Calculation of Atmospheric Neutrino Flux. July 4, 2017 M. Honda

- 1. Elements of CalculationOrder of talki. Primary Cosmic Ray Spectra model1ii. Interaction model and muon calibration4iii. Decay of pion, kaon, and muon.5iv. Geomagnetic field and Rigidity cutoff2v. Air profile model3
- 2. 1D vs. 3D
- 3 Our calculation, Scheme and results.

Direct Observation

Balloon Borne (BESS)

Primary Cosmic Ray Models (Gaisser Honda 2002)

Primary Cosmic Ray Model and referred data (2004)

Recent Cosmic Ray observation and available High Energy data

Solar Modulation and Neutron Monitor 5000 **CLIMAX Neutron Monitor Count** 4000 **Newark (Bartol)** 3000 PAMELA **AMS02 BESS group flights** o BESS 97 μ -Observation 10³ BESS 98 φ x E^{1.5} (m⁻²s⁻¹sr⁻¹GeV^{0.5} BESS 99 2000 2000 1995 2005 2010 Year BESS 00 ∇ BESS 02 10² 10⁰ 10^{1} 10 *Ep* (GeV)

Practical Formula for Solar Modulation

$$\phi(E,N) = \begin{cases} \phi(E,3710) \exp(a \cdot (N-3710)) \\ \phi(E,3710) \end{cases}$$

Where a is from right figure, and N is the Count of Newark Neutron Monitor.

Rigidity Cutoff and Geomagnetic Field

Rigidity Cutoff and Geomagnetic Field (cartoon)

Back Trace of Observed Particles

5.011 < P < 5.623 GeV/c

 $4.167 < {\rm Ek} < 4.768 \; {\rm GeV}$

Back Trace of Observed Particles

8.912 < P < 10.000 GeV/c

8.026 < Ek < 9.109 GeV

Atmosphere Model

US-starndard'76 may be used as the global approximation of the Atmosphere.

Atmosphere model (NRLMSISE-00) and seasonal variations

Hadronic Interaction Model

Hadronic Interaction Models (Gaisser Honda 2002)

Comparison in [Flux/depth]

DPMJET-III show the best agreement

Muon Calibration of inclusive DPMJET-III

==> DPMJET-III Should be Modified

Muon Observations

Balloon Altitude

L3+C

BESS

Tsukuba (KEK)

Mt Norikura

Muon Calibration of Interaction Model

Quick 3D calculation of muon flux.

As the muon flux is a "local quantity" ($\gamma ct \sim 60$ km at10 GeV), We can calculate it in a quick calculation method: 1. Inject cosmic rays just above the observation point, 2. Analyze all muons reach the surface of Earth.

Comparison of Quick 3D calculation with Full 3D calculation μ^+ U Full 3D $\cos\theta > 0.8$ 10¹ $\cos\theta > 0.8$ 10¹ 0.8 >cos⊕>0.6 0.8 >cos⊕>0.6 0.6 >cos0>0.4 0.6 >cos⊕>0.4 0.4 >cos⊕>0.2] Quick 3D 0.4 >cos⊕>0.2 ϕ_{μ} (m_s^2 sr s GeV/c)¹ GeV/cJ¹ S φ_μ (m²sr : 10⁰ 10 10 10¹ 10⁰ 10⁻¹ 10⁰ 10¹ 10^{-1} P_{μ} (GeV/c) $\textbf{P}_{\mu} \text{ (GeV/c)}$

This method works above 0.2 GeV/c.

Amplitude of Modification (SHKKM 2006)

JAM + Modified DPMJET-II vs Muons at the Balloon altitude (HKKM2011)

Comparison with Accelerator data

DPMJET-III vs NA49

Comparison of secondary spectra of interaction models at 1 TeV

With Cosmic ray spectra model based on AMS02 observation

Estimated Error in Atmospheric v-flux Calculation (HKKMS07)

 δ_{π} µ -observation error + Residual of reconstruction

- δ_{κ} Kaon production uncertainty
- δ_{σ} Mean free path (interaction crossection) uncertainty
- δ_{air} Atmosphere density profule uncertainty

