
HTCondor™ Version 8.6.4 Manual

Center for High Throughput Computing, University of Wisconsin–Madison

June 21, 2017

CONTENTS

1 Overview 1

1.1 High-Throughput Computing (HTC) and its Requirements .. 1

1.2 HTCondor’s Power 2

1.3 Exceptional Features 3

1.4 Current Limitations 4

1.5 Availability 5

1.6 Contributions and Acknowledgments 5

1.7 Contact Information 7

1.8 Privacy Notice 8

2 Users’ Manual 9

2.1 Welcome to HTCondor 9

2.2 Introduction 9

2.3 Matchmaking with ClassAds 10

2.3.1 Inspecting Machine ClassAds with condor_status 10

2.4 Running a Job: the Steps To Take 12

2.4.1 Choosing an HTCondor Universe 13

2.5 Submitting a Job 16

2.5.1 Sample submit description files 17

i

CONTENTS ii

2.5.2 Using the Power and Flexibility of the Queue Command 20

2.5.3 Variables in the Submit Description File 22

2.5.4 Including Submit Commands Defined Elsewhere 23

2.5.5 Using Conditionals in the Submit Description File 24

2.5.6 Function Macros in the Submit Description File 26

2.5.7 About Requirements and Rank 29

2.5.8 Submitting Jobs Using a Shared File System 31

2.5.9 Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 32

2.5.10 Environment Variables 42

2.5.11 Heterogeneous Submit: Execution on Differing Architectures 43

2.5.12 Jobs That Require GPUs 48

2.5.13 Interactive Jobs 48

2.6 Managing a Job 50

2.6.1 Checking on the progress of jobs 50

2.6.2 Removing a job from the queue 52

2.6.3 Placing a job on hold 52

2.6.4 Changing the priority of jobs 53

2.6.5 Why is the job not running? 53

2.6.6 Job in the Hold State 56

2.6.7 In the Job Event Log File 56

2.6.8 Job Completion 59

2.7 Priorities and Preemption 60

2.7.1 Job Priority 60

2.7.2 User priority 61

2.7.3 Details About How HTCondor Jobs Vacate Machines 62

2.8 Java Applications 62

2.8.1 A Simple Example Java Application 63

2.8.2 Less Simple Java Specifications 64

HTCondor Version 8.6.4 Manual

CONTENTS iii

2.8.3 Chirp I/O 66

2.9 Parallel Applications (Including MPI Applications) . .. 69

2.9.1 How Parallel Jobs Run 69

2.9.2 Parallel Jobs and the Dedicated Scheduler 69

2.9.3 Submission Examples 70

2.9.4 MPI Applications Within HTCondor’s Vanilla Universe. 75

2.10 DAGMan Applications 76

2.10.1 DAGMan Terminology 76

2.10.2 The DAG Input File: Basic Commands 77

2.10.3 Command Order 84

2.10.4 Node Job Submit File Contents 84

2.10.5 DAG Submission 85

2.10.6 File Paths in DAGs 87

2.10.7 DAG Monitoring and DAG Removal 88

2.10.8 Suspending a Running DAG 89

2.10.9 Advanced Features of DAGMan 90

2.10.10 The Rescue DAG 123

2.10.11 DAG Recovery 126

2.10.12 Visualizing DAGs withdot . 127

2.10.13 Capturing the Status of Nodes in a File 128

2.10.14 A Machine-Readable Event History, the jobstate.log File . 130

2.10.15 Status Information for the DAG in a ClassAd 134

2.10.16 Utilizing the Power of DAGMan for Large Numbers of Jobs 134

2.10.17 Workflow Metrics 137

2.10.18 DAGMan and Accounting Groups 140

2.11 Virtual Machine Applications 140

2.11.1 The Submit Description File 140

2.11.2 Checkpoints 144

HTCondor Version 8.6.4 Manual

CONTENTS iv

2.11.3 Disk Images 144

2.11.4 Job Completion in the vm Universe 145

2.11.5 Failures to Launch 145

2.12 Docker Universe Applications 147

2.13 Time Scheduling for Job Execution 149

2.13.1 Job Deferral 149

2.13.2 CronTab Scheduling 151

2.14 Special Environment Considerations 155

2.14.1 AFS 155

2.14.2 NFS 155

2.14.3 HTCondor Daemons That Do Not Run as root 156

2.14.4 Job Leases 157

2.15 Potential Problems 157

2.15.1 Renaming of argv[0] 157

3 Administrators’ Manual 158

3.1 Introduction 158

3.1.1 The Different Roles a Machine Can Play 159

3.1.2 The HTCondor Daemons 159

3.2 Installation, Start Up, Shut Down, and Reconfiguration .. 162

3.2.1 Obtaining the HTCondor Software 162

3.2.2 Installation on Unix 162

3.2.3 Installation on Windows 173

3.2.4 Upgrading – Installing a New Version on an Existing Pool 182

3.2.5 Shutting Down and Restarting an HTCondor Pool 183

3.2.6 Reconfiguring an HTCondor Pool 184

3.3 Introduction to Configuration 185

3.3.1 HTCondor Configuration Files 185

HTCondor Version 8.6.4 Manual

CONTENTS v

3.3.2 Ordered Evaluation to Set the Configuration 186

3.3.3 Configuration File Macros 187

3.3.4 Comments and Line Continuations 191

3.3.5 Multi-Line Values 191

3.3.6 Executing a Program to Produce Configuration Macros 192

3.3.7 Including Configuration from Elsewhere 193

3.3.8 Reporting Errors and Warnings 194

3.3.9 Conditionals in Configuration 195

3.3.10 Function Macros in Configuration 197

3.3.11 Macros That Will Require a Restart When Changed 199

3.3.12 Pre-Defined Macros 199

3.4 Configuration Templates 202

3.4.1 Configuration Templates: Using Predefined Sets of Configuration 202

3.4.2 Available Configuration Templates 203

3.4.3 Configuration Template Transition Syntax 206

3.4.4 Configuration Template Examples 206

3.5 Configuration Macros 207

3.5.1 Introduction to Configuration Files 207

3.5.2 HTCondor-wide Configuration File Entries 224

3.5.3 Daemon Logging Configuration File Entries 236

3.5.4 DaemonCore Configuration File Entries 242

3.5.5 Network-Related Configuration File Entries 246

3.5.6 Shared File System Configuration File Macros 251

3.5.7 Checkpoint Server Configuration File Macros 255

3.5.8 condor_master Configuration File Macros 256

3.5.9 condor_startd Configuration File Macros 262

3.5.10 condor_schedd Configuration File Entries 279

3.5.11 condor_shadow Configuration File Entries 294

HTCondor Version 8.6.4 Manual

CONTENTS vi

3.5.12 condor_starter Configuration File Entries 296

3.5.13 condor_submit Configuration File Entries 301

3.5.14 condor_preen Configuration File Entries 304

3.5.15 condor_collector Configuration File Entries 304

3.5.16 condor_negotiator Configuration File Entries 309

3.5.17 condor_procd Configuration File Macros 316

3.5.18 condor_credd Configuration File Macros 317

3.5.19 condor_gridmanager Configuration File Entries 318

3.5.20 condor_job_router Configuration File Entries 321

3.5.21 condor_lease_manager Configuration File Entries . .. 324

3.5.22 Grid Monitor Configuration File Entries 325

3.5.23 Configuration File Entries Relating to Grid Usage 325

3.5.24 Configuration File Entries for DAGMan 326

3.5.25 Configuration File Entries Relating to Security 335

3.5.26 Configuration File Entries Relating to Virtual Machines . 341

3.5.27 Configuration File Entries Relating to High Availability . 343

3.5.28 MyProxy Configuration File Macros 347

3.5.29 Configuration File Macros Affecting APIs 347

3.5.30 Configuration File Entries Relating to condor_ssh_to_job . 348

3.5.31 condor_rooster Configuration File Macros 349

3.5.32 condor_shared_port Configuration File Macros 350

3.5.33 Configuration File Entries Relating to Hooks 352

3.5.34 Configuration File Entries Only for Windows Platforms . 357

3.5.35 condor_defrag Configuration File Macros 357

3.5.36 condor_gangliadConfiguration File Macros . 359

3.6 User Priorities and Negotiation 361

3.6.1 Real User Priority (RUP) 361

3.6.2 Effective User Priority (EUP) 361

HTCondor Version 8.6.4 Manual

CONTENTS vii

3.6.3 Priorities in Negotiation and Preemption 362

3.6.4 Priority Calculation 364

3.6.5 Negotiation 364

3.6.6 The Layperson’s Description of the Pie Spin and Pie Slice 365

3.6.7 Group Accounting 366

3.6.8 Accounting Groups with Hierarchical Group Quotas 367

3.7 Policy Configuration for Execute Hosts and for Submit Hosts . 370

3.7.1 condor_startdPolicy Configuration . 370

3.7.2 condor_scheddPolicy Configuration . 410

3.8 Security 412

3.8.1 HTCondor’s Security Model 413

3.8.2 Security Negotiation 417

3.8.3 Authentication 420

3.8.4 The Unified Map File for Authentication 430

3.8.5 Encryption 431

3.8.6 Integrity 432

3.8.7 Authorization 433

3.8.8 Security Sessions 438

3.8.9 Host-Based Security in HTCondor 439

3.8.10 Examples of Security Configuration 441

3.8.11 Changing the Security Configuration 443

3.8.12 Using HTCondor w/ Firewalls, Private Networks, and NATs 445

3.8.13 User Accounts in HTCondor on Unix Platforms 445

3.9 Networking (includes sections on Port Usage and CCB) 450

3.9.1 Port Usage in HTCondor 450

3.9.2 Reducing Port Usage with thecondor_shared_portDaemon 454

3.9.3 Configuring HTCondor for Machines With Multiple Network Interfaces 455

3.9.4 HTCondor Connection Brokering (CCB) 459

HTCondor Version 8.6.4 Manual

CONTENTS viii

3.9.5 Using TCP to Send Updates to thecondor_collector . 461

3.9.6 Running HTCondor on an IPv6 Network Stack 462

3.10 The Checkpoint Server 464

3.10.1 Preparing to Install a Checkpoint Server 464

3.10.2 Installing the Checkpoint Server Module 464

3.10.3 Configuring the Pool to Use Multiple Checkpoint Servers 466

3.10.4 Checkpoint Server Domains 467

3.11 DaemonCore 468

3.11.1 DaemonCore and Unix signals 469

3.11.2 DaemonCore and Command-line Arguments 470

3.12 Monitoring 471

3.12.1 Ganglia 471

3.12.2 Absent ClassAds 474

3.13 The High Availability of Daemons 475

3.13.1 High Availability of the Job Queue 475

3.13.2 High Availability of the Central Manager 477

3.14 Setting Up for Special Environments 483

3.14.1 Using HTCondor with AFS 483

3.14.2 Enabling the Transfer of Files Specified by a URL 484

3.14.3 Configuring HTCondor for Multiple Platforms 486

3.14.4 Full Installation of condor_compile 488

3.14.5 Thecondor_kbdd. 489

3.14.6 Configuring The HTCondorView Server 491

3.14.7 Running HTCondor Jobs within a Virtual Machine 493

3.14.8 HTCondor’s Dedicated Scheduling 494

3.14.9 Configuring HTCondor for Running Backfill Jobs 498

3.14.10 Per Job PID Namespaces 504

3.14.11 Group ID-Based Process Tracking 504

HTCondor Version 8.6.4 Manual

CONTENTS ix

3.14.12 Cgroup-Based Process Tracking 505

3.14.13 Limiting Resource Usage with a User Job Wrapper 506

3.14.14 Limiting Resource Usage Using Cgroups 508

3.14.15 Concurrency Limits 509

3.15 Java Support Installation 512

3.16 Setting Up the VM and Docker Universes 513

3.16.1 The VM Universe 513

3.16.2 The Docker Universe 516

3.17 Singularity Support 518

3.18 Power Management 519

3.18.1 Entering a Low Power State 519

3.18.2 Returning From a Low Power State 521

3.18.3 Keeping a ClassAd for a Hibernating Machine 521

3.18.4 Linux Platform Details 521

3.18.5 Windows Platform Details 522

4 Miscellaneous Concepts 523

4.1 HTCondor’s ClassAd Mechanism 523

4.1.1 ClassAds: Old and New 524

4.1.2 Old ClassAd Syntax 525

4.1.3 Old ClassAd Evaluation Semantics 535

4.1.4 Old ClassAds in the HTCondor System 538

4.1.5 Extending ClassAds with User-written Functions 541

4.2 HTCondor’s Checkpoint Mechanism 542

4.2.1 Standalone Checkpoint Mechanism 543

4.2.2 Checkpoint Safety 544

4.2.3 Checkpoint Warnings 545

4.2.4 Checkpoint Library Interface 545

HTCondor Version 8.6.4 Manual

CONTENTS x

4.3 Computing On Demand (COD) 546

4.3.1 Overview of How COD Works 547

4.3.2 Authorizing Users to Create and Manage COD Claims 547

4.3.3 Defining a COD Application 548

4.3.4 Managing COD Resource Claims 552

4.3.5 Limitations of COD Support in HTCondor 558

4.4 Hooks 558

4.4.1 Job Hooks That Fetch Work 558

4.4.2 Hooks for a Job Router 565

4.4.3 Daemon ClassAd Hooks 567

4.5 Logging in HTCondor 570

4.5.1 Job and Daemon Logs 570

4.5.2 DAGMan Logs 572

5 Grid Computing 574

5.1 Introduction 574

5.2 Connecting HTCondor Pools with Flocking 575

5.2.1 Flocking Configuration 575

5.2.2 Job Considerations 576

5.3 The Grid Universe 577

5.3.1 HTCondor-C, The condor Grid Type 577

5.3.2 HTCondor-G, the gt2, and gt5 Grid Types 580

5.3.3 The nordugrid Grid Type 588

5.3.4 The unicore Grid Type 589

5.3.5 The batch Grid Type (for PBS, LSF, SGE, and SLURM) 589

5.3.6 The EC2 Grid Type 591

5.3.7 The GCE Grid Type 595

5.3.8 The cream Grid Type 597

HTCondor Version 8.6.4 Manual

CONTENTS xi

5.3.9 The BOINC Grid Type 598

5.3.10 Matchmaking in the Grid Universe 599

5.4 The HTCondor Job Router 604

5.4.1 Routing Mechanism 604

5.4.2 Job Submission with Job Routing Capability 605

5.4.3 An Example Configuration 607

5.4.4 Routing Table Entry ClassAd Attributes 608

5.4.5 Example: constructing the routing table from ReSS 610

6 Application Programming Interfaces (APIs) 611

6.1 Web Service 611

6.1.1 Transactions 611

6.1.2 Job Submission 612

6.1.3 File Transfer 613

6.1.4 Implementation Details 614

6.1.5 Get These Items Correct 615

6.1.6 Methods for Transaction Management 615

6.1.7 Methods for Job Submission 616

6.1.8 Methods for File Transfer 617

6.1.9 Methods for Job Management 618

6.1.10 Methods for ClassAd Management 621

6.1.11 Methods for Version Information 622

6.1.12 Common Data Structures 622

6.2 The DRMAA API 623

6.2.1 Implementation Details 623

6.3 The HTCondor User and Job Log Reader API 624

6.3.1 Constants and Enumerated Types 625

6.3.2 Constructors and Destructors 625

HTCondor Version 8.6.4 Manual

CONTENTS xii

6.3.3 Initializers 627

6.3.4 Primary Methods 628

6.3.5 Accessors 629

6.3.6 Methods for saving and restoring persistent reader state . 629

6.3.7 Save state to persistent storage 629

6.3.8 Restore state from persistent storage 630

6.3.9 API Reference 630

6.3.10 Access to the persistent state data 631

6.3.11 Future persistence API 633

6.4 Chirp 634

6.5 The Command Line Interface 634

6.6 The HTCondor Perl Module 634

6.6.1 Subroutines 635

6.6.2 Examples 637

6.7 Python Bindings 642

6.7.1 htcondor Module . 642

6.7.2 Sample Code using thehtcondor Python Module . 653

6.7.3 ClassAd Module 654

6.7.4 Sample Code using theclassad Module . 658

7 Platform-Specific Information 661

7.1 Linux 661

7.1.1 Linux Address Space Randomization 662

7.2 Microsoft Windows 662

7.2.1 Limitations under Windows 663

7.2.2 Supported Features under Windows 663

7.2.3 Secure Password Storage 664

7.2.4 Executing Jobs as the Submitting User 664

HTCondor Version 8.6.4 Manual

CONTENTS xiii

7.2.5 The condor_credd Daemon 664

7.2.6 Executing Jobs with the User’s Profile Loaded 666

7.2.7 Using Windows Scripts as Job Executables 666

7.2.8 How HTCondor for Windows Starts and Stops a Job 668

7.2.9 Security Considerations in HTCondor for Windows 669

7.2.10 Network files and HTCondor 670

7.2.11 Interoperability between HTCondor for Unix and HTCondor for Windows 672

7.2.12 Some differences between HTCondor for Unix -vs- HTCondor for Windows 672

7.3 Macintosh OS X 673

8 Frequently Asked Questions (FAQ) 674

9 Contrib and Source Modules 675

9.1 Introduction 675

9.2 Using HTCondor with the Hadoop File System 675

9.2.1 condor_hdfs Configuration File Entries 676

9.3 Quill 677

9.3.1 Installation and Configuration 678

9.3.2 Four Usage Examples 684

9.3.3 Quill and Security 685

9.3.4 Quill and Its RDBMS Schema 685

9.4 The HTCondorView Client Contrib Module 704

9.4.1 Step-by-Step Installation of the HTCondorView Client . 705

9.5 Job Monitor/Log Viewer 707

9.5.1 Transition States 707

9.5.2 Events 707

9.5.3 Selecting Jobs 707

9.5.4 Zooming 708

9.5.5 Keyboard and Mouse Shortcuts 708

HTCondor Version 8.6.4 Manual

CONTENTS xiv

10 Version History and Release Notes 709

10.1 Introduction to HTCondor Versions 709

10.1.1 HTCondor Version Number Scheme 709

10.1.2 The Stable Release Series 710

10.1.3 The Development Release Series 710

10.2 Upgrading from the 8.4 series to the 8.6 series of HTCondor . 710

10.3 Stable Release Series 8.6 712

10.4 Development Release Series 8.5 718

10.5 Stable Release Series 8.4 732

11 Command Reference Manual (man pages) 748

bosco_cluster. 749

bosco_findplatform. 751

bosco_install . 752

bosco_ssh_start. 753

bosco_start .754

bosco_stop .755

bosco_uninstall. 756

condor_advertise. 757

condor_check_userlogs. 761

condor_checkpoint. 762

condor_chirp . 765

condor_cod .769

condor_compile. 772

condor_config_val . 774

condor_configure. 779

condor_continue . 784

condor_convert_history. 786

HTCondor Version 8.6.4 Manual

CONTENTS xv

condor_dagman. 788

condor_dagman_metrics_reporter. 794

condor_drain . 797

condor_fetchlog. 799

condor_findhost. 802

condor_gather_info. 804

condor_gpu_discovery. 807

condor_history . 810

condor_hold. .814

condor_install. 817

condor_job_router_info. 822

condor_master . 824

condor_off .825

condor_on. .. 828

condor_ping. .831

condor_pool_job_report . 834

condor_power. 835

condor_preen. 837

condor_prio .839

condor_procd . 841

condor_q .. 844

condor_qedit . 859

condor_qsub. .861

condor_reconfig. 866

condor_release . 869

condor_reschedule. 871

condor_restart. 873

condor_rm. .. 876

HTCondor Version 8.6.4 Manual

CONTENTS xvi

condor_rmdir . 879

condor_router_history . 881

condor_router_q . 883

condor_router_rm. 885

condor_run .887

condor_set_shutdown. 890

condor_ssh_to_job. 892

condor_sos .896

condor_stats. .898

condor_status. 901

condor_store_cred . 909

condor_submit . 911

condor_submit_dag. 953

condor_suspend. 960

condor_tail .962

condor_transfer_data. 964

condor_transform_ads. 966

condor_update_machine_ad. 969

condor_updates_stats. 971

condor_urlfetch . 974

condor_userlog . 976

condor_userprio. 979

condor_vacate. 984

condor_vacate_job. 986

condor_version . 989

condor_wait. .991

condor_who. .994

gidd_alloc 998

HTCondor Version 8.6.4 Manual

CONTENTS xvii

procd_ctl 999

12 Appendix A: ClassAd Attributes 1001

13 Appendix B: Codes and Other Needed Values 1057

LICENSING AND COPYRIGHT

HTCondor is released under the Apache License, Version 2.0.

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

Copyright © 1990-2015 Center for High Throughput Computing, Computer Sciences Department, University of Wisconsin-
Madison, WI.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the
License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS"
BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, eitherexpress or implied. See the License for the specific
language governing permissions and limitations under the License.

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of
this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under
common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect,
to cause the direction or management of such entity, whetherby contract or otherwise, or (ii) ownership of fifty percent
(50outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source code,
documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanicaltransformation or translation of a Source form, including but
not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated
by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source orObject form, that is based on (or derived from) the Work and
for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of

HTCondor Version 8.6.4 Manual

http://www.apache.org/licenses/
http://www.apache.org/licenses/LICENSE-2.0

CONTENTS xviii

authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely
link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the
purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor
or its representatives, including but not limited to communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving
the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright
owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to Youa
perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform, sublicense,and distribute the Work and such Derivative Works in Source or
Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a
perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to
make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those
patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigationagainst
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporatedwithin
the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License
for that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copiesof the Work or Derivative Works thereof in any medium, with or
without modifications, and in Source or Object form, provided that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative
Works; and

(d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one ofthe following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works;
or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The
contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own
attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the
Work, provided that such additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license terms
and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted forinclusion
in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or
conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

HTCondor Version 8.6.4 Manual

CONTENTS xix

6. Trademarks. This License does not grant permission to usethe trade names, trademarks, service marks, or product names of
the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the
content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and
each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible
for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise
of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor
be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character
arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if
such Contributor has been advised of the possibility of suchdamages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose
to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights con-
sistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole
responsibility, not on behalf of any other Contributor, andonly if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such
warranty or additional liability.

END OF TERMS AND CONDITIONS

HTCondor Version 8.6.4 Manual

CHAPTER

ONE

Overview

1.1 High-Throughput Computing (HTC) and its Requirements

For many research and engineering projects, the quality of the research or the product is heavily dependent upon
the quantity of computing cycles available. It is not uncommon to find problems that require weeks or months of
computation to solve. Scientists and engineers engaged in this sort of work need a computing environment that
delivers large amounts of computational power over a long period of time. Such an environment is called a High-
Throughput Computing (HTC) environment. In contrast, HighPerformance Computing (HPC) environments deliver
a tremendous amount of compute power over a short period of time. HPC environments are often measured in terms of
FLoating point Operations Per Second (FLOPS). A growing community is not concerned about operations per second,
but operations per month or per year. Their problems are of a much larger scale. They are more interested in how
many jobs they can complete over a long period of time insteadof how fast an individual job can complete.

The key to HTC is to efficiently harness the use of all available resources. Years ago, the engineering and scientific
community relied on a large, centralized mainframe or a supercomputer to do computational work. A large number of
individuals and groups needed to pool their financial resources to afford such a machine. Users had to wait for their
turn on the mainframe, and they had a limited amount of time allocated. While this environment was inconvenient for
users, the utilization of the mainframe was high; it was busynearly all the time.

As computers became smaller, faster, and cheaper, users moved away from centralized mainframes and purchased
personal desktop workstations and PCs. An individual or small group could afford a computing resource that was
available whenever they wanted it. The personal computer isslower than the large centralized machine, but it provides
exclusive access. Now, instead of one giant computer for a large institution, there may be hundreds or thousands of
personal computers. This is an environment of distributed ownership, where individuals throughout an organization
own their own resources. The total computational power of the institution as a whole may rise dramatically as the result
of such a change, but because of distributed ownership, individuals have not been able to capitalize on the institutional
growth of computing power. And, while distributed ownership is more convenient for the users, the utilization of the

1

1.2. HTCondor’s Power 2

computing power is lower. Many personal desktop machines sit idle for very long periods of time while their owners
are busy doing other things (such as being away at lunch, in meetings, or at home sleeping).

1.2 HTCondor’s Power

HTCondor is a software system that creates a High-Throughput Computing (HTC) environment. It effectively utilizes
the computing power of workstations that communicate over anetwork. HTCondor can manage a dedicated cluster
of workstations. Its power comes from the ability to effectively harness non-dedicated, preexisting resources under
distributed ownership.

A user submits the job to HTCondor. HTCondor finds an available machine on the network and begins running
the job on that machine. HTCondor has the capability to detect that a machine running a HTCondor job is no longer
available (perhaps because the owner of the machine came back from lunch and started typing on the keyboard). It
can checkpoint the job and move (migrate) the jobs to a different machine which would otherwise be idle. HTCondor
continues the job on the new machine from precisely where it left off.

In those cases where HTCondor can checkpoint and migrate a job, HTCondor makes it easy to maximize the
number of machines which can run a job. In this case, there is no requirement for machines to share file systems (for
example, with NFS or AFS), so that machines across an entire enterprise can run a job, including machines in different
administrative domains.

HTCondor can be a real time saver when a job must be run many (hundreds of) different times, perhaps with
hundreds of different data sets. With one command, all of thehundreds of jobs are submitted to HTCondor. Depending
upon the number of machines in the HTCondor pool, dozens or even hundreds of otherwise idle machines can be
running the job at any given moment.

HTCondor does not require an account (login) on machines where it runs a job. HTCondor can do this because of
its remote system calltechnology, which traps library calls for such operations as reading or writing from disk files.
The calls are transmitted over the network to be performed onthe machine where the job was submitted.

HTCondor provides powerful resource management by match-making resource owners with resource consumers.
This is the cornerstone of a successful HTC environment. Other compute cluster resource management systems attach
properties to the job queues themselves, resulting in user confusion over which queue to use as well as administrative
hassle in constantly adding and editing queue properties tosatisfy user demands. HTCondor implementsClassAds, a
clean design that simplifies the user’s submission of jobs.

