

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

ELECTROWEAK PHYSICS TOWARDS THE CDR

Zhijun Liang (IHEP)

CEPC accelerator

- Electron-positron circular collider
 - Higgs Factory ($E_{cms}=250GeV$, 10⁶ Higgs)
 - Precision study of Higgs coupling in ZH runs
 - complementary to ILC
 - See Manqi and Gang's talk this morning in Higgs section for more details
 - Z factory (E_{cms} =91 GeV, 10¹⁰ Z Boson) :
 - Precision Electroweak measurement in Z pole running
 - Major focus of this talk
- Preliminary Conceptual Design Report(Pre-CDR) available :
 - http://cepc.ihep.ac.cn/preCDR/volume.html
- Aiming to finalize Conceptual Design Report (CDR) next year

Motivation

- CEPC have very good potential in electroweak physics.
- Precision measurement is important
 - It constrain new physics beyond the standard model.
 - Eg: Radiative corrections of the W or Z boson is sensitive to new physics

The prospect of CEPC electroweak physics in pre-CDR study

- Expected precision on some key measurements in CEPC Pre-CDR study based on projections from LEP and ILC.
 - http://cepc.ihep.ac.cn/preCDR/volume.html
- From now to next year, plan to update the study for Conceptual Design Report (CDR) with full detector simulation

Observable	LEP precision	CEPC precision	CEPC runs
m_Z	2 MeV	0.5 MeV	Z lineshape
m_{W}	33 MeV	3 MeV	ZH (WW) thresholds
A^b_{FB}	1.7%	0.15%	Z pole
$\sin^2 \theta_W^{\text{eff}}$	0.07%	0.01%	Z pole
R_b	0.3%	0.08%	Z pole
N_{ν} (direct)	1.7%	0.2%	ZH threshold
N_{ν} (indirect)	0.27%	0.1%	Z lineshape
R_{μ}	0.2%	0.05%	Z pole
$R_{ au}$	0.2%	0.05%	Z pole

Major systematics in EWK measurement

	Major systematics	Other systematics
mz	Beam energy (10 ⁻⁵ ~10 ⁻⁶)	Luminosity measurement (10-4)
A _{FB} (lepton)	Beam energy (10 ⁻⁵ ~10 ⁻⁶)	Track Alignment in forward region Track angular resolution (<0.05%)
R_b	flavor tagging (light jet and c jet background).	Gluon splitting modeling
A _{FB} (b)	flavor tagging (light jet and c jet background).	Jet charge
m _w (direct reconstruction)	Jet energy scale and resolution (<3% JER)	Beam energy
m _w (threshold scan)	Beam energy	Luminosity measurement
$\alpha_{\text{QCD}}, \alpha_{\text{QED}}$	To be study	

Task 2: optimizing Z threshold scan

- Optimize off-peak runs statistics for Z line shape and α_{QED} shape
 - Check event selection efficiency as a function of beam energy
- Fcc-ee colleague proposed to take more data around 87 and 94 GeV off-peak runs for $\,\alpha_{\text{QED}}\,$ shape
- Need fastsim study to check α_{QED} measurement

Tasks in W mass measurement

- Threshold scan method
 - Optimize off-peak runs statistics
 - Check selection efficiency in different off-peak runs
- Direct measurement of the hadronic mass (method for pre-CDR)
 - Optimize W mass direct reconstruction method in ZH runs
 - Jet energy calibration

B tagging performance in Branching ratio (R^b) $\frac{\Gamma(Z \to b\bar{b})}{\Gamma(Z \to had)}$

- Major systematics is from light jet and c jet background
- can be reduced by improving the b tagging performance
- Need fullsim to validate its performance

Uncertainty	LEP	CEPC	CEPC improvement
hemisphere tag correlations for b events	0.2%	0.1%	Higher b tagging efficiency

Branching ratio (R^b): task : gluon splitting measurements

- To reduce the R_b systematics
- One of the task is to measure gluon splitting

Backward-forward asymmetry measured from b jet

- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Select one lepton from b/c decay, and one b jets
 - Select lepton charge (Q_lepton) and jet charge (Q_jet)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - Select two b jets
 - use event Thrust to define the forward and background
 - Use jet charge difference (Q_F Q_B)

Arxiv:

Tasks in EWK measurements

	Task	samples
m _z	Resonant depolarization and Compton scattering method on beam energy	
mZ , α_{QED}	Optimize off-peak runs statistics and selection	fastsim
R_b	Validate B/c tagging performance in R_b Measurement	Fullsim
A _{FB} (b) semi-leptonic	Jet charge reconstruction	Fullsim
A _{FB} (b) leptonic	Lepton reconstruction in jets	Fullsim
m _w (direct reconstruction)	Optimize W mass reconstruction and jet energy calibration	Fullsim
m_W (threshold scan)	Optimize off-peak runs statistics and selection	fastsim
A _{FB} (lepton)	Detector acceptance, forward detector alignment precision	fastsim

Manpower status

	manpower	Availability
Resonant depolarization and Compton scattering method on beam energy		
Optimize off-peak runs statistics and selection	-	
Validate B/c tagging performance in R_b Measurement	Bo Li	Just joint
Jet charge reconstruction	-	
Lepton reconstruction in jets	-	
Optimize W mass reconstruction and jet energy calibration		
Optimize off-peak runs statistics and selection	-	
Detector acceptance, forward detector alignment precision	Mengran	Till middle of 2017