Decay's Need to Consider

$$\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu} (\bar{\nu_{\mu}}) \quad (100\%) \qquad \mu^{\pm} \rightarrow e^{\pm} + \nu_{e} (\bar{\nu_{e}}) + \bar{\nu_{\mu}} (\nu_{\mu}) \quad (100\%)$$

$$K^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu} (\bar{\nu}_{\mu}) \qquad (63.5\%)$$

$$\rightarrow \pi^{\pm} + \pi^{0} \qquad (21.2\%)$$

$$\rightarrow \pi^{\pm} + \pi^{+} + \pi^{-} \qquad (5.6\%)$$

$$\rightarrow \pi^{0} + \mu^{\mp} + \nu_{\mu} (\bar{\nu}_{\mu}) \qquad (3.2\%)$$

$$\rightarrow \pi^{0} + e^{\mp} + \nu_{e} (\bar{\nu}_{e}) \qquad (4.8\%)$$

$$\rightarrow \pi^{\pm} + \pi^{0} + \pi^{0} \qquad (1.73\%)$$

$$K_l^0 \rightarrow \pi^0 + \pi^+ + \pi^-$$
 (12.37%)

$$\Rightarrow \pi^{\pm} + \mu^{\mp} + \nu_{\mu} (\overline{\nu_{\mu}}) \quad (27.0\%)$$

$$\Rightarrow \pi^{\pm} + e^{\mp} + \nu_e(\bar{\nu}_e) \qquad (38.6\%)$$

$$K_{s}^{0} \rightarrow \pi^{+} + \pi^{-}$$
 (68.6%)
 $\rightarrow \pi^{\pm} + \mu^{\mp} + \nu_{\mu} (\bar{\nu}_{\mu})$ (0.0469%)

$$\Rightarrow \pi^{\pm} + e^{\mp} + \nu_e(\overline{\nu_e}) \qquad (0.0704\%)$$

Cosmic rays in atmosphere

$$p_{CR} + [Air] \rightarrow \begin{pmatrix} n^{\pm} \cdot \pi^{\pm} \\ m \cdot \pi^{0} \end{pmatrix} + X(p, n, K,)$$
$$\pi^{0} \rightarrow 2 \gamma$$
$$\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu})$$
$$\mu^{\pm} \rightarrow \nu_{e}(\bar{\nu}_{e}) + \bar{\nu}_{\mu}(\nu_{\mu}) + e^{\pm}$$

Atmospheric Neutrino

$$\nu_{\mu}:\nu_{e}\approx 2:1$$

 $\gamma, e^{\pm} \rightarrow$ EM-cascade \rightarrow Air Shower

Other p's, n's, and sometimes π 's repeat above interactions.

Even K/π ratio is small (~0.1), the importance of kaon increase at High Energies

1. Competition of Interaction and decay

$$\begin{aligned} c\tau \frac{E}{mc^2} &\sim \frac{1}{\sigma n} \\ E &\sim \frac{mc^2}{c\tau\sigma n} = \begin{cases} 12 \ (\text{GeV, for } \pi^{\pm}) \\ 22 \ (\text{GeV, for } \mathbf{K}_L^0) \\ 90 \ (\text{GeV, for } \mathbf{K}^{\pm}) \end{cases} \times \frac{\rho_{[sea \ level]}}{\rho} \end{aligned}$$

2. Kinematices

$$\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu} (\bar{\nu}_{\mu})$$

$$K^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu} (\bar{\nu}_{\mu})$$

$$< E_{\nu} > = \frac{M^{2} - m_{\mu}^{2}}{2M^{2}} E_{0} = \begin{cases} 0.21 E_{0} \\ 0.48 E_{0} \end{cases}$$

Where M is the mass of Kaon or Pion.

Contribution of Kaon

Why 1D calculation is so preferred ?