ClassAds work in a fashion similar to the newspaper classified advertising want-ads. All machines in the HTCon-
dor pool advertise their resource properties, both static and dynamic, such as available RAM memory, CPU type, CPU
speed, virtual memory size, physical location, and currentload average, in aresource offerad. A user specifies a
resource requestad when submitting a job. The request defines both the required and a desired set of properties of the
resource to run the job. HTCondor acts as a broker by matchingand ranking resource offer ads with resource request
ads, making certain that all requirements in both ads are satisfied. During this match-making process, HTCondor also
considers several layers of priority values: the priority the user assigned to the resource request ad, the priority of the
user which submitted the ad, and desire of machines in the pool to accept certain types of ads over others.

HTCondor Version 8.6.4 Manual

1.3. Exceptional Features 3

1.3 Exceptional Features

Checkpoint and Migration. Where programs can be linked with HTCondor libraries, usersof HTCondor may be
assured that their jobs will eventually complete, even in the ever changing environment that HTCondor utilizes.
As a machine running a job submitted to HTCondor becomes unavailable, the job can be check pointed. The
job may continue after migrating to another machine. HTCondor’s checkpoint feature periodically checkpoints
a job even in lieu of migration in order to safeguard the accumulated computation time on a job from being lost
in the event of a system failure, such as the machine being shutdown or a crash.

Remote System Calls.Despite running jobs on remote machines, the HTCondor standard universe execution mode
preserves the local execution environment via remote system calls. Users do not have to worry about making
data files available to remote workstations or even obtaining a login account on remote workstations before
HTCondor executes their programs there. The program behaves under HTCondor as if it were running as the
user that submitted the job on the workstation where it was originally submitted, no matter on which machine it
really ends up executing on.

No Changes Necessary to User’s Source Code.No special programming is required to use HTCondor. HTCondor
is able to run non-interactive programs. The checkpoint andmigration of programs by HTCondor is transparent
and automatic, as is the use of remote system calls. If these facilities are desired, the user only re-links the
program. The code is neither recompiled nor changed.

Pools of Machines can be Hooked Together.Flocking is a feature of HTCondor that allows jobs submittedwithin a
first pool of HTCondor machines to execute on a second pool. The mechanism is flexible, following requests
from the job submission, while allowing the second pool, or asubset of machines within the second pool to set
policies over the conditions under which jobs are executed.

Jobs can be Ordered.The ordering of job execution required by dependencies among jobs in a set is easily handled.
The set of jobs is specified using a directed acyclic graph, where each job is a node in the graph. Jobs are
submitted to HTCondor following the dependencies given by the graph.

HTCondor Enables Grid Computing. As grid computing becomes a reality, HTCondor is already there. The tech-
nique of glidein allows jobs submitted to HTCondor to be executed on grid machines in various locations world-
wide. As the details of grid computing evolve, so does HTCondor’s ability, starting with Globus-controlled
resources.

Sensitive to the Desires of Machine Owners.The owner of a machine has complete priority over the use of the
machine. An owner is generally happy to let others compute onthe machine while it is idle, but wants it back
promptly upon returning. The owner does not want to take special action to regain control. HTCondor handles
this automatically.

ClassAds. The ClassAd mechanism in HTCondor provides an extremely flexible, expressive framework for match-
making resource requests with resource offers. Users can easily request both job requirements and job desires.
For example, a user can require that a job run on a machine with64 Mbytes of RAM, but state a preference
for 128 Mbytes, if available. A workstation owner can state apreference that the workstation runs jobs from a
specified set of users. The owner can also require that there be no interactive workstation activity detectable at
certain hours before HTCondor could start a job. Job requirements/preferences and resource availability con-
straints can be described in terms of powerful expressions,resulting in HTCondor’s adaptation to nearly any
desired policy.

HTCondor Version 8.6.4 Manual

1.4. Current Limitations 4

1.4 Current Limitations

Limitations on Jobs which can Checkpointed Although HTCondor can schedule and run any type of process, HT-
Condor does have some limitations on jobs that it can transparently checkpoint and migrate:

1. Multi-process jobs are not allowed. This includes systemcalls such asfork() , exec() , and
system() .

2. Interprocess communication is not allowed. This includes pipes, semaphores, and shared memory.

3. Network communication must be brief. A jobmaymake network connections using system calls such as
socket() , but a network connection left open for long periods will delay checkpointing and migration.

4. Sending or receiving the SIGUSR2 or SIGTSTP signals is notallowed. HTCondor reserves these signals
for its own use. Sending or receiving all other signalsis allowed.

5. Alarms, timers, and sleeping are not allowed. This includes system calls such asalarm() ,
getitimer() , andsleep() .

6. Multiple kernel-level threads are not allowed. However,multiple user-level threadsareallowed.

7. Memory mapped files are not allowed. This includes system calls such asmmap() andmunmap() .

8. File locks are allowed, but not retained between checkpoints.

9. All files must be opened read-only or write-only. A file opened for both reading and writing will cause
trouble if a job must be rolled back to an old checkpoint image. For compatibility reasons, a file opened
for both reading and writing will result in a warning but not an error.

10. A fair amount of disk space must be available on the submitting machine for storing a job’s checkpoint
images. A checkpoint image is approximately equal to the virtual memory consumed by a job while it
runs. If disk space is short, a specialcheckpoint servercan be designated for storing all the checkpoint
images for a pool.

11. On Linux, the job must be statically linked.condor_compiledoes this by default.

12. Reading to or writing from files larger than 2 GBytes is only supported when the submit sidecon-
dor_shadowand the standard universe user job application itself are both 64-bit executables.

Note: these limitationsonly apply to jobs which HTCondor has been asked to transparentlycheckpoint. If job
checkpointing is not desired, the limitations above do not apply.

Security Implications. HTCondor does a significant amount of work to prevent security hazards, but loopholes are
known to exist. HTCondor can be instructed to run user programs only as the UNIX user nobody, a user
login which traditionally has very restricted access. But even with access solely as user nobody, a sufficiently
malicious individual could do such things as fill up/tmp (which is world writable) and/or gain read access to
world readable files. Furthermore, where the security of machines in the pool is a high concern, only machines
where the UNIX user root on that machine can be trusted shouldbe admitted into the pool. HTCondor provides
the administrator with extensive security mechanisms to enforce desired policies.

Jobs Need to be Re-linked to get Checkpointing and Remote System Calls Although typically no source code
changes are required, HTCondor requires that the jobs be re-linked with the HTCondor libraries to take advan-
tage of checkpointing and remote system calls. This often precludes commercial software binaries from taking
advantage of these services because commercial packages rarely make their object code available. HTCondor’s
other services are still available for these commercial packages.

HTCondor Version 8.6.4 Manual

1.5. Availability 5

1.5 Availability

HTCondor is currently available as a free download from the Internet via the World Wide Web at URL
http://htcondor.org/downloads/. Binary distributions of this HTCondor Version 8.6.4 release are available for the
platforms detailed in Table 1.1. A platform is an architecture/operating system combination.

In the table,clippedmeans that HTCondor does not support checkpointing or remote system calls on the given
platform. This means thatstandarduniverse jobs are not supported. Some clipped platforms will have further lim-
itations with respect to supported universes. See section 2.4.1 on page 13 for more details on job universes within
HTCondor and their abilities and limitations.

The HTCondor source code is available for public download alongside the binary distributions.

Architecture Operating System

Intel x86 - RedHat Enterprise Linux 6
- All versions Windows Vista or greater (clipped)

x86_64 - Red Hat Enterprise Linux 6
- Red Hat Enterprise Linux 7
- Debian Linux 7.0 (wheezy)
- Debian Linux 8.0 (jessie)
- Macintosh OS X 10.7 through 10.10 (clipped)
- Ubuntu 12.04; Precise Pangolin (clipped)
- Ubuntu 14.04; Trusty Tahr

Table 1.1: Supported platforms in HTCondor Version 8.6.4

NOTE: Other Linux distributions likely work, but are not tested or supported.

For more platform-specific information about HTCondor’s support for various operating systems, see Chapter 7
on page 661.

Jobs submitted to the standard universe utilizecondor_compileto relink programs with libraries provided by
HTCondor. Table 1.2 lists supported compilers by platform for this Version 8.6.4 release. Other compilers may work,
but are not supported.

1.6 Contributions and Acknowledgments

The quality of the HTCondor project is enhanced by the contributions of external organizations. We gratefully ac-
knowledge the following contributions.

HTCondor Version 8.6.4 Manual

http://htcondor.org/downloads/

1.6. Contributions and Acknowledgments 6

Platform Compiler Notes
Red Hat Enterprise Linux 6 on x86_64 gcc, g++, and g77as shipped
Red Hat Enterprise Linux 7 on x86_64 gcc, g++, and g77as shipped
Debian Linux 7.0 (wheezy) on x86_64 gcc, g++, gfortranas shipped
Debian Linux 8.0 (jessie) on x86_64 gcc, g++, gfortranas shipped
Ubuntu 14.04 on x86_64 gcc, g++, gfortranas shipped

Table 1.2: Supported compilers in HTCondor Version 8.6.4

• The Globus Alliance (http://www.globus.org), for code and assistance in developing HTCondor-G and the Grid
Security Infrastructure (GSI) for authentication and authorization.

• The GOZAL Project from the Computer Science Department of the Technion Israel Institute of Technology
(http://www.technion.ac.il/), for their enhancements for HTCondor’s High Availability. Thecondor_haddae-
mon allows one of multiple machines to function as the central manager for a HTCondor pool. Therefore, if an
acting central manager fails, another can take its place.

• Micron Corporation (http://www.micron.com/) for the MSI-based installer for HTCondor on Windows.

• Paradyn Project (http://www.paradyn.org/) and the Universitat Autònoma de Barcelona
(http://www.caos.uab.es/) for work on the Tool Daemon Protocol (TDP).

Our Web Services API acknowledges the use of gSOAP with theirrequested wording:

• Part of the software embedded in this product is gSOAP software. Portions created by gSOAP are Copyright
(C) 2001-2004 Robert A. van Engelen, Genivia inc. All RightsReserved.

THE SOFTWARE IN THIS PRODUCT WAS IN PART PROVIDED BY GENIVIA INC AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AREDISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

• Some distributions of HTCondor include the Google Coredumper library
(http://goog-coredumper.sourceforge.net/). The GoogleCoredumper library is released under these terms:

Copyright (c) 2005, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

– Redistributions of source code must retain the above copyright notice, this list of conditions and the fol-
lowing disclaimer.

HTCondor Version 8.6.4 Manual

http://www.globus.org
http://www.technion.ac.il/
http://www.micron.com/
http://www.paradyn.org/
http://www.caos.uab.es/
http://goog-coredumper.sourceforge.net/

1.7. Contact Information 7

– Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

– Neither the name of Google Inc. nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULARPURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USEOF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The HTCondor project wishes to acknowledge the following:

• This material is based upon work supported by the National Science Foundation under Grant Numbers MCS-
8105904, OCI-0437810, and OCI-0850745. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do notnecessarily reflect the views of the National Science
Foundation.

1.7 Contact Information

The latest software releases, publications/papers regarding HTCondor and other High-ThroughputComputing research
can be found at the official web site for HTCondor at http://htcondor.org/.

In addition, there is an e-mail list athtcondor-world@cs.wisc.edu. The HTCondor Team uses this e-mail list to
announce new releases of HTCondor and other major HTCondor-related news items. To subscribe or unsubscribe from
the the list, follow the instructions at http://htcondor.org/mail-lists/. Because many of us receive too much e-mail as it
is, you will be happy to know that the HTCondor World e-mail list group is moderated, and only major announcements
of wide interest are distributed.

Our users support each other by belonging to an unmoderated mailing list (htcondor-users@cs.wisc.edu) tar-
geted at solving problems with HTCondor. HTCondor team members attempt to monitor traffic to htcondor-users,
responding as they can. Follow the instructions at http://htcondor.org/mail-lists/.

Finally, you can reach the HTCondor Team directly. The HTCondor Team is comprised of the developers
and administrators of HTCondor at the University of Wisconsin-Madison. HTCondor questions, comments, pleas
for help, and requests for commercial contract consultation or support are all welcome; send Internet e-mail to
htcondor-admin@cs.wisc.edu. Please include your name, organization, and telephone number in your message. If
you are having trouble with HTCondor, please help us troubleshoot by including as much pertinent information as you
can, including snippets of HTCondor log files.

HTCondor Version 8.6.4 Manual

http://htcondor.org/
http://htcondor.org/mail-lists/
http://htcondor.org/mail-lists/
mailto:htcondor-admin@cs.wisc.edu

1.8. Privacy Notice 8

1.8 Privacy Notice

The HTCondor software periodically sends short messages tothe HTCondor Project developers at the University of
Wisconsin, reporting totals of machines and jobs in each running HTCondor system. An example of such a message
is given below.

The HTCondor Project uses these collected reports to publish summary figures and tables, such as the total of
HTCondor systems worldwide, or the geographic distribution of HTCondor systems. This information helps the
HTCondor Project to understand the scale and composition ofHTCondor in the real world and improve the software
accordingly.

The HTCondor Project will not use these reports to publicly identify any HTCondor system or user without per-
mission. The HTCondor software does not collect or report any personal information about individual users.

We hope that you will contribute to the development of HTCondor through this reporting feature. How-
ever, you are free to disable it at any time by changing the configuration variablesCONDOR_DEVELOPERSand
CONDOR_DEVELOPERS_COLLECTOR, both described in section 3.5.15 of this manual.

Example of data reported:

This is an automated email from the HTCondor system
on machine "your.condor.pool.com". Do not reply.

This Collector has the following IDs:
HTCondor: 6.6.0 Nov 12 2003
HTCondor: INTEL-LINUX-GLIBC22

Machines Owner Claimed Unclaimed Matched Preempting

INTEL/LINUX 810 52 716 37 0 5
INTEL/WINDOWS 120 5 115 0 0 0

SUN4u/SOLARIS28 114 12 92 9 0 1
SUN4x/SOLARIS28 5 1 0 4 0 0

Total 1049 70 923 50 0 6

RunningJobs IdleJobs
920 3868

HTCondor Version 8.6.4 Manual

CHAPTER

TWO

Users’ Manual

2.1 Welcome to HTCondor

HTCondor is developed by the Center for High Throughput Computing at the University of Wisconsin-Madison (UW-
Madison), and was first installed as a production system in the UW-Madison Computer Sciences department more than
15 years ago. HTCondor pools have since served as a major source of computing cycles to UW faculty and students.
For many, it has revolutionized the role computing plays in their research. An increase of one, and sometimes even
two, orders of magnitude in the computing throughput of a research organization can have a profound impact on
research size, complexity, and scope. Over the years, the project, and now the Center for High Throughput Computing
have established collaborations with scientists from around the world, and have provided them with access to many
cycles. One scientist consumed 100 CPU years!

2.2 Introduction

In a nutshell, HTCondor is a specialized batch system for managing compute-intensive jobs. Like most batch systems,
HTCondor provides a queuing mechanism, scheduling policy,priority scheme, and resource classifications. Users
submit their compute jobs to HTCondor, HTCondor puts the jobs in a queue, runs them, and then informs the user as
to the result.

Batch systems normally operate only with dedicated machines. Often termed compute servers, these dedicated
machines are typically owned by one organization and dedicated to the sole purpose of running compute jobs. HT-
Condor can schedule jobs on dedicated machines. But unlike traditional batch systems, HTCondor is also designed to
effectively utilize non-dedicated machines to run jobs. Bybeing told to only run compute jobs on machines which are
currently not being used (no keyboard activity, low load average, etc.), HTCondor can effectively harness otherwise
idle machines throughout a pool of machines. This is important because often times the amount of compute power

9

2.3. Matchmaking with ClassAds 10

represented by the aggregate total of all the non-dedicateddesktop workstations sitting on people’s desks throughout
the organization is far greater than the compute power of a dedicated central resource.

HTCondor has several unique capabilities at its disposal which are geared toward effectively utilizing non-
dedicated resources that are not owned or managed by a centralized resource. These include transparent process
checkpoint and migration, remote system calls, and ClassAds. Read section 1.2 for a general discussion of these
features before reading any further.

2.3 Matchmaking with ClassAds

Before you learn about how to submit a job, it is important to understand how HTCondor allocates resources. Under-
standing the unique framework by which HTCondor matches submitted jobs with machines is the key to getting the
most from HTCondor’s scheduling algorithm.

HTCondor simplifies job submission by acting as a matchmakerof ClassAds. HTCondor’s ClassAds are analogous
to the classified advertising section of the newspaper. Sellers advertise specifics about what they have to sell, hoping
to attract a buyer. Buyers may advertise specifics about whatthey wish to purchase. Both buyers and sellers list
constraints that need to be satisfied. For instance, a buyer has a maximum spending limit, and a seller requires a
minimum purchase price. Furthermore, both want to rank requests to their own advantage. Certainly a seller would
rank one offer of $50 dollars higher than a different offer of$25. In HTCondor, users submitting jobs can be thought
of as buyers of compute resources and machine owners are sellers.

All machines in a HTCondor pool advertise their attributes,such as available memory, CPU type and speed,
virtual memory size, current load average, along with otherstatic and dynamic properties. This machine ClassAd also
advertises under what conditions it is willing to run a HTCondor job and what type of job it would prefer. These policy
attributes can reflect the individual terms and preferencesby which all the different owners have graciously allowed
their machine to be part of the HTCondor pool. You may advertise that your machine is only willing to run jobs at
night and when there is no keyboard activity on your machine.In addition, you may advertise a preference (rank) for
running jobs submitted by you or one of your co-workers.

Likewise, when submitting a job, you specify a ClassAd with your requirements and preferences. The ClassAd
includes the type of machine you wish to use. For instance, perhaps you are looking for the fastest floating point
performance available. You want HTCondor to rank availablemachines based upon floating point performance. Or,
perhaps you care only that the machine has a minimum of 128 MiBof RAM. Or, perhaps you will take any machine
you can get! These job attributes and requirements are bundled up into a job ClassAd.

HTCondor plays the role of a matchmaker by continuously reading all the job ClassAds and all the machine
ClassAds, matching and ranking job ads with machine ads. HTCondor makes certain that all requirements in both
ClassAds are satisfied.

2.3.1 Inspecting Machine ClassAds with condor_status

Once HTCondor is installed, you will get a feel for what a machine ClassAd does by trying thecondor_statuscom-
mand. Try thecondor_statuscommand to get a summary of information from ClassAds about the resources available
in your pool. Typecondor_statusand hit enter to see a summary similar to the following:

HTCondor Version 8.6.4 Manual

2.3.1. Inspecting Machine ClassAds with condor_status 11

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

amul.cs.wisc.edu LINUX INTEL Claimed Busy 0.990 1896 0+00: 07:04
slot1@amundsen.cs. LINUX INTEL Owner Idle 0.000 1456 0+00: 21:58
slot2@amundsen.cs. LINUX INTEL Owner Idle 0.110 1456 0+00: 21:59
angus.cs.wisc.edu LINUX INTEL Claimed Busy 0.940 873 0+00: 02:54
anhai.cs.wisc.edu LINUX INTEL Claimed Busy 1.400 1896 0+00 :03:03
apollo.cs.wisc.edu LINUX INTEL Unclaimed Idle 1.000 3032 0 +00:00:04
arragon.cs.wisc.ed LINUX INTEL Claimed Busy 0.980 873 0+00 :04:29
bamba.cs.wisc.edu LINUX INTEL Owner Idle 0.040 3032 15+20: 10:19

. . .

Thecondor_statuscommand has options that summarize machine ads in a variety of ways. For example,

condor_status -availableshows only machines which are willing to run jobs now.

condor_status -runshows only machines which are currently running jobs.

condor_status -longlists the machine ClassAds for all machines in the pool.

Refer to thecondor_statuscommand reference page located on page 901 for a complete description of thecon-
dor_statuscommand.

The following shows a portion of a machine ClassAd for a single machine: turunmaa.cs.wisc.edu. Some of the
listed attributes are used by HTCondor for scheduling. Other attributes are for information purposes. An important
point is thatanyof the attributes in a machine ClassAd can be utilized at job submission time as part of a request or
preference on what machine to use. Additional attributes can be easily added. For example, your site administrator
can add a physical location attribute to your machine ClassAds.

Machine = "turunmaa.cs.wisc.edu"
FileSystemDomain = "cs.wisc.edu"
Name = "turunmaa.cs.wisc.edu"
CondorPlatform = "$CondorPlatform: x86_rhap_5 $"
Cpus = 1
IsValidCheckpointPlatform = (((TARGET.JobUniverse == 1) == false) ||

((MY.CheckpointPlatform =!= undefined) &&
((TARGET.LastCheckpointPlatform =?= MY.CheckpointPlat form) ||
(TARGET.NumCkpts == 0))))

CondorVersion = "$CondorVersion: 7.6.3 Aug 18 2011 BuildID : 361356 $"
Requirements = (START) && (IsValidCheckpointPlatform)
EnteredCurrentActivity = 1316094896
MyAddress = "<128.105.175.125:58026>"
EnteredCurrentState = 1316094896
Memory = 1897
CkptServer = "pitcher.cs.wisc.edu"
OpSys = "LINUX"
State = "Owner"
START = true
Arch = "INTEL"
Mips = 2634
Activity = "Idle"
StartdIpAddr = "<128.105.175.125:58026>"

HTCondor Version 8.6.4 Manual

2.4. Running a Job: the Steps To Take 12

TargetType = "Job"
LoadAvg = 0.210000
CheckpointPlatform = "LINUX INTEL 2.6.x normal 0x40000000 "
Disk = 92309744
VirtualMemory = 2069476
TotalSlots = 1
UidDomain = "cs.wisc.edu"
MyType = "Machine"

2.4 Running a Job: the Steps To Take

The road to using HTCondor effectively is a short one. The basics are quickly and easily learned.

Here are all the steps needed to run a job using HTCondor.

Code Preparation. A job run under HTCondor must be able to run as a background batch job. HTCondor runs
the program unattended and in the background. A program thatruns in the background will not be able to do
interactive input and output. HTCondor can redirect console output (stdout andstderr) and keyboard input
(stdin) to and from files for the program. Create any needed files thatcontain the proper keystrokes needed
for program input. Make certain the program will run correctly with the files.

The HTCondor Universe. HTCondor has several runtime environments (called auniverse) from which to choose.
Of the universes, two are likely choices when learning to submit a job to HTCondor: the standard universe
and the vanilla universe. The standard universe allows a jobrunning under HTCondor to handle system calls by
returning them to the machine where the job was submitted. The standard universe also provides the mechanisms
necessary to take a checkpoint and migrate a partially completed job, should the machine on which the job is
executing become unavailable. To use the standard universe, it is necessary to relink the program with the
HTCondor library using thecondor_compilecommand. The manual page forcondor_compileon page 772 has
details.

The vanilla universe provides a way to run jobs that cannot berelinked. There is no way to take a checkpoint
or migrate a job executed under the vanilla universe. For access to input and output files, jobs must either use a
shared file system, or use HTCondor’s File Transfer mechanism.

Choose a universe under which to run the HTCondor program, and re-link the program if necessary.

Submit description file. Controlling the details of a job submission is a submit description file. The file contains
information about the job such as what executable to run, thefiles to use in place ofstdin andstdout , and
the platform type required to run the program. The number of times to run a program may be included; it is
simple to run the same program multiple times with multiple data sets.

Write a submit description file to go with the job, using the examples provided in section 2.5 for guidance.

Submit the Job. Submit the program to HTCondor with thecondor_submitcommand.

Once submitted, HTCondor does the rest toward running the job. Monitor the job’s progress with thecondor_q
andcondor_statuscommands. You may modify the order in which HTCondor will runyour jobs withcondor_prio. If
desired, HTCondor can even inform you in a log file every time your job is checkpointed and/or migrated to a different
machine.

HTCondor Version 8.6.4 Manual

2.4.1. Choosing an HTCondor Universe 13

When your program completes, HTCondor will tell you (by e-mail, if preferred) the exit status of your program
and various statistics about its performances, including time used and I/O performed. If you are using a log file for
the job (which is recommended) the exit status will be recorded in the log file. You can remove a job from the queue
prematurely withcondor_rm.

2.4.1 Choosing an HTCondor Universe

A universein HTCondor defines an execution environment. HTCondor Version 8.6.4 supports several different
universes for user jobs:

• standard

• vanilla

• grid

• java

• scheduler

• local

• parallel

• vm

• docker

Theuniverseunder which a job runs is specified in the submit description file. If a universe is not specified, the
default is vanilla, unless your HTCondor administrator haschanged the default. However, we strongly encourage you
to specify the universe, since the default can be changed by your HTCondor administrator, and the default that ships
with HTCondor has changed.

The standard universe provides migration and reliability,but has some restrictions on the programs that can be run.
The vanilla universe provides fewer services, but has very few restrictions. The grid universe allows users to submit
jobs using HTCondor’s interface. These jobs are submitted for execution on grid resources. The java universe
allows users to run jobs written for the Java Virtual Machine(JVM). The scheduler universe allows users to submit
lightweight jobs to be spawned by the program known as a daemon on the submit host itself. The parallel universe
is for programs that require multiple machines for one job. See section 2.9 for more about the Parallel universe. The
vm universe allows users to run jobs where the job is no longera simple executable, but a disk image, facilitating the
execution of a virtual machine. The docker universe runs a Docker container as an HTCondor job.

Standard Universe

In the standard universe, HTCondor providescheckpointingandremote system calls. These features make a job more
reliable and allow it uniform access to resources from anywhere in the pool. To prepare a program as a standard

HTCondor Version 8.6.4 Manual

2.4.1. Choosing an HTCondor Universe 14

universe job, it must be relinked withcondor_compile. Most programs can be prepared as a standard universe job, but
there are a few restrictions.

