NORTHWESTERN POLYTECHNICAL UNIVERSITY

Design and Charaterization of a Low-Noise 64channel Front-End ASIC with Leakage Compensation for CZT Detectors

高 武 教授/博士 西北工业大学微电子学研究所 2017年4月

Outline

Part 1: Introduction to Lab

Location, Group, Lab at a glance

Part 2: Design Techniques of Low-Noise Readout ASIC for CZT detectors

Design requirements, proposed schematic, Charge sensitive amplifier, Shaper, Noise Optimization;

Part 3: Experimental Results and Discussion

D&R history, SENSROC tested results, performance evaluation;

Part 4: Conclusion

Outline

Part 1: Introduction to Lab

Location, Group, Lab at a glance

Part 2: Design Techniques of Low-Noise Readout ASIC for CZT detectors

Design requirements, proposed schematic, Charge sensitive amplifier, Shaper, Noise Optimization;

Part 3: Experimental Results and Discussion

D&R history, SENSROC tested results, performance evaluation; Part 4: Conclusion

Introduction to my Lab

- Location
 - Institute of microelectronics, located in the southeast of Xi'an City, China.

- Staff (6)
 - Professors (3) + Asst. Professor(3)
- Students (40+)
 - PhD student (7) + 20 Master student (20) + undergraduate student/year (20)

Lab at a glance

Outline

Part 1: Introduction to Lab Location, Group, Lab at a glance

Part 2: Design Techniques of Low-Noise Readout ASIC for CZT detectors

Design requirements, proposed schematic, Charge sensitive amplifier, Shaper, Noise Optimization;

Part 3: Experimental Results and Discussion

D&R history, SENSROC tested results, performance evaluation; Part 4: Conclusion

Front-End ASIC Design Requirements

<u>CdZnTe Detector(碲锌镉探测器)</u>

- Bias voltage → several hundred Volts (~500V)
- Leakage current \rightarrow 5 nA @ 100V for single device; ~100 pA @ 100 V for pixilated devices.
- Detector capacitance \rightarrow 5pF for single devices; ~1 pF /pixel for pixel devices.
- The average signal charge $\rightarrow Q_s = \frac{E}{E_i}e$, where E_i= 4.65 eV

Front-End ASIC Design Requirements

Most analog front-ends follow a similar architecture

Front-End ASIC Design Requirements

Parameter	PMT	APD	SiPM	CZT,CdTe
Size	Bulky	Compat, thin	Compat, thin	Compat, thin
Gain	10 ⁶ ~10 ⁷	10 ² ~10 ³	10 ⁵ ~10 ⁶	10 ² ~10 ³
Noise	Low	moderate	Low	Low
Threshold Sensitivity	1 ph.e	10 ph.e	1 ph.e	
Time resolution	~0.5 ns	~ 1ns	~0.5 ns	~ 7 ns
Energy resolution	~10 %	~13 %	~10 %	~4 %(0.2 ~ 20 keV)
Bias voltage	800 ~1500 V	100~2000V	25 ~50 V	800~ 1500 V
Cost	\$	\$\$	\$\$\$(\$)	\$\$\$
MR Compatible	No	Yes	Yes	Yes

Overview of Detector Analog Front-Ends

State-of-the-art front-end ASICs for CZT detectors

No.	Year	Designer	Country	Chip name/Classification	Process	Performance
1	2009	2009 CEA Saclay DSM/ IRFU/ Service, France IDeF-X ECLAIRs CMC		CMOS 0.35um	32 channel, gain =96mV/fC, ENC = 33e- + 7e-/pF	
2	2004	NOVA R&D, Inc, University of California,	USA	RENA-1,2,3	CMOS 0.5um	ENC > 150e-
3	2005	Gamma Medica-Ideas ,	Norway	VA32TA6, VA64TA2	CMOS 0.35 µm N-well	ENC = 39.5e- + 10 e-/pF
4	2007	Brookhaven National Lab.,	USA	Readout ASIC	CMOS 0.25um	gain = 1V/fC, shaping time = 40ns ~320ns, ENC = 390 e- @1.8pF
5	2008	NASA,	USA	Low-noise readout array	IBM CMOS 0.18um	N/A
6	2009	Japan Aerospace Exploration Agency	Japan	Low-noise, 2D amplifier array	TSMC CMOS 0.35um	ENC = 88e- + 25e-/pF, Power = 150mW/pixel
7	2009	CEA Saclay,	France	IDeF-X ASIC family	AMS CMOS 0.35um	ENC = 33e- + 7e-/pF, shaping time = 6 us
8	2011	Japan Aerospace Exploration Agency	Japan	Low-Noise Front- End ASIC	TSMC CMOS 0.35um	ENC = 50±10 e- /pF
9	2014	IME, Northwestern Polytechnical Univ.	China	SENSROC/ Low-Noise ASIC	TSMC CMOS 0.35um	ENC = 66±14 e- /pF, 3mW/ch.

