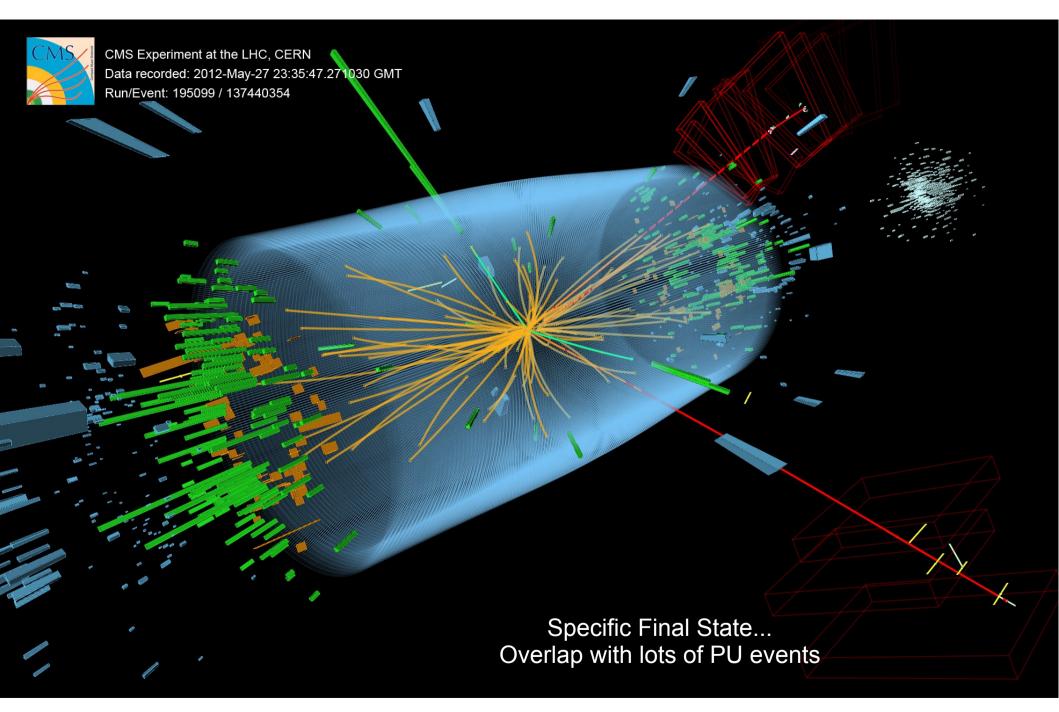
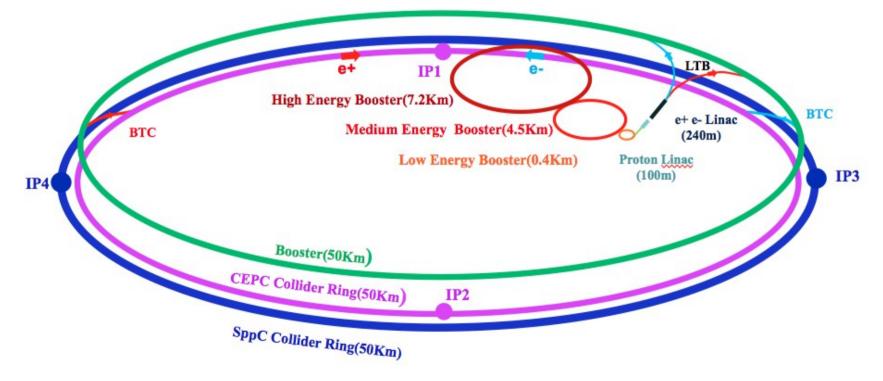


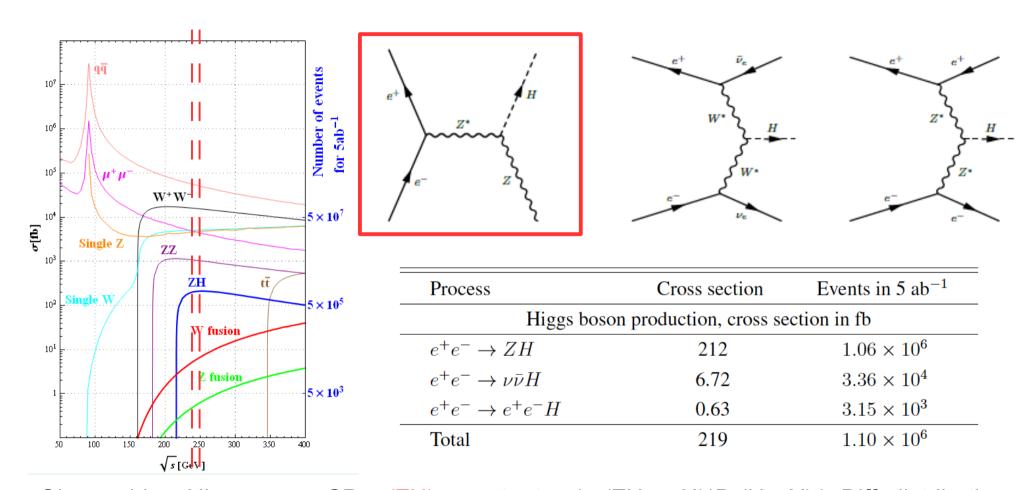
Mass of electron – size of atom
Mass of u&d quark – stability of proton
Mass of top & Higgs – vacuum stability
Mass of W/Z – strength/range of Weak interaction


Gateway to the unknown...

Higgs @ LHC

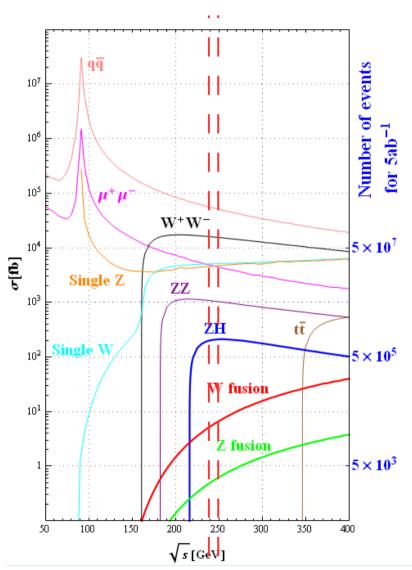

Extremely High Background: 1 Higgs boson in 10 Billion events...

√s (TeV)