1.
$$\frac{[3D-efficiency]}{[1D-efficiency]} \sim \frac{[Area of virtual detector]}{[Area of the surface of Earth]}$$

2. Angles in Hadronic Interactions $\Delta \theta \sim \frac{p_t}{E_{\pi}} \sim \frac{0.3}{E_{\pi}/1 \text{GeV}} \sim \frac{0.1}{E_{\nu}/1 \text{GeV}}$

3. Muon Curvature is energy independent ~ 5 degree

General understanding *before* Fluka group 3D calculation was, 2 and 3 are not important

1D-calculation

3D-calculation

Horizontal enhancement of neutrino flux Sub-GeV flux at Kamioka

(Battistoni et al. Astropart. Phys 1999)

Interpretation of horizontal enhancement

Longer integration length in the neutrino production zone for horizontal directions

100MeV neutrino image of Earth

OR

Our Calculation, Scheme and Results

3D-Calculation Geometry

Re = 6378 km

Simulation Sphere (Rs $10 \times \text{Re}$)

Cosmic ray go out this sphere are discarded. Cosmic rays go beyond are pass the rigidity cutoff test

Injection Sphere (Re +100lm)

Cosmic Rays are sampled and injected here

Virtual Detector

All neutrinos path through are recorded

Primary Cosmic Ray Model and referred data (2004)

Virtual detector correction

Averages in $\theta < \theta_1$ and $\theta < \theta_2$ can be written with the central value ϕ_0 as

$$\varphi_1 \simeq \varphi_0 + \phi' \theta_1^2$$
$$\varphi_2 \simeq \varphi_0 + \phi' \theta_2^2$$

where $_{\varphi}$ ' is a constant.

Then we can calculate the central flux value as

$$\phi_0 \simeq \frac{\theta_1^2 \varphi_2 - \theta_2^2 \varphi_1}{\theta_1^2 - \theta_2^2} = \frac{\varphi_2 - r^2 \varphi_1}{1 - r^2} \quad \text{for} \quad r = (\frac{\theta_2}{\theta_1}), \ r < 1$$

Apply this relation to the MC results

$$\phi_1 = \frac{N_1}{T \pi \theta_1^2}, \quad \phi_2 = \frac{N_2}{T \pi \theta_2^2}$$

Example in HKKM06 (PRD 2007) with

$$\phi_{\nu}(0) \simeq -\frac{1}{3} \phi_{\nu}(10) + \frac{4}{3} \phi_{\nu}(5)$$

Vertical, E_v =100 MeV

Calculated Atmospheric Neutrino Flux averaged over all directions

Seasonal Variation of Atmospheric Neutrino flux

Kamioka

INO site

South Pole

Flavor Ratios of Atmospheric Neutrino Flux

Seasonal and Site Variation of Atmospheric Neutrino Flavor Ratios

The variation of $\frac{\nu_{\mu} + \overline{\nu_{\mu}}}{\nu_{e} + \overline{\nu_{e}}}$ at South Pole and the difference from Kamioka are almost equal to the largest estimation of its uncertainty.

Zenith Angle Variation of Neutrino Fluxes at 1 GeV

Zenith Angle Variation of Neutrino Fluxes at 3.2 GeV

Azimuth Angle Variation of Neutrino Fluxes at 1 GeV at SK site

Azimuth Angle Variation of Neutrino Fluxes at 3.2 GeV at SK site

Azimuth Angle Variation of Neutrino Fluxes at 3.2 GeV at INO site

Azimuth Angle Variation of Neutrino Fluxes at 3.2 GeV at Suth Pole

Cumulative Neutrino Production Height at SK site (Summed over all azimuth angles)

Cumulative Neutrino Production Height at INO site (Summed over all azimuth angles)

Cumulative Neutrino Production Height at South Pole (Summed over all azimuth angles)

Azimuth Angle Variaiton of Neutrino Production Height

Based On AMS02 Obervation (Preliminary)

Atmospheric neutrino observed by SK

(Advertisement of the talk of Okumura-san)

Solar Modulation of Atmospheric Neutrinos

Events day

Observed Azimuthal Variation of v_e flux (from PHD thesis of E.Richard)

Energy Binned All Azimuth angles

Zenith Angle Binned All Energies

Observed Azimuthal Variation of ν_{μ} flux (from PHD thesis of E.Richard)

Zenith Angle Binned All Energies

Energy Binned All Azimuth angles

From K.Okumura in ICRC2015

Summary

•We overviewed the calculation of atmospheric neutrino flux in HKKM.