Proposed topology for CZT detectors

Multichannel Readout Scheme (RENA3, VA64TA2)

(NIM A , 2016)

Proposed Low-Noise Design

The ENC can be calculated as

$$ENC = e_{\sqrt{\frac{t_{p}}{8}}} \left(2qI_{det} + \frac{4kT}{R_{bias}} + \frac{4kT}{R_{f}} \right) + (C_{F} + C_{T})^{2} \left(\frac{4kT\gamma_{n}}{8t_{p}g_{m1}} + \frac{K_{f}}{2C_{ox}^{2}} \frac{1}{WL} \right)$$

The ENC can be divided into three parts according to the current noise source, the voltage noise source and the 1/f noise source.

(P. Grybos, 2010)

Proposed Low-Noise Design

The minimum ENC_v is obtained if

$$C_I = \frac{C_{det} + C_F}{3}$$

The minimum of *ENC*_f is obtained if

$$C_I = C_{det} + C_F$$

- ✓ The optimum C_I is closer to $(C_{det} + C_F)/3$ for short peaking time.
- ✓ When the peaking time is longer, (C_{det} +C_F) is more appropriate.

(P. Grybos, 2010)

Proposed Leakage Compensation

Leakage compensation range 0-10nA

– ENC < 100 e- pF for CZT</p>

(Cell 5 nA, pixilated 100 pA)

Proposed Radiation-Hardened-by-Design

Proposed Radiation-Hardened-by-Design

RadHard Digital IC Design Example: 4-bit Counter

Outline

Part 1: Introduction to Lab

Location, Group, Lab at a glance

Part 2: Design Techniques of Low-Noise Readout ASIC for CZT detectors

Design requirements, proposed schematic, Charge sensitive amplifier, Shaper, Noise Optimization;

Part 3: Experimental Results and Discussion

D&R history, SENSROC tested results, performance evaluation; Part 4: Conclusion

RadHard Mixed Signal IC Design Flow

- ✓ Four CMOS Technologes : TSMC 0.18um/0.35um、SMIC 0.18um/CSMC 0.35um
- ✓ 8 prototypes、2 engineering samples, 20+versions of readout IP
- SENSROC series ASICs

功能增强,集成度增加,性能优化

SENSROC2 : CSA-Shaper ASIC (2012)

Phase I:

- 1) Verify the process;
- 2) Verify the topology
- Verify the design and test flow

Microphoto of SENSROC2

Parameter	SENSROC2		
Process(µm)	CMOS 0.35um 3.3V		
Die size	2.0 mm × 2.0mm		
Power Supply (V)	±1.65 V		
Input range(e-)	2k~60k		
ENC (rms)	58.5 e-+8.4e-/pF (after 200krad(Si) TID)		
Radiation Hardness	TID: 200k rad (Si)		
Application	CZT/Si-PIN Detector		

SENSROC5: 16-channel Front-End ASIC(2013)

» Topology : Preamp.+ Shaper (slow, fast) + Analog Memory + Discriminator (be compatible with VA64TA2 , RENA3)

(W. Gao et al, IEEE TNS, 2014)

Tested results of SENSROC5

Microphoto of SENSROC5

Performance overview of SENSROC5

Parameters	SENSROC5		
Process(µm)	CMOS 0.35		
Power Supply (V)	0/3.3V		
Topology	CSA(PMOS) + CR-RC Shaper + PDH+TRIG		
Channel No.	16		
Input range(e-)	2k~247k		
ENC (rms)	50 e-+14e-/pF (tested)		
Radiation Hardness	N/A		
Applications	X-ray and γ -ray imaging		

(W. Gao et al, MEJ, 2015)

Performance Improvement

SENSROC8: 64-channel Front-End ASIC(2013)

 Topology : Preamp.+ Shaper (slow, fast) + Analog Memory + Discriminator (be compatible with VA64TA2 , RENA3)

Performance Overview of SENSROC8

Performance overview of SENSROC8

Parameters	SENSROC8	
Process(µm)	CMOS 0.35	
Power Supply (V)	0/3.3V	
Topology	CSA(PMOS) +CR-RC Shaper + (SK) ² filter + PDH+TRIG+DRV	
Channel No.	64	
Input range(e-)	2k~247k	
ENC (rms)	66 e-+14e-/pF (tested)	
Radiation Hardness	To be tested	
Applications	X-ray and γ-ray imaging	