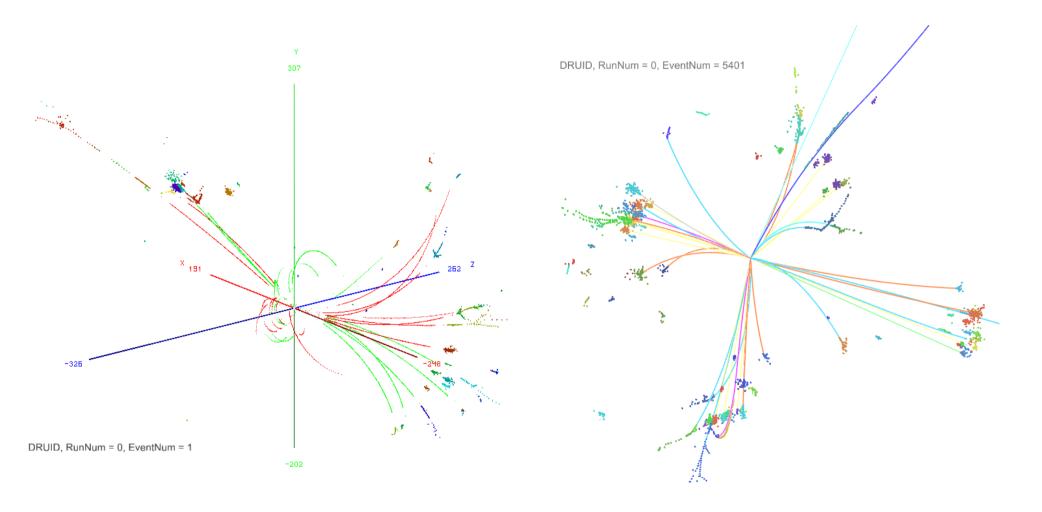
CEPC: a precise Higgs factory

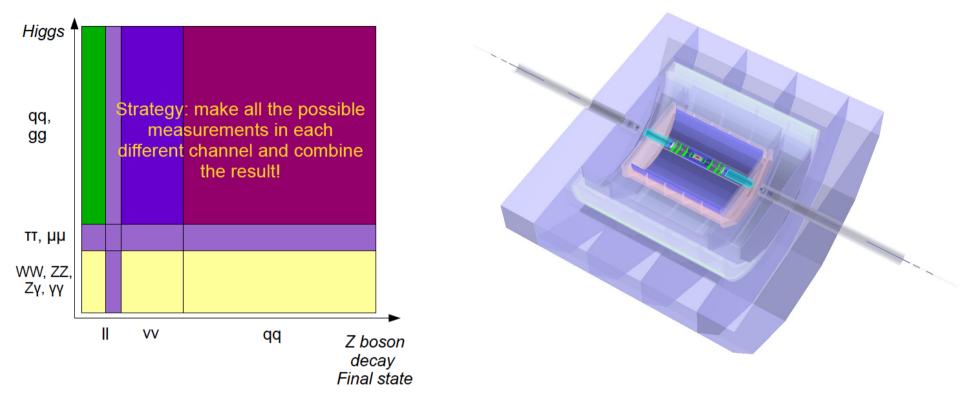
- Higgs mass ~ 125 GeV, it is possible to build a Circular e+e- Higgs factory (CEPC), followed by a proton collider (SPPC) in the same tunnel
- Looking for Hints (from Higgs) at CEPC → direct search at SPPC
- CEPC: 1 M Higgs boson + 10 Billion Z bosons...


Higgs @ CEPC

Observables: Higgs mass, CP, $\sigma(ZH)$, event rates ($\sigma(ZH, vvH)*Br(H \rightarrow X)$), Diff. distributions

Derive: Absolute Higgs width, branching ratios, couplings


Higgs @ CEPC


Extremely clean;

• Absolute measurement to Higgs boson...

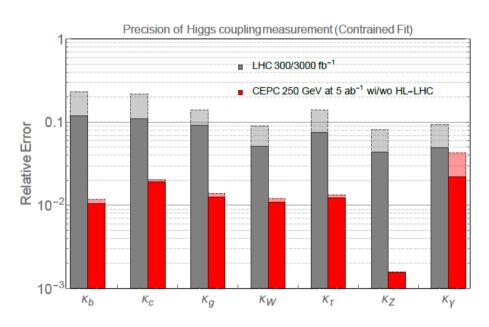
Sim Higgs @ CEPC

CEPC Conceptual detector, developed from ILD

A detector reconstruct all the physics object (lepton, photon, tau, Jet, MET, ...) with high efficiency/precision

High Precision VTX located close to IP: b, c, tau tagging High Precision Tracking system: $\delta(1/Pt) \sim 2*10^{-5} (GeV^{-1})$

PFA oriented Calorimeter System (~o(10⁸) channels): Tagging, ID, Jet energy resolution, ect

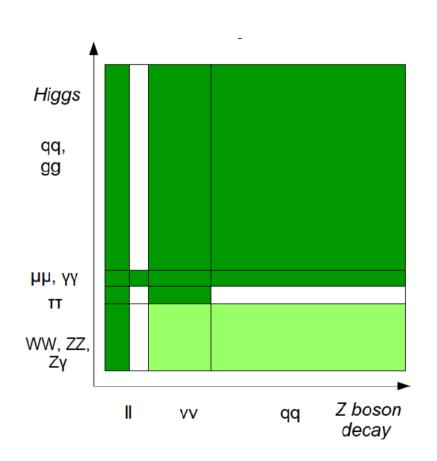

Higgs measurements at CEPC

Event Rates:

- $\sigma(AA \rightarrow H \rightarrow BB) \sim g^2(HAA)g^2(HBB)/\Gamma_{total}$
- Recoil Mass method: absolute measurement of $\sigma(ZH)$ g(HZZ)
- Absolute measurement to Higgs width and All Higgs couplings
- Differential Distributions

Higgs rare decay/exotic decays

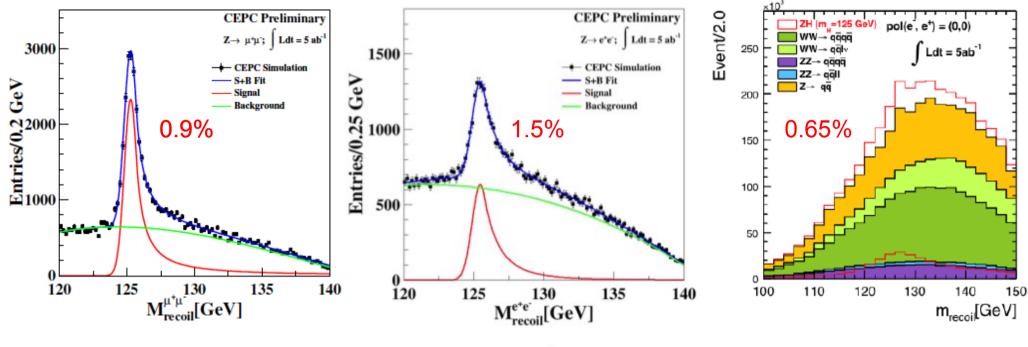
Higgs analyses at Pre-CDR



Kappa-framework model-dependent measurements

Absolute measurements

Status now

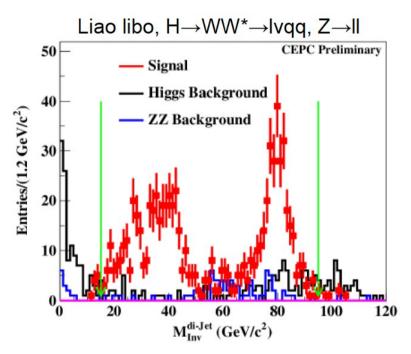


~50 independent analysis at Full Simulation level

	PreCDR (Jan 2015)	Now (Aug 2016)
σ(ZH)	0.51%	0.50%
$\sigma(ZH)*Br(H\rightarrow bb)$	0.28%	0.21%
σ(ZH)*Br(H→cc)	2.1%	2.5%
σ(ZH)*Br(H→gg)	1.6%	1.2%
σ(ZH)*Br(H→WW)	1.5%	1.0%
$\sigma(ZH)*Br(H\rightarrow ZZ)$	4.3%	4.3%
σ(ZH)*Br(H→π)	1.2%	1.0%
σ(ZH)*Br(H→γγ)	9.0%	9.0%
$\sigma(ZH)*Br(H\rightarrow Z\gamma)$	-	~4 σ
σ(ZH)*Br(H→μμ)	17%	12%
σ(vvH)*Br(H→bb)	2.8%	2.8%
Higgs Mass/MeV	5.9	5.0
σ(ZH)*Br(H→inv)	95%. CL = 1.4e-3	1.4e-3
Br(H→ee/emu)	-	1.7e-4/1.2e-4
Br(H→bbχχ)	<10 ⁻³	3.0e-4