- •With NRLMSISE-00 atmosphere model, we find a large seasonal variation of neutrino flux at polar region. This also cause a variation in $\frac{\nu_{\mu} + \overline{\nu_{\mu}}}{\nu_{e} + \overline{\nu_{e}}}$ ratio.
- •We presented preliminary study based on AMS02 and BESS-polar. However, with the muon calibration, resulted atmospheric neutrino flux is very similar to the one with our (old) primary flux model.
- SK started to observe the predicted features of atmospheric neutrino flux.
 Advertisement: We are planning to record all the atmospheric neutrino on the earth. Then, we will be able to provide the atmospheric neutrino flux at any site on the Earth in a shorter period without re-calculation.

Back up

Assume the atmospheric neutrino flux is expanded as

$$\phi(\zeta,\eta) = \phi(0,0) + \frac{\partial \phi}{\partial \zeta} \zeta + \frac{\partial \phi}{\partial \eta} \eta + \frac{1}{2} \frac{\partial^2 \phi}{\partial^2 \zeta} \zeta^2 + \frac{\partial^2 \phi}{\partial \eta \partial \zeta} \zeta \eta + \frac{1}{2} \frac{\partial^2 \phi}{\partial^2 \eta} \eta^2 + \dots$$

Average in a virtual detector with radius θ is given as

Assume the atmospheric neutrino flux is expanded as

$$\phi(\zeta,\eta) = \phi(0,0) + \frac{\partial \phi}{\partial \zeta} \zeta + \frac{\partial \phi}{\partial \eta} \eta + \frac{1}{2} \frac{\partial^2 \phi}{\partial^2 \zeta} \zeta^2 + \frac{\partial^2 \phi}{\partial \eta \partial \zeta} \zeta \eta + \frac{1}{2} \frac{\partial^2 \phi}{\partial^2 \eta} \eta^2 + \dots$$

Average in a virtual detector with radius θ is given as

$$\phi_{\theta} \equiv \frac{1}{\pi \theta^{2}} \int_{\sqrt{\eta^{2} + \zeta^{2}} < \theta} \varphi(\eta, \zeta) d\eta d\zeta = \frac{1}{\pi \theta^{2}} \int_{-\theta}^{+\theta} \int_{-\sqrt{\theta^{2} - \eta^{2}}}^{+\sqrt{\theta^{2} - \eta^{2}}} \varphi(\eta, \zeta') d\zeta' d\eta$$

$$= \frac{1}{\pi \theta^{2}} \int_{-\theta}^{+\theta} \int_{-\sqrt{\theta^{2} - \zeta^{2}}}^{+\sqrt{\theta^{2} - \zeta^{2}}} \varphi(\eta', \zeta) d\eta' d\zeta$$

$$\int_{\sqrt{\eta^{2} + \zeta^{2}} < \theta} \eta d\eta d\zeta = \int_{\sqrt{\eta^{2} + \zeta^{2}} < \theta} \eta \zeta d\eta d\zeta = 0$$

$$\int_{\sqrt{\eta^{2} + \zeta^{2}} < \theta} \eta \zeta d\eta d\zeta = 0$$

(continued)

$$\begin{split} \int_{\sqrt{\eta^{2}+\zeta^{2}}<\theta} \eta^{2} d\eta d\zeta &= \int_{\sqrt{\eta^{2}+\zeta^{2}}<\theta} \zeta^{2} d\eta d\zeta = \int_{-\theta}^{+\theta} \int_{-\sqrt{\theta^{2}-\zeta^{2}}}^{+\sqrt{\theta^{2}-\zeta^{2}}} \eta'^{2} d\eta' d\zeta \\ &= \frac{2}{3} \int_{-\theta}^{+\theta} \sqrt{\theta^{2}-\zeta^{2}}^{3} d\zeta \\ &= \frac{2}{3} \theta^{4} \int_{-1}^{+1} \sqrt{1-t^{2}}^{3} dt \\ &= \frac{1}{4} \pi \theta^{4} \end{split}$$

Then we get

$$\phi_{\theta} \equiv \frac{1}{\pi \theta^2} \int_{\sqrt{\eta^2 + \zeta^2} < \theta} \varphi(\eta, \zeta) d\eta d\zeta = \varphi(0, 0) + \frac{1}{8} \left(\frac{\partial^2 \phi}{\partial^2 \zeta} + \frac{\partial^2 \phi}{\partial^2 \eta} \right) \theta^2 + \dots$$

Note, the factor before would be a little different, due to the Jacobian for θ_{he}^{2} integration on a sphere.