(B. Gan, W. Gao et al, IEEE NSS/MIC, 2015)

Experimental Results and Discussions

Testing Setup

Experimental Results and Discussions

Output vs. Input charges

ENC vs. detector capacitance

(西核所测试报告, 2012)

CSA+ CR-RC Shaper

- Gain \rightarrow 115 mV/fC @ 1.5 µs, 154 mV/fC @ 2 µs, 210 mV/fC @ 3 µs
- ENC \rightarrow 56.8 e- + 8.4 e-/pF, when TID > 200 krad(Si)

CSA+CR-RC Shaper+SK²+PDH

- Shaping time is from 1 μ s~ 3 μ s; Gain \rightarrow 65mV ~ 200 mV/fC;
- Nonlinearity $\rightarrow < 1\%$.

- Consistency \rightarrow less than 2.86%;
- ENC \rightarrow 66e- + 14 e-/pF;

• From -40 °C to 120 °C , the deviation of output voltage is between $\pm 10\%$;

• From 0°C to 102°C , ENC < 100 e- @ 5 pF;

IMDETEK CZT Detector (8×8 pixels 240V), DC Coupling;
irradiation by AM-241, Energy spectrum resolution (FWHM) is 4.3% @59.5 keV.

Performance Evaluation

Comparison of SENSROC8 versus State-of-the-art Front-End ASICs

Parameters	IDeF-X (France)	RENA 2,3 (USA)	VA64TA2 (Norway)	SENSROC (China)
Process	CMOS 0.35µm	CMOS 0.35µm	CMOS 0.35µm	CMOS 0.35µm
Channel numbers	32	36	64	64
Die size (mm²)	2.8×6.4	6.90×6.38	7.15×6.02	8.7 ×2.8
Power Diss.	3mW / Ch.	6 mW / Ch.	N/A	9 mW/Ch.
Dynamic Range	0~8 fC	9 fC ~54 fC	+/-15 fC	0.32 fC ~28.8 fC (11.2keV ~ 1MeV)
Non-linearity	<3%	< 10 %	<7.5 %	< 1%
Gain	200 mV/fC	N/A	32 µA/fC	65 mV/fC
ENC	33e+7 e/pF	<150 e @ 2pF	39e+10 e/pF	66 e + 14 e/pF
Crosstalk	<3%	N/A	<2 %	< 1%
Applications	X-ray spectroscopy in space applications	Si strip and CdZnTe detectors, X-ray imaging	X-ray and Gamma ray imaging	CdZnTe detector for X- and gamma ray imaging

64-channel ASIC for CZT-based Biomedical Imaging

Optimization of SENSROC8 \rightarrow SENSROC9, 10 (layout \rightarrow input pads at two sides)

Microphoto of SENSROC10

SENSROC9 Test Board

Applications on the way...

12bit ADC for High-Energy Physics and Biomedical Imaging

RadHard Pipeline-SAR ADC (2012-2016)

Tested Results		
CMOS 0.18 µm		
12 bit		
10MS/s		
Analog 1.8 V/Digital 1.8 V		
10.8bits		
+1.06/ -0.57LSB		
+1.38/ -1.54 LSB		
10 mW		
0.56 pJ/conv		

Proposed Techniques

- ✓ A novellow-power MDAC;
- Improved capacitance array;
- Radiation-Hardened-by-Design Methodology;

(F.Xue, W. Gao et al, Jint, 2016)

Outline

Part 1: Introduction to Lab

Location, Group, Lab at a glance

Part 2: Design Techniques of Low-Noise Readout ASIC for CZT detectors

Design requirements, proposed schematic, Charge sensitive amplifier, Shaper, Noise Optimization;

Part 3: Experimental Results and Discussion

D&R history, SENSROC tested results, performance evaluation;

Part 4: Conclusion

Conclusion

Content in this presentation

- 1. Overview of analog front-ends for radiation detection.
 - ✓ Detector signal, topology, why ASIC, State-of-the-art front-end ASICs, applications ;
- 2. Design requirements and key techniques
 - CZT detectors, ASIC requirements, development history, low-noise design, RHBD
- 3. Experimental results and discussions
 - ✓ SENSROC2,5,8 topology, tested results, performance evaluation

Future work

- 1. Testing with a package (BGA, CQFP...) and applications;
- 2. Development of 128-channel (or more) front-end ASICs if needed.

Thanks for Your Attention. (Questions?)