Model-independent measurement of $\sigma(ZH)$

Zhenxing Chen & Yacine Haddad


- Recoil mass method. Combined precision:
 δσ(ZH)/σ(ZH) = 0.5% -
 - $\delta\sigma(ZH)/\sigma(ZH) = 0.5\% \delta g(HZZ)/g(HZZ) = 0.25\%$
- Indirect Access to g(HHH)

$$\sigma_{Zh} = \begin{vmatrix} \mathbf{e} \\ \mathbf{h} \end{vmatrix}^2 + 2 \operatorname{Re} \begin{bmatrix} \mathbf{z} \\ \mathbf{h} \end{bmatrix}^2 +$$

M. McCullough, 1312.3322

Br(H→WW)

H→WW/ZZ: Portal to Higgs width & perfect test bed for detector/reconstruction performance...

Expedica Number of events with amerent objects					
	Z→II	tautau	VV	qq	
$H\rightarrow WW^*\rightarrow 4q$	6.91k	3.45k	19.74k	69.1k	
μνqq	2.27k	1.14k	6.47k	22.7k	
evqq	2.27k	1.14k	6.47k	22.7k	
eevv	186	93	527	1.9k	
μμνν	186	93	527	1.9k	
eµvv	372	186	1154	3.7k	

3.2k

X + tau

Expected Number of events with different objects

Extrapolated from ILC results			
Await for tau finder			
Await for the SM Background simulation			
Full Simulation			
Preliminary result acquired			
Unexplored			

1.6k

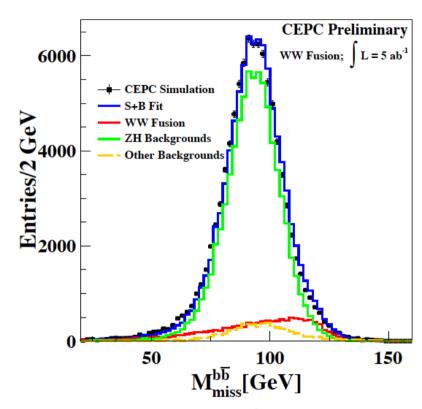
9.14k

32.0k

- Br(H→WW), Combined accuracy ~ 1.0% from 13 independent full simulation analyses
 - 1.45% at IIH, H→WW*→ inc channels, 12 independent channels.
 - ~ 1.7% at vvH, H→WW*→ 4q channel (Preliminary. ILC extrapolation = 2.3%)
 - 2.3% at qqH, H→WW*→ 2qlv channel (extrapolated from ILC full simulation)
- High efficiency in event reconstruction

Br(H→WW)

ZH, H->WW*	Yield	Object	Isolation	Signal	Main	Accuracy	Combined
		reconstructed		Efficiency	Background		
Z(μμ)H(evev)	88	76(86.36%)	61(80.26%)	36(40.91%)	4(ZH)	17.57%	
$Z(\mu\mu)H(\mu\nu\mu\nu)$	89	80(89.89%)	77(96.25%)	52(58.43%)	6(ZH&ZZ)	14.65%	
$Z(\mu\mu)H(ev\mu v)$	174	157(90.23%)	147(93.63%)	105(60.34%)	0	9.76%	2.68%
Z(μμ)H(evqq)	1105	1042(94.30%)	864(82.92%)	663(60.00%)	45(ZH)	4.02%	
$Z(\mu\mu)H(\mu\nu qq)$	1110	1056(95.14%)	988(93.56%)	717(64.59%)	159(ZH&ZZ)	4.13%	
Z(μμ)H(qqqq)	Preliminary					3.0%	
Z(ee)H(evev)	91	62(68.13%)	60(96.77%)	22(24.16%)	16(SZ)	28.02%	
$Z(ee)H(\mu v\mu v)$	82	63(76.83%)	63(100%)	44(53.66%)	24(SZ)	18.74%	
Z(ee)H(evμv)	178	132(74.16%)	124(93.94%)	82(46.07%)	25(ZH&SZ)	12.61%	2.87%
Z(ee)H(evqq)	1182	1041(88.07%)	916(87.99%)	621(51.78%)	188(SZ&ZH)	4.62%	
Z(ee)H(µvqq)	1221	1194(97.79%)	1048(87.77%)	684(56.02%)	49(ZH&SZ)	3.96%	
Z(ee)H(qqqq)							3.2%


- Full Simulation on 12 independent channels
 - Very high object reconstruction efficiency
 - Combined result: 1.1%
- Extrapolation from other ILC channels: 2.2%
- Combined: 1.0%

	Z→II	tautau	VV	gg
H→WW*→4q		3.45k	< 1.9%	69.1k
pygg	1.45%	1.14k	6.47k	2.2%
evqq		1.14k	6.47k	2.2 /0
eevv		93	527	1.9k
μμνν		93	527	1.9k
eµvv		186	1154	3.7k
X + tau	3.2k	1.6k	9.14k	32.0k

Higgs width measurement

•
$$g^2(HXX) \sim \Gamma_{H \to XX} = \Gamma_{total}^* Br(H \to XX)$$

- Branching ratios: determined simply by
 - σ (ZH) and σ (ZH)*Br(H→XX)
- Γ_{total}: determined from:
 - From $\sigma(ZH)$ (~g²(HZZ)) and $\sigma(ZH)*Br(H→ZZ)$ (~g⁴(HZZ)/Γ_{total})
 - From σ(ZH)*Br(H→bb), σ(vvH)*Br(H→bb),
 σ(ZH)*Br(H→WW), σ(ZH)

Br(H->ZZ): relative error of 6.9% achieved with ZH->ZZZ*->vv(Z)llqq(H) final states. Extrapolation of TLEP result leads to 4.3% relative error

 $\sigma(vvH)*Br(H->bb)$: relative error of 2.8%

A combined accuracy of 2.8% for the Higgs total width measurements

To do: Differential Distributions & Benchmarks for optimization

Benchmarks	Benchmarks Main observables Key performances		Status	
IIH, H->X	Higgs recoil spectrum	Lepton Id efficiency, Tracker intrinsic momentum resolution	Well understood	
H+X, H->di photon	Event reconstruction efficiency, Higgs invariant mass peak width	Tracker Material, Intrinsic ECAL energy Resolution		
ZH->4 jets,	Br(H->bb, cc, gg)	Jet clustering, PFA: Jet Energy Resolution, Jet Flavor Tagging		
vvH, H->2 jets (optional)	Br(H->bb, cc, gg)	Jet Energy Resolution & Flavor Tagging	Studied at CEPC conceptual Detector (CEPC_v1)	
H+X, H->di muon	Event reconstruction efficiency, Higgs invariant mass peak width	Lepton Id efficiency, Tracker intrinsic momentum resolution		
vvH, H->di tau	Efficiency of Tau reconstruction with different tau decay mode	PFA separation, Impact parameter resolution		
qqH, H->invisible	Higgs recoil spectrum	PFA: Jet Energy Resolution		
vvH, H->WW->lvqq	Event Reconstruction Efficiency di-jet mass distribution	PFA, Simultaneous reconstruction of Lepton, Jets and Missing Energy	Studied at different Calorimeter Granularity	
WW->lvqq	W mass	Jet Energy resolution & Systematic controls	Full simulation analysis not accomplished yet	
Z->tautau	V/A, spectrum function, Branching ratios	Separation & Tracking efficiencies	not started yet	

Physics with taus would be essential for the detector optimization...