Gaisser Formula for illustration (by T.K.Gaisser at Takayama, 1998)

$$\Phi_{\nu} = \Phi_{primary} \otimes R_{cut} \otimes Y_{\nu}$$
$$\Phi_{\mu} = \Phi_{primary} \otimes R_{cut} \otimes Y_{\mu}$$

Where

$$\Phi_{primary} : \text{Cosmic Ray Flux}$$

$$R_{cut} = R_{cut}(R_{cr}, latt., long., \theta, \phi)_{:\text{Geomagnetic field}}$$

$$Y_{v} = Yield_{v}(h, \theta)_{\text{Hadronic Interaction Model,}}$$
Air Profile, and meson-muon decay
$$Y_{\mu} = Yield_{\mu}(h, \theta)_{\text{Hadronic Interaction Model,}}$$
Air Profile, and meson decay

This formula illustrates 1D-calculation well

Cosmic rays in atmosphere

$$p_{CR} + [Air] \rightarrow \begin{pmatrix} n^{\pm} \cdot \pi^{\pm} \\ m \cdot \pi^{0} \end{pmatrix} + X(p, n, K,)$$
$$\pi^{0} \rightarrow 2 \gamma$$
$$\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu})$$
$$\mu^{\pm} \rightarrow \nu_{e}(\bar{\nu}_{e}) + \bar{\nu}_{\mu}(\nu_{\mu}) + e^{\pm}$$

Atmospheric Neutrino

$$\nu_{\mu}:\nu_{e}\approx 2:1$$

 $\gamma, e^{\pm} \rightarrow$ EM-cascade \rightarrow Air Shower

Other p's, n's, and sometimes π 's repeat above interactions.

Analysis of calculation error:

Give Variations in the phase space and compare the variation of neutrino flux and the Maximum variation of muon flux in 0.5 ~ 2 GeV/c (μ +) and 0.5 ~ 4 GeV/c (μ -), where BESS Balloon observation was available.

Vertical neutrino flux

Horizontal neutrino flux

Impact of AMS02

After 123 seconds, 1,000 tons of fuel is spent. and

BESS-polar

Photographed from a STA (Shuttle Training Aircraft)

Proton closeup

Helium closeup

IGRF10 Geomagnetic Horizontal Field Strength

Overview

Primary cosmic ray flux Interaction model

Calculation scheme (include rigidity cutoff) Atmosphere model

T.K. Gaisser Takayama 5 June 1898
Atmospheric
$$V$$
 flux
 \neq related primary cosmic ray $\neq M$
Thanks to P. Lipari, T. Stanev
E. Kearns, M. Houda, S. Orito
G. Batbitoni, A. Ferrari, T. Montaruli; R. Eugel
 M
 $\psi_{V} = \phi_{primary} \otimes R(B_{\oplus}) \otimes f_{ield}(N=v)$
 $\psi_{\mu} = \phi_{primary} \otimes R^{*}(B_{\oplus}) \otimes f_{ield}(N=v)$
 $\psi_{\mu} = \phi_{primary} \otimes R^{*}(B_{\oplus}) \otimes f_{ield}(N=v)$
 M
Dutling of talk: 0 Cutoffs $\neq B_{\oplus}$
2) Primary spectrum
3) Muons ψ_{Vields}

Gaisser Formula for the illustration (by T.K.Gaisser at Takayama, 1998)

$$\Phi_{\nu} = \Phi_{primary} \otimes R_{cut} \otimes Y_{\nu}$$
$$\Phi_{\mu} = \Phi_{primary} \otimes R_{cut} \otimes Y_{\mu}$$

Where

: Cosmic Ray Flux $\Phi_{primary}$

: Geomagnetic field

$$R_{cut} = R_{cut}(R_{cr}, latt., long., \theta, \phi)$$

- $Y_{v} = Yield_{v}(h, \theta)$
 - $(\mathbf{n}, \mathbf{\theta})$ Air Profile, and meson-muon decay
 - : Hadronic Interaction Model,

: Hadronic Interaction Model,

- $Y_{\mu} = Yield_{\mu}(h, \theta)$
- Air Profile, and meson decay

Rigity Cutoff and Geomagnetic Field Horizontal component of geomagnetic field (IGRF2000?)