Summary

- EWK study in Pre-CDR is mainly based on extrapolation from LEP
- Would like to do fast or full simulation study for CEPC CDR.
- Need more manpower to complete these study
- Welcome to join this effort

Weak mixing angle sin²θ^{lept}_{eff} LEP/SLD: 0.23153 ± 0.00016

- 0.1% precision.
- Stat error is one of limiting factor.
- CEPC
 - systematics error : 0.01%
 - Input From Backward-forward asymmetry measurement
 - The precision mZ is another limiting factor (uncertainty on P_{beam})
 - If mZ is not well measured in CEPC ,
 - We need a large statistics of off-Z peak runs for weak mixing angle

CEPC off-peak runs stat

Backward-forward asymmetry measured from b jet

- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - Method 3: D meson method (>8%, less important method)
- CEPC pre-CDR
 - Focus more on method 2 (inclusive b jet measurement)
 - Expected Systematics (0.15%) :

Uncertainty	LEP	CEPC	CEPC improvement
charm physics modeling	0.2%	0.05%	tighter b tagging working point
tracking resolution	0.8%	0.05%	better tracking resolution
hemisphere tag correlations for b events	1.2%	0.1%	Higher b tagging efficiency
QCD and thrust axis correction	0.7%	0.1%	Better granularity in Calo

Summary

- CEPC electroweak physics in Preliminary Conceptual Design Report.
 - Expected precision based on projections from LEP and ILC.
- Aim for more realistic study with full simulation for CDR next year.
 - Mainly focus on a few key measurements.
 - m_W
 - Weak mixing angle
 - mZ

Welcome to join this effort

Urgent open task

- 1. W mass measurement
 - Try to understand the precision with direct measurement approach
 - Design dedicated runs for WW threshold scan approach
- 2. Detector optimization using Z->bb R(b) measurement as benchmark model.
 - Pixel size optimization:
 - Baseline 16x16µm
 - Whether we need high resolution both direction
 - Is 16x32 µm OK ?
 - Momentum resolution requirement
 - Impact parameter requirement

From Pre-CDR to CDR

- Propagate beam momentum scale uncertainty to all EW measurement.
- Give a clear physics requirement to accelerator

	Correlations				
	$m_{ m Z}$	$\Gamma_{\rm Z}$	$\sigma_{ m had}^0$	R^0_ℓ	$A_{ m FB}^{0,\ell}$
$\chi^2/dof = 172/180$	ALEPH				
$m_{\rm Z} [{\rm GeV}] 91.1893 \pm 0.0031$	1.000				
$\Gamma_{\rm Z} [{\rm GeV}] = 2.4959 \pm 0.0043$	0.038	1.000			
$\sigma_{\rm had}^0 [{\rm nb}] = 41.559 \pm 0.057$	-0.092	-0.383	1.000		
R_{ℓ}^{0} 20.729 ± 0.039	0.033	0.011	0.246	1.000	
$A_{\rm FB}^{0,\ell}$ 0.0173 ± 0.0016	0.071	0.002	0.001 -	-0.076	1.000

Plan for Weak mixing angle

More details in Mengran's talk

CEPC accelerator

- Electron-positron circular collider
 - Higgs Factory ($E_{cms}=250GeV$, 10⁶ Higgs)
 - Precision study of Higgs coupling in ZH runs
 - complementary to ILC
 - See Manqi and Gang's talk this morning in Higgs section for more details
 - Z factory (E_{cms} =91 GeV, 10¹⁰ Z Boson) :
 - Precision Electroweak measurement in Z pole running
 - Major focus of this talk
- Preliminary Conceptual Design Report(Pre-CDR) available :
 - http://cepc.ihep.ac.cn/preCDR/volume.html
- Aiming to finalize Conceptual Design Report (CDR) next year

CEPC detector (1)

- ILD-like design with some modification for circular collider
 - No Power-pulsing
- Tracking system (Vertex detector, TPC detector, 3.5T magnet)
 - Expected Pixel size in vertex detector : less than 16x 16µm
 - Expected Impact parameter resolution: less than 5µm
 - Expected Tracking resolution : $\delta(1/Pt) \sim 2*10^{-5}(GeV^{-1})$

CEPC detector (2)

- Calorimeters:
 - Concept of Particle Flow Algorithm (PFA) based
 - EM calorimeter energy resolution: $\sigma_E/E \sim 0.16/\sqrt{E}$
 - Had calorimeter energy resolution: $\sigma_{\rm E}/{\rm E} \sim 0.5/\sqrt{\rm E}$
 - Expected jet energy resolution : $\sigma_{\rm E}/{\rm E} \sim 0.3/\sqrt{{\rm E}}$

Task 1 : Beam energy measurement

- Resonant depolarization method. (LEP approach)
 - Urgently need Beam polarization design in CEPC
 - · Whether CEPC can have bunch with polarization and how long it lasts
 - Polarization fraction in Z and WW threshold
- compton scattering approach
 - Whether it can reach 1MeV precision from this approach
 - preliminary study in G-Y. Tang's talk http://indico.ihep.ac.cn/event/6495/session/4/contribution/29/material/slides/0.pdf