Summary

- Higgs, portal to unknown
- CEPC, an electron-positron Higgs factory & an precision EW machine
 - o(0.1-1%) level accuracy in absolute measurement of Higgs Branching ratio and couplings
 - Higgs total width measured to 2.8%
 - Good access to SM Higgs rare decays (μμ, γγ, Ζγ)
 - Higgs exotic decays, limited to better than 0.1% level
 - EW Program significantly enhance the access to the New Physics
 - Highly complementary to pp machine
- Simulation study: toward a better understanding of its Physics potential
 - Good understanding toward absolute Higgs coupling measurement
 - Toward detector optimization & measurement with detector optimizations

IHEP-CEPC-DR-2015-01

IHEP-EP-2015-01

IHEP-TH-2015-01

IHEP-CEPC-DR-2015-01

IHEP-AC-2015-01

Can be downloaded from

http://cepc.ihep.ac.cn/preCDR/volume.html

CEPC-SPPC

CEPC-SPPC

Preliminary Conceptual Design Report

.

Preliminary Conceptual Design Report

Volume II - Accelerator

Volume I - Physics & Detector

403 pages, 480 authors

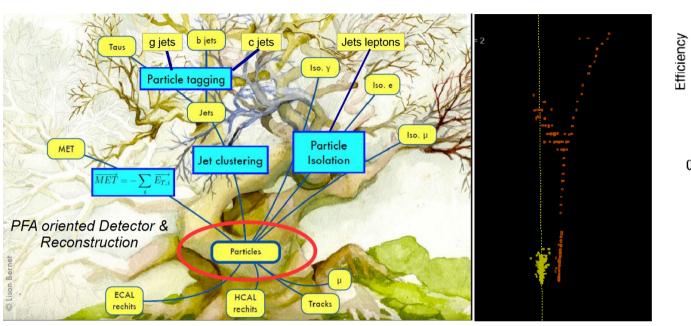
328 pages, 300 authors

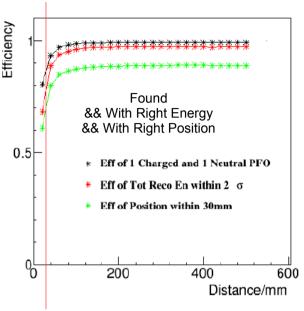
The CEPC-SPPC Study Group

March 2015

The CEPC-SPPC Study Group

March 2015


References


- https://arxiv.org/abs/1601.05352
- https://arxiv.org/abs/1701.07542
- https://arxiv.org/abs/1609.03995
- https://arxiv.org/abs/1505.01008
- https://arxiv.org/abs/1512.06877

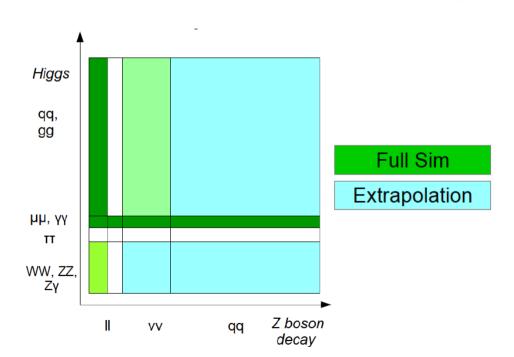
Welcome!

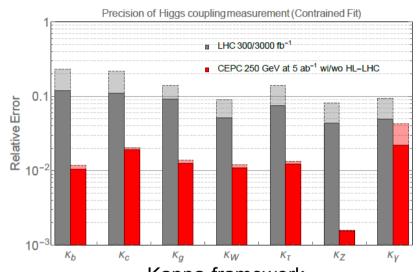
Backup

Detector performance

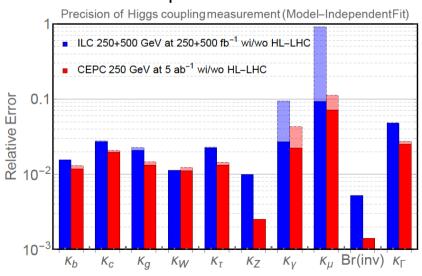
Acceptance	$ \cos(\theta) < 0.995$ (from the inner radius of the outmost tracking disk)	
Tracking Efficiency	For isolated charged particle with energy > 1GeV: ~100%	
Photon Reconstruction Efficiency	For isolated photon with energy > 0.5 GeV: ~100%	
Tracker resolution	$\delta(1/P_T) = 2*10^{-5} (\text{GeV}^{-1})$	
ECAL intrinsic resolution	$\delta E/E = 16\%/\sqrt{E/GeV} \oplus 0.5\%$	
HCAL intrinsic resolution	$\delta E/E = 60\%/\sqrt{E/GeV} \oplus 1\%$	
Jet energy resolution	$\delta E/E = 4\%$	
Typical Distance for shower separation	< 3 cm	
Lepton identification	For charged particle with Energy >2GeV: Lepton identification	
_	efficiency > 99.5%, P(hadron→muon)~P(hadron→electron): 1%	
b-tagging	At Z pole samples & eff(b \rightarrow b)) = 80%, P(uds \rightarrow b) < 1%, P(c \rightarrow b) \sim 10%	
c-tagging	At Z pole samples & eff($c\rightarrow c$) = 60%, P(uds $\rightarrow c$) = 7%, P(b $\rightarrow c$) = 12%	

Performance at full reconstruction


Benchmark separation distance < 3 cm (Testing on 10 GeV Pion + 5 GeV Photon Sample)

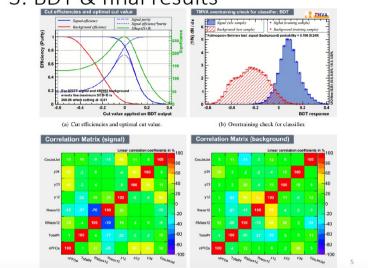

Higgs analyses at Pre-CDR

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{M^2} \mathcal{O}_{6,i}$$


$$\delta \sim c_i \frac{v^2}{M^2}$$

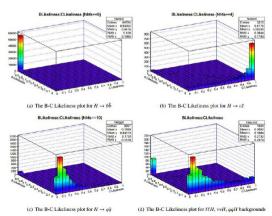
% precision → M ~ 1 TeV to new physics → ~× 10 over LHC

Kappa-framework model-dependent measurements


ssion

Workflow for Br(H->bb, cc, gg) measurements general event selection + Template fit

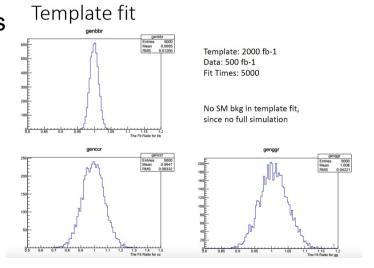
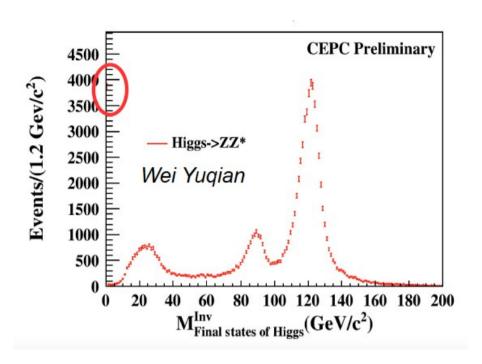
2. Selection

