- Select event with good resolution in L/E
 - *Remove* low energy events
 - Remove events near the horizon

After Neutrino 1998

- Super-K saw definitive evidence for the disappearance of atmospheric muon neutrinos
 - No distortion seen in the electron samples
- Data are well fit by ν_µ -> ν_τ oscillations
 By the way, where did the ν_τ go?
- But there are other possibilities
- Oscillations into a sterile state?
- Neutrino Decoherence?
- Neutrino Decay?
- Can we find the tau neutrinos?
- Need to fully test oscillation hypothesis:

Atmospheric

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_2 \end{pmatrix}$$

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 (\text{eV}^2)L(\text{km})}{E_{\nu}(\text{GeV})}\right)$$

Tau Neutrino Cross Section

Super Kamiokande IV 2519.9 days : Monitoring

- In order to make a tau neutrino in the first place, you need around 3.4 GeV of energy
- Expect on average about 1 ev/kton/year in Super-K, usually look e-like

- A 10 GeV τ will travel about 0.5 mm
- Leptonic decay is swamped by backgrounds from v_l CC interactions
- Focus on hadronic decay modes
- Due to production threshold, many tau neutrino interactions are DIS
 - So even more hadrons

- A 10 GeV τ will travel about 0.5 mm
- Leptonic decay is swamped by backgrounds from v_l CC interactions
- Focus on hadronic decay modes
- Due to production threshold, many tau neutrino interactions are DIS
 - So even more hadrons

Background Tau Neutrinos and the "Prompt" Flux

- Use a multi-variate approach to try and identify
- Expect tau events only in upward-going data
 - Ie, where the muon events disappeared
- Downward-going data can be used to train and test

Evidence for v_{τ} Appearance at Super-K

 α = 0 , no ν_{τ}

2013-16

Other Experiments From Around the Same Time

Many other experiments saw oscillations, in several channels

Several of those experiments have also tested the sterile oscillation hypotheses and other types of disappearance to verify PMNS mixing

• Opera experiment has also observed $v\tau$ appearance (more cleanly)

MACRO (Monopole Astrophysics Cosmic Ray Observatory)

Event Classification in MACRO

MACRO Results

- Also saw zenith distortion of upward-going muons
- First experiment to independently confirm Super-K's atmospheric v oscillation signal
Soudan-2

- Fine-grained iron tracking calorimeter
- Operated in Soudan (U.S.) from 1989-2001
- 770 ton fiducial mass
- Event classification:

Operated from 1989-2001 770 ton fiducial mass

Soudan-2 results

Again, confirmed zenith distortion, consistent with oscillation of $\nu_{\mu} \rightarrow \nu_{\tau}$

SNO, Not Just Solar Neutrinos

- Located 2.09 km underground
- 1 kton of D₂0
- Sensitive to downward-going neutrino-induced muons from rock interactions due to depth

MINOS

Separation of v_{μ} and anti- v_{μ}

Veto shield

- Operated from 2005-2016 in Soundan Mine (U.S.) 5.4 kton mass, magnetized steel and plastic scintillator
- Allows separation of neutrinos and antineutrinos on an event-by-event basis!

MINOS Neutrino and Antineutrino Measurements

Independent measurements of neutrino and antineutrino mixing

Test for *ad hoc* CPT violation

MINOS ad hoc CPT Violation Constraints c

IceCube Experement

IceCube: 5,160 PMTs over ~ 1 km³ DeepCore: ~ 600 PMTs over 0.02 km³

- Cubic kilometer of instrumented ice near the south pole
- PMT spacing
 - IceCube : 125 m (x-y) , 17 m (z)
 - DeepCore: 40-70m (x-y), 7 m (z)

IceCubeDeepCorePMT densityEnergy Threshold~100 GeV~10 GeV

IceCube Event Topologies

Cascade-like events are mostly CC ve, NC, and CC vτ interactions
 ■ Difficult to separate these!