HTCondor checkpoints a job at regular intervals. Acheckpoint imageis essentially a snapshot of the current state
of a job. If a job must be migrated from one machine to another,HTCondor makes a checkpoint image, copies the
image to the new machine, and restarts the job continuing thejob from where it left off. If a machine should crash or
fail while it is running a job, HTCondor can restart the job ona new machine using the most recent checkpoint image.
In this way, jobs can run for months or years even in the face ofoccasional computer failures.

Remote system calls make a job perceive that it is executing on its home machine, even though the job may
execute on many different machines over its lifetime. When ajob runs on a remote machine, a second process, called
a condor_shadowruns on the machine where the job was submitted. When the job attempts a system call, the
condor_shadowperforms the system call instead and sends the results to theremote machine. For example, if a job
attempts to open a file that is stored on the submitting machine, thecondor_shadowwill find the file, and send the data
to the machine where the job is running.

To convert your program into a standard universe job, you must usecondor_compileto relink it with the HTCondor
libraries. Putcondor_compilein front of your usual link command. You do not need to modify the program’s source
code, but you do need access to the unlinked object files. A commercial program that is packaged as a single executable
file cannot be converted into a standard universe job.

For example, if you would have linked the job by executing:

% cc main.o tools.o -o program

Then, relink the job for HTCondor with:

% condor_compile cc main.o tools.o -o program

There are a few restrictions on standard universe jobs:

1. Multi-process jobs are not allowed. This includes systemcalls such asfork() , exec() , andsystem() .

2. Interprocess communication is not allowed. This includes pipes, semaphores, and shared memory.

3. Network communication must be brief. A jobmay make network connections using system calls such as
socket() , but a network connection left open for long periods will delay checkpointing and migration.

4. Sending or receiving the SIGUSR2 or SIGTSTP signals is notallowed. HTCondor reserves these signals for its
own use. Sending or receiving all other signalsis allowed.

5. Alarms, timers, and sleeping are not allowed. This includes system calls such asalarm() , getitimer() ,
andsleep() .

6. Multiple kernel-level threads are not allowed. However,multiple user-level threadsare allowed.

7. Memory mapped files are not allowed. This includes system calls such asmmap() andmunmap() .

HTCondor Version 8.6.4 Manual

2.4.1. Choosing an HTCondor Universe 15

8. File locks are allowed, but not retained between checkpoints.

9. All files must be opened read-only or write-only. A file opened for both reading and writing will cause trouble if
a job must be rolled back to an old checkpoint image. For compatibility reasons, a file opened for both reading
and writing will result in a warning but not an error.

10. A fair amount of disk space must be available on the submitting machine for storing a job’s checkpoint images.
A checkpoint image is approximately equal to the virtual memory consumed by a job while it runs. If disk space
is short, a specialcheckpoint servercan be designated for storing all the checkpoint images for apool.

11. On Linux, the job must be statically linked.condor_compiledoes this by default.

12. Reading to or writing from files larger than 2 GBytes is only supported when the submit sidecondor_shadow
and the standard universe user job application itself are both 64-bit executables.

Vanilla Universe

The vanilla universe in HTCondor is intended for programs which cannot be successfully re-linked. Shell scripts are
another case where the vanilla universe is useful. Unfortunately, jobs run under the vanilla universe cannot checkpoint
or use remote system calls. This has unfortunate consequences for a job that is partially completed when the remote
machine running a job must be returned to its owner. HTCondorhas only two choices. It can suspend the job, hoping
to complete it at a later time, or it can give up and restart thejob from the beginningon another machine in the pool.

Since HTCondor’s remote system call features cannot be usedwith the vanilla universe, access to the job’s input
and output files becomes a concern. One option is for HTCondorto rely on a shared file system, such as NFS or
AFS. Alternatively, HTCondor has a mechanism for transferring files on behalf of the user. In this case, HTCondor
will transfer any files needed by a job to the execution site, run the job, and transfer the output back to the submitting
machine.

Under Unix, HTCondor presumes a shared file system for vanilla jobs. However, if a shared file system is unavail-
able, a user can enable the HTCondor File Transfer mechanism. On Windows platforms, the default is to use the File
Transfer mechanism. For details on running a job with a shared file system, see section 2.5.8 on page 31. For details
on using the HTCondor File Transfer mechanism, see section 2.5.9 on page 32.

Grid Universe

The Grid universe in HTCondor is intended to provide the standard HTCondor interface to users who wish to start
jobs intended for remote management systems. Section 5.3 onpage 577 has details on using the Grid universe. The
manual page forcondor_submiton page 911 has detailed descriptions of the grid-related attributes.

Java Universe

A program submitted to the Java universe may run on any sort ofmachine with a JVM regardless of its location, owner,
or JVM version. HTCondor will take care of all the details such as finding the JVM binary and setting the classpath.

HTCondor Version 8.6.4 Manual

2.5. Submitting a Job 16

Scheduler Universe

The scheduler universe allows users to submit lightweight jobs to be run immediately, alongside thecondor_schedd
daemon on the submit host itself. Scheduler universe jobs are not matched with a remote machine, and will never be
preempted. The job’s requirements expression is evaluatedagainst thecondor_schedd’s ClassAd.

Originally intended for meta-schedulers such ascondor_dagman, the scheduler universe can also be used to man-
age jobs of any sort that must run on the submit host.

However, unlike the local universe, the scheduler universedoes not use acondor_starterdaemon to manage the
job, and thus offers limited features and policy support. The local universe is a better choice for most jobs which must
run on the submit host, as it offers a richer set of job management features, and is more consistent with other universes
such as the vanilla universe. The scheduler universe may be retired in the future, in favor of the newer local universe.

Local Universe

The local universe allows an HTCondor job to be submitted andexecuted with different assumptions for the execution
conditions of the job. The job does not wait to be matched witha machine. It instead executes right away, on the
machine where the job is submitted. The job will never be preempted. The job’s requirements expression is evaluated
against thecondor_schedd’s ClassAd.

Parallel Universe

The parallel universe allows parallel programs, such as MPIjobs, to be run within the opportunistic HTCondor envi-
ronment. Please see section 2.9 for more details.

VM Universe

HTCondor facilitates the execution of VMware and Xen virtual machines with the vm universe.

Please see section 2.11 for details.

Docker Universe

The docker universe runs a docker container on an execute host as a job. Please see section 2.12 for details.

2.5 Submitting a Job

A job is submitted for execution to HTCondor using thecondor_submitcommand.condor_submittakes as an argu-
ment the name of a file called a submit description file. This file contains commands and keywords to direct the

HTCondor Version 8.6.4 Manual

2.5.1. Sample submit description files 17

queuing of jobs. In the submit description file, HTCondor finds everything it needs to know about the job. Items such
as the name of the executable to run, the initial working directory, and command-line arguments to the program all
go into the submit description file.condor_submitcreates a job ClassAd based upon the information, and HTCondor
works toward running the job.

The contents of a submit description file have been designed to save time for HTCondor users. It is easy to submit
multiple runs of a program to HTCondor with a single submit description file. To run the same program many times
on different input data sets, arrange the data files accordingly so that each run reads its own input, and each run writes
its own output. Each individual run may have its own initial working directory, files mapped forstdin , stdout ,
stderr , command-line arguments, and shell environment; these areall specified in the submit description file. A
program that directly opens its own files will read the file names to use either fromstdin or from the command line.
A program that opens a static file, given by file name, every time will need to use a separate subdirectory for the output
of each run.

Thecondor_submitmanual page is on page 911 and contains a complete and full description of how to usecon-
dor_submit. It also includes descriptions 914 of all of the many commands that may be placed into a submit description
file. In addition, the index lists entries for each command under the heading of Submit Commands.

Note that job ClassAd attributes can be set directly in a submit file using the+<attribute> = <value> syntax
(see 943 for details.)

2.5.1 Sample submit description files

In addition to the examples of submit description files givenhere, there are more in thecondor_submitmanual page
(see 911).

Example 1

Example 1 is one of the simplest submit description files possible. It queues up the programmyexefor execution
somewhere in the pool. Use of the vanilla universe is implied, as that is the default when not specified in the submit
description file.

An executable is compiled to run on a specific platform. Sincethis submit description file does not specify a
platform, HTCondor will use its default, which is to run the job on a machine which has the same architecture and
operating system as the machine wherecondor_submitis run to submit the job.

Standard input for this job will come from the fileinputfile , as specified by theinput command, and standard
output for this job will go to the fileoutputfile , as specified by theoutput command. HTCondor expects to find
inputfile in the current working directory when this job is submitted,and the system will take care of getting the
input file to where it needs to be when the job is executed, as well as bringing back the output results (to the current
working directory) after job execution.

A log file, myexe.log , will also be produced that contains events the job had during its lifetime inside of HT-
Condor. When the job finishes, its exit conditions will be noted in the log file. This file’s contents are an excellent way
to figure out what happened to submitted jobs.

HTCondor Version 8.6.4 Manual

2.5.1. Sample submit description files 18

####################
#
Example 1
Simple HTCondor submit description file
#
####################

Executable = myexe
Log = myexe.log
Input = inputfile
Output = outputfile
Queue

Example 2

Example 2 queues up one copy of the programfoo (which had been created bycondor_compile) for execution by
HTCondor. Noinput , output, or error commands are given in the submit description file, sostdin , stdout , and
stderr will all refer to /dev/null . The program may produce output by explicitly opening a file and writing to it.

####################
#
Example 2
Standard universe submit description file
#
####################

Executable = foo
Universe = standard
Log = foo.log
Queue

Example 3

Example 3 queues two copies of the programmathematica. The first copy will run in directoryrun_1 , and the
second will run in directoryrun_2 due to theinitialdir command. For each copy,stdin will be test.data ,
stdout will be loop.out , andstderr will be loop.error . Each run will read input and write output files
within its own directory. Placing data files in separate directories is a convenient way to organize data when a large
group of HTCondor jobs is to run. The example file shows program submission ofmathematicaas a vanilla universe
job. The vanilla universe is most often the right choice of universe when the source and/or object code is not available.

Therequest_memorycommand is included to ensure that themathematicajobs match with and then execute on
pool machines that provide at least 1 GByte of memory.

####################

HTCondor Version 8.6.4 Manual

2.5.1. Sample submit description files 19

#
Example 3: demonstrate use of multiple
directories for data organization.
#
####################

executable = mathematica
universe = vanilla
input = test.data
output = loop.out
error = loop.error
log = loop.log
request_memory = 1 GB

initialdir = run_1
queue

initialdir = run_2
queue

Example 4

The submit description file for Example 4 queues 150 runs of programfoowhich has been compiled and linked for
Linux running on a 32-bit Intel processor. This job requiresHTCondor to run the program on machines which have
greater than 32 MiB of physical memory, and therank command expresses a preference to run each instance of the
program on machines with more than 64 MiB. It also advises HTCondor that this standard universe job will use up to
28000 KiB of memory when running. Each of the 150 runs of the program is given its own process number, starting
with process number 0. So, filesstdin , stdout , andstderr will refer to in.0 , out.0 , anderr.0 for the first
run of the program,in.1 , out.1 , anderr.1 for the second run of the program, and so forth. A log file containing
entries about when and where HTCondor runs, checkpoints, and migrates processes for all the 150 queued programs
will be written into the single filefoo.log .

####################
#
Example 4: Show off some fancy features including
the use of pre-defined macros.
#
####################

Executable = foo
Universe = standard
requirements = OpSys == "LINUX" && Arch =="INTEL"
rank = Memory >= 64
image_size = 28000
request_memory = 32

HTCondor Version 8.6.4 Manual

2.5.2. Using the Power and Flexibility of the Queue Command 20

error = err.$(Process)
input = in.$(Process)
output = out.$(Process)
log = foo.log

queue 150

2.5.2 Using the Power and Flexibility of the Queue Command

A wide variety of job submissions can be specified with extra information to thequeue submit command. This
flexibility eliminates the need for a job wrapper or Perl script for many submissions.

The form of thequeuecommand defines variables and expands values, identifying aset of jobs. Square brackets
identify an optional item.

queue[<int expr>]

queue[<int expr>] [<varname>] in [slice] <list of items>

queue[<int expr>] [<varname>] matching [files | dirs] [slice] <list of items with file globbing>

queue[<int expr>] [<list of varnames>] from [slice] <file name> | <list of items>

All optional items have defaults:

• If <int expr> is not specified, it defaults to the value 1.

• If <varname> or <list of varnames> is not specified, it defaults to the single variable calledITEM.

• If slice is not specified, it defaults to all elements within the list.This is the Python slice[::] , with a step
value of 1.

• If neitherfiles nordirs is specified in a specification using thefrom key word, then both files and directories
are considered when globbing.

The list of items uses syntax in one of two forms. One form is a comma and/or space separated list; the items are
placed on the same line as thequeuecommand. The second form separates items by placing each list item on its own
line, and delimits the list with parentheses. The opening parenthesis goes on the same line as thequeuecommand.
The closing parenthesis goes on its own line. Thequeuecommand specified with the key wordfrom will always use
the second form of this syntax. Example 3 below uses this second form of syntax.

The optionalslice specifies a subset of the list of items using the Python syntaxfor a slice. Negative step values
are not permitted.

Here are a set of examples.

Example 1

HTCondor Version 8.6.4 Manual

2.5.2. Using the Power and Flexibility of the Queue Command 21

transfer_input_files = $(filename)
arguments = -infile $(filename)
queue filename matching files * .dat

The use of file globbing expands the list of items to be all filesin the current directory that end in.dat . Only files,
and not directories are considered due to the specification of files . One job is queued for each file in the list of
items. For this example, assume that the three filesinitial.dat , middle.dat , andending.dat form the
list of items after expansion; macrofilename is assigned the value of one of these file names for each job queued.
That macro value is then substituted into theargumentsandtransfer_input_files commands. Thequeuecommand
expands to

transfer_input_files = initial.dat
arguments = -infile initial.dat
queue
transfer_input_files = middle.dat
arguments = -infile middle.dat
queue
transfer_input_files = ending.dat
arguments = -infile ending.dat
queue

Example 2

queue 1 input in A, B, C

Variableinput is set to each of the 3 items in the list, and one job is queued for each. For this example thequeue
command expands to

input = A
queue
input = B
queue
input = C
queue

Example 3

queue input,arguments from (
file1, -a -b 26
file2, -c -d 92

)

HTCondor Version 8.6.4 Manual

2.5.3. Variables in the Submit Description File 22

Using thefrom form of the options, each of the two variables specified is given a value from the list of items. For this
example thequeuecommand expands to

input = file1
arguments = -a -b 26
queue
input = file2
arguments = -c -d 92
queue

2.5.3 Variables in the Submit Description File

There are automatic variables for use within the submit description file.

$(Cluster) or $(ClusterId) Each set of queued jobs from a specific user, submitted from a single submit
host, sharing an executable have the same value of$(Cluster) or $(ClusterId) . The first cluster of jobs
are assigned to cluster 0, and the value is incremented by onefor each new cluster of jobs.$(Cluster) or
$(ClusterId) will have the same value as the job ClassAd attributeClusterId .

$(Process) or $(ProcId) Within a cluster of jobs, each takes on its own unique$(Process) or $(ProcId)
value. The first job has value 0.$(Process) or $(ProcId) will have the same value as the job ClassAd
attributeProcId .

$(Item) The default name of the variable when no<varname> is provided in aqueuecommand.

$(ItemIndex) Represents an index within a list of items. When no slice is specified, the first$(ItemIndex) is
0. When a slice is specified,$(ItemIndex) is the index of the item within the original list.

$(Step) For the<int expr> specified,$(Step) counts, starting at 0.

$(Row) When a list of items is specified by placing each item on its ownline in the submit description file,$(Row)
identifies which line the item is on. The first item (first line of the list) is$(Row) 0. The second item (second
line of the list) is$(Row) 1. When a list of items are specified with all items on the same line,$(Row) is the
same as$(ItemIndex) .

Here is an example of aqueuecommand for which the values of these automatic variables are identified.

Example 1

This example queues six jobs.

queue 3 in (A, B)

• $(Process) takes on the six values 0, 1, 2, 3, 4, and 5.

HTCondor Version 8.6.4 Manual

2.5.4. Including Submit Commands Defined Elsewhere 23

• Because there is no specification for the<varname> within this queuecommand, variable$(Item) is de-
fined. It has the valueA for the first three jobs queued, and it has the valueB for the second three jobs queued.

• $(Step) takes on the three values 0, 1, and 2 for the three jobs with$(Item)=A , and it takes on the same
three values 0, 1, and 2 for the three jobs with$(Item)=B .

• $(ItemIndex) is 0 for all three jobs with$(Item)=A , and it is 1 for all three jobs with$(Item)=B .

• $(Row) has the same value as$(ItemIndex) for this example.

2.5.4 Including Submit Commands Defined Elsewhere

Externally defined submit commands can be incorporated intothe submit description file using the syntax

include : <what-to-include>

The<what-to-include> specification may specify a single file, where the contents ofthe file will be incor-
porated into the submit description file at the point within the file where theinclude is. Or,<what-to-include>
may cause a program to be executed, where the output of the program is incorporated into the submit description
file. The specification of<what-to-include> has the bar character (|) following the name of the program to be
executed.

The include key word is case insensitive. There areno requirements for white space characters surrounding the
colon character.

Included submit commands may contain further nestedinclude specifications, which are also parsed, evaluated,
and incorporated. Levels of nesting on included files are limited, such that infinite nesting is discovered and thwarted,
while still permitting nesting.

Consider the example

include : list-infiles.sh |

In this example, the bar character at the end of the line causes the scriptlist-infiles.sh to be invoked, and the
output of the script is parsed and incorporated into the submit description file. If this bash script contains

echo "transfer_input_files = `ls -m infiles/ * .dat`"

then the output of this script has specified the set of input files to transfer to the execute host. For example, if directory
infiles contains the three filesA.dat , B.dat , andC.dat , then the submit command

transfer_input_files = infiles/A.dat, infiles/B.dat, in files/C.dat

is incorporated into the submit description file.

HTCondor Version 8.6.4 Manual

2.5.5. Using Conditionals in the Submit Description File 24

2.5.5 Using Conditionals in the Submit Description File

Conditionalif /else semantics are available in a limited form. The syntax:

if <simple condition>
<statement>
. . .
<statement>

else
<statement>
. . .
<statement>

endif

An else key word and statements are not required, such that simpleif semantics are implemented. The
<simple condition> does not permit compound conditions. It optionally contains the exclamation point char-
acter (!) to represent the not operation, followed by

• the defined keyword followed by the name of a variable. If the variable isdefined, the statement(s) are
incorporated into the expanded input. If the variable isnot defined, the statement(s) are not incorporated into
the expanded input. As an example,

if defined MY_UNDEFINED_VARIABLE
X = 12

else
X = -1

endif

results inX = -1 , whenMY_UNDEFINED_VARIABLEis not yet defined.

• theversion keyword, representing the version number of of the daemon ortool currently reading this con-
ditional. This keyword is followed by an HTCondor version number. That version number can be of the form
x.y.z or x.y . The version of the daemon or tool is compared to the specifiedversion number. The comparison
operators are

– == for equality. Current version 8.2.3 is equal to 8.2.

– >= to see if the current version number is greater than or equal to. Current version 8.2.3 is greater than
8.2.2, and current version 8.2.3 is greater than or equal to 8.2.

– <= to see if the current version number is less than or equal to. Current version 8.2.0 is less than 8.2.2, and
current version 8.2.3 is less than or equal to 8.2.

As an example,

if version >= 8.1.6
DO_X = True

HTCondor Version 8.6.4 Manual

2.5.5. Using Conditionals in the Submit Description File 25

else
DO_Y = True

endif

results in definingDO_XasTrue if the current version of the daemon or tool reading this if statement is 8.1.6
or a more recent version.

• True or yes or the value 1. The statement(s) are incorporated.

• False or no or the value 0 The statement(s) arenot incorporated.

• $(<variable>) may be used where the immediately evaluated value is a simpleboolean value. A value that
evaluates to the empty string is consideredFalse , otherwise a value that does not evaluate to a simple boolean
value is a syntax error.

The syntax

if <simple condition>
<statement>
. . .
<statement>

elif <simple condition>
<statement>
. . .
<statement>

endif

is the same as syntax

if <simple condition>
<statement>
. . .
<statement>

else
if <simple condition>

<statement>
. . .
<statement>

endif
endif

Here is an example use of a conditional in the submit description file. A portion of thesample.sub submit
description file uses the if/else syntax to define command line arguments in one of two ways:

if defined X

HTCondor Version 8.6.4 Manual

2.5.6. Function Macros in the Submit Description File 26

arguments = -n $(X)
else

arguments = -n 1 -debug
endif

Submit variableX is defined on thecondor_submitcommand line with

condor_submit X=3 sample.sub

This command line incorporates the submit commandX = 3 into the submission before parsing the submit descrip-
tion file. For this submission, the command line arguments ofthe submitted job become

-n 3

If the job were instead submitted with the command line

condor_submit sample.sub

then the command line arguments of the submitted job become

-n 1 -debug

2.5.6 Function Macros in the Submit Description File

A set of predefined functions increase flexibility. Both submit description files and configuration files are read using
the same parser, so these functions may be used in both submitdescription files and configuration files.

Case is significant in the function’s name, so use the same letter case as given in these definitions.

$CHOICE(index, listname) or $CHOICE(index, item1, item2, . . .) An item within the list is re-
turned. The list is represented by a parameter name, or the list items are the parameters. Theindex parameter
determines which item. The first item in the list is at index 0.If the index is out of bounds for the list contents,
an error occurs.

$ENV(environment-variable-name[:default-value]) Evaluates to the value of environment variable
environment-variable-name . If there is no environment variable with that name, Evaluates to UN-
DEFINED unless the optional:default-value is used; in which case it evaluates to default-value. For
example,

A = $ENV(HOME)

bindsA to the value of theHOMEenvironment variable.

HTCondor Version 8.6.4 Manual

2.5.6. Function Macros in the Submit Description File 27

$F[fpduwnxbqa](filename) One or more of the lower case letters may be combined to form the function
name and thus, its functionality. Each letter operates on the filename in its own way.

• f convert relative path to full path by prefixing the current working directory to it. This option works only
in condor_submitfiles.

• p refers to the entire directory portion offilename , with a trailing slash or backslash character. Whether
a slash or backslash is used depends on the platform of the machine. The slash will be recognized on Linux
platforms; either a slash or backslash will be recognized onWindows platforms, and the parser will use
the same character specified.

• d refers to the last portion of the directory within the path, if specified. It will have a trailing slash or
backslash, as appropriate to the platform of the machine. The slash will be recognized on Linux platforms;
either a slash or backslash will be recognized on Windows platforms, and the parser will use the same
character specified unless u or w is used. if b is used the trailing slash or backslash will be omitted.

• u convert path separators to Unix style slash characters

• wconvert path separators to Windows style backslash characters

• n refers to the file name at the end of any path, but without any file name extension. As an example, the
return value from$Fn(/tmp/simulate.exe) will be simulate (without the.exe extension).

• x refers to a file name extension, with the associated period (.). As an example, the return value from
$Fn(/tmp/simulate.exe) will be .exe .

• b when combined with the d option, causes the trailing slash orbackslash to be omitted. When combined
with the x option, causes the leading period (.) to be omitted.

• q causes the return value to be enclosed within quotes. Doublequote marks are used unless a is also
specified.

• a When combined with the q option, causes the return value to beenclosed within single quotes.

$DIRNAME(filename) is the same as$Fp(filename)

$BASENAME(filename) is the same as$Fnx(filename)

$INT(item-to-convert) or $INT(item-to-convert, format-specifier) Expands, evaluates,
and returns a string version ofitem-to-convert . The format-specifier has the same syntax as a
C language or Perl format specifier. If noformat-specifier is specified,"%d" is used as the format
specifier.

$RANDOM_CHOICE(choice1, choice2, choice3, . . .) A random choice of one of the parameters in the
list of parameters is made. For example, if one of the integers 0-8 (inclusive) should be randomly chosen:

$RANDOM_CHOICE(0,1,2,3,4,5,6,7,8)

$RANDOM_INTEGER(min, max [, step]) A random integer within the rangemin and max, inclusive, is
selected. The optionalstep parameter controls the stride within the range, and it defaults to the value 1. For
example, to randomly chose an even integer in the range 0-8 (inclusive):

$RANDOM_INTEGER(0, 8, 2)

HTCondor Version 8.6.4 Manual

2.5.6. Function Macros in the Submit Description File 28

$REAL(item-to-convert) or $REAL(item-to-convert, format-specifier) Expands, evaluates,
and returns a string version ofitem-to-convert for a floating point type. Theformat-specifier is
a C language or Perl format specifier. If noformat-specifier is specified,"%16G" is used as a format
specifier.

$SUBSTR(name, start-index) or $SUBSTR(name, start-index, length) Expandsnameand re-
turns a substring of it. The first character of the string is atindex 0. The first character of the substring is at
indexstart-index . If the optionallength is not specified, then the substring includes characters up to the
end of the string. A negative value ofstart-index works back from the end of the string. A negative value
of length eliminates use of characters from the end of the string. Hereare some examples that all assume

Name = abcdef

• $SUBSTR(Name, 2) is cdef .

• $SUBSTR(Name, 0, -2) is abcd .

• $SUBSTR(Name, 1, 3) is bcd .

• $SUBSTR(Name, -1) is f .

• $SUBSTR(Name, 4, -3) is the empty string, as there are no characters in the substring for this re-
quest.

Here are example uses of the function macros in a submit description file. Note that these are not complete submit
description files, but only the portions that promote understanding of use cases of the function macros.

Example 1

Generate a range of numerical values for a set of jobs, where values other than those given by$(Process) are
desired.

MyIndex = $(Process) + 1
initial_dir = run-$INT(MyIndex, %04d)

Assuming that there are three jobs queued, such that$(Process) becomes 0, 1, and 2,initial_dir will evaluate
to the directoriesrun-0001 , run-0002 , andrun-0003 .

Example 2

This variation on Example 1 generates a file name extension which is a 3-digit integer value.

