CepC CDR: potential INFN contributions

<u>F. Bedeschi</u> <u>CepC CDR meeting,</u> February 2017

Outline

Prologue
Physics
Detector
Conclusions

CepC CDR meeting, Feb. 20, 2017

1

INFN & FCC

INFN has active collaboration with FCC (ee and hh)

- Coordination of working groups
 - EW physics, top physics
- Physics studies
 - ee: Top quark, WW
 - <u>hh:</u> HH, top, BSM
- Detector studies:
 - Development of FCC-ee detector
 - Experience from LEP
 - Dual Readout calorimeter from RD52 experience
 - Drift chamber from MEG-II experience and 4°
 - Vertex detector from ILD experience for ILC

INFN & CepC

$\textcircled{O} CepC \rightarrow FCC-ee: machines almost identical$

- Natural to share work for both
 - Lack of manpower \rightarrow cooperation much better than competition
 - 2° detector for CepC proposed in HK
 - IDEA (International Detector for Electron-positron Accelerator)
 - Same detector currently studied for FCC-ee

INFN management supports cooperation in many new accelerator projects including CepC

Good relations with CERN very important → transparency
 Additional cooperation by China on other big projects at CERN would help EU contributions to CepC₃
 <u>F. Bedeschi, INFN-Pisa</u>

INFN: physics contributions to CDR

EW physics:

- Could transfer much work done for FCC on Z and WW
- Fulvio potential (co)editor of CDR section

Top physics:

- Much work already done for FCC could be transferred
- CepC could now be run at tt threshold
 - What are plans for running CepC at top threshold?

SppC physics:

- Many HH production, top and BSM studies made for FCC-hh
- Potential for significant INFN contributions here
- What is relevance of SppC in CDR?

INFN: detector contributions to CDR

✤2° detector (IDEA)

- Parallel development with FCC-ee \rightarrow
- Compare with CepC baseline/prepare for second interaction p.

Build on ALICE ITS technology

> 30x30 µm MAPS
 > %X0

 ■ 0.3-1.0% (in-out)

 > Power:

 ■ 41-27 mW/cm2 (in-out)

 > Radiation hard

 > 100 kHz readout

Optimize # layers

Impressive recent test beam results

HEP conference, HK, January 2017

F. Bedeschi, INFN-Pisa

Impressive recent test beam results

Impressive recent test beam results

Tracker

Minimal performance established (MEG-II prototype)

9

Tracker

Minimal performance established (MEG-II prototype)
Technical solutions engineered (MEG-II)

9

Tracker

Minimal performance established (MEG-II prototype) Technical solutions engineered (MEG-II)

E.g. Wire stringing and soldering machine

HEP conference, HK, January 2017

2T solenoid

Two options:

- \blacktriangleright Large bore (R=3.7 m) calorimeter inside
 - Smaller bore (R=2.2 m) calorimeter outside
 - Preferred: simpler/ Extreme EM resolution not needed
 - Thick calorimeter

Thin (30 cm): total = 0.74 X₀ (0.16 λ) at θ = 90°

Property	Value
Magnetic field in center [T]	2
Free bore diameter [m]	4
Stored energy [MJ]	170
Cold mass [t]	8
Cold mass inner radius [m]	2.2
Cold mass thickness [m]	0.03
Cold mass length [m]	6
EP conference, HK, January 2017	

ourtesy of H. ten Kate et a

F. Bedeschi, INFN-Pisa

Particle flow calorimeters are extremely expensive!
 Similar (or better) performances with dual readout
 EM and HAD in same calorimeter

High transverse granularity

Copper dual readout calorimeter

Cu

HEP conference, HK, January 2017

Copper dual readout calorimeter Demonstrated EM resolution

HEP conference, HK, January 2017

F. Bedeschi, INFN-Pisa

Potential resolution in jets

- $> ~ 30-40\%/\sqrt{E}$
 - (see 4° concept LOI)

Potential resolution in jets

~ 30-40%/√E
 (see 4° concept LOI)
 Natural μ/π/e separation
 Can improve with timing and lateral shape cuts
 ε_{el} > 99%, <0.2% π mis-ID

Potential resolution in jets $\sim 30-40\%/\sqrt{E}$ (see 4° concept LOI) * Natural $\mu/\pi/e$ separation Can improve with timing and lateral shape cuts $\epsilon_{\rm el} > 99\%$, <0.2% π mis-ID • Preshower (~ $2 X_0$) Acceptance determination \triangleright e/ γ / π^0 separation