- Track-like events are almost purely CC $v\mu$ interactions
- IceCube strings can be used as a veto for the DeepCore sub detector

IceCube Events

Minimize the effects of scattering/absorption in ice by reconstructing tracks using "direct" (on-time) photons

IceCube Atmospheric v Mixing

arXiv:1410.7227v2

- Select clear muon tracks (no sign selection)
- Observe : 5174 events
- Without oscillations expect 6830

"Atmospheric" oscillations are clearly seen using high threshold (10 GeV)

IceCube Atmospheric v Mixing

arXiv:1410.7227v2

- Select clear muon tracks (no sign selection)
- Observe : 5174 events
- Without oscillations expect 6830

"Atmospheric" oscillations are clearly seen using high threshold (10 GeV)

2015

oscillations, which shows that neutrinos have mass"

Summary So Far

- Wide range of energies and pathlengths in the atmospheric neutrino flux make them a useful, but complicated tool
- Atmospheric neutrino measurements were the first place that oscillations were seen and since then oscillations, both atmospheric and man-made, have been seen in a variety of experiments
 - The atmospheric neutrinos themselves have been used to verify that these oscillations are muon neutrinos into tau neutrinos
 - This has been verified (with better precision) in several experiments

The Three Flavor Era

Thanks to measurements of reactor neutrinos, θ₁₃ is known to be nonzero and there is a connection between the "solar" and "atmospheric" mixing

Atmospheric Neutrino Experiments:

Super-Kamiokande	IceCube	
50,000 Ton Ultrapure Water	1 km ³ of Antarctic <i>Ice</i>	
11,000 20" PMTs (ID) 1885 8" (OD)	5100 Digital Optical Modules (DOM)	
Ring-Imaging	"String" Imaging	
40% Cathode Coverage	86 Strings, 17m / 7m DOM Spacing	
0.1 ~ 10 ³ GeV	10 ~ 10 ⁵ GeV	
Excellent e/ μ PID, MIS PID 1%	Cascade (e/NC) and Track (μ)	

Both are Cherenkov detectors without event-by-event v/v separation

Open Questions in Neutrino Physics

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atmospheric

- Three mixing angles, two independent mass differences (Δm_{21}^2 , Δm_{32}^2), and a CP violating phase δ_{cp}
- Currently, *all* parameters have been measured, though δ_{cp} is the least well constrained and the topic of much interest
- However, several open questions remain
 - Neutrino Mass hierarchy

Mass Ordering is Unknown

Solar

 $\Delta m_{32}^2 > 0$

 $\Delta m_{32}^2 < 0$

Open Questions in Neutrino Physics

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atmospheric

- Three mixing angles, two independent mass differences (Δm_{21}^2 , Δm_{32}^2), and a CP violating phase δ_{cp}
- Currently, *all* parameters have been measured, though δ_{cp} is the least well constrained and the topic of much interest
- However, several open questions remain
 - Neutrino Mass hierarchy

Is CP Violated in Neutrino Mixing?

Solar

Esteban, I et al: 1611.01514

Matter Effects Matter

$$V_{cc}^{\nu_e} = \pm \sqrt{2} G_F N_e = \pm 7.56 \times 10^{-14} \left(\frac{\rho}{g/cm^3}\right) Y_e eV$$

 G_F is Fermi Constant, N_e is electron density ρ is matter density Y_e is electron to nucleon ratio (≈ 0.5 in Earth)

+ for v_e , - for \overline{v}_e

Hamiltonian of neutrino passing through matter affected by coherent v_e CC scattering

Matter Effects Matter

Normal Hierarchy

Presence of electrons (as opposed to muons) induces asymmetric oscillations between electron-type neutrinos and antineutrinos

Expect slightly more muon neutrino disappearance for neutrinos travelling through the core of the earth

- Resonance effects are expected to enhance the number of upward-going electron neutrinos
- Size of the effect depends on θ_{13} , which has been measured precisely by reactor experiments

Normal Hierarchy

- Resonance effects are expected to enhance the number of upward-going electron neutrinos
- Enhancement expected for antineutrinos if the hierarchy is inverted

Muon nuetrinos also sensitive (ICAL-INO)