Values = $(Process) * 10
Extension = $INT(Values, %03d)
input = X.$(Extension)

HTCondor Version 8.6.4 Manual

2.5.7. About Requirements and Rank 29

Assuming that there are four jobs queued, such that$(Process) becomes 0, 1, 2, and 3,Extension will evaluate
to 000, 010, 020, and 030, leading to files defined forinput of X.000 , X.010 , X.020 , andX.030 .

Example 3

This example uses both the file globbing of thequeuecommand and a macro function to specify a job input file that
is within a subdirectory on the submit host, but will be placed into a single, flat directory on the execute host.

arguments = $Fnx(FILE)
transfer_input_files = $(FILE)
queue FILE MATCHING (

samplerun/ * .dat
)

Assume that two files that end in.dat , A.dat andB.dat , are within the directorysamplerun . MacroFILE
expands tosamplerun/A.dat andsamplerun/B.dat for the two jobs queued. The input files transferred are
samplerun/A.dat andsamplerun/B.dat on the submit host. The$Fnx() function macro expands to the
complete file name with any leading directory specification stripped, such that the command line argument for one of
the jobs will beA.dat and the command line argument for the other job will beB.dat .

2.5.7 About Requirements and Rank

The requirements andrank commands in the submit description file are powerful and flexible. Using them
effectively requires care, and this section presents thosedetails.

Both requirements andrank need to be specified as valid HTCondor ClassAd expressions, however, default
values are set by thecondor_submitprogram if these are not defined in the submit description file. From thecon-
dor_submitmanual page and the above examples, you see that writing ClassAd expressions is intuitive, especially
if you are familiar with the programming language C. There are some pretty nifty expressions you can write with
ClassAds. A complete description of ClassAds and their expressions can be found in section 4.1 on page 523.

All of the commands in the submit description file are case insensitive,exceptfor the ClassAd attribute string
values. ClassAd attribute names are case insensitive, but ClassAd string values arecase preserving.

Note that the comparison operators (<, >, <=, >=, and==) compare strings case insensitively. The special com-
parison operators=?= and=!= compare strings case sensitively.

A requirements or rank command in the submit description file may utilize attributes that appear in a machine
or a job ClassAd. Within the submit description file (for a job) the prefixMY. (on a ClassAd attribute name) causes a
reference to the job ClassAd attribute, and the prefixTARGET.causes a reference to a potential machine or matched
machine ClassAd attribute.

Thecondor_statuscommand displays statistics about machines within the pool. The-l option displays the machine
ClassAd attributes for all machines in the HTCondor pool. The job ClassAds, if there are jobs in the queue, can be
seen with thecondor_q -lcommand. This shows all the defined attributes for current jobs in the queue.

HTCondor Version 8.6.4 Manual

2.5.7. About Requirements and Rank 30

A list of defined ClassAd attributes for job ClassAds is givenin the unnumbered Appendix on page 1002. A list
of defined ClassAd attributes for machine ClassAds is given in the unnumbered Appendix on page 1020.

Rank Expression Examples

When considering the match between a job and a machine, rank is used to choose a match from among all machines
that satisfy the job’s requirements and are available to theuser, after accounting for the user’s priority and the machine’s
rank of the job. The rank expressions, simple or complex, define a numerical value that expresses preferences.

The job’sRank expression evaluates to one of three values. It can be UNDEFINED, ERROR, or a floating point
value. If Rank evaluates to a floating point value, the best match will be theone with the largest, positive value. If
no Rank is given in the submit description file, then HTCondor substitutes a default value of 0.0 when considering
machines to match. If the job’sRank of a given machine evaluates to UNDEFINED or ERROR, this samevalue of
0.0 is used. Therefore, the machine is still considered for amatch, but has no ranking above any other.

A boolean expression evaluates to the numerical value of 1.0if true, and 0.0 if false.

The followingRank expressions provide examples to follow.

For a job that desires the machine with the most available memory:

Rank = memory

For a job that prefers to run on a friend’s machine on Saturdays and Sundays:

Rank = ((clockday == 0) || (clockday == 6))
&& (machine == "friend.cs.wisc.edu")

For a job that prefers to run on one of three specific machines:

Rank = (machine == "friend1.cs.wisc.edu") ||
(machine == "friend2.cs.wisc.edu") ||
(machine == "friend3.cs.wisc.edu")

For a job that wants the machine with the best floating point performance (on Linpack benchmarks):

Rank = kflops

This particular example highlights a difficulty withRank expression evaluation as currently defined. While all ma-
chines have floating point processing ability, not all machines will have thekflops attribute defined. For machines
where this attribute is not defined,Rank will evaluate to the value UNDEFINED, and HTCondor will use adefault
rank of the machine of 0.0. TheRank attribute will only rank machines where the attribute is defined. Therefore, the
machine with the highest floating point performance may not be the one given the highest rank.

HTCondor Version 8.6.4 Manual

2.5.8. Submitting Jobs Using a Shared File System 31

So, it is wise when writing aRank expression to check if the expression’s evaluation will lead to the expected
resulting ranking of machines. This can be accomplished using thecondor_statuscommand with the-constraint
argument. This allows the user to see a list of machines that fit a constraint. To see which machines in the pool have
kflops defined, use

condor_status -constraint kflops

Alternatively, to see a list of machines wherekflops is not defined, use

condor_status -constraint "kflops=?=undefined"

For a job that prefers specific machines in a specific order:

Rank = ((machine == "friend1.cs.wisc.edu") * 3) +
((machine == "friend2.cs.wisc.edu") * 2) +

(machine == "friend3.cs.wisc.edu")

If the machine being ranked isfriend1.cs.wisc.edu , then the expression

(machine == "friend1.cs.wisc.edu")

is true, and gives the value 1.0. The expressions

(machine == "friend2.cs.wisc.edu")

and

(machine == "friend3.cs.wisc.edu")

are false, and give the value 0.0. Therefore,Rank evaluates to the value 3.0. In this way,
machine friend1.cs.wisc.edu is ranked higher than machinefriend2.cs.wisc.edu , machine
friend2.cs.wisc.edu is ranked higher than machinefriend3.cs.wisc.edu , and all three of these ma-
chines are ranked higher than others.

2.5.8 Submitting Jobs Using a Shared File System

If vanilla, java, or parallel universe jobs are submitted without using the File Transfer mechanism, HTCondor must
use a shared file system to access input and output files. In this case, the jobmustbe able to access the data files from
any machine on which it could potentially run.

As an example, suppose a job is submitted from blackbird.cs.wisc.edu, and the job requires a particu-
lar data file called/u/p/s/psilord/data.txt . If the job were to run on cardinal.cs.wisc.edu, the file
/u/p/s/psilord/data.txt must be available through either NFS or AFS for the job to run correctly.

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 32

HTCondor allows users to ensure their jobs have access to theright shared files by using the
FileSystemDomain andUidDomain machine ClassAd attributes. These attributes specify which machines have
access to the same shared file systems. All machines that mount the same shared directories in the same locations are
considered to belong to the same file system domain. Similarly, all machines that share the same user information (in
particular, the same UID, which is important for file systemslike NFS) are considered part of the same UID domain.

The default configuration for HTCondor places each machine in its own UID domain and file system domain, using
the full host name of the machine as the name of the domains. So, if a pooldoeshave access to a shared file system,
the pool administratormustcorrectly configure HTCondor such that all the machines mounting the same files have
the sameFileSystemDomain configuration. Similarly, all machines that share common user information must be
configured to have the sameUidDomain configuration.

When a job relies on a shared file system, HTCondor uses therequirements expression to ensure that the job
runs on a machine in the correctUidDomain andFileSystemDomain . In this case, the defaultrequirements
expression specifies that the job must run on a machine with the sameUidDomain andFileSystemDomain as
the machine from which the job is submitted. This default is almost always correct. However, in a pool spanning
multiple UidDomain s and/orFileSystemDomain s, the user may need to specify a differentrequirements
expression to have the job run on the correct machines.

For example, imagine a pool made up of both desktop workstations and a dedicated compute cluster. Most of
the pool, including the compute cluster, has access to a shared file system, but some of the desktop machines do
not. In this case, the administrators would probably define theFileSystemDomain to becs.wisc.edu for all
the machines that mounted the shared files, and to the full host name for each machine that did not. An example is
jimi.cs.wisc.edu .

In this example, a user wants to submit vanilla universe jobsfrom her own desktop machine (jimi.cs.wisc.edu)
which does not mount the shared file system (and is therefore in its own file system domain, in its own world). But,
she wants the jobs to be able to run on more than just her own machine (in particular, the compute cluster), so she puts
the program and input files onto the shared file system. When she submits the jobs, she needs to tell HTCondor to
send them to machines that have access to that shared data, soshe specifies a differentrequirements expression
than the default:

Requirements = TARGET.UidDomain == "cs.wisc.edu" && \
TARGET.FileSystemDomain == "cs.wisc.edu"

WARNING: If there is no shared file system, or the HTCondor pool administrator does not configure the
FileSystemDomain setting correctly (the default is that each machine in a poolis in its own file system and
UID domain), a user submits a job that cannot use remote system calls (for example, a vanilla universe job), and the
user does not enable HTCondor’s File Transfer mechanism, the job will only run on the machine from which it was
submitted.

2.5.9 Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mecha-
nism

HTCondor works well without a shared file system. The HTCondor file transfer mechanism permits the user to select
which files are transferred and under which circumstances. HTCondor can transfer any files needed by a job from the

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 33

machine where the job was submitted into a remote scratch directory on the machine where the job is to be executed.
HTCondor executes the job and transfers output back to the submitting machine. The user specifies which files and
directories to transfer, and at what point the output files should be copied back to the submitting machine. This
specification is done within the job’s submit description file.

Specifying If and When to Transfer Files

To enable the file transfer mechanism, place two commands in the job’s submit description file:should_transfer_files
andwhen_to_transfer_output. By default, they will be:

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

Setting theshould_transfer_filescommand explicitly enables or disables the file transfer mechanism. The com-
mand takes on one of three possible values:

1. YES: HTCondor transfers both the executable and the file defined by the input command from the machine
where the job is submitted to the remote machine where the jobis to be executed. The file defined by theoutput
command as well as any files created by the execution of the jobare transferred back to the machine where
the job was submitted. When they are transferred and the directory location of the files is determined by the
commandwhen_to_transfer_output.

2. IF_NEEDED: HTCondor transfers files if the job is matched with and to be executed on a ma-
chine in a differentFileSystemDomain than the one the submit machine belongs to, the same
as if should_transfer_files = YES . If the job is matched with a machine in the local
FileSystemDomain , HTCondor will not transfer files and relies on the shared filesystem.

3. NO: HTCondor’s file transfer mechanism is disabled.

The when_to_transfer_output command tells HTCondor when output files are to be transferred back to the
submit machine. The command takes on one of two possible values:

1. ON_EXIT: HTCondor transfers the file defined by theoutput command, as well as any other files in the remote
scratch directory created by the job, back to the submit machine only when the job exits on its own.

2. ON_EXIT_OR_EVICT: HTCondor behaves the same as described for the valueON_EXIT when the job exits
on its own. However, if, and each time the job is evicted from amachine,files are transferred back at eviction
time. The files that are transferred back at eviction time may include intermediate files that are not part of the
final output of the job. Whentransfer_output_files is specified, its list governs which are transferred back at
eviction time. Before the job starts running again, all of the files that were stored when the job was last evicted
are copied to the job’s new remote scratch directory.

The purpose of saving files at eviction time is to allow the jobto resume from where it left off. This is similar to
using the checkpoint feature of the standard universe, but just specifyingON_EXIT_OR_EVICTis not enough

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 34

to make a job capable of producing or utilizing checkpoints.The job must be designed to save and restore its
state using the files that are saved at eviction time.

The files that are transferred back at eviction time are not stored in the location where the job’s final output will
be written when the job exits. HTCondor manages these files automatically, so usually the only reason for a
user to worry about them is to make sure that there is enough space to store them. The files are stored on the
submit machine in a temporary directory within the directory defined by the configuration variableSPOOL. The
directory is named using theClusterId andProcId job ClassAd attributes. The directory name takes the
form:

<X mod 10000>/<Y mod 10000>/cluster<X>.proc<Y>.subproc0

where<X> is the value ofClusterId , and<Y> is the value ofProcId . As an example, if job 735.0 is
evicted, it will produce the directory

$(SPOOL)/735/0/cluster735.proc0.subproc0

The default values for these two submit commands make sense as used together. If onlyshould_transfer_files
is set, and set to the valueNO, then no output files will be transferred, and the value ofwhen_to_transfer_output
is irrelevant. If onlywhen_to_transfer_output is set, and set to the valueON_EXIT_OR_EVICT, then the default
value for an unspecifiedshould_transfer_fileswill be YES.

Note that the combination of

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT_OR_EVICT

would produce undefined file access semantics. Therefore, this combination is prohibited bycondor_submit.

Specifying What Files to Transfer

If the file transfer mechanism is enabled, HTCondor will transfer the following files before the job is run on a remote
machine.

1. the executable, as defined with theexecutablecommand

2. the input, as defined with theinput command

3. any jar files, for thejava universe, as defined with thejar_files command

If the job requires other input files, the submit descriptionfile should utilize thetransfer_input_files command. This
comma-separated list specifies any other files or directories that HTCondor is to transfer to the remote scratch directory,
to set up the execution environment for the job before it is run. These files are placed in the same directory as the job’s
executable. For example:

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 35

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = file1,file2

This example explicitly enables the file transfer mechanism, and it transfers the executable, the file specified by the
input command, any jar files specified by thejar_files command, and filesfile1 andfile2 .

If the file transfer mechanism is enabled, HTCondor will transfer the following files from the execute machine
back to the submit machine after the job exits.

1. the output file, as defined with theoutput command

2. the error file, as defined with theerror command

3. any files created by the job in the remote scratch directory; this only occurs for jobs other thangrid universe,
and for HTCondor-Cgrid universe jobs; directories created by the job within the remote scratch directory are
ignored for this automatic detection of files to be transferred.

A path given foroutput anderror commands represents a path on the submit machine. If no path is specified, the
directory specified withinitialdir is used, and if that is not specified, the directory from whichthe job was submitted
is used. At the time the job is submitted, zero-length files are created on the submit machine, at the given path for the
files defined by theoutput anderror commands. This permits job submission failure, if these files cannot be written
by HTCondor.

To restrict the output files or permit entire directory contents to be transferred, specify the exact list withtrans-
fer_output_files. Delimit the list of file names, directory names, or paths with commas. When this list is defined,
and any of the files or directories do not exist as the job exits, HTCondor considers this an error, and places the job
on hold. Settingtransfer_output_files to the empty string ("") means no files are to be transferred. When this list is
defined, automatic detection of output files created by the job is disabled. Paths specified in this list refer to locations
on the execute machine. The naming and placement of files and directories relies on the termbase name. By example,
the patha/b/c has the base namec . It is the file name or directory name with all directories leading up to that
name stripped off. On the submit machine, the transferred files or directories are named using only the base name.
Therefore, each output file or directory must have a different name, even if they originate from different paths.

For grid universe jobs other than than HTCondor-C grid jobs, files to be transferred (other than standard output
and standard error) must be specified usingtransfer_output_files in the submit description file, because automatic
detection of new files created by the job does not take place.

Here are examples to promote understanding of what files and directories are transferred, and how they are named
after transfer. Assume that the job produces the following structure within the remote scratch directory:

o1
o2
d1 (directory)

o3
o4

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 36

If the submit description file sets

transfer_output_files = o1,o2,d1

then transferred back to the submit machine will be

o1
o2
d1 (directory)

o3
o4

Note that the directoryd1 and all its contents are specified, and therefore transferred. If the directoryd1 is not created
by the job before exit, then the job is placed on hold. If the directoryd1 is created by the job before exit, but is empty,
this is not an error.

If, instead, the submit description file sets

transfer_output_files = o1,o2,d1/o3

then transferred back to the submit machine will be

o1
o2
o3

Note that only the base name is used in the naming and placement of the file specified withd1/o3 .

File Paths for File Transfer

The file transfer mechanism specifies file names and/or paths on both the file system of the submit machine and on the
file system of the execute machine. Care must be taken to know which machine, submit or execute, is utilizing the file
name and/or path.

Files in thetransfer_input_files command are specified as they are accessed on the submit machine. The job, as
it executes, accesses files as they are found on the execute machine.

There are three ways to specify files and paths fortransfer_input_files:

1. Relative to the current working directory as the job is submitted, if the submit commandinitialdir is not speci-
fied.

2. Relative to the initial directory, if the submit commandinitialdir is specified.

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 37

3. Absolute.

Before executing the program, HTCondor copies the executable, an input file as specified by the submit command
input , along with any input files specified bytransfer_input_files. All these files are placed into a remote scratch
directory on the execute machine, in which the program runs.Therefore, the executing program must access input
files relative to its working directory. Because all files anddirectories listed for transfer are placed into a single, flat
directory, inputs must be uniquely named to avoid collisionwhen transferred. A collision causes the last file in the list
to overwrite the earlier one.

Both relative and absolute paths may be used intransfer_output_files. Relative paths are relative to the job’s
remote scratch directory on the execute machine. When the files and directories are copied back to the submit machine,
they are placed in the job’s initial working directory as thebase name of the original path. An alternate name or path
may be specified by usingtransfer_output_remaps.

A job may create files outside the remote scratch directory but within the file system of the execute machine, in
a directory such as/tmp , if this directory is guaranteed to exist and be accessible on all possible execute machines.
However, HTCondor will not automatically transfer such files back after execution completes, nor will it clean up
these files.

Here are several examples to illustrate the use of file transfer. The program executable is calledmy_program, and
it uses three command-line arguments as it executes: two input file names and an output file name. The program
executable and the submit description file for this job are located in directory/scratch/test .

Here is the directory tree as it exists on the submit machine,for all the examples:

/scratch/test (directory)
my_program.condor (the submit description file)
my_program (the executable)
files (directory)

logs2 (directory)
in1 (file)
in2 (file)

logs (directory)

Example 1 This first example explicitly transfers input files. These input files to be transferred are specified relative
to the directory where the job is submitted. An output file specified in thearguments command,out1 , is
created when the job is executed. It will be transferred backinto the directory/scratch/test .

file name: my_program.condor
HTCondor submit description file for my_program
Executable = my_program
Universe = vanilla
Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/in1,files/in2

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 38

Arguments = in1 in2 out1
Queue

The log file is written on the submit machine, and is not involved with the file transfer mechanism.

Example 2 This second example is identical to Example 1, except that absolute paths to the input files are specified,
instead of relative paths to the input files.

file name: my_program.condor
HTCondor submit description file for my_program
Executable = my_program
Universe = vanilla
Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /scratch/test/files/in1,/scrat ch/test/files/in2

Arguments = in1 in2 out1
Queue

Example 3 This third example illustrates the use of the submit commandinitialdir , and its effect on the paths used
for the various files. The expected location of the executable is not affected by theinitialdir command. All
other files (specified byinput , output, error , transfer_input_files, as well as files modified or created by the
job and automatically transferred back) are located relative to the specifiedinitialdir . Therefore, the output file,
out1 , will be placed in thefiles directory. Note that thelogs2 directory exists to make this example work
correctly.

file name: my_program.condor
HTCondor submit description file for my_program
Executable = my_program
Universe = vanilla
Error = logs2/err.$(cluster)
Output = logs2/out.$(cluster)
Log = logs2/log.$(cluster)

initialdir = files

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = in1,in2

Arguments = in1 in2 out1
Queue

Example 4 – Illustrates an Error This example illustrates a job that will fail. The files specified using thetrans-
fer_input_files command work correctly (see Example 1). However, relative paths to files in thearguments
command cause the executing program to fail. The file system on the submission side may utilize relative paths
to files, however those files are placed into the single, flat, remote scratch directory on the execute machine.

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 39

file name: my_program.condor
HTCondor submit description file for my_program
Executable = my_program
Universe = vanilla
Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/in1,files/in2

Arguments = files/in1 files/in2 files/out1
Queue

This example fails with the following error:

err: files/out1: No such file or directory.

Example 5 – Illustrates an Error As with Example 4, this example illustrates a job that will fail. The executing
program’s use of absolute paths cannot work.

file name: my_program.condor
HTCondor submit description file for my_program
Executable = my_program
Universe = vanilla
Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /scratch/test/files/in1, /scrat ch/test/files/in2

Arguments = /scratch/test/files/in1 /scratch/test/file s/in2 /scratch/test/files/out1
Queue

The job fails with the following error:

err: /scratch/test/files/out1: No such file or directory.

Example 6 This example illustrates a case where the executing programcreates an output file in a directory other than
within the remote scratch directory that the program executes within. The file creation may or may not cause an
error, depending on the existence and permissions of the directories on the remote file system.

The output file /tmp/out1 is transferred back to the job’s initial working directory as
/scratch/test/out1 .

file name: my_program.condor
HTCondor submit description file for my_program
Executable = my_program
Universe = vanilla
Error = logs/err.$(cluster)
Output = logs/out.$(cluster)

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 40

Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/in1,files/in2
transfer_output_files = /tmp/out1

Arguments = in1 in2 /tmp/out1
Queue

Behavior for Error Cases

This section describes HTCondor’s behavior for some error cases in dealing with the transfer of files.

Disk Full on Execute Machine When transferring any files from the submit machine to the remote scratch directory,
if the disk is full on the execute machine, then the job is place on hold.

Error Creating Zero-Length Files on Submit Machine As a job is submitted, HTCondor creates zero-length files
as placeholders on the submit machine for the files defined byoutput anderror . If these files cannot be created,
then job submission fails.

This job submission failure avoids having the job run to completion, only to be unable to transfer the job’s output
due to permission errors.

Error When Transferring Files from Execute Machine to Submit Machine When a job exits, or potentially when
a job is evicted from an execute machine, one or more files may be transferred from the execute machine back
to the machine on which the job was submitted.

During transfer, if any of the following three similar typesof errors occur, the job is put on hold as the error
occurs.

1. If the file cannot be opened on the submit machine, for example because the system is out of inodes.

2. If the file cannot be written on the submit machine, for example because the permissions do not permit it.

3. If the write of the file on the submit machine fails, for example because the system is out of disk space.

File Transfer Using a URL

Instead of file transfer that goes only between the submit machine and the execute machine, HTCondor has the ability
to transfer files from a location specified by a URL for a job’s input file, or from the execute machine to a location spec-
ified by a URL for a job’s output file(s). This capability requires administrative set up, as described in section 3.14.2.

The transfer of an input file is restricted to vanilla and vm universe jobs only. HTCondor’s file transfer mech-
anism must be enabled. Therefore, the submit description file for the job will define bothshould_transfer_files
and when_to_transfer_output. In addition, the URL for any files specified with a URL are given in the trans-
fer_input_files command. An example portion of the submit description file for a job that has a single file specified
with a URL:

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HTCondor’s File Transfer Mechanism 41

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = http://www.full.url/path/to/fi lename

The destination file is given by the file name within the URL.

For the transfer of the entire contents of the output sandbox, which are all files that the job creates or modifies,
HTCondor’s file transfer mechanism must be enabled. In this sample portion of the submit description file, the first
two commands explicitly enable file transfer, and the addedoutput_destinationcommand provides both the protocol
to be used and the destination of the transfer.

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
output_destination = urltype://path/to/destination/di rectory

Note that with this feature, no files are transferred back to the submit machine. This does not interfere with the
streaming of output.

If only a subset of the output sandbox should be transferred,the subset is specified by further adding a submit
command of the form:

transfer_output_files = file1, file2

Requirements and Rank for File Transfer

The requirements expression for a job must depend on theshould_transfer_files command. The job
must specify the correct logic to ensure that the job is matched with a resource that meets the file transfer needs.
If no requirements expression is in the submit description file, or if the expression specified does not refer to
the attributes listed below,condor_submitadds an appropriate clause to therequirements expression for the job.
condor_submitappends these clauses with a logical AND,&&, to ensure that the proper conditions are met. Here are
the default clauses corresponding to the different values of should_transfer_files :

1. should_transfer_files = YES results in the addition of the clause(HasFileTransfer) . If the
job is always going to transfer files, it is required to match with a machine that has the capability to transfer
files.

2. should_transfer_files = NO results in the addition of(TARGET.FileSystemDomain == MY.FileSystemDomain)
In addition, HTCondor automatically adds theFileSystemDomain attribute to the job ClassAd, with what-
ever string is defined for thecondor_scheddto which the job is submitted. If the job is not using the file
transfer mechanism, HTCondor assumes it will need a shared file system, and therefore, a machine in the same
FileSystemDomain as the submit machine.

3. should_transfer_files = IF_NEEDED results in the addition of

(HasFileTransfer || (TARGET.FileSystemDomain == MY.File SystemDomain))

If HTCondor will optionally transfer files, it must require that the machine iseithercapable of transferring files
or in the same file system domain.

HTCondor Version 8.6.4 Manual

2.5.10. Environment Variables 42

To ensure that the job is matched to a machine with enough local disk space to hold all the transferred files, HT-
Condor automatically adds theDiskUsage job attribute. This attribute includes the total size of thejob’s executable
and all input files to be transferred. HTCondor then adds an additional clause to theRequirements expression that
states that the remote machine must have at least enough available disk space to hold all these files:

&& (Disk >= DiskUsage)

If should_transfer_files = IF_NEEDED and the job prefers to run on a machine in the local file system
domain over transferring files, but is still willing to allowthe job to run remotely and transfer files, theRank expression
works well. Use:

rank = (TARGET.FileSystemDomain == MY.FileSystemDomain)

TheRank expression is a floating point value, so if other items are considered in ranking the possible machines
this job may run on, add the items:

Rank = kflops + (TARGET.FileSystemDomain == MY.FileSystem Domain)

The value ofkflops can vary widely among machines, so thisRank expression will likely not do as it intends.
To place emphasis on the job running in the same file system domain, but still consider floating point speed among the
machines in the file system domain, weight the part of the expression that is matching the file system domains. For
example:

Rank = kflops + (10000 * (TARGET.FileSystemDomain == MY.FileSystemDomain))

2.5.10 Environment Variables

The environment under which a job executes often contains information that is potentially useful to the job. HTCondor
allows a user to both set and reference environment variables for a job or job cluster.