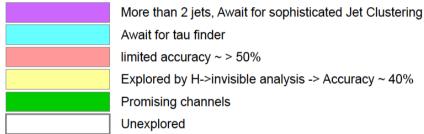

Cut Definition	Sig.	qq	qqnn	qqln	xxh
FSClasser output	148955	25M	183687	3698817	63194
$N_{\text{PFO}(E>0.4\text{GeV})} > 20$	148808	23M	163088	3439927	58882
$110 < E_{\text{total}} < 150$	132561	10 M	125878	705357	34215
$P_T > 19$	126006	34198	116314	627602	32300
Isolation lepton veto	123586	33775	115867	327206	23773
$100 < M_{\rm inv} < 135$	117845	9506	10420	162511	21277
$70 < M_{\rm rec} < 125$	111886	7521	10045	110426	20458
$0.15 < y_{12} < 1$	111353	7405	9702	101797	19983
$y_{23} < 0.06$	105078	6644	8456	69313	14495
$y_{34} < 0.008$	100117	6504	7878	58532	6899
$-0.98 < \cos(\theta_{\text{included}}^{(2\text{jets})}) < -0.4$	97277	5178	5365	33293	6273
BDT > -0.01	76666	344	118	69	1594
Significance			265.20		
Efficiency			51.5%		4

3. BDT & final results

Flavor tagging

vvH events


Figure 7: The B-C Likeliness characteristics for Signal and other Higgs Background. The Standard Model Background isn't included in because there is no B-C Likeliness.

$Br(H \rightarrow ZZ)$

Expected Number of events with different objects

Z→II	tautau	VV	qq
888	444	3.10k	9.24k
508	254	1.77k	5.29k
170	85	596	1.8k
73	36	254	756
49	24	170	508
8	4	28	86
120	60	418	1246
	888 508 170 73 49 8	888 444 508 254 170 85 73 36 49 24 8 4	888 444 3.10k 508 254 1.77k 170 85 596 73 36 254 49 24 170 8 4 28

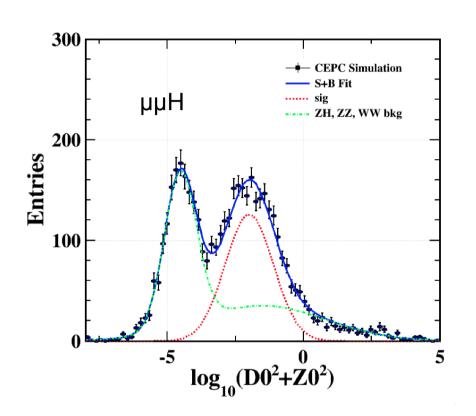
- Br(H→ZZ), explored at 18 different channels with full simulation (Ilvvqq, 4lqq, Il4q, 2l4v)
 - 8 Channels has individual accuracy better than 25%: Combined accuracy ~ **5.4%**
 - 8 with accuracy worse than 25 50%
 - 2 with accuracy worse than 50% (IIH, H→ZZ→4q and vvH, H→ZZ→IIvv)
- High efficiency in event reconstruction

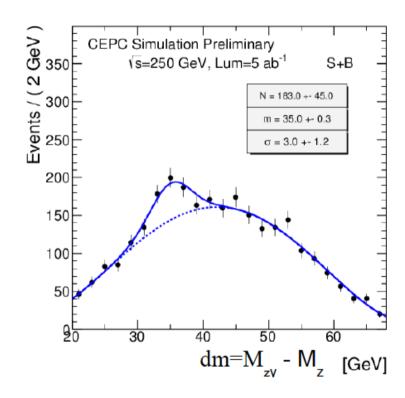
$Br(H \rightarrow ZZ)$

ZZZ*	Yield	Object reconstructed	Signal Efficiency(%)	Main Background	Accuracy (%)	Comments
μμνναα	128	118	63.3	h->ww&zz_sl	12.9	Tau finder would be
μμαανν	128	125	-	h->bb&zz_sl	>25	highly appreciated
eevvqq	132	91	53.8	h->ww&sze_sl	15.8]
eeqqvv	132	88	ı	h->bb&zz_sl	>25	Reconstructed
ννμμαα	158	144	61.4	h->t,w&zz_sl	11.0	efficiency of electron need to be improved
vvqqμμ	158	149	51.9	h->w,b&zz_sl	12.9	need to be improved
vveeqq	151	118	43.1	h->w&sze_sl	21.3	
vvqqee	151	134	-	h->bb&sze_sl	>25]
qqμμνν	135	115	-	h->tt&zz_sl	>25	Compare to ll recoil,
qqvvμμ	135	122	-	h->t,w&zz_sl	>25	qq recoil mass has much worse
qqeevv	127	107	-	h->tt&sze_sl	>25	distinguishing power to SM background
qqvvee	127	123	-	h->t,w&sze_sl	>25	
μμμμαα/ αμμ	43	39	69.8	h->tt&zz_sl	19.9	Tau finder & Electron
μμεeqq/qqee	43	39	60.5	h->tt&zz_sl	21.2	Reconstruction
eeeeqq/eeqqee	43	33	-	h->tt&sze_sl	>25]
ееµµqq/ееqqµµ	43	41	58.2	h->tt&sze_sl	19.9]

Full Simulation analysis performed on 16 independent channels.

8 Channels acquire accuracy better than 25%.

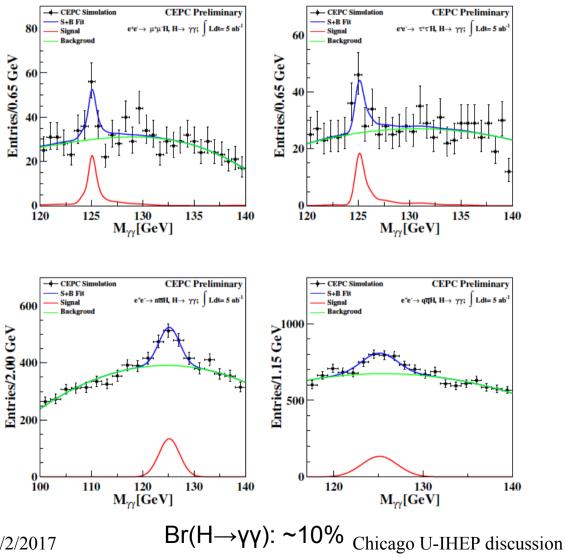

Combined accuracy: 5.4%


If electron id efficiency ~ muon id: 4.8%

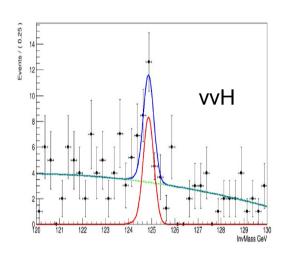
If tau finder (used for veto) is mature: ??