$\sin^2\theta_{23} = 0.4 \text{ vs } 0.6$	$P(v_{\mu} \rightarrow v_{\mu})$	P($ u_{\mu} \rightarrow u_{e}$)
E ~ Sub-GeV	More disappearance	More appearance
E ~ Multi -GeV	Less disappearance	Less appearance

P(1st Octant) - P(2nd Octant)

Super-Kamiokande Analysis Samples

Atmospheric Mixing + δ_{cp} : Super-Kamiokande

Comparatively weak constraint on atmospheric mixing
 Observe an excess of upward-going electron neutrino events weakly favoring the *normal hierarchy*

- $\Delta \chi^2$ (NH IH) = -4.3
- P(NH|IH) : 3.1%
- Weak hint for $\delta_{cp} \sim 1.33\pi$

Signature of the Mass hieararchy

Preliminary

Visible Energy [MeV]

Some indication of expected upward-going electron neutrino appearance, but not conclusive

Summary So Far

- Wide range of energies and pathlengths in the atmospheric neutrino flux make them a useful, but complicated tool
 - Atmospheric neutrino measurements were the first place that oscillations were seen and since then oscillations, both atmospheric and man-made, have been seen in a variety of experiments
 - The atmospheric neutrinos themselves have been used to verify that these oscillations are muon neutrinos into tau neutrinos
 This has been verified (with better precision) in several experiments
 - Matter effects and a non-zero q13 allow for studies of the neutrino mass hierarchy and δ_{cp} with these neutrinos

Zenith Angle Distributions

Supplements

Into the Future: Combining T2K-SK?

- Super-K collaboration has used *publicly available* information to model and fit the T2K experiment together with atmospheric neutrinos
- Atmospheric mixing constraint improves NH preference
 - $\Delta \chi^2$ (NH IH) = -5.1 (-4.3 SK Only)
 - P(NH|IH) : 2.7%
- Better constraint with correlated systematics between experiments: future?!
- T2K + NOvA combination also in discussion

Sources of Neutrinos

A Sense of Scales

100 GeV μ travels O(1~km)

How do we know it's a neutrino

https://arxiv.org/pdf/1305.0899.pdf

How Many Atmospheric Neutrinos Are Expected

- IMB has diagonal length of 33m
- Kamioka is about 22m
- Most energetic muon that can be reconstructed is about 4 5 GeV
- **F** ϕ $E_v^{-3.7}$
- Expect about 0.5 v/kton/day
- $\blacksquare ~\sigma_{tot}\,{}^{\sim}\,{\rm E_v}$, 10⁻³⁸ cm² at 1 GeV

Sterile Oscillations

Muon neutrinos have oscillated into something

MINOS Combined Beam and Atmospheric v Measurement

PRL 112, 191801 (2014)

First experiment to combine atmospheric and beam neutrino data Improves hierarchy sensitivity (more later)

This result weakly favors the inverted hierarchy

Example Event From the IMB Experiment

Each colored mark represents a hit PMT

- The color indicates the hit timingRed: early
 - Late: blue
- Size of the marks indicates the collected charge

www-personal.umich.edu/~jcv/imb/imb.html

Analysis Strategy

- The Flux is Up/Down Symmetric above a few GeV
- Choose Up/Down Symmetric Binning
- Event Samples binned in several momentum ranges

Proposal for the IMB Experiment

A PROPOSAL TO TEST FOR BARYON STABILITY TO A LIFETIME OF 10³³ YEARS

Abstract

We have studied the properties of, and the expected backgrounds in, a totally active, 10,000 ton water Cerenkov detector located deep underground and sensitive to many of the conjectured decay modes of the nucleons in it. Sensitivity to π , μ and γ secondaries, good energy resolution, and good angular resolution provide sufficient background rejection in the proposed device and will permit us to obtain significant information about several decay channels, should they

We have studied the properties of, and the expected backgrounds in, a totally active, 10,000 ton water Cerenkov detector located deep underground and sensitive to many of the conjectured decay modes of the nucleons in it. Sensitivity

atmospheric neutrinos imposes an inherent limit.

L/E Analysis Result