Within a submit description file, the user may define environment variables for the job’s environment by using
the environment command. See within thecondor_submitmanual page at section 11 for more details about this
command.

The submitter’s entire environment can be copied into the job ClassAd for the job at job submission. Thegetenv
command within the submit description file does this, as described at section 11.

If the environment is set with theenvironment commandand getenv is also set to true, values specified with
environment override values in the submitter’s environment, regardless of the order of theenvironment andgetenv
commands.

Commands within the submit description file may reference the environment variables of the submitter as a job is
submitted. Submit description file commands use$ENV(EnvironmentVariableName) to reference the value
of an environment variable.

HTCondor Version 8.6.4 Manual

2.5.11. Heterogeneous Submit: Execution on Differing Architectures 43

HTCondor sets several additional environment variables for each executing job that may be useful for the job to
reference.

• _CONDOR_SCRATCH_DIRgives the directory where the job may place temporary data files. This directory
is unique for every job that is run, and its contents are deleted by HTCondor when the job stops running on a
machine, no matter how the job completes.

• _CONDOR_SLOTgives the name of the slot (for SMP machines), on which the jobis run. On machines with
only a single slot, the value of this variable will be1, just like theSlotID attribute in the machine’s ClassAd.
This setting is available in all universes. See section 3.7.1 for more details about SMP machines and their
configuration.

• CONDOR_VMequivalent to_CONDOR_SLOTdescribed above, except that it is only available in the standard
universe. NOTE: As of HTCondor version 6.9.3, this environment variable isno longer used. It will only be
defined if theALLOW_VM_CRUFTconfiguration variable is set toTrue .

• X509_USER_PROXYgives the full path to the X.509 user proxy file if one is associated with the job. Typically,
a user will specifyx509userproxyin the submit description file. This setting is currently available in the local,
java, and vanilla universes.

• _CONDOR_JOB_ADis the path to a file in the job’s scratch directory which contains the job ad for the currently
running job. The job ad is current as of the start of the job, but is not updated during the running of the job. The
job may read attributes and their values out of this file as it runs, but any changes will not be acted on in any way
by HTCondor. The format is the same as the output of thecondor_q-l command. This environment variable
may be particularly useful in a USER_JOB_WRAPPER.

• _CONDOR_MACHINE_ADis the path to a file in the job’s scratch directory which contains the machine ad for
the slot the currently running job is using. The machine ad iscurrent as of the start of the job, but is not updated
during the running of the job. The format is the same as the output of thecondor_status-l command.

• _CONDOR_JOB_IWDis the path to the initial working directory the job was born with.

• _CONDOR_WRAPPER_ERROR_FILE is only set when the administrator has installed a
USER_JOB_WRAPPER. If this file exists, HTCondor assumes that the job wrapper has failed and copies the
contents of the file to the StarterLog for the administrator to debug the problem.

• CONDOR_IDSoverrides the value of configuration variableCONDOR_IDS, when set in the environment.

• CONDOR_IDis set for scheduler universe jobs to be the same as theClusterId attribute.

2.5.11 Heterogeneous Submit: Execution on Differing Architectures

If executables are available for the different platforms ofmachines in the HTCondor pool, HTCondor can be allowed
the choice of a larger number of machines when allocating a machine for a job. Modifications to the submit description
file allow this choice of platforms.

A simplified example is a cross submission. An executable is available for one platform, but the submission is done
from a different platform. Given the correct executable, the requirements command in the submit description file

HTCondor Version 8.6.4 Manual

2.5.11. Heterogeneous Submit: Execution on Differing Architectures 44

specifies the target architecture. For example, an executable compiled for a 32-bit Intel processor running Windows
Vista, submitted from an Intel architecture running Linux would add therequirement

requirements = Arch == "INTEL" && OpSys == "WINDOWS"

Without thisrequirement , condor_submitwill assume that the program is to be executed on a machine with the
same platform as the machine where the job is submitted.

Cross submission works for all universes exceptscheduler andlocal . See section 5.3.10 for how matchmak-
ing works in thegrid universe. The burden is on the user to both obtain and specifythe correct executable for the
target architecture. To list the architecture and operating systems of the machines in a pool, runcondor_status.

Vanilla Universe Example for Execution on Differing Archit ectures

A more complex example of a heterogeneous submission occurswhen a job may be executed on many different
architectures to gain full use of a diverse architecture andoperating system pool. If the executables are available
for the different architectures, then a modification to the submit description file will allow HTCondor to choose an
executable after an available machine is chosen.

A special-purpose Machine Ad substitution macro can be usedin string attributes in the submit description file.
The macro has the form

$$(MachineAdAttribute)

The $$() informs HTCondor to substitute the requestedMachineAdAttribute from the machine where the job
will be executed.

An example of the heterogeneous job submission has executables available for two platforms: RHEL 3 on both
32-bit and 64-bit Intel processors. This example usespovrayto render images using a popular free rendering engine.

The substitution macro chooses a specific executable after aplatform for running the job is chosen. These executa-
bles must therefore be named based on the machine attributesthat describe a platform. The executables named

povray.LINUX.INTEL
povray.LINUX.X86_64

will work correctly for the macro

povray.$$(OpSys).$$(Arch)

The executables or links to executables with this name are placed into the initial working directory so that they
may be found by HTCondor. A submit description file that queues three jobs for this example:

####################

HTCondor Version 8.6.4 Manual

2.5.11. Heterogeneous Submit: Execution on Differing Architectures 45

#
Example of heterogeneous submission
#
####################

universe = vanilla
Executable = povray.$$(OpSys).$$(Arch)
Log = povray.log
Output = povray.out.$(Process)
Error = povray.err.$(Process)

Requirements = (Arch == "INTEL" && OpSys == "LINUX") || \
(Arch == "X86_64" && OpSys =="LINUX")

Arguments = +W1024 +H768 +Iimage1.pov
Queue

Arguments = +W1024 +H768 +Iimage2.pov
Queue

Arguments = +W1024 +H768 +Iimage3.pov
Queue

These jobs are submitted to the vanilla universe to assure that once a job is started on a specific platform, it will
finish running on that platform. Switching platforms in the middle of job execution cannot work correctly.

There are two common errors made with the substitution macro. The first is the use of a non-existent
MachineAdAttribute . If the specifiedMachineAdAttribute does not exist in the machine’s ClassAd, then
HTCondor will place the job in the held state until the problem is resolved.

The second common error occurs due to an incomplete job set up. For example, the submit description file given
above specifies three available executables. If one is missing, HTCondor reports back that an executable is missing
when it happens to match the job with a resource that requiresthe missing binary.

Standard Universe Example for Execution on Differing Architectures

Jobs submitted to the standard universe may produce checkpoints. A checkpoint can then be used to start up and
continue execution of a partially completed job. For a partially completed job, the checkpoint and the job are specific
to a platform. If migrated to a different machine, correct execution requires that the platform must remain the same.

In previous versions of HTCondor, the author of the heterogeneous submission file would need to write extra pol-
icy expressions in therequirements expression to force HTCondor to choose the same type of platform when
continuing a checkpointed job. However, since it is needed in the common case, this additional policy is now automat-
ically added to therequirements expression. The additional expression is added provided the user does not use
CkptArch in the requirements expression. HTCondor will remain backward compatible for those users who
have explicitly specifiedCkptRequirements –implying use ofCkptArch , in their requirements expression.

HTCondor Version 8.6.4 Manual

2.5.11. Heterogeneous Submit: Execution on Differing Architectures 46

The expression added when the attributeCkptArch is not specified will default to

Added by HTCondor
CkptRequirements = ((CkptArch == Arch) || (CkptArch =?= UND EFINED)) && \

((CkptOpSys == OpSys) || (CkptOpSys =?= UNDEFINED))

Requirements = (<user specified policy>) && $(CkptRequire ments)

The behavior of theCkptRequirements expressions and its addition torequirements is as follows. The
CkptRequirements expression guarantees correct operation in the two possible cases for a job. In the first case,
the job has not produced a checkpoint. The ClassAd attributes CkptArch andCkptOpSys will be undefined, and
therefore the meta operator (=?=) evaluates to true. In the second case, the job has produced acheckpoint. The
Machine ClassAd is restricted to require further executiononly on a machine of the same platform. The attributes
CkptArch andCkptOpSys will be defined, ensuring that the platform chosen for further execution will be the
same as the one used just before the checkpoint.

Note that this restriction of platforms also applies to platforms where the executables are binary compatible.

The complete submit description file for this example:

####################
#
Example of heterogeneous submission
#
####################

universe = standard
Executable = povray.$$(OpSys).$$(Arch)
Log = povray.log
Output = povray.out.$(Process)
Error = povray.err.$(Process)

HTCondor automatically adds the correct expressions to in sure that the
checkpointed jobs will restart on the correct platform typ es.
Requirements = ((Arch == "INTEL" && OpSys == "LINUX") || \

(Arch == "X86_64" && OpSys == "LINUX"))

Arguments = +W1024 +H768 +Iimage1.pov
Queue

Arguments = +W1024 +H768 +Iimage2.pov
Queue

Arguments = +W1024 +H768 +Iimage3.pov
Queue

HTCondor Version 8.6.4 Manual

2.5.11. Heterogeneous Submit: Execution on Differing Architectures 47

Vanilla Universe Example for Execution on Differing Operating Systems

The addition of several related OpSys attributes assists inselection of specific operating systems and versions in
heterogeneous pools.

####################
#
Example of submission targeting RedHat platforms in a hete rogeneous Linux pool
#
####################

universe = vanilla
Executable = /bin/date
Log = distro.log
Output = distro.out
Error = distro.err

Requirements = (OpSysName == "RedHat")

Queue

####################
#
Example of submission targeting RedHat 6 platforms in a het erogeneous Linux pool
#
####################

universe = vanilla
Executable = /bin/date
Log = distro.log
Output = distro.out
Error = distro.err

Requirements = (OpSysName == "RedHat" && OpSysMajorVersio n == 6)

Queue

Here is a more compact way to specify a RedHat 6 platform.

####################
#
Example of submission targeting RedHat 6 platforms in a het erogeneous Linux pool
#
####################

HTCondor Version 8.6.4 Manual

2.5.12. Jobs That Require GPUs 48

universe = vanilla
Executable = /bin/date
Log = distro.log
Output = distro.out
Error = distro.err

Requirements = (OpSysAndVer == "RedHat6")

Queue

2.5.12 Jobs That Require GPUs

A job that needs GPUs to run identifies the number of GPUs needed in the submit description file by adding the submit
command

request_GPUs = <n>

where<n> is replaced by the integer quantity of GPUs required for the job. For example, a job that needs 1 GPU uses

request_GPUs = 1

Because there are different capabilities among GPUs, the job might need to further qualify which GPU of available
ones is required. Do this by specifying or adding a clause to an existingRequirementssubmit command. As an
example, assume that the job needs a speed and capacity of a CUDA GPU that meets or exceeds the value 1.2. In the
submit description file, place

request_GPUs = 1
requirements = (CUDACapability >= 1.2) && $(requirements: True)

Access to GPU resources by an HTCondor job needs special configuration of the machines that offer GPUs. Details
of how to set up the configuration are in section 3.7.1.

2.5.13 Interactive Jobs

An interactive jobis a Condor job that is provisioned and scheduled like any other vanilla universe Condor job onto
an execute machine within the pool. The result of a running interactive job is a shell prompt issued on the execute
machine where the job runs. The user that submitted the interactive job may then use the shell as desired, perhaps
to interactively run an instance of what is to become a Condorjob. This might aid in checking that the set up and
execution environment are correct, or it might provide information on the RAM or disk space needed. This job (shell)
continues until the user logs out or any other policy implementation causes the job to stop running. A useful feature
of the interactive job is that the users and jobs are accounted for within Condor’s scheduling and priority system.

HTCondor Version 8.6.4 Manual

2.5.13. Interactive Jobs 49

Neither the submit nor the execute host for interactive jobsmay be on Windows platforms.

The current working directory of the shell will be the initial working directory of the running job. The shell type
will be the default for the user that submits the job. At the shell prompt, X11 forwarding is enabled.

Each interactive job will have a job ClassAd attribute of

InteractiveJob = True

Submission of an interactive job specifies the option-interactive on thecondor_submitcommand line.

A submit description file may be specified for this interactive job. Within this submit description file, a specification
of these 5 commands will be either ignored or altered:

1. executable

2. transfer_executable

3. arguments

4. universe. The interactive job is a vanilla universe job.

5. queue <n>. In this case the value of<n> is ignored; exactly one interactive job is queued.

The submit description file may specify anything else neededfor the interactive job, such as files to transfer.

If no submit description file is specified for the job, a default oneis utilized as identified by the value of the
configuration variableINTERACTIVE_SUBMIT_FILE .

Here are examples of situations where interactive jobs may be of benefit.

• An application that cannot be batch processed might be run as an interactive job. Where input or output cannot
be captured in a file and the executable may not be modified, theinteractive nature of the job may still be run on
a pool machine, and within the purview of Condor.

• A pool machine with specialized hardware that requires interactive handling can be scheduled with an interactive
job that utilizes the hardware.

• The debugging and set up of complex jobs or environments maybenefit from an interactive session. This
interactive session provides the opportunity to run scripts or applications, and as errors are identified, they can
be corrected on the spot.

• Development may have an interactive nature, and proceed more quickly when done on a pool machine. It may
also be that the development platforms required reside within Condor’s purview as execute hosts.

HTCondor Version 8.6.4 Manual

2.6. Managing a Job 50

2.6 Managing a Job

This section provides a brief summary of what can be done oncejobs are submitted. The basic mechanisms for
monitoring a job are introduced, but the commands are discussed briefly. You are encouraged to look at the man pages
of the commands referred to (located in Chapter 11 beginningon page 748) for more information.

When jobs are submitted, HTCondor will attempt to find resources to run the jobs. A list of all those with jobs
submitted may be obtained throughcondor_statuswith the-submittersoption. An example of this would yield output
similar to:

% condor_status -submitters

Name Machine Running IdleJobs HeldJobs

ballard@cs.wisc.edu bluebird.c 0 11 0
nice-user.condor@cs. cardinal.c 6 504 0
wright@cs.wisc.edu finch.cs.w 1 1 0
jbasney@cs.wisc.edu perdita.cs 0 0 5

RunningJobs IdleJobs HeldJobs

ballard@cs.wisc.edu 0 11 0
jbasney@cs.wisc.edu 0 0 5

nice-user.condor@cs. 6 504 0
wright@cs.wisc.edu 1 1 0

Total 7 516 5

2.6.1 Checking on the progress of jobs

At any time, you can check on the status of your jobs with thecondor_qcommand. This command displays the status
of all queued jobs. An example of the output fromcondor_qis

% condor_q

-- Submitter: submit.chtc.wisc.edu : <128.104.55.9:3277 2> : submit.chtc.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

711197.0 aragorn 1/15 19:18 0+04:29:33 H 0 0.0 script.sh
894381.0 frodo 3/16 09:06 82+17:08:51 R 0 439.5 elk elk.in
894386.0 frodo 3/16 09:06 82+20:21:28 R 0 219.7 elk elk.in
894388.0 frodo 3/16 09:06 81+17:22:10 R 0 439.5 elk elk.in
1086870.0 gollum 4/27 09:07 0+00:10:14 I 0 7.3 condor_dagma n
1086874.0 gollum 4/27 09:08 0+00:00:01 H 0 0.0 RunDC.bat
1297254.0 legolas 5/31 18:05 14+17:40:01 R 0 7.3 condor_dag man
1297255.0 legolas 5/31 18:05 14+17:39:55 R 0 7.3 condor_dag man
1297256.0 legolas 5/31 18:05 14+17:39:55 R 0 7.3 condor_dag man
1297259.0 legolas 5/31 18:05 14+17:39:55 R 0 7.3 condor_dag man
1297261.0 legolas 5/31 18:05 14+17:39:55 R 0 7.3 condor_dag man
1302278.0 legolas 6/4 12:22 1+00:05:37 I 0 390.6 mdrun_1.sh
1304740.0 legolas 6/5 00:14 1+00:03:43 I 0 390.6 mdrun_1.sh
1304967.0 legolas 6/5 05:08 0+00:00:00 I 0 0.0 mdrun_1.sh

HTCondor Version 8.6.4 Manual

2.6.1. Checking on the progress of jobs 51

14 jobs; 4 idle, 8 running, 2 held

This output contains many columns of information about the queued jobs. TheST column (for status) shows the
status of current jobs in the queue:

R: The job is currently running.

I : The job is idle. It is not running right now, because it is waiting for a machine to become available.

H: The job is the hold state. In the hold state, the job will not be scheduled to run until it is released. See the
condor_holdmanual page located on page 814 and thecondor_releasemanual page located on page 869.

TheRUN_TIMEtime reported for a job is the time that has been committed to the job.

Another useful method of tracking the progress of jobs is through the job event log. The specification of alog in
the submit description file causes the progress of the job to be logged in a file. Follow the events by viewing the job
event log file. Various events such as execution commencement, checkpoint, eviction and termination are logged in
the file. Also logged is the time at which the event occurred.

When a job begins to run, HTCondor starts up acondor_shadowprocess on the submit machine. The shadow pro-
cess is the mechanism by which the remotely executing jobs can access the environment from which it was submitted,
such as input and output files.

It is normal for a machine which has submitted hundreds of jobs to have hundreds ofcondor_shadowprocesses
running on the machine. Since the text segments of all these processes is the same, the load on the submit machine
is usually not significant. If there is degraded performance, limit the number of jobs that can run simultaneously by
reducing theMAX_JOBS_RUNNINGconfiguration variable.

You can also find all the machines that are running your job through thecondor_statuscommand. For example, to
find all the machines that are running jobs submitted bybreach@cs.wisc.edu , type:

% condor_status -constraint 'RemoteUser == "breach@cs.wi sc.edu"'

Name Arch OpSys State Activity LoadAv Mem ActvtyTime

alfred.cs. INTEL LINUX Claimed Busy 0.980 64 0+07:10:02
biron.cs.w INTEL LINUX Claimed Busy 1.000 128 0+01:10:00
cambridge. INTEL LINUX Claimed Busy 0.988 64 0+00:15:00
falcons.cs INTEL LINUX Claimed Busy 0.996 32 0+02:05:03
happy.cs.w INTEL LINUX Claimed Busy 0.988 128 0+03:05:00
istat03.st INTEL LINUX Claimed Busy 0.883 64 0+06:45:01
istat04.st INTEL LINUX Claimed Busy 0.988 64 0+00:10:00
istat09.st INTEL LINUX Claimed Busy 0.301 64 0+03:45:00
...

To find all the machines that are running any job at all, type:

% condor_status -run

Name Arch OpSys LoadAv RemoteUser ClientMachine

HTCondor Version 8.6.4 Manual

2.6.2. Removing a job from the queue 52

adriana.cs INTEL LINUX 0.980 hepcon@cs.wisc.edu chevre.c s.wisc.
alfred.cs. INTEL LINUX 0.980 breach@cs.wisc.edu neufchat el.cs.w
amul.cs.wi X86_64 LINUX 1.000 nice-user.condor@cs. chevr e.cs.wisc.
anfrom.cs. X86_64 LINUX 1.023 ashoks@jules.ncsa.ui jules .ncsa.uiuc
anthrax.cs INTEL LINUX 0.285 hepcon@cs.wisc.edu chevre.c s.wisc.
astro.cs.w INTEL LINUX 1.000 nice-user.condor@cs. chevre .cs.wisc.
aura.cs.wi X86_64 WINDOWS 0.996 nice-user.condor@cs. che vre.cs.wisc.
balder.cs. INTEL WINDOWS 1.000 nice-user.condor@cs. chev re.cs.wisc.
bamba.cs.w INTEL LINUX 1.574 dmarino@cs.wisc.edu riola.c s.wisc.e
bardolph.c INTEL LINUX 1.000 nice-user.condor@cs. chevre .cs.wisc.
...

2.6.2 Removing a job from the queue

A job can be removed from the queue at any time by using thecondor_rmcommand. If the job that is being removed
is currently running, the job is killed without a checkpoint, and its queue entry is removed. The following example
shows the queue of jobs before and after a job is removed.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote
132.0 raman 4/11 16:57 0+00:00:00 R 0 1.4 hello

2 jobs; 1 idle, 1 running, 0 held

% condor_rm 132.0
Job 132.0 removed.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote

1 jobs; 1 idle, 0 running, 0 held

2.6.3 Placing a job on hold

A job in the queue may be placed on hold by running the commandcondor_hold. A job in the hold state remains in
the hold state until later released for execution by the commandcondor_release.

Use of thecondor_holdcommand causes a hard kill signal to be sent to a currently running job (one in the running
state). For a standard universe job, this means that no checkpoint is generated before the job stops running and enters
the hold state. When released, this standard universe job continues its execution using the most recent checkpoint
available.

Jobs in universes other than the standard universe that are running when placed on hold will start over from the
beginning when released.

HTCondor Version 8.6.4 Manual

2.6.4. Changing the priority of jobs 53

The manual page forcondor_holdon page 814 and the manual page forcondor_releaseon page 869 contain usage
details.

2.6.4 Changing the priority of jobs

In addition to the priorities assigned to each user, HTCondor also provides each user with the capability of assigning
priorities to each submitted job. These job priorities are local to each queue and can be any integer value, with higher
values meaning better priority.

The default priority of a job is 0, but can be changed using thecondor_priocommand. For example, to change the
priority of a job to -15,

% condor_q raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:00 I 0 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

% condor_prio -p -15 126.0

% condor_q raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:00 I -15 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

It is important to note that thesejob priorities are completely different from theuserpriorities assigned by HT-
Condor. Job priorities do not impact user priorities. They are only a mechanism for the user to identify the relative
importance of jobs among all the jobs submitted by the user tothat specific queue.

2.6.5 Why is the job not running?

Users occasionally find that their jobs do not run. There are many possible reasons why a specific job is not running.
The following prose attempts to identify some of the potential issues behind why a job is not running.

At the most basic level, the user knows the status of a job by using condor_qto see that the job is not running. By
far, the most common reason (to the novice HTCondor job submitter) why the job is not running is that HTCondor
has not yet been through its periodic negotiation cycle, in which queued jobs are assigned to machines within the pool
and begin their execution. This periodic event occurs by default once every 5 minutes, implying that the user ought to
wait a few minutes before searching for reasons why the job isnot running.

Further inquiries are dependent on whether the job has neverrun at all, or has run for at least a little bit.

For jobs that have never run, many problems can be diagnosed by using the-analyzeoption of thecondor_q
command. Here is an example; runningcondor_q’s analyzer provided the following information:

HTCondor Version 8.6.4 Manual

2.6.5. Why is the job not running? 54

$ condor_q -analyze 27497829

-- Submitter: submit-1.chtc.wisc.edu : <128.104.100.43: 9618?sock=5557_e660_3> : submit-1.chtc.wisc.edu
User priority for einstein@submit.chtc.wisc.edu is not av ailable, attempting to analyze without it.

27497829.000: Run analysis summary. Of 5257 machines,

5257 are rejected by your job's requirements
0 reject your job because of their own requirements
0 match and are already running your jobs
0 match but are serving other users
0 are available to run your job

No successful match recorded.
Last failed match: Tue Jun 18 14:36:25 2013

Reason for last match failure: no match found

WARNING: Be advised:
No resources matched request's constraints

The Requirements expression for your job is:

(OpSys == "OSX") && (TARGET.Arch == "X86_64") &&
(TARGET.Disk >= RequestDisk) && (TARGET.Memory >= Request Memory) &&
((TARGET.HasFileTransfer) || (TARGET.FileSystemDomain == MY.FileSystemDomain))

Suggestions:
Condition Machines Matched Suggestion
--------- ---------------- ----------

1 (target.OpSys == "OSX") 0 MODIFY TO "LINUX"
2 (TARGET.Arch == "X86_64") 5190
3 (TARGET.Disk >= 1) 5257
4 (TARGET.Memory >= ifthenelse(MemoryUsage isnt undefine d,MemoryUsage,1))

5257
5 ((TARGET.HasFileTransfer) || (TARGET.FileSystemDomai n == "submit-1.chtc.wisc.edu"))

5257

This example also shows that the job does not run because the platform requested, Mac OS X, is not available on
any of the machines in the pool. Recall that unless informed otherwise in theRequirementsexpression in the submit
description file, the platform requested for an execute machine will be the same as the platform wherecondor_submit
is run to submit the job. And, while Mac OS X is a Unix-type operating system, it is not the same as Linux, and thus
will not match with machines running Linux.

While the analyzer can diagnose most common problems, thereare some situations that it cannot reliably detect
due to the instantaneous and local nature of the informationit uses to detect the problem. Thus, it may be that the
analyzer reports that resources are available to service the request, but the job still has not run. In most of these
situations, the delay is transient, and the job will run following the next negotiation cycle.

A second class of problems represents jobs that do or did run,for at least a short while, but are no longer running.
The first issue is identifying whether the job is in this category. Thecondor_qcommand is not enough; it only tells
the current state of the job. The needed information will be in thelog file or theerror file, as defined in the submit
description file for the job. If these files are not defined, then there is little hope of determining if the job ran at all. For
a job that ran, even for the briefest amount of time, thelog file will contain an event of type 1, which will contain the
stringJob executing on host .

HTCondor Version 8.6.4 Manual

2.6.5. Why is the job not running? 55

A job may run for a short time, before failing due to a file permission problem. The log file used by thecon-
dor_shadowdaemon will contain more information if this is the problem.This log file is associated with the machine
on which the job was submitted. The location and name of this log file may be discovered on the submitting machine,
using the command

% condor_config_val SHADOW_LOG

Memory and swap space problems may be identified by looking atthe log file used by thecondor_schedddaemon.
The location and name of this log file may be discovered on the submitting machine, using the command

% condor_config_val SCHEDD_LOG

A swap space problem will show in the log with the following message:

2/3 17:46:53 Swap space estimate reached! No more jobs can be run!
12/3 17:46:53 Solution: get more swap space, or set RESERVED _SWAP = 0
12/3 17:46:53 0 jobs matched, 1 jobs idle

As an explanation, HTCondor computes the total swap space onthe submit machine. It then tries to limit the total
number of jobs it will spawn based on an estimate of the size ofthecondor_shadowdaemon’s memory footprint and
a configurable amount of swap space that should be reserved. This is done to avoid the situation within a very large
pool in which all the jobs are submitted from a single host. The huge number ofcondor_shadowprocesses would
overwhelm the submit machine, and it would run out of swap space and thrash.