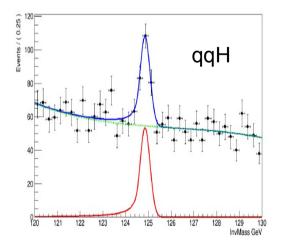
TLEP extrapolation: 4.3% Chicago U-IHEP discussion

Br($H \rightarrow TT$) & Br($H \rightarrow Z\gamma$)



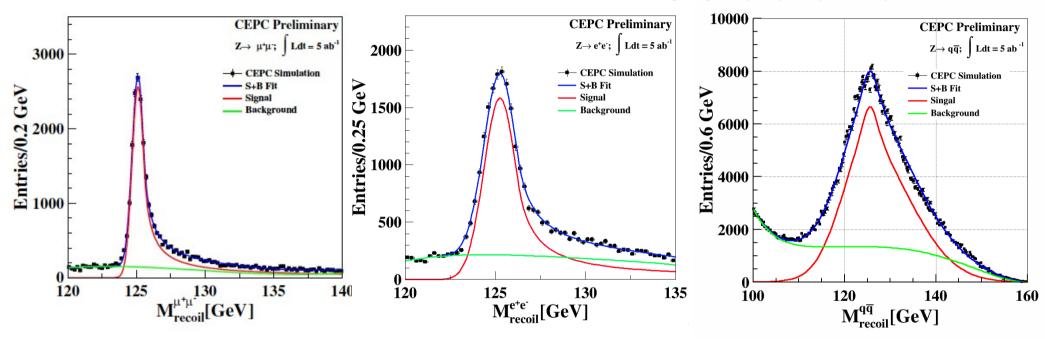
Br(H→ττ): 3% accuracy acquired by mumuH channel; overall accuracy < 1% (Dan Yu)


H→Zγ events: 4σ signal (Weiming Yao)


Higgs rare decay

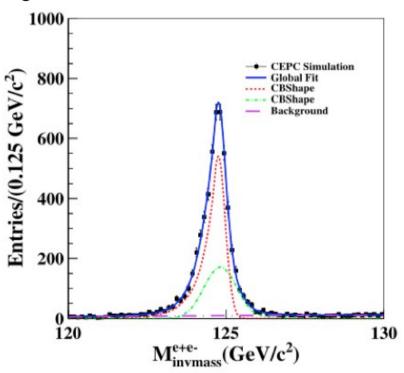
Feng Wang, Jianhuan Xiang, Yitian Li. etc

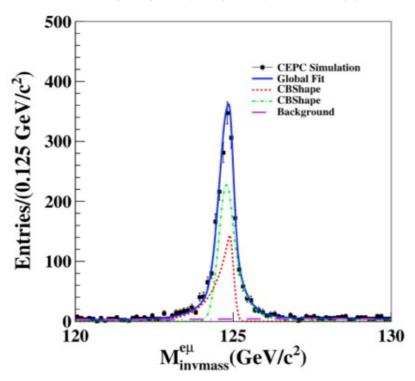
Binlong Wang, Zhenwei Cui



Br($H\rightarrow \mu\mu$): ~12% (Exclusive analysis)

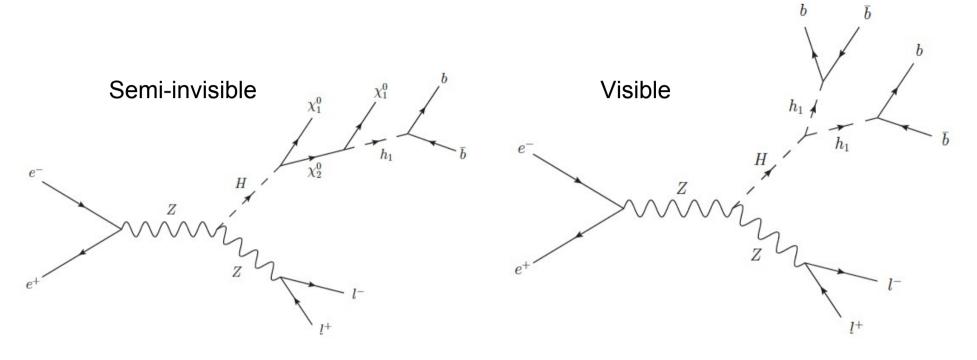
Exotic: Higgs invisible decays


Assuming sigma(ZH)*Br(H->inv) = 200 fb


Invisible up limit at CEPC: 0.14% at 95% C.L

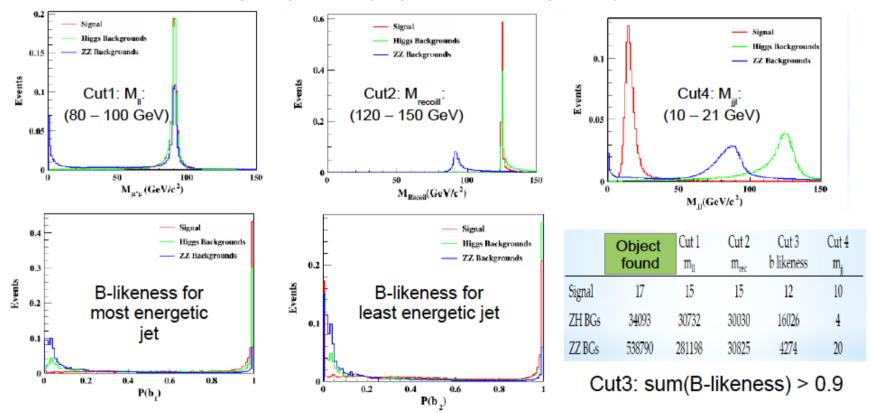
Up limit of Br(H→ee) & Br(H→eµ)

Lei Wang

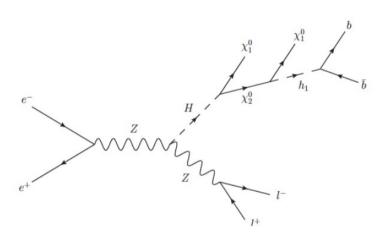

Assuming $sigma(ZH)*Br(H->ee/e\mu) = 200 fb$

95% up limit: Br(H->ee) = 1.7e-4; Br(H->emu) = 1.2e-4;

Many updates on the H->exotic with Hadronic final states


H→Exotic, Hadronic

- Typical processes in 2HDM & NMSSM
- Joint efforts by HK Cluster and IHEP
 - Study proposed by T. Liu
 - Main analyzer, Jiawei Wang, Kevin & Zhenxing Chen
- 95% CL up limit ~o(10⁻⁴).


H->Exotic, hadronic

Para: M(LSP) = 0; M(h0) = 15 GeV; M(NLSP) = 20 GeV

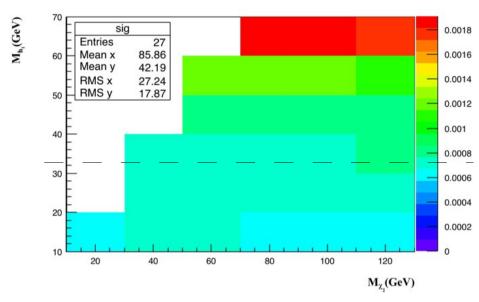
- 95% CL. Uplimt set to be 5E-4; will be significantly improved by including di-electron/tau channel...
- ISR effect not included in the Signal sample. sigma(ZH) refered to SM Xsec of 200 fb. Effect on uplimit setting could be ignored