Momentum measurement

Muons

Momentum measurement

➢ Vertex+DCH: ~ 0.5% @ 100 GeV

Better muon ID (?):

- More filter behind calorimeter (?)
 - Iron yoke or partial yoke

Muons

Momentum measurement

➢ Vertex+DCH: ~ 0.5% @ 100 GeV

Better muon ID (?):

- More filter behind calorimeter (?)
 - Iron yoke or partial yoke

Followed by additional chambers

µ-RWELL low-cost technology already proven for low rate applications (CMS/SHiP)

Muons

Momentum measurement

➢ Vertex+DCH: ~ 0.5% @ 100 GeV

Better muon ID (?):

More filter behind calorimeter (?)
 Iron yoke or partial yoke

Followed by additional chambers

- µ-RWELL low-cost technology already proven for low rate applications (CMS/SHiP)
- ➢ Potential outer solenoid
 Flux return → reduced yoke
 - Flux letulli -> leduced y
 - Muon tracking

Beam pipe (R~2 cm)

HEP conference, HK, January 2017

Beam pipe (R~2 cm)VTX: 4-7 MAPS layers

HEP conference, HK, January 2017

F. Bedeschi, INFN-Pisa

Beam pipe (R~2 cm)
VTX: 4-7 MAPS layers
DCH: 4 m long, R 40-200 cm

Beam pipe (R~2 cm)
VTX: 4-7 MAPS layers
DCH: 4 m long, R 40-200 cm
2 T, R~2 m SC Coil

Beam pipe (R~2 cm)
VTX: 4-7 MAPS layers
DCH: 4 m long, R 40-200 cm
2 T, R~2 m SC Coil
Preshower (1-2 X₀)

Beam pipe (R~2 cm)
VTX: 4-7 MAPS layers
DCH: 4 m long, R 40-200 cm
2 T, R~2 m SC Coil
Preshower (1-2 X₀)
DR calorimeter (2 m/8 λ_{int})

Beam pipe (R~2 cm)
VTX: 4-7 MAPS layers
DCH: 4 m long, R 40-200 cm
2 T, R~2 m SC Coil
Preshower (1-2 X₀)
DR calorimeter (2 m/8 λ_{int})
(yoke) muon chambers

Beam pipe (R~2 cm) **VTX: 4-7 MAPS layers *** DCH: 4 m long, R 40-200 cm **◆**2 T, R~2 m SC Coil • Preshower $(1-2 X_0)$ • DR calorimeter (2 m/8 λ_{int}) (yoke) muon chambers (Dual solenoid ?)

Conclusions (HK)

Proposed detector is:

- Feasible with existing technology
 - More R&D can only improve
- Performant in full range of energy and luminosity
 - Fast detector, can resolve beam crossing
- \triangleright Very low mass ~3-4% X₀ before solenoid
- Low cost relative to ILD-like solutions

\bullet Several optimizations needed \rightarrow future simulation work

- Pixel layers, preshower, calorimeter and muon system configuration
 Need for more PID beyond DCH and Calorimeter?
- Major overlap with current FCC-ee baseline detector

INFN: detector contributions to CDR

Detector performance studies

- Preliminary work started after HK (thanks Manqi)
 - Simplified detector defined for simulations and optimizations
 - SehWookLee provides modular code for DR full simulation
 - INFN-LE group provides DCH geometry and tracking code from 4°/MEG
 - IHEP group help integrating DR with chamber and VTX detector
 - Patrizia will discuss with Manqi software compatibility issues
 - Other potential studies by CERN connected groups

Students (.... so far):

I doctorate and 1 master student will become active starting this March and could do studies with basic configuration (mostly DR)

Senior physicists:

Coordination of work on DR and chamber

INFN: detector contributions to CDR

Technical descriptions in CDR

- Vertex detector technical details
 Drift chamber technical details
 DR technical details
 DR SiPM readout
- (Caccia et al.) (Grancagnolo et al.) (Ferrari et al.) (Caccia et al.)

Additional potential contributions

Pre-shower configuration studies
 Muon system technical details
 Based on CMS upgrade plan
 R&D on high rate for SppC

(Giacomelli et al.) (Giacomelli et al.)

Final remarks

INFN groups already contributing to CDR > This involvement could increase in many areas INFN theorists involved in physics sections This contribution could grow – needs an organization IDEA detector performance studies are being setup Students/seniors will follow CDR work Many contributions possible on technical parts Needs to be organized Responsibilities in various CDR subgroups should be understood soon