Things can go wrong if a machine has a lot of physical memory and little or no swap space. HTCondor does not
consider the physical memory size, so the situation occurs where HTCondor thinks it has no swap space to work with,
and it will not run the submitted jobs.

To see how much swap space HTCondor thinks a given machine has, use the output of acondor_statuscommand
of the following form:

% condor_status -schedd [hostname] -long | grep VirtualMem ory

If the value listed is 0, then this is what is confusing HTCondor. There are two ways to fix the problem:

1. Configure the machine with some real swap space.

2. Disable this check within HTCondor. Define the amount of reserved swap space for the submit machine to 0.
SetRESERVED_SWAPto 0 in the configuration file:

RESERVED_SWAP = 0

and then send acondor_restartto the submit machine.

HTCondor Version 8.6.4 Manual

2.6.6. Job in the Hold State 56

2.6.6 Job in the Hold State

A variety of errors and unusual conditions may cause a job to be placed into the Hold state. The job will stay in this
state and in the job queue until conditions are corrected andcondor_releaseis invoked.

A table listing the reasons why a job may be held is at section 12. A string identifying the reason that a particular
job is in the Hold state may be displayed by invokingcondor_q. For the example job ID 16.0, use:

condor_q -hold 16.0

This command prints information about the job, including the job ClassAd attributeHoldReason .

2.6.7 In the Job Event Log File

In a job event log file are a listing of events in chronologicalorder that occurred during the life of one or more jobs.
The formatting of the events is always the same, so that they may be machine readable. Four fields are always present,
and they will most often be followed by other fields that give further information that is specific to the type of event.

The first field in an event is the numeric value assigned as the event type in a 3-digit format. The second field
identifies the job which generated the event. Within parentheses are the job ClassAd attributes ofClusterId value,
ProcId value, and the node number for parallel universe jobs or a setof zeros (for jobs run under all other universes),
separated by periods. The third field is the date and time of the event logging. The fourth field is a string that briefly
describes the event. Fields that follow the fourth field givefurther information for the specific event type.

These are all of the events that can show up in a job log file:

Event Number: 000
Event Name:Job submitted
Event Description: This event occurs when a user submits a job. It is the first event you will see for a job, and it
should only occur once.

Event Number: 001
Event Name:Job executing
Event Description: This shows up when a job is running. It might occur more than once.

Event Number: 002
Event Name:Error in executable
Event Description: The job could not be run because the executable was bad.

Event Number: 003
Event Name:Job was checkpointed
Event Description: The job’s complete state was written to a checkpoint file. This might happen without the job
being removed from a machine, because the checkpointing canhappen periodically.

Event Number: 004
Event Name:Job evicted from machine

HTCondor Version 8.6.4 Manual

2.6.7. In the Job Event Log File 57

Event Description: A job was removed from a machine before it finished, usually for a policy reason. Perhaps an
interactive user has claimed the computer, or perhaps another job is higher priority.

Event Number: 005
Event Name:Job terminated
Event Description: The job has completed.

Event Number: 006
Event Name: Image size of job updated
Event Description: An informational event, to update the amount of memory that the job is using while running. It
does not reflect the state of the job.

Event Number: 007
Event Name:Shadow exception
Event Description: Thecondor_shadow, a program on the submit computer that watches over the job and performs
some services for the job, failed for some catastrophic reason. The job will leave the machine and go back into the
queue.

Event Number: 008
Event Name:Generic log event
Event Description: Not used.

Event Number: 009
Event Name:Job aborted
Event Description: The user canceled the job.

Event Number: 010
Event Name:Job was suspended
Event Description: The job is still on the computer, but it is no longer executing. This is usually for a policy reason,
such as an interactive user using the computer.

Event Number: 011
Event Name:Job was unsuspended
Event Description: The job has resumed execution, after being suspended earlier.

Event Number: 012
Event Name:Job was held
Event Description: The job has transitioned to the hold state. This might happenif the user applies thecondor_hold
command to the job.

Event Number: 013
Event Name:Job was released
Event Description: The job was in the hold state and is to be re-run.

Event Number: 014
Event Name:Parallel node executed
Event Description: A parallel universe program is running on a node.

Event Number: 015

HTCondor Version 8.6.4 Manual

2.6.7. In the Job Event Log File 58

Event Name:Parallel node terminated
Event Description: A parallel universe program has completed on a node.

Event Number: 016
Event Name:POST script terminated
Event Description: A node in a DAGMan work flow has a script that should be run aftera job. The script is run on
the submit host. This event signals that the post script has completed.

Event Number: 017
Event Name:Job submitted to Globus
Event Description: A grid job has been delegated to Globus (version 2, 3, or 4). This event is no longer used.

Event Number: 018
Event Name:Globus submit failed
Event Description: The attempt to delegate a job to Globus failed.

Event Number: 019
Event Name:Globus resource up
Event Description: The Globus resource that a job wants to run on was unavailable, but is now available. This event
is no longer used.

Event Number: 020
Event Name:Detected Down Globus Resource
Event Description: The Globus resource that a job wants to run on has become unavailable. This event is no longer
used.

Event Number: 021
Event Name:Remote error
Event Description: Thecondor_starter(which monitors the job on the execution machine) has failed.

Event Number: 022
Event Name:Remote system call socket lost
Event Description: Thecondor_shadowandcondor_starter(which communicate while the job runs) have lost con-
tact.

Event Number: 023
Event Name:Remote system call socket reestablished
Event Description: Thecondor_shadowandcondor_starter(which communicate while the job runs) have been able
to resume contact before the job lease expired.

Event Number: 024
Event Name:Remote system call reconnect failure
Event Description: Thecondor_shadowandcondor_starter(which communicate while the job runs) were unable to
resume contact before the job lease expired.

Event Number: 025
Event Name:Grid Resource Back Up
Event Description: A grid resource that was previously unavailable is now available.

HTCondor Version 8.6.4 Manual

2.6.8. Job Completion 59

Event Number: 026
Event Name:Detected Down Grid Resource
Event Description: The grid resource that a job is to run on is unavailable.

Event Number: 027
Event Name:Job submitted to grid resource
Event Description: A job has been submitted, and is under the auspices of the gridresource.

Event Number: 028
Event Name:Job ad information event triggered.
Event Description: Extra job ClassAd attributes are noted. This event is written as a supplement to other events when
the configuration parameterEVENT_LOG_JOB_AD_INFORMATION_ATTRSis set.

Event Number: 029
Event Name:The job’s remote status is unknown
Event Description: No updates of the job’s remote status have been received for 15 minutes.

Event Number: 030
Event Name:The job’s remote status is known again
Event Description: An update has been received for a job whose remote status was previous logged as unknown.

Event Number: 031
Event Name:Job stage in
Event Description: A grid universe job is doing the stage in of input files.

Event Number: 032
Event Name:Job stage out
Event Description: A grid universe job is doing the stage out of output files.

Event Number: 033
Event Name:Job ClassAd attribute update
Event Description: A Job ClassAd attribute is changed due to action by thecondor_schedddaemon. This includes
changes bycondor_prio.

Event Number: 034
Event Name:Pre Skip event
Event Description: For DAGMan, this event is logged if a PRE SCRIPT exits with thedefined PRE_SKIP value in
the DAG input file. This makes it possible for DAGMan to do recovery in a workflow that has such an event, as it
would otherwise not have any event for the DAGMan node to which the script belongs, and in recovery, DAGMan’s
internal tables would become corrupted.

2.6.8 Job Completion

When an HTCondor job completes, either through normal meansor by abnormal termination by signal, HTCondor
will remove it from the job queue. That is, the job will no longer appear in the output ofcondor_q, and the job will be
inserted into the job history file. Examine the job history file with thecondor_historycommand. If there is a log file
specified in the submit description file for the job, then the job exit status will be recorded there as well.

HTCondor Version 8.6.4 Manual

2.7. Priorities and Preemption 60

By default, HTCondor does not send an email message when the job completes. Modify this behavior with the
notification command in the submit description file. The message will include the exit status of the job, which is the
argument that the job passed to the exit system call when it completed, or it will be notification that the job was killed
by a signal. Notification will also include the following statistics (as appropriate) about the job:

Submitted at: when the job was submitted withcondor_submit

Completed at: when the job completed

Real Time: the elapsed time between when the job was submitted and when it completed, given in a form of
<days> <hours>:<minutes>:<seconds>

Virtual Image Size: memory size of the job, computed when the job checkpoints

Statistics about just the last time the job ran:

Run Time: total time the job was running, given in the form<days> <hours>:<minutes>:<seconds>

Remote User Time: total CPU time the job spent executing in user mode on remote machines; this does
not count time spent on run attempts that were evicted without a checkpoint. Given in the form
<days> <hours>:<minutes>:<seconds>

Remote System Time:total CPU time the job spent executing in system mode (the time spent at system calls);
this does not count time spent on run attempts that were evicted without a checkpoint. Given in the form
<days> <hours>:<minutes>:<seconds>

The Run Time accumulated by all run attempts are summarized with the time given in the form
<days> <hours>:<minutes>:<seconds> .

And, statistics about the bytes sent and received by the lastrun of the job and summed over all attempts at running
the job are given.

2.7 Priorities and Preemption

HTCondor has two independent priority controls:job priorities anduserpriorities.

2.7.1 Job Priority

Job priorities allow a user to assign a priority level to eachof their own submitted HTCondor jobs, in order to control
the order of job execution. This handles the situation in which a user has more jobs queued, waiting to be executed,
than there are machines available. Setting a job priority identifies the ordering in which that user’s jobs are executed;
a higher job priority job is matched and executed before a lower priority job. A job priority can be any integer, and
larger values are of higher priority. So, 0 is a higher job priority than -3, and 6 is a higher job priority than 5.

HTCondor Version 8.6.4 Manual

2.7.2. User priority 61

For the simple case, each job can be given a distinct priority. For an already queued job, its priority may be set
with the condor_priocommand; see the example in section 2.6.4, or thecondor_priomanual page 839 for details.
This sets the value of job ClassAd attributeJobPrio .

A fine-grained categorization of jobs and their ordering is available for experts by using the job ClassAd attributes:
PreJobPrio1 , PreJobPrio2 , JobPrio , PostJobPrio1 , or PostJobPrio2 .

2.7.2 User priority

Machines are allocated to users based upon a user’s priority. A lower numerical value for user priority means higher
priority, so a user with priority 5 will get more resources than a user with priority 50. User priorities in HTCondor
can be examined with thecondor_userpriocommand (see page 979). HTCondor administrators can set andchange
individual user priorities with the same utility.

HTCondor continuously calculates the share of available machines that each user should be allocated. This share
is inversely related to the ratio between user priorities. For example, a user with a priority of 10 will get twice as many
machines as a user with a priority of 20. The priority of each individual user changes according to the number of
resources the individual is using. Each user starts out withthe best possible priority: 0.5. If the number of machines a
user currently has is greater than the user priority, the user priority will worsen by numerically increasing over time.
If the number of machines is less then the priority, the priority will improve by numerically decreasing over time. The
long-term result is fair-share access across all users. Thespeed at which HTCondor adjusts the priorities is controlled
with the configuration variablePRIORITY_HALFLIFE , an exponential half-life value. The default is one day. If
a user that has user priority of 100 and is utilizing 100 machines removes all his/her jobs, one day later that user’s
priority will be 50, and two days later the priority will be 25.

HTCondor enforces that each user gets his/her fair share of machines according to user priority both when allo-
cating machines which become available and by priority preemption of currently allocated machines. For instance,
if a low priority user is utilizing all available machines and suddenly a higher priority user submits jobs, HTCondor
will immediately take a checkpoint and vacate jobs belonging to the lower priority user. This will free up machines
that HTCondor will then give over to the higher priority user. HTCondor will not starve the lower priority user; it will
preempt only enough jobs so that the higher priority user’s fair share can be realized (based upon the ratio between
user priorities). To prevent thrashing of the system due to priority preemption, the HTCondor site administrator can
define aPREEMPTION_REQUIREMENTSexpression in HTCondor’s configuration. The default expression that ships
with HTCondor is configured to only preempt lower priority jobs that have run for at least one hour. So in the previous
example, in the worse case it could take up to a maximum of one hour until the higher priority user receives a fair share
of machines. For a general discussion of limiting preemption, please see section??of the Administrator’s manual.

User priorities are keyed on<username>@<domain> , for examplejohndoe@cs.wisc.edu . The domain
name to use, if any, is configured by the HTCondor site administrator. Thus, user priority and therefore resource
allocation is not impacted by which machine the user submitsfrom or even if the user submits jobs from multiple
machines.

An extra feature is the ability to submit a job as anice job (see page??). Nice jobs artificially boost the user
priority by ten million just for the nice job. This effectively means that nice jobs will only run on machines that no
other HTCondor job (that is, non-niced job) wants. In a similar fashion, an HTCondor administrator could set the user
priority of any specific HTCondor user very high. If done, forexample, with a guest account, the guest could only use

HTCondor Version 8.6.4 Manual

2.7.3. Details About How HTCondor Jobs Vacate Machines 62

cycles not wanted by other users of the system.

2.7.3 Details About How HTCondor Jobs Vacate Machines

When HTCondor needs a job to vacate a machine for whatever reason, it sends the job an asynchronous signal specified
in theKillSig attribute of the job’s ClassAd. The value of this attribute can be specified by the user at submit time
by placing thekill_sig option in the HTCondor submit description file.

If a program wanted to do some special work when required to vacate a machine, the program may set up a signal
handler to use a trappable signal as an indication to clean up. When submitting this job, this clean up signal is specified
to be used withkill_sig. Note that the clean up work needs to be quick. If the job takestoo long to go away, HTCondor
follows up with a SIGKILL signal which immediately terminates the process.

A job that is linked usingcondor_compileand is subsequently submitted into the standard universe, will checkpoint
and exit upon receipt of a SIGTSTP signal. Thus, SIGTSTP is the default value forKillSig when submitting to the
standard universe. The user’s code may still checkpoint itself at any time by calling one of the following functions
exported by the HTCondor libraries:

ckpt()() Performs a checkpoint and then returns.

ckpt_and_exit()() Checkpoints and exits; HTCondor will then restart the process again later, potentially on a
different machine.

For jobs submitted into the vanilla universe, the default value for KillSig is SIGTERM, the usual method to
nicely terminate a Unix program.

2.8 Java Applications

HTCondor allows users to access a wide variety of machines distributed around the world. The Java Virtual Machine
(JVM) provides a uniform platform on any machine, regardless of the machine’s architecture or operating system.
The HTCondor Java universe brings together these two features to create a distributed, homogeneous computing
environment.

Compiled Java programs can be submitted to HTCondor, and HTCondor can execute the programs on any machine
in the pool that will run the Java Virtual Machine.

Thecondor_statuscommand can be used to see a list of machines in the pool for which HTCondor can use the
Java Virtual Machine.

% condor_status -java

Name JavaVendor Ver State Activity LoadAv Mem ActvtyTime

adelie01.cs.wisc.e Sun Micros 1.6.0_ Claimed Busy 0.090 87 3 0+00:02:46
adelie02.cs.wisc.e Sun Micros 1.6.0_ Owner Idle 0.210 873 0 +03:19:32

HTCondor Version 8.6.4 Manual

2.8.1. A Simple Example Java Application 63

slot10@bio.cs.wisc Sun Micros 1.6.0_ Unclaimed Idle 0.000 118 7+03:13:28
slot2@bio.cs.wisc. Sun Micros 1.6.0_ Unclaimed Idle 0.000 118 7+03:13:28
...

If there is no output from thecondor_statuscommand, then HTCondor does not know the location details ofthe
Java Virtual Machine on machines in the pool, or no machines have Java correctly installed. In this case, contact your
system administrator or see section 3.15 for more information on getting HTCondor to work together with Java.

2.8.1 A Simple Example Java Application

Here is a complete, if simple, example. Start with a simple Java program,Hello.java :

public class Hello {
public static void main(String [] args) {

System.out.println("Hello, world!\n");
}

}

Build this program using your Java compiler. On most platforms, this is accomplished with the command

javac Hello.java

Submission to HTCondor requires a submit description file. If submitting where files are accessible using a shared
file system, this simple submit description file works:

####################
#
Example 1
Execute a single Java class
#
####################

universe = java
executable = Hello.class
arguments = Hello
output = Hello.output
error = Hello.error
queue

The Java universe must be explicitly selected.

The main class of the program is given in theexecutablestatement. This is a file name which contains the entry
point of the program. The name of the main class (not a file name) must be specified as the first argument to the
program.

HTCondor Version 8.6.4 Manual

2.8.2. Less Simple Java Specifications 64

If submitting the job where a shared file system isnot accessible, the submit description file becomes:

####################
#
Example 2
Execute a single Java class,
not on a shared file system
#
####################

universe = java
executable = Hello.class
arguments = Hello
output = Hello.output
error = Hello.error
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
queue

For more information about using HTCondor’s file transfer mechanisms, see section 2.5.9.

To submit the job, where the submit description file is namedHello.cmd , execute

condor_submit Hello.cmd

To monitor the job, the commandscondor_qandcondor_rmare used as with all jobs.

2.8.2 Less Simple Java Specifications

Specifying more than 1 class file.For programs that consist of more than one.class file, identify the files in the
submit description file:

executable = Stooges.class
transfer_input_files = Larry.class,Curly.class,Moe.cl ass

The executablecommand does not change. It still identifies the class file that contains the program’s entry
point.

JAR files. If the program consists of a large number of class files, it maybe easier to collect them all together into a
single Java Archive (JAR) file. A JAR can be created with:

% jar cvf Library.jar Larry.class Curly.class Moe.class St ooges.class

HTCondor must then be told where to find the JAR as well as to usethe JAR. The JAR file that contains the
entry point is specified with theexecutablecommand. All JAR files are specified with thejar_files command.
For this example that collected all the class files into a single JAR file, the submit description file contains:

HTCondor Version 8.6.4 Manual

2.8.2. Less Simple Java Specifications 65

executable = Library.jar
jar_files = Library.jar

Note that the JVM must know whether it is receiving JAR files orclass files. Therefore, HTCondor must also be
informed, in order to pass the information on to the JVM. Thatis why there is a difference in submit description
file commands for the two ways of specifying files (transfer_input_files andjar_files).

If there are multiple JAR files, theexecutablecommand specifies the JAR file that contains the program’s entry
point. This file is also listed with thejar_files command:

executable = sortmerge.jar
jar_files = sortmerge.jar,statemap.jar

Using a third-party JAR file. As HTCondor requires that all JAR files (third-party or not) be available, specification
of a third-party JAR file is no different than other JAR files. If the sortmerge example above also relies on version
2.1 from http://jakarta.apache.org/commons/lang/, and this JAR file has been placed in the same directory with
the other JAR files, then the submit description file contains

executable = sortmerge.jar
jar_files = sortmerge.jar,statemap.jar,commons-lang-2 .1.jar

An executable JAR file. When the JAR file is an executable, specify the program’s entry point in thearguments
command:

executable = anexecutable.jar
jar_files = anexecutable.jar
arguments = some.main.ClassFile

Discovering the main class within a JAR file. As of Java version 1.4, Java virtual machines have a-jar option,
which takes a single JAR file as an argument. With this option,the Java virtual machine discovers the main
class to run from the contents of the Manifest file, which is bundled within the JAR file. HTCondor’sjava
universe does not support this discovery, so before submitting the job, the name of the main class must be
identified.

For a Java application which is run on the command line with

java -jar OneJarFile.jar

the equivalent version after discovery might look like

java -classpath OneJarFile.jar TheMainClass

The specified value forTheMainClass can be discovered by unjarring the JAR file, and looking for the
MainClass definition in the Manifest file. Use that definitionin the HTCondor submit description file. Partial
contents of that file Java universe submit file will appear as

universe = java
executable = OneJarFile.jar
jar_files = OneJarFile.jar
Arguments = TheMainClass More-Arguments
queue

HTCondor Version 8.6.4 Manual

2.8.3. Chirp I/O 66

Packages.An example of a Java class that is declared in a non-default package is

package hpc;

public class CondorDriver
{

// class definition here
}

The JVM needs to know the location of this package. It is passed as a command-line argument, implying the
use of the naming convention and directory structure.

Therefore, the submit description file for this example willcontain

arguments = hpc.CondorDriver

JVM-version specific features. If the program uses Java features found only in certain JVMs,then the Java applica-
tion submitted to HTCondor must only run on those machines within the pool that run the needed JVM. Inform
HTCondor by adding arequirements statement to the submit description file. For example, to require
version 3.2, add to the submit description file:

requirements = (JavaVersion=="3.2")

Benchmark speeds.Each machine with Java capability in an HTCondor pool will execute a benchmark to deter-
mine its speed. The benchmark is taken when HTCondor is started on the machine, and it uses the SciMark2
(http://math.nist.gov/scimark2) benchmark. The result of the benchmark is held as an attribute within the ma-
chine ClassAd. The attribute is calledJavaMFlops . Jobs that are run under the Java universe (as all other
HTCondor jobs) may prefer or require a machine of a specific speed by settingrank or requirements in
the submit description file. As an example, to execute only onmachines of a minimum speed:

requirements = (JavaMFlops>4.5)

JVM options. Options to the JVM itself are specified in the submit description file:

java_vm_args = -DMyProperty=Value -verbose:gc -Xmx1024m

These options are those which go after the java command, but before the user’s main class. Do not use this to
set the classpath, as HTCondor handles that itself. Settingthese options is useful for setting system properties,
system assertions and debugging certain kinds of problems.

2.8.3 Chirp I/O

If a job has more sophisticated I/O requirements that cannotbe met by HTCondor’s file transfer mechanism, then the
Chirp facility may provide a solution. Chirp has two advantages over simple, whole-file transfers. First, it permits
the input files to be decided upon at run-time rather than submit time, and second, it permits partial-file I/O with

HTCondor Version 8.6.4 Manual

http://math.nist.gov/scimark2

2.8.3. Chirp I/O 67

results than can be seen as the program executes. However, small changes to the program are required in order to take
advantage of Chirp. Depending on the style of the program, use either Chirp I/O streams or UNIX-like I/O functions.

Chirp I/O streams are the easiest way to get started. Modify the program to use the objectsChirpInputStream
andChirpOutputStream instead ofFileInputStream andFileOutputStream . These classes are com-
pletely documented in the HTCondor Software Developer’s Kit (SDK). Here is a simple code example:

import java.io. * ;
import edu.wisc.cs.condor.chirp. * ;

public class TestChirp {

public static void main(String args[]) {

try {
BufferedReader in = new BufferedReader(

new InputStreamReader(
new ChirpInputStream("input")));

PrintWriter out = new PrintWriter(
new OutputStreamWriter(

new ChirpOutputStream("output")));

while(true) {
String line = in.readLine();
if(line==null) break;
out.println(line);

}
out.close();

} catch(IOException e) {
System.out.println(e);

}
}

}

To perform UNIX-like I/O with Chirp, create aChirpClient object. This object supports familiar operations
such asopen , read , write , andclose . Exhaustive detail of the methods may be found in the HTCondor SDK,
but here is a brief example:

import java.io. * ;
import edu.wisc.cs.condor.chirp. * ;

public class TestChirp {

public static void main(String args[]) {

HTCondor Version 8.6.4 Manual

2.8.3. Chirp I/O 68

try {
ChirpClient client = new ChirpClient();
String message = "Hello, world!\n";
byte [] buffer = message.getBytes();

// Note that we should check that actual==length.
// However, skip it for clarity.

int fd = client.open("output","wct",0777);
int actual = client.write(fd,buffer,0,buffer.length);
client.close(fd);

client.rename("output","output.new");
client.unlink("output.new");

} catch(IOException e) {
System.out.println(e);

}
}

}

Regardless of which I/O style, the Chirp library must be specified and included with the job. The Chirp JAR
(Chirp.jar) is found in thelib directory of the HTCondor installation. Copy it into your working directory in
order to compile the program after modification to use Chirp I/O.

% condor_config_val LIB
/usr/local/condor/lib
% cp /usr/local/condor/lib/Chirp.jar .

Rebuild the program with the Chirp JAR file in the class path.

% javac -classpath Chirp.jar:. TestChirp.java

The Chirp JAR file must be specified in the submit description file. Here is an example submit description file that
works for both of the given test programs:

universe = java
executable = TestChirp.class
arguments = TestChirp
jar_files = Chirp.jar
+WantIOProxy = True
queue

HTCondor Version 8.6.4 Manual

2.9. Parallel Applications (Including MPI Applications) 69

2.9 Parallel Applications (Including MPI Applications)

HTCondor’s parallel universe supports jobs that span multiple machines, where the multiple processes within a job
must be running concurrently on these multiple machines, perhaps communicating with each other. The parallel uni-
verse provides machine scheduling, but does not enforce a particular programming paradigm for the underlying appli-
cations. Thus, parallel universe jobs may run under variousMPI implementations as well as under other programming
environments.

The parallel universe supersedes the mpi universe. The mpi universe eventually will be removed from HTCondor.

2.9.1 How Parallel Jobs Run

Parallel universe jobs are submitted from the machine running the dedicated scheduler. The dedicated scheduler
matches and claims a fixed number of machines (slots) for the parallel universe job, and when a sufficient number of
machines are claimed, the parallel job is started on each claimed slot.

Each invocation ofcondor_submitassigns a singleClusterId for what is considered the single parallel job
submitted. Themachine_countsubmit command identifies how many machines (slots) are to beallocated. Each
instance of thequeuesubmit command acquires and claims the number of slots specified bymachine_count. Each
of these slots shares a common job ClassAd and will have the sameProcId job ClassAd attribute value.