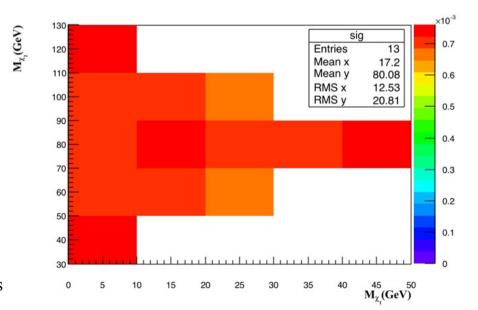
H→Exotic, Hadronic

Benchmark Points

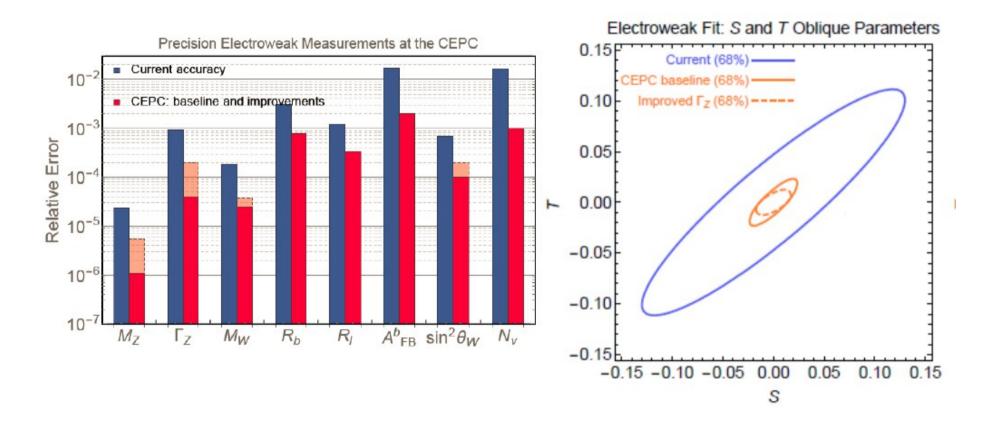
Scan over the parameter space for sensitivity:

1. Fix $m_{\tilde{\chi}_1^0} = 0$ GeV and make exclusion contours on the m_{h^0} and $m_{\tilde{\chi}_2^0}$ plane with the range:

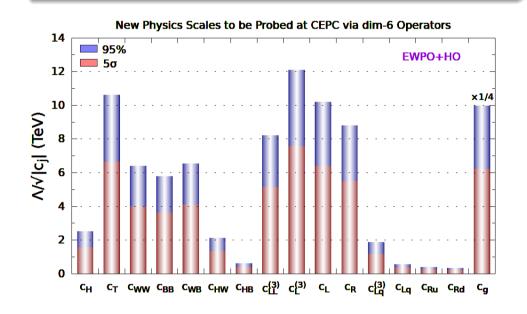

10 GeV <
$$m_{h^0}$$
 < 60 GeV (15,25,35,45,55 GeV)
10 GeV < $m_{\tilde{z}_2^0}$ < 125 GeV (20,40,60,80,100,120 GeV)

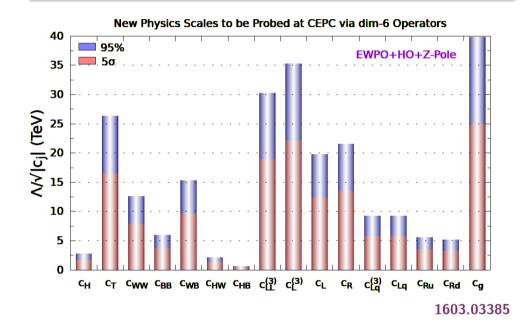

2. Fix $m_{h^0} = 30 \,\text{GeV}$ and make exclusion contours on the $m_{\tilde{\chi}_1^0}$ and $m_{\tilde{\chi}_2^0}$ plane, with the range:

0 GeV <
$$m_{\tilde{\chi}^0_1}$$
 < 60 GeV (5,15,25,35,45,55 GeV)
10 GeV < $m_{\tilde{\chi}^0_2}$ < 125 GeV (20,40,60,80,100,120 GeV)


Suggested by prof. Liu

Chicago U-IHEP dis


EW Physics


From 10 Billion Z bosons + the data at Higgs runs

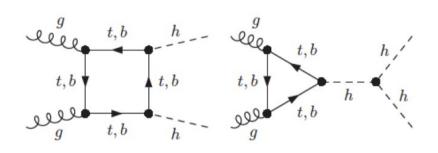
New Physics Reach via dim-6 operators

Sensitivities from Existing EWPO & Future HO

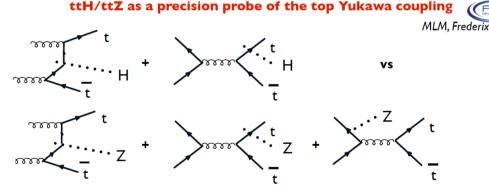
Sensitivity from EWPO+HO+Z-Pole

$$\mathcal{L} = \boldsymbol{\mathcal{L}}_{\text{SM}} + \sum_{ii} \frac{\textbf{y}_{ij}}{\boldsymbol{\Lambda} \sim 10^{14} \text{GeV}} (\overline{\boldsymbol{L}}_i \tilde{\textbf{H}}) (\tilde{\textbf{H}}^\dagger \boldsymbol{L}_j) + \sum_{i} \frac{\textbf{c}_i}{\boldsymbol{\Lambda}^2} \boldsymbol{\mathcal{O}}_i \,.$$

$$\begin{array}{c|ccccc} \mbox{Higgs} & \mbox{EW Gauge Bosons} & \mbox{Fermions} \\ \hline & \mathcal{O}_{\mathsf{H}} = \frac{1}{2}(\partial_{\mu}|\mathsf{H}|^{2})^{2} & \mathcal{O}_{\mathsf{WW}} = g^{2}|\mathsf{H}|^{2}W_{\mu\nu}^{a}W^{a\mu\nu} & \mathcal{O}_{\mathsf{L}}^{(3)} = (i\mathsf{H}^{\dagger}\sigma^{a}\overset{\leftrightarrow}{D}_{\mu}\mathsf{H})(\overline{\Psi}_{\mathsf{L}}\gamma^{\mu}\sigma^{a}\Psi_{\mathsf{L}}) \\ \mathcal{O}_{\mathsf{T}} = \frac{1}{2}(\mathsf{H}^{\dagger}\overset{\leftrightarrow}{D}_{\mu}\mathsf{H})^{2} & \mathcal{O}_{\mathsf{BB}} = g^{2}|\mathsf{H}|^{2}B_{\mu\nu}B^{\mu\nu} & \mathcal{O}_{\mathsf{LL}}^{(3)} = (\overline{\Psi}_{\mathsf{L}}\gamma_{\mu}\sigma^{a}\Psi_{\mathsf{L}})(\overline{\Psi}_{\mathsf{L}}\gamma^{\mu}\sigma^{a}\Psi_{\mathsf{L}}) \\ \mathcal{O}_{\mathsf{WB}} = gg'\mathsf{H}^{\dagger}\sigma^{a}\mathsf{H}W_{\mu\nu}^{a}B^{\mu\nu} & \mathcal{O}_{\mathsf{L}} = (i\mathsf{H}^{\dagger}\overset{\leftrightarrow}{D}_{\mu}\mathsf{H})(\overline{\Psi}_{\mathsf{L}}\gamma^{\mu}\Psi_{\mathsf{L}}) \\ \mathcal{O}_{\mathsf{HW}} = ig(D^{\mu}\mathsf{H})^{\dagger}\sigma^{a}(D^{\nu}\mathsf{H})W_{\mu\nu}^{a} & \mathcal{O}_{\mathsf{R}} = (i\mathsf{H}^{\dagger}\overset{\leftrightarrow}{D}_{\mu}\mathsf{H})(\overline{\Psi}_{\mathsf{R}}\gamma^{\mu}\Psi_{\mathsf{R}}) \\ \hline \mathcal{O}_{\mathsf{g}} = g_{\mathsf{s}}^{2}|\mathsf{H}|^{2}G_{\mu\nu}^{a}G^{a\mu\nu} & \mathcal{O}_{\mathsf{HB}} = ig'(D^{\mu}\mathsf{H})^{\dagger}(D^{\nu}\mathsf{H})B_{\mu\nu} \end{array}$$