Once the correct number of machines are claimed, theexecutableis started at more or less the same time on
all machines. If desired, a monotonically increasing integer value that starts at 0 may be provided to each of these
machines. The macro$(Node) is similar to the MPIrank construct. This macro may be used within the submit
description file in either theargumentsor environment command. Thus, as the executable runs, it may discover its
own$(Node) value.

Node 0 has special meaning and consequences for the paralleljob. The completion of a parallel job is implied and
taken to be when the Node 0 executable exits. All other nodes that are part of the parallel job and that have not yet
exited on their own are killed. This default behavior may be altered by placing the line

+ParallelShutdownPolicy = "WAIT_FOR_ALL"

in the submit description file. It causes HTCondor to wait until every node in the parallel job has completed to consider
the job finished.

2.9.2 Parallel Jobs and the Dedicated Scheduler

To run parallel universe jobs, HTCondor must be configured such that machines running parallel jobs arededicated.
Note that dedicated has a very specific meaning in HTCondor: while dedicated machines can run serial jobs, they
prefer to run parallel jobs, and dedicated machines never preempt a parallel job once it starts running.

A machine becomes a dedicated machine when an administratorconfigures it to accept parallel jobs from one
specific dedicated scheduler. Note the difference between parallel and serial jobs. While any scheduler in a pool

HTCondor Version 8.6.4 Manual

2.9.3. Submission Examples 70

can send serial jobs to any machine, only the designated dedicated scheduler may send parallel universe jobs to a
dedicated machine. Dedicated machines must be specially configured. See section 3.14.8 for a description of the
necessary configuration, as well as examples. Usually, a single dedicated scheduler is configured for a pool which can
run parallel universe jobs, and thiscondor_schedddaemon becomes the single machine from which parallel universe
jobs are submitted.

The following command line will list the execute machines inthe local pool which have been configured to use a
dedicated scheduler, also printing the name of that dedicated scheduler. In order to run parallel jobs, this name will be
defined to be the string"DedicatedScheduler@" , prepended to the name of the scheduler host.

condor_status -const '!isUndefined(DedicatedScheduler)' \
-format "%s\t" Machine -format "%s\n" DedicatedScheduler

execute1.example.com DedicatedScheduler@submit.examp le.com
execute2.example.com DedicatedScheduler@submit.examp le.com

If this command emits no lines of output, then then pool is notcorrectly configured to run parallel jobs. Make sure
that the name of the scheduler is correct. The string after the @sign should match the name of thecondor_schedd
daemon, as returned by the command

condor_status -schedd

2.9.3 Submission Examples

Simplest Example

Here is a submit description file for a parallel universe job example that is as simple as possible:

###
submit description file for a parallel universe job
###
universe = parallel
executable = /bin/sleep
arguments = 30
machine_count = 8
log = log
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
queue

This job specifies theuniverse asparallel, letting HTCondor know that dedicated resources are required. The
machine_countcommand identifies that eight machines are required for thisjob.

HTCondor Version 8.6.4 Manual

2.9.3. Submission Examples 71

Because norequirementsare specified, the dedicated scheduler claims eight machines with the same architecture
and operating system as the submit machine. When all the machines are ready, it invokes the/bin/sleepcommand,
with a command line argument of 30 on each of the eight machines more or less simultaneously. Job events are written
to the log specified in thelog command.

The file transfer mechanism is enabled for this parallel job,such that if any of the eight claimed execute ma-
chines does not share a file system with the submit machine, HTCondor will correctly transfer the executable. This
/bin/sleepexample implies that the submit machine is running a Unix operating system, and the default assumption
for submission from a Unix machine would be that there is a shared file system.

Example with Operating System Requirements

Assume that the pool contains Linux machines installed witheither a RedHat or an Ubuntu operating system. If
the job should run only on RedHat platforms, the requirements expression may specify this:

###
submit description file for a parallel program
targeting RedHat machines
###
universe = parallel
executable = /bin/sleep
arguments = 30
machine_count = 8
log = log
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
requirements = (OpSysName == "RedHat")
queue

The machine selection may be further narrowed, instead using theOpSysAndVer attribute.

###
submit description file for a parallel program
targeting RedHat 6 machines
###
universe = parallel
executable = /bin/sleep
arguments = 30
machine_count = 8
log = log
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
requirements = (OpSysAndVer == "RedHat6")
queue

Using the$(Node) Macro

######################################
submit description file for a parallel program

HTCondor Version 8.6.4 Manual

2.9.3. Submission Examples 72

showing the $(Node) macro
######################################
universe = parallel
executable = /bin/cat
log = logfile
input = infile.$(Node)
output = outfile.$(Node)
error = errfile.$(Node)
machine_count = 4
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
queue

The$(Node) macro is expanded to values of 0-3 as the job instances are about to be started. This assigns unique
names to the input and output files to be transferred or accessed from the shared file system. The$(Node) value is
fixed for the entire length of the job.

Differing Requirements for the Machines

Sometimes one machine’s part in a parallel job will have specialized needs. These can be handled with aRequire-
mentssubmit command that also specifies the number of needed machines.

######################################
Example submit description file
with 4 total machines and differing requirements
######################################
universe = parallel
executable = special.exe
machine_count = 1
requirements = (machine == "machine1@example.com")
queue

machine_count = 3
requirements = (machine =!= "machine1@example.com")
queue

The dedicated scheduler acquires and claims four machines.All four share the same value ofClusterId ,
as this value is associated with this single parallel job. The existence of a secondqueuecommand causes a total
of two ProcId values to be assigned for this parallel job. TheProcId values are assigned based on ordering
within the submit description file. Value 0 will be assigned for the single executable that must be executed on ma-
chine1@example.com, and the value 1 will be assigned for theother three that must be executed elsewhere.

Requesting multiple cores per slot

If the parallel program has a structure that benefits from running on multiple cores within the same slot, multi-core
slots may be specified.

######################################

HTCondor Version 8.6.4 Manual

2.9.3. Submission Examples 73

submit description file for a parallel program
that needs 8-core slots
######################################
universe = parallel
executable = foo.sh
log = logfile
input = infile.$(Node)
output = outfile.$(Node)
error = errfile.$(Node)
machine_count = 2
request_cpus = 8
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
queue

This parallel job causes the scheduler to match and claim twomachines, where each of the machines (slots) has
eight cores. The parallel job is assigned a singleClusterId and a singleProcId , meaning that there is a single
job ClassAd for this job.

The executable,foo.sh , is started at the same time on a single core within each of thetwo machines (slots). It
is presumed that the executable will take care of invoking processes that are to run on the other seven CPUs (cores)
associated with the slot.

Potentially fewer machines are impacted with this specification, as compared with the request that contains

machine_count = 16
request_cpus = 1

The interaction of the eight cores within the single slot maybe advantageous with respect to communication delay or
memory access. But, 8-core slots must be available within the pool.

MPI Applications

MPI applications use a single executable, invoked on one or more machines (slots), executing in parallel. The
various implementations of MPI such as Open MPI and MPICH require further framework. HTCondor supports this
necessary framework through a user-modified script. This implementation-dependent script becomes the HTCondor
executable. The script sets up the framework, and then it invokes the MPI application’s executable.

The scripts are located in the$(RELEASE_DIR)/etc/examples directory. The script for the Open MPI
implementation isopenmpiscript . The scripts for MPICH implementations aremp1script andmp2script .
An MPICH3 script is not available at this time. These scriptsrely on runningsshfor communication between the
nodes of the MPI application. Thesshdaemon on Unix platforms restricts connections to the approved shells listed in
the/etc/shells file.

Here is a sample submit description file for an MPICH MPI application:

######################################
Example submit description file
for MPICH 1 MPI

HTCondor Version 8.6.4 Manual

2.9.3. Submission Examples 74

works with MPICH 1.2.4, 1.2.5 and 1.2.6
######################################
universe = parallel
executable = mp1script
arguments = my_mpich_linked_executable arg1 arg2
machine_count = 4
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = my_mpich_linked_executable
queue

The executableis themp1script script that will have been modified for this MPI application.This script is
invoked on each slot or core. The script, in turn, is expectedto invoke the MPI application’s executable. To know
the MPI application’s executable, it is the first in the list of arguments. And, since HTCondor must transfer this
executable to the machine where it will run, it is listed withthe transfer_input_files command, and the file transfer
mechanism is enabled with theshould_transfer_filescommand.

Here is the equivalent sample submit description file, but for an Open MPI application:

######################################
Example submit description file
for Open MPI
######################################
universe = parallel
executable = openmpiscript
arguments = my_openmpi_linked_executable arg1 arg2
machine_count = 4
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = my_openmpi_linked_executable
queue

Most MPI implementations require two system-wide prerequisites. The first prerequisite is the ability to run a
command on a remote machine without being prompted for a password. sshis commonly used. The second prerequi-
site is an ASCII file containing the list of machines that may utilize ssh. These common prerequisites are implemented
in a further script calledsshd.sh . sshd.sh generates ssh keys to enable password-less remote execution and starts
ansshddaemon. Use of thesshd.shscript requires the definition of two HTCondor configurationvariables. Configu-
ration variableCONDOR_SSHDis an absolute path to an implementation ofsshd. sshd.shhas been tested withopenssh
version 3.9, but should work with more recent versions. Configuration variableCONDOR_SSH_KEYGENpoints to the
correspondingssh-keygenexecutable.

mp1scriptandmp2scriptrequire thePATH to the MPICH installation to be set. The variableMPDIRmay be
modified in the scripts to indicate its proper value. This directory contains the MPICHmpirunexecutable.

openmpiscriptalso requires thePATH to the Open MPI installation. Either the variableMPDIR can
be set manually in the script, or the administrator can defineMPDIR using the configuration variable
OPENMPI_INSTALL_PATH. When using Open MPI on a multi-machine HTCondor cluster, the administrator may
also want to consider tweaking theOPENMPI_EXCLUDE_NETWORK_INTERFACESconfiguration variable as well
as setMOUNT_UNDER_SCRATCH= /tmp .

HTCondor Version 8.6.4 Manual

2.9.4. MPI Applications Within HTCondor’s Vanilla Universe 75

2.9.4 MPI Applications Within HTCondor’s Vanilla Universe

The vanilla universe may be preferred over the parallel universe for certain parallel applications such as MPI ones.
These applications are ones in which the allocated cores need to be within a single slot. Therequest_cpuscommand
causes a claimed slot to have the required number of CPUs (cores).

There are two ways to ensure that the MPI job can run on any machine that it lands on:

1. Statically build an MPI library and statically compile the MPI code.

2. Use CDE to create a directory tree that contains all of the libraries needed to execute the MPI code.

For Linux machines, our experience recommends using CDE, asbuilding static MPI libraries can be difficult. CDE
can be found at http://www.pgbovine.net/cde.html.

Here is a submit description file example assuming that MPI isinstalled on all machines on which the MPI job
may run, or that the code was built using static libraries anda static version ofmpirun is available.

#########
submit description file for
static build of MPI under the vanilla universe
#########
universe = vanilla
executable = /path/to/mpirun
request_cpus = 2
arguments = -np 2 my_mpi_linked_executable arg1 arg2 arg3
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = my_mpi_linked_executable
queue

If CDE is to be used, then CDE needs to be run first to create the directory tree. On the host machine which has
the original program, the command

prompt-> cde mpirun -n 2 my_mpi_linked_executable

creates a directory tree that will contain all libraries needed for the program. By creating a tarball of this directory,
the user can package up the executable itself, any files needed for the executable, and all necessary libraries. The
following example assumes that the user has created a tarball calledcde_my_mpi_linked_executable.tar
which contains the directory tree created by CDE.

#########
submit description file for
MPI under the vanilla universe; CDE used
#########
universe = vanilla
executable = cde_script.sh
request_cpus = 2

HTCondor Version 8.6.4 Manual

http://www.pgbovine.net/cde.html

2.10. DAGMan Applications 76

should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = cde_my_mpi_linked_executable.t ar
transfer_output_files = cde-package/cde-root/path/to/ original/directory
queue

The executable is now a specialized shell script tailored tothis job. In this example,cde_script.shcontains:

#!/bin/sh
Untar the CDE package
tar xpf cde_my_mpi_linked_executable.tar
cd to the subdirectory where I need to run
cd cde-package/cde-root/path/to/original/directory
Run my command
./mpirun.cde -n 2 ./my_mpi_linked_executable
Since HTCondor will transfer the contents of this director y
back upon job completion.
We do not want the .cde command and the executable transferr ed back.
To prevent the transfer, remove both files.
rm -f mpirun.cde
rm -f my_mpi_linked_executable

Any additional input files that will be needed for the executable that are not already in the tarball should be included
in the list intransfer_input_files command. The corresponding script should then also be updated to move those files
into the directory where the executable will be run.

2.10 DAGMan Applications

A directed acyclic graph (DAG) can be used to represent a set of computations where the input, output, or execution
of one or more computations is dependent on one or more other computations. The computations are nodes (vertices)
in the graph, and the edges (arcs) identify the dependencies. HTCondor finds machines for the execution of programs,
but it does not schedule programs based on dependencies. TheDirected Acyclic Graph Manager (DAGMan) is a
meta-scheduler for the execution of programs (computations). DAGMan submits the programs to HTCondor in an
order represented by a DAG and processes the results. ADAG input filedescribes the DAG.

DAGMan is itself executed as a scheduler universe job withinHTCondor. It submits the HTCondor jobs within
nodes in such a way as to enforce the DAG’s dependencies. DAGMan also handles recovery and reporting on the
HTCondor jobs.

2.10.1 DAGMan Terminology

A node within a DAG may encompass more than a single program submitted to run under HTCondor. Figure 2.1
illustrates the elements of a node.

More than one HTCondor job may belong to a single node. All HTCondor jobs within a node must be within a
single cluster, as given by the job ClassAd attributeClusterId .

HTCondor Version 8.6.4 Manual

2.10.2. The DAG Input File: Basic Commands 77

cluster number)

[optional]

PRE script

POST script

[optional]

HTCondor job(s)

or Stork job

(with a single

Figure 2.1: One Node within a DAG

DAGMan enforces the dependencies within a DAG using the events recorded in a separate file that is specified by
the default configuration. If the exact same DAG were to be submitted more than once, such that these DAGs were
running at the same time, expected them to fail in unpredictable and unexpected ways. They would all be using the
same single file to enforce dependencies.

As DAGMan schedules and submits jobs within nodes to HTCondor, these jobs are defined to succeed or fail based
on their return values. This success or failure is propagated in well-defined ways to the level of a node within a DAG.
Further progression of computation (towards completing the DAG) is based upon the success or failure of nodes.

The failure of a single job within a cluster of multiple jobs (within a single node) causes the entire cluster of jobs
to fail. Any other jobs within the failed cluster of jobs are immediately removed. Each node within a DAG may be
further constrained to succeed or fail based upon the returnvalues of a PRE script and/or a POST script.

2.10.2 The DAG Input File: Basic Commands

The input file used by DAGMan is called a DAG input file. It specifies the nodes of the DAG as well as the dependen-
cies that order the DAG. All items are optional, except that there must be at least oneJOB item.

Comments may be placed in the DAG input file. The pound character (#) as the first character on a line identifies
the line as a comment. Comments do not span lines.

A simple diamond-shaped DAG, as shown in Figure 2.2 is presented as a starting point for examples. This DAG
contains 4 nodes.

HTCondor Version 8.6.4 Manual

2.10.2. The DAG Input File: Basic Commands 78

A

B C

D

Figure 2.2: Diamond DAG

A very simple DAG input file for this diamond-shaped DAG is

File name: diamond.dag
#
JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D

A set of basic commands appearing in a DAG input file is described below.

JOB

TheJOBcommand specifies an HTCondor job. The syntax used for eachJOBcommand is

JOB JobName SubmitDescriptionFileName[DIR directory] [NOOP] [DONE]

A JOBentry maps aJobNameto an HTCondor submit description file. TheJobNameuniquely identifies nodes
within the DAG input file and in output messages. Each node name, given byJobName, within the DAG must be
unique. TheJOBentry must appear within the DAG input file before other itemsthat reference the node.

The keywordsJOB, DIR, NOOP, andDONE are not case sensitive. Therefore,DONE, Done, anddoneare all
equivalent. The values defined forJobNameandSubmitDescriptionFileNameare case sensitive, as file names in a file
system are case sensitive. TheJobNamecan be any string that contains no white space, except for thestringsPARENT
andCHILD (in upper, lower, or mixed case).

Note thatDIR, NOOP, andDONE, if used, must appear in the order shown above.

The optionalDIR keyword specifies a working directory for this node, from which the HTCondor job will be
submitted, and from which aPREand/orPOSTscript will be run. If a relative directory is specified, it isrelative to the
current working directory as the DAG is submitted. Note thata DAG containingDIR specifications cannot be run in
conjunction with the-usedagdircommand-line argument tocondor_submit_dag. A "full" rescue DAG generated by
a DAG run with the-usedagdirargument will contain DIR specifications, so such a rescue DAG must be runwithout
the-usedagdirargument. (Note that "full" rescue DAGs are no longer the default.)

The optionalNOOPkeyword identifies that the HTCondor job within the node is not to be submitted to HTCondor.
This optimization is useful in cases such as debugging a complex DAG structure, where some of the individual jobs

HTCondor Version 8.6.4 Manual

2.10.2. The DAG Input File: Basic Commands 79

are long-running. For this debugging of structure, some jobs are marked asNOOPs, and the DAG is initially run to
verify that the control flow through the DAG is correct. TheNOOPkeywords are then removed before submitting the
DAG. Any PRE and POST scripts for jobs specified withNOOP areexecuted; to avoid running the PRE and POST
scripts, comment them out. The job that is not submitted to HTCondor is given a return value that indicates success,
such that the node may also succeed. Return values of any PRE and POST scripts may still cause the node to fail.
Even though the job specified withNOOP is not submitted, its submit description file must exist; thelog file for the
job is used, because DAGMan generates dummy submission and termination events for the job.

The optionalDONEkeyword identifies a node as being already completed. This ismainly used by Rescue DAGs
generated by DAGMan itself, in the event of a failure to complete the workflow. Nodes with theDONEkeyword are
not executed when the Rescue DAG is run, allowing the workflowto pick up from the previous endpoint. Users should
generally not use theDONEkeyword. TheNOOPkeyword is more flexible in avoiding the execution of a job within
a node. Note that, for any node markedDONE in a DAG, all of its parents must also be markedDONE; otherwise, a
fatal error will result. TheDONEkeyword applies to the entire node. A node marked withDONEwill not have a PRE
or POST script run, and the HTCondor job will not be submitted.

DATA

As of version 8.3.5,condor_dagmanno longer supports DATA nodes.

PARENT . . .CHILD

ThePARENT CHILDcommand specifies the dependencies within the DAG. Nodes areparents and/or children within
the DAG. A parent node must be completed successfully beforeany of its children may be started. A child node may
only be started once all its parents have successfully completed.

The syntax used for each dependency (PARENT/CHILD) commandis

PARENT ParentJobName. . . CHILD ChildJobName. . .

ThePARENTkeyword is followed by one or moreParentJobNames. TheCHILD keyword is followed by one or
moreChildJobNames. Each child job depends on every parent job within the line.A single line in the input file can
specify the dependencies from one or more parents to one or more children. The diamond-shaped DAG example may
specify the dependencies with

PARENT A CHILD B C
PARENT B C CHILD D

An alternative specification for the diamond-shaped DAG mayspecify some or all of the dependencies on separate
lines:

PARENT A CHILD B C
PARENT B CHILD D
PARENT C CHILD D

HTCondor Version 8.6.4 Manual

2.10.2. The DAG Input File: Basic Commands 80

As a further example, the line

PARENT p1 p2 CHILD c1 c2

produces four dependencies:

1. p1 to c1

2. p1 to c2

3. p2 to c1

4. p2 to c2

SCRIPT

The optionalSCRIPTcommand specifies processing that is done either before a jobwithin a node is submitted or
after a job within a node completes its execution. Processing done before a job is submitted is called aPREscript.
Processing done after a job completes its execution is called aPOSTscript. Note that the executable specified does
not necessarily have to be a shell script (Unix) or batch file (Windows); but it should be relatively light weight because
it will be run directly on the submit machine, not submitted as an HTCondor job.

The syntax used for eachPREor POSTcommand is

SCRIPT [DEFER status time] PRE JobName|ALL_NODES ExecutableName[arguments]

SCRIPT [DEFER status time] POSTJobName|ALL_NODES ExecutableName[arguments]

TheSCRIPTcommand uses thePREor POSTkeyword, which specifies the relative timing of when the script is to
be run. TheJobNameidentifies the node to which the script is attached. TheExecutableNamespecifies the executable
(e.g., shell script or batch file) to be executed, and may not contain spaces. The optionalargumentsare command line
arguments to the script, and spaces delimit the arguments. Both ExecutableNameand optionalargumentsare case
sensitive.

Scripts are executed on the submit machine; the submit machine is not necessarily the same machine upon which
the node’s job is run. Further, a single cluster of HTCondor jobs may be spread across several machines.

The optionalDEFERfeature causes a retry of only the script, if the execution ofthe script exits with the exit code
given bystatus. The retry occurs after at leasttime seconds, rather than being considered failed. While waiting for
the retry, the script does not count against amaxpreor maxpostlimit. The ordering of theDEFER feature within
theSCRIPTspecification is fixed. It must come directly after theSCRIPTkeyword; this is done to avoid backward
compatibility issues for any DAG with aJobNameof DEFER.

A PRE script is commonly used to place files in a staging area for the jobs to use. A POST script is commonly
used to clean up or remove files once jobs are finished running.An example uses PRE and POST scripts to stage files
that are stored on tape. The PRE script reads compressed input files from the tape drive, uncompresses them, and
places the resulting files in the current directory. The HTCondor jobs can then use these files, producing output files.

HTCondor Version 8.6.4 Manual

2.10.2. The DAG Input File: Basic Commands 81

The POST script compresses the output files, writes them out to the tape, and then removes both the staged files and
the output files.

If the PRE script fails, then the HTCondor job associated with the node is not submitted, and (as of version
8.5.4) the POST script is not run either (by default). However, if the job is submitted, and there is a POST script,
the POST script is always run once the job finishes. (The behavior when the PRE script fails may may be changed
to run the POST script by setting configuration variableDAGMAN_ALWAYS_RUN_POSTto True or by passing the
-AlwaysRunPostargument tocondor_submit_dag.)

Progress towards completion of the DAG is based upon the success of the nodes within the DAG. The success
of a node is based upon the success of the job(s), PRE script, and POST script. A job, PRE script, or POST script
with an exit value not equal to 0 is considered failed.The exit value of whatever component of the node was run
last determines the success or failure of the node.Table 2.1 lists the definition of node success and failure forall
variations of script and job success and failure, whenDAGMAN_ALWAYS_RUN_POSTis set toFalse . In this table,
a dash (-) represents the case where a script does not exist for the DAG, S represents success, andF represents failure.

Table 2.2 lists the definition of node success and failure only for the cases where the PRE script fails, when
DAGMAN_ALWAYS_RUN_POSTis set toTrue .

PRE JOB POST Node
- S - S
- F - F
- S S S
- S F F
- F S S
- F F F
S S - S
S F - F
S S S S
S S F F
S F S S
S F F F
F not run - F
F not run not run F

Table 2.1: Node success or failure definition withDAGMAN_ALWAYS_RUN_POST = False (the default)

PRE JOB POST Node
F not run - F
F not run S S
F not run F F

Table 2.2: NodeSuccess orFailure definition with DAGMAN_ALWAYS_RUN_POST = True

HTCondor Version 8.6.4 Manual

2.10.2. The DAG Input File: Basic Commands 82

Special script argument macros

The five macros$JOB, $RETRY, $MAX_RETRIES, $DAG_STATUSand$FAILED_COUNTcan be used within
the DAG input file as arguments passed to a PRE or POST script. The three macros$JOBID , $RETURN, and
$PRE_SCRIPT_RETURNcan be used as arguments to POST scripts. The use of these variables is limited to be-
ing used as an individual command lineargumentto the script, surrounded by spaces, in order to cause the substitution
of the variable’s value.

The special macros are as follows:

• $JOB evaluates to the (case sensitive) string defined forJobName.

• $RETRYevaluates to an integer value set to 0 the first time a node is run, and is incremented each time the node
is retried. See section 2.10.9 for the description of how to cause nodes to be retried.

• $MAX_RETRIESevaluates to an integer value set to the maximum number of retries for the node. See
section 2.10.9 for the description of how to cause nodes to beretried. If no retries are set for the node,
$MAX_RETRIESwill be set to 0.

• $JOBID (for POST scripts only) evaluates to a representation of theHTCondor job ID of the node job. It is the
value of the job ClassAd attributeClusterId , followed by a period, and then followed by the value of the job
ClassAd attributeProcId . An example of a job ID might be 1234.0. For nodes with multiple jobs in the same
cluster, theProcId value is the one of the last job within the cluster.

• $RETURN(for POST scripts only) variable evaluates to the return value of the HTCondor job, if there is a single
job within a cluster. With multiple jobs within the same cluster, there are two cases to consider. In the first case,
all jobs within the cluster are successful; the value of$RETURNwill be 0, indicating success. In the second
case, one or more jobs from the cluster fail. Whencondor_dagmansees the first terminated event for a job
that failed, it assigns that job’s return value as the value of $RETURN, and it attempts to remove all remaining
jobs within the cluster. Therefore, if multiple jobs in the cluster fail with different exit codes, a race condition
determines which exit code gets assigned to$RETURN.

A job that dies due to a signal is reported with a$RETURNvalue representing the additive inverse of the signal
number. For example, SIGKILL (signal 9) is reported as -9. A job whose batch system submission fails is
reported as -1001. A job that is externally removed from the batch system queue (by something other than
condor_dagman) is reported as -1002.