e⁺e⁻ and pp complementary

o(10⁹⁻¹⁰) Higgs at SPPC

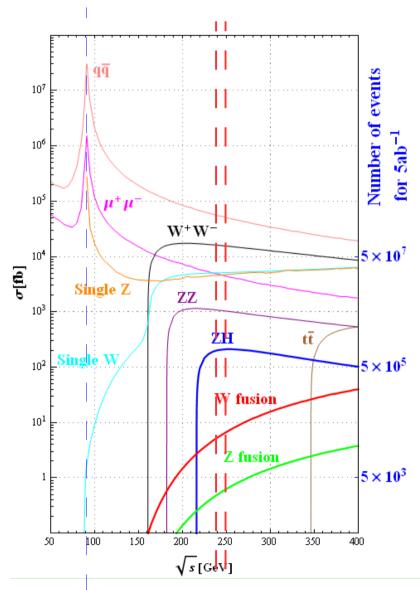

Event rates measured at pp collision $\sigma \cdot BR(X \to H \to Y) = \sigma_X \frac{\Gamma_Y}{\Gamma_{tot}}$

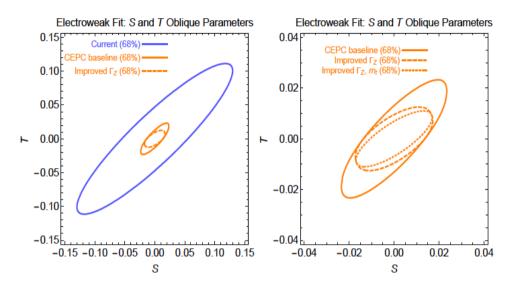
e+e- collider: provide anchor for absolute measurement (total width, etc)

pp collision has direct access to g(HHH) & g(Htt) and better access to Higgs rare decays

	HL-LHC	HE-LHC	VLHC
$\sqrt{s} \; (\text{TeV})$	14	33	100
$\int \mathcal{L}dt \ (\mathrm{fb}^{-1})$	3000	3000	3000
$\sigma \cdot \text{BR}(pp \to HH \to bb\gamma\gamma) \text{ (fb)}$	0.089	0.545	3.73
S/\sqrt{B}	2.3	6.2	15.0
$\lambda \; ({ m stat})$	50%	20%	8%

	δσ(ttH)	$\delta\sigma(ttZ)$	$\delta[\sigma(ttH)/\sigma(ttZ)]$
I4TeV	± 4.8%	± 5.3%	±0.75%
100 TeV	± 2.7%	± 2.3%	±0.48%

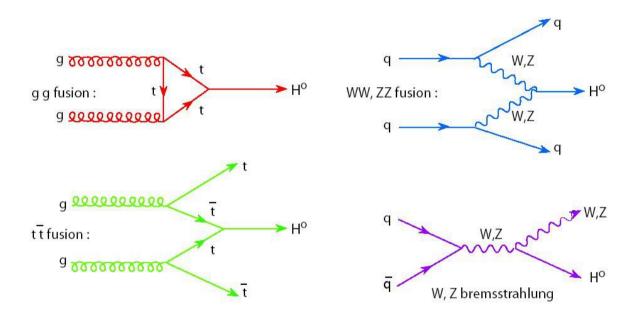

ArXiv: 1310.8361 [hep-ex]


Higgs measurements at electron/positron & proton colliders

	Productivity	Finding efficiency	Remarks
LHC	Run 1: 10 ⁶ Run 2/HL: 10 ⁷⁻⁸	~o(10 ⁻³)	Lots of Pile Up; Large theoretical/systematic uncertainties. Access to signal strength in major decay channels; Access to g(HHH)/g(Htt).
CEPC	10 ⁶	~o(1)	Absolute measurements in very clean environment; o(0.1%) accuracy on key observable (g(HZZ)); Excellent precision to total width, invisible/exotic decay ratios; Indirect constrain to g(HHH)/g(Htt);
SPPC	10 ⁹⁻¹⁰	?	Good access to Higgs rare decay/generation, g(HHH)/g(Htt),

High complementarity between electron-positron & pp colliders

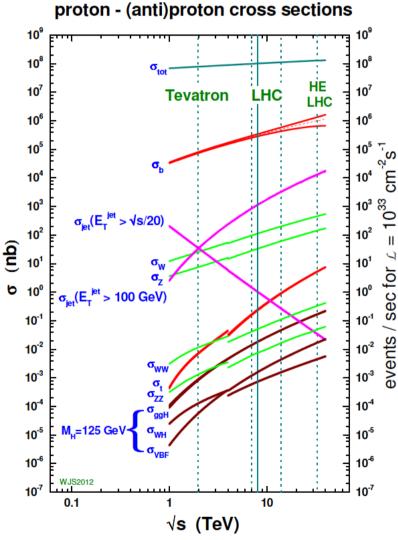
EW@CEPC



• EW precision measurements with significantly reduced uncertainties:

$$R_b, A_{FB}^b, \sin \theta_W^{eff}, m_Z, m_W, N_{\nu} \cdots$$

	Present data	CEPC fit
$lpha_s(M_Z^2)$	0.1185 ± 0.0006 [23]	$\pm 1.0 \times 10^{-4}$ [24]
$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	$(276.5 \pm 0.8) \times 10^{-4}$ [25]	$\pm 4.7 \times 10^{-5}$ [26]
m_Z [GeV]	91.1875 ± 0.0021 [27]	± 0.0005
m_t [GeV] (pole)	$173.34 \pm 0.76_{\mathrm{exp}}$ [28] $\pm 0.5_{\mathrm{th}}$ [26]	$\pm 0.2_{\rm exp} \pm 0.5_{\rm th}$ [29, 30]
m_h [GeV]	125.14 ± 0.24 [26]	$< \pm 0.1$ [26]
m_W [GeV]	$80.385 \pm 0.015_{\mathrm{exp}}$ [23] $\pm 0.004_{\mathrm{th}}$ [31]	$(\pm 3_{ m exp} \pm 1_{ m th}) imes 10^{-3}$ [31]
$\sin^2 heta_{ ext{eff}}^\ell$	$(23153 \pm 16) \times 10^{-5}$ [27]	$(\pm 2.3_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5}$ [32]
Γ_Z [GeV]	2.4952 ± 0.0023 [27]	$(\pm 5_{\mathrm{exp}} \pm 0.8_{\mathrm{th}}) \times 10^{-4}$ [33]
$R_b \equiv \Gamma_b/\Gamma_{ m had}$	0.21629 ± 0.00066 [27]	$\pm 1.7 \times 10^{-4}$
$R_\ell \equiv \Gamma_{ m had}/\Gamma_\ell$	20.767 ± 0.025 [27]	± 0.007


Higgs @ LHC

PP collider: High productivity but low finding efficiency ~already 10⁶ Higgs in Run 1 data...

Higgs signal: found via the decay final states.

$$\sigma(AA \rightarrow H \rightarrow BB) \sim g^2(HAA)g^2(HBB)/\Gamma_{total}$$