• $PRE_SCRIPT_RETURN(for POST scripts only) variable evaluates to the return value of the PRE script of
a node, if there is one. If there is no PRE script, this value will be -1. If the node job was skipped because of
failure of the PRE script, the value of$RETURNwill be -1004 and the value of$PRE_SCRIPT_RETURNwill
be the exit value of the PRE script; the POST script can use this to see if the PRE script exited with an error
condition, and assign success or failure to the node, as appropriate.

• $DAG_STATUSis the status of the DAG. Note that this macro’s value and definition is unrelated to the attribute
namedDagStatus as defined for use in a node status file. This macro’s value is the same as the job ClassAd
attributeDAG_Status that is defined within thecondor_dagmanjob’s ClassAd. This macro may have the
following values:

– 0: OK

HTCondor Version 8.6.4 Manual

2.10.2. The DAG Input File: Basic Commands 83

– 1: error; an error condition different than those listed here

– 2: one or more nodes in the DAG have failed

– 3: the DAG has been aborted by an ABORT-DAG-ON specification

– 4: removed; the DAG has been removed bycondor_rm

– 5: cycle; a cycle was found in the DAG

– 6: halted; the DAG has been halted (see section 2.10.8)

• $FAILED_COUNTis defined by the number of nodes that have failed in the DAG.

Examples that use PRE or POST scripts

Examples use the diamond-shaped DAG. A first example uses a PRE script to expand a compressed file needed as
input to each of the HTCondor jobs of nodes B and C. The DAG input file:

File name: diamond.dag
#
JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
SCRIPT PRE B pre.csh $JOB .gz
SCRIPT PRE C pre.csh $JOB .gz
PARENT A CHILD B C
PARENT B C CHILD D

The scriptpre.csh uses its command line arguments to form the file name of the compressed file. The script
contains

#!/bin/csh
gunzip $argv[1]$argv[2]

Therefore, the PRE script invokes

gunzip B.gz

for node B, which uncompresses fileB.gz , placing the result in fileB.

A second example uses the$RETURNmacro. The DAG input file contains the POST script specification:

SCRIPT POST A stage-out job_status $RETURN

If the HTCondor job of node A exits with the value -1, the POST script is invoked as

stage-out job_status -1

HTCondor Version 8.6.4 Manual

2.10.3. Command Order 84

The slightly different example POST script specification inthe DAG input file

SCRIPT POST A stage-out job_status=$RETURN

invokes the POST script with

stage-out job_status=$RETURN

This example shows that when there is no space between the= sign and the variable$RETURN, there is no
substitution of the macro’s value.

PRE_SKIP

The behavior of DAGMan with respect to node success or failure can be changed with the addition of aPRE_SKIP
command. APRE_SKIPline within the DAG input file uses the syntax:

PRE_SKIP JobName|ALL_NODES non-zero-exit-code

The PRE script of a node identified byJobNamethat exits with the value given bynon-zero-exit-codeskips the
remainder of the node entirely. Neither the job associated with the node nor the POST script will be executed, and the
node will be marked as successful.

2.10.3 Command Order

As of version 8.5.6, commands referencing aJobName cancome before the JOB command defining thatJobName.

For example, the command sequence

SCRIPT PRE NodeA foo.pl
VARS NodeA state="Wisconsin"
JOB NodeA bar.sub

is now legal (it would have been illegal in 8.5.5 and all previous versions).

2.10.4 Node Job Submit File Contents

Each node in a DAG may use a unique submit description file. A key limitation is that each HTCondor submit
description file must submit jobs described by a single cluster number; DAGMan cannot deal with a submit description
file producing multiple job clusters.

Consider again the diamond-shaped DAG example, where each node job uses the same submit description file.

HTCondor Version 8.6.4 Manual

2.10.5. DAG Submission 85

File name: diamond.dag
#
JOB A diamond_job.condor
JOB B diamond_job.condor
JOB C diamond_job.condor
JOB D diamond_job.condor
PARENT A CHILD B C
PARENT B C CHILD D

Here is a sample HTCondor submit description file for this DAG:

File name: diamond_job.condor
#
executable = /path/diamond.exe
output = diamond.out.$(cluster)
error = diamond.err.$(cluster)
log = diamond_condor.log
universe = vanilla
queue

Since each node uses the same HTCondor submit description file, this implies that each node within the DAG runs
the same job. The$(Cluster) macro produces unique file names for each job’s output.

The job ClassAd attributeDAGParentNodeNames is also available for use within the submit description file.
It defines a comma separated list of eachJobNamewhich is a parent node of this job’s node. This attribute may be
used in theargumentscommand for all but scheduler universe jobs. For example, ifthe job has two parents, with
JobNames B and C, the submit description file command

arguments = $$([DAGParentNodeNames])

will pass the string"B,C" as the command line argument when invoking the job.

2.10.5 DAG Submission

A DAG is submitted using the toolcondor_submit_dag. The manual page 953 details the command. The simplest of
DAG submissions has the syntax

condor_submit_dag DAGInputFileName

and the current working directory contains the DAG input file.

The diamond-shaped DAG example may be submitted with

condor_submit_dag diamond.dag

HTCondor Version 8.6.4 Manual

2.10.5. DAG Submission 86

Do not submit the same DAG, with same DAG input file, from within the same directory, such that more than one
of this same DAG is running at the same time. It will fail in an unpredictable manner, as each instance of this same
DAG will attempt to use the same file to enforce dependencies.

To increase robustness and guarantee recoverability, thecondor_dagmanprocess is run as an HTCondor job. As
such, it needs a submit description file.condor_submit_daggenerates this needed submit description file, naming it
by appending.condor.sub to the name of the DAG input file. This submit description file may be edited if the
DAG is submitted with

condor_submit_dag -no_submit diamond.dag

causingcondor_submit_dagto create the submit description file, but not submitcondor_dagmanto HTCondor. To
submit the DAG, once the submit description file is edited, use

condor_submit diamond.dag.condor.sub

Submit machines with limited resources are supported by command line options that place limits on the submission
and handling of HTCondor jobs and PRE and POST scripts. Presented here are descriptions of the command line
options tocondor_submit_dag. These same limits can be set in configuration. Each limit is applied within a single
DAG.

DAG Throttling

Total nodes/clusters: The -maxjobs option specifies the maximum number of clusters thatcondor_dagmancan
submit at one time. Since each node corresponds to a single cluster, this limit restricts the number of nodes that can be
submitted (in the HTCondor queue) at a time. It is commonly used when there is a limited amount of input file staging
capacity. As a specific example, consider a case where each node represents a single HTCondor proc that requires 4
MB of input files, and the proc will run in a directory with a volume of 100 MB of free space. Using the argument
-maxjobs 25guarantees that a maximum of 25 clusters, using a maximum of 100 MB of space, will be submitted to
HTCondor at one time. (See thecondor_submit_dagman page (11) for more information. Also see the equivalent
DAGMAN_MAX_JOBS_SUBMITTEDconfiguration option (3.5.24).)

Idle procs: The number of idle procs within a given DAG can be limited withthe optional command line argument
-maxidle. condor_dagmanwill not submit any more node jobs until the number of idle procs in the DAG goes
below this specified value, even if there are ready nodes in the DAG. This allowscondor_dagmanto submit jobs in
a way that adapts to the load on the HTCondor pool at any given time. If the pool is lightly loaded,condor_dagman
will end up submitting more jobs; if the pool is heavily loaded, condor_dagmanwill submit fewer jobs. (See the
condor_submit_dagman page (11) for more information. Also see the equivalentDAGMAN_MAX_JOBS_IDLE
configuration option (3.5.24).)

Note that the-maxjobs option applies to counts ofclusters, whereas the-maxidle option applies to counts of
procs. Unfortunately, this can be a bit confusing. Of course, if none of your submit files create more than one proc,
the distinction doesn’t matter. For example, though, a nodejob submit file that queues 5 procs will count as one for
-maxjobs, but five for-maxidle (if all of the procs are idle).

HTCondor Version 8.6.4 Manual

2.10.6. File Paths in DAGs 87

Subsets of nodes:Node submission can also be throttled in a finer-grained manner by grouping nodes into cate-
gories. See section 2.10.9 for more details.

PRE/POST scripts: Since PRE and POST scripts run on the submit machine, it may bedesirable to limit the
number of PRE or POST scripts running at one time. The optional -maxpre command line argument limits the
number of PRE scripts that may be running at one time, and the optional -maxpostcommand line argument limits
the number of POST scripts that may be running at one time. (See thecondor_submit_dagman page (11) for more
information. Also see the equivalentDAGMAN_MAX_PRE_SCRIPTS(3.5.24) andDAGMAN_MAX_POST_SCRIPTS
(3.5.24) configuration options.)

2.10.6 File Paths in DAGs

condor_dagmanassumes that all relative paths in a DAG input file and the associated HTCondor submit description
files are relative to the current working directory whencondor_submit_dagis run. This works well for submitting a
single DAG. It presents problems when multiple independentDAGs are submitted with a single invocation ofcon-
dor_submit_dag. Each of these independent DAGs would logically be in its owndirectory, such that it could be run
or tested independent of other DAGs. Thus, all references tofiles will be designed to be relative to the DAG’s own
directory.

Consider an example DAG within a directory nameddag1 . There would be a DAG input file, namedone.dag
for this example. Assume the contents of this DAG input file specify a node job with

JOB A A.submit

Further assume that partial contents of submit descriptionfile A.submit specify

executable = programA
input = A.input

Directory contents are

dag1 (directory)
one.dag
A.submit
programA
A.input

All file paths are correct relative to thedag1 directory. Submission of this example DAG sets the current working
directory todag1 and invokescondor_submit_dag:

cd dag1
condor_submit_dag one.dag

HTCondor Version 8.6.4 Manual

2.10.7. DAG Monitoring and DAG Removal 88

Expand this example such that there are now two independent DAGs, and each is contained within its own direc-
tory. For simplicity, assume that the DAG indag2 has remarkably similar files and file naming as the DAG indag1 .
Assume that the directory contents are

parent (directory)
dag1 (directory)

one.dag
A.submit
programA
A.input

dag2 (directory)
two.dag
B.submit
programB
B.input

The goal is to use a single invocation ofcondor_submit_dagto run both dag1 and dag2. The invocation

cd parent
condor_submit_dag dag1/one.dag dag2/two.dag

does not work. Path names are now relative toparent , which isnot the desired behavior.

The solution is the-usedagdircommand line argument tocondor_submit_dag. This feature runs each DAG as if
condor_submit_daghad been run in the directory in which the relevant DAG file exists. A working invocation is

cd parent
condor_submit_dag -usedagdir dag1/one.dag dag2/two.dag

Output files will be placed in the correct directory, and the.dagman.out file will also be in the correct directory.
A Rescue DAG file will be written to the current working directory, which is the directory whencondor_submit_dag
is invoked. The Rescue DAG should be run from that same current working directory. The Rescue DAG includes all
the path information necessary to run each node job in the proper directory.

Use of-usedagdirdoesnotwork in conjunction with a JOB node specification within the DAG input file using the
DIR keyword. Using both will be detected and generate an error.

2.10.7 DAG Monitoring and DAG Removal

After submission, the progress of the DAG can be monitored bylooking at the job event log file(s), observing the
e-mail that job submission to HTCondor causes, or by usingcondor_q -dag.

There is also a large amount of information logged in an extrafile. The name of this extra file is produced by
appending.dagman.out to the name of the DAG input file; for example, if the DAG input file is diamond.dag ,

HTCondor Version 8.6.4 Manual

2.10.8. Suspending a Running DAG 89

this extra file is nameddiamond.dag.dagman.out . If this extra file grows too large, limit its size with the con-
figuration variableMAX_DAGMAN_LOG, as defined in section 3.5.3. Thedagman.out file is an important resource
for debugging; save this file if a problem occurs. Thedagman.out is appended to, rather than overwritten, with each
new DAGMan run.

To remove an entire DAG, consisting of thecondor_dagmanjob, plus any jobs submitted to HTCondor, remove
thecondor_dagmanjob by runningcondor_rm. For example,

% condor_q
-- Submitter: turunmaa.cs.wisc.edu : <128.105.175.125:3 6165> : turunmaa.cs.wisc.edu

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
9.0 taylor 10/12 11:47 0+00:01:32 R 0 8.7 condor_dagman -f -

11.0 taylor 10/12 11:48 0+00:00:00 I 0 3.6 B.out
12.0 taylor 10/12 11:48 0+00:00:00 I 0 3.6 C.out

3 jobs; 2 idle, 1 running, 0 held

% condor_rm 9.0

When acondor_dagmanjob is removed, all node jobs (including sub-DAGs) of thatcondor_dagmanwill be
removed by thecondor_schedd. As of version 8.5.8, the default is thatcondor_dagmanitself also removes the node
jobs (to fix a race condition that could result in "orphaned" node jobs). (Thecondor_scheddhas to remove the node
jobs to deal with the case of removing acondor_dagmanjob that has been held.)

The previous behavior ofcondor_dagmanitself not removing the node jobs can be restored by setting the
DAGMAN_REMOVE_NODE_JOBSconfiguration macro (see 3.5.24) toFalse . This will decrease the load on the
condor_schedd, at the cost of allowing the possibility of "orphaned" node jobs.

A removed DAG will be considered failed unless the DAG has a FINAL node that succeeds.

In the case where a machine is scheduled to go down, DAGMan will clean up memory and exit. However, it will
leave any submitted jobs in the HTCondor queue.

2.10.8 Suspending a Running DAG

It may be desired to temporarily suspend a running DAG. For example, the load may be high on the submit machine,
and therefore it is desired to prevent DAGMan from submitting any more jobs until the load goes down. There are two
ways to suspend (and resume) a running DAG.

• Usecondor_hold/condor_releaseon thecondor_dagmanjob.

After placing thecondor_dagmanjob on hold, no new node jobs will be submitted, and no PRE or POST
scripts will be run. Any node jobs already in the HTCondor queue will continue undisturbed. Any running
PRE or POST scripts will be killed. If thecondor_dagmanjob is left on hold, it will remain in the HTCondor
queue after all of the currently running node jobs are finished. To resume the DAG, usecondor_releaseon the
condor_dagmanjob.

Note that while thecondor_dagmanjob is on hold, no updates will be made to thedagman.out file.

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 90

• Use a DAG halt file.

The second way of suspending a DAG uses the existence of a specially-named file to change the state of the
DAG. When in this halted state, no PRE scripts will be run, andno node jobs will be submitted. Running
node jobs will continue undisturbed. A halted DAG will stillrun POST scripts, and it will still update the
dagman.out file. This differs from behavior of a DAG that is held. Furthermore, a halted DAG will not
remain in the queue indefinitely; when all of the running nodejobs have finished, DAGMan will create a Rescue
DAG and exit.

To resume a halted DAG, remove the halt file.

The specially-named file must be placed in the same directoryas the DAG input file. The naming is the same
as the DAG input file concatenated with the string.halt . For example, if the DAG input file istest1.dag ,
thentest1.dag.halt will be the required name of the halt file.

As any DAG is first submitted withcondor_submit_dag, a check is made for a halt file. If one exists, it is
removed.

Note that neither condor_holdnor a DAG halt is propagated to sub-DAGs.In other words, if youcondor_hold
or create a halt file for a DAG that has sub-DAGs, any sub-DAGs that are already in the queue will continue to submit
node jobs.

A condor_holdor DAG halt does, however, apply to splices, because they are merged into theparent DAG and
controlled by a singlecondor_dagmaninstance.

2.10.9 Advanced Features of DAGMan

Retrying Failed Nodes

DAGMan can retry any failed node in a DAG by specifying the node in the DAG input file with theRETRYcommand.
The use of retry is optional. The syntax for retry is

RETRY JobName|ALL_NODES NumberOfRetries[UNLESS-EXIT value]

whereJobNameidentifies the node.NumberOfRetriesis an integer number of times to retry the node after failure.
The implied number of retries for any node is 0, the same as nothaving a retry line in the file. Retry is implemented
on nodes, not parts of a node.

The diamond-shaped DAG example may be modified to retry node C:

File name: diamond.dag
#
JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
Retry C 3

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 91

If node C is marked as failed for any reason, then it is startedover as a first retry. The node will be tried a second
and third time, if it continues to fail. If the node is marked as successful, then further retries do not occur.

Retry of a node may be short circuited using the optional keyword UNLESS-EXIT, followed by an integer exit
value. If the node exits with the specified integer exit value, then no further processing will be done on the node.

The macro$RETRYevaluates to an integer value, set to 0 first time a node is run,and is incremented each time for
each time the node is retried. The macro$MAX_RETRIESis the value set forNumberOfRetries. These macros may
be used as arguments passed to a PRE or POST script.

Stopping the Entire DAG

TheABORT-DAG-ONcommand provides a way to abort the entire DAG if a given node returns a specific exit code.
The syntax forABORT-DAG-ONis

ABORT-DAG-ON JobName|ALL_NODES AbortExitValue[RETURN DAGReturnValue]

If the return value of the node specified byJobNamematchesAbortExitValue, the DAG is immediately aborted. A
DAG abort differs from a node failure, in that a DAG abort causes all nodes within the DAG to be stopped immediately.
This includes removing the jobs in nodes that are currently running. A node failure differs, as it would allow the DAG
to continue running, until no more progress can be made due todependencies.

The behavior differs based on the existence of PRE and/or POST scripts. If a PRE script returns theAbortExitValue
value, the DAG is immediately aborted. If the HTCondor job within a node returns theAbortExitValuevalue, the DAG
is aborted if the node has no POST script. If the POST script returns theAbortExitValuevalue, the DAG is aborted.

An abort overrides node retries. If a node returns the abort exit value, the DAG is aborted, even if the node has
retry specified.

When a DAG aborts, by default it exits with the node return value that caused the abort. This can be changed by
using the optionalRETURNkeyword along with specifying the desiredDAGReturnValue. The DAG abort return value
can be used for DAGs within DAGs, allowing an inner DAG to cause an abort of an outer DAG.

A DAG return value other than 0, 1, or 2 will cause thecondor_dagmanjob to stay in the queue after it exits and
get retried, unless theon_exit_remove expression in the.condor.sub file is manually modified.

AddingABORT-DAG-ONfor node C in the diamond-shaped DAG

File name: diamond.dag
#
JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
Retry C 3
ABORT-DAG-ON C 10 RETURN 1

causes the DAG to be aborted, if node C exits with a return value of 10. Any other currently running nodes, of

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 92

which only node B is a possibility for this particular example, are stopped and removed. If this abort occurs, the return
value for the DAG is 1.

Variable Values Associated with Nodes

Macros defined for DAG nodes can be used within the submit description file of the node job. TheVARScommand
provides a method for defining a macro. Macros are defined on a per-node basis, using the syntax

VARS JobName|ALL_NODES macroname="string"[macroname="string". . .]

The macro may be used within the submit description file of therelevant node. Amacronamemay contain al-
phanumeric characters (a-z, A-Z, and 0-9) and the underscore character. The space character delimits macros, such
that there may be more than one macro defined on a single line. Multiple lines defining macros for the same node are
permitted.

Correct syntax requires that thestring must be enclosed in double quotes. To use a double quote mark within a
string, escape the double quote mark with the backslash character (\). To add the backslash character itself, use two
backslashes (\\).

A restriction is that themacronameitself cannot begin with the stringqueue , in any combination of upper or
lower case letters.

Examples

If the DAG input file contains

File name: diamond.dag
#
JOB A A.submit
JOB B B.submit
JOB C C.submit
JOB D D.submit
VARS A state="Wisconsin"
PARENT A CHILD B C
PARENT B C CHILD D

then the submit description fileA.submit may use the macrostate . Consider this submit description file
A.submit :

file name: A.submit
executable = A.exe
log = A.log
arguments = "$(state)"
queue

The macro value expands to become a command-line argument inthe invocation of the job. The job is invoked with

A.exe Wisconsin

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 93

The use of macros may allow a reduction in the number of distinct submit description files. A separate example
shows this intended use ofVARS. In the case where the submit description file for each node varies only in file naming,
macros reduce the number of submit description files to one.

This example references a single submit description file foreach of the nodes in the DAG input file, and it uses the
VARSentry to name files used by each job.

The relevant portion of the DAG input file appears as

JOB A theonefile.sub
JOB B theonefile.sub
JOB C theonefile.sub

VARS A filename="A"
VARS B filename="B"
VARS C filename="C"

The submit description file appears as

submit description file called: theonefile.sub
executable = progX
output = $(filename)
error = error.$(filename)
log = $(filename).log
queue

For a DAG such as this one, but with thousands of nodes, the ability to write and maintain a single submit descrip-
tion file together with a single, yet more complex, DAG input file is worthwhile.

Multiple macroname definitions

If a macro name for a specific node in a DAG is defined more than once, as it would be with the partial file contents

JOB job1 job1.submit
VARS job1 a="foo"
VARS job1 a="bar"

a warning is written to the log, of the format

Warning: VAR <macroname> is already defined in job <JobName >
Discovered at file "<DAG input file name>", line <line numbe r>

The behavior of DAGMan is such that all definitions for the macro exist, but only the last one defined is used as
the variable’s value. Using this example, if thejob1.submit submit description file contains

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 94

arguments = "$(a)"

then the argument will bebar .

Special characters within VARS string definitions

The value defined for a macro may contain spaces and tabs. It isalso possible to have double quote marks and
backslashes within a value. In order to have spaces or tabs within a value specified for a command line argument, use
the New Syntax format for thearguments submit command, as described in section 11. Escapes for double quote
marks depend on whether the New Syntax or Old Syntax format isused for theargumentssubmit command. Note
that in both syntaxes, double quote marks require two levelsof escaping: one level is for the parsing of the DAG input
file, and the other level is for passing the resulting value throughcondor_submit.

As of HTCondor version 8.3.7, single quotes are permitted within the value specification. For the specification of
command linearguments, single quotes can be used in three ways:

• in Old Syntax, within a macro’s value specification

• in New Syntax, within a macro’s value specification

• in New Syntax only, to delimit an argument containing whitespace

There are examples of all three cases below. In New Syntax, topass a single quote as part of an argument, escape it
with another single quote forcondor_submitparsing as in the example’s NodeAfourth macro.

As an example that shows uses of all special characters, hereare only the relevant parts of a DAG input file. Note
that the NodeA value for the macrosecond contains a tab.

VARS NodeA first="Alberto Contador"
VARS NodeA second="\"\"Andy Schleck\"\""
VARS NodeA third="Lance\\ Armstrong"
VARS NodeA fourth="Vincenzo ''The Shark'' Nibali"
VARS NodeA misc="!@#$%^&* ()_-=+=[]{}?/"

VARS NodeB first="Lance_Armstrong"
VARS NodeB second="\\\"Andreas_Kloden\\\""
VARS NodeB third="Ivan_Basso"
VARS NodeB fourth="Bernard_'The_Badger'_Hinault"
VARS NodeB misc="!@#$%^&* ()_-=+=[]{}?/"

VARS NodeC args="'Nairo Quintana' 'Chris Froome'"

Consider an example in which the submit description file for NodeA uses the New Syntax for thearguments
command:

arguments = "'$(first)' '$(second)' '$(third)' '($fourth)' '$(misc)'"

The single quotes around each variable reference are only necessary if the variable value may contain spaces or tabs.
The resulting values passed to the NodeA executable are:

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 95

Alberto Contador
"Andy Schleck"
Lance\ Armstrong
Vincenzo 'The Shark' Nibali
!@#$%^&* ()_-=+=[]{}?/

Consider an example in which the submit description file for NodeB uses the Old Syntax for thearguments
command:

arguments = $(first) $(second) $(third) $(fourth) $(misc)

The resulting values passed to the NodeB executable are:

Lance_Armstrong
"Andreas_Kloden"
Ivan_Basso
Bernard_'The_Badger'_Hinault
!@#$%^&* ()_-=+=[]{}?/

Consider an example in which the submit description file for NodeC uses the New Syntax for thearguments
command:

arguments = "$(args)"

The resulting values passed to the NodeC executable are:

Nairo Quintana
Chris Froome

Using special macros within a definition

The$(JOB) and$(RETRY) macros may be used within a definition of thestring that defines a variable. This
usage requires parentheses, such that proper macro substitution may take place when the macro’s value is only a
portion of the string.

• $(JOB) expands to the nodeJobName. If the VARSline appears in a DAG file used as a splice file, then
$(JOB) will be the fully scoped name of the node.

For example, the DAG input file lines

JOB NodeC NodeC.submit
VARS NodeC nodename="$(JOB)"

setnodename to NodeC, and the DAG input file lines

JOB NodeD NodeD.submit
VARS NodeD outfilename="$(JOB)-output"

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 96

setoutfilename to NodeD-output .

• $(RETRY) expands to 0 the first time a node is run; the value is incremented each time the node is retried. For
example:

VARS NodeE noderetry="$(RETRY)"

Using VARS to define ClassAd attributes

Themacronamemay also begin with a+ character, in which case it names a ClassAd attribute. For example, the
VARS specification

VARS NodeF +A="\"bob\""

results in the job ClassAd attribute

A = "bob"

Note that ClassAd string values must be quoted, hence there are escaped quotes in the example above. The outer
quotes are consumed in the parsing of the DAG input file, so theescaped inner quotes remain in the definition of the
attribute value.

Continuing this example, it allows the HTCondor submit description file for NodeF to use the following line:

arguments = "$$([A])"

The special macros may also be used. For example

VARS NodeG +B="$(RETRY)"

places the numerical attribute

B = 1

into the ClassAd when the NodeG job is run for a second time, which is the first retry and the value 1.

Setting Priorities for Nodes

ThePRIORITYcommand assigns a priority to a DAG node (and to the HTCondor job(s) associated with the node).
The syntax forPRIORITYis

PRIORITY JobName|ALL_NODES PriorityValue

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 97

The priority value is an integer (which can be negative). A larger numerical priority is better. The default priority
is 0.

The node priority affects the order in which nodes that are ready (all of their parent nodes have finished success-
fully) at the same time will be submitted. The node priority also sets the node job’s priority in the queue (that is, its
JobPrio attribute), which affects the order in which jobs will be runonce they are submitted (see 2.7.1 for more
information about job priority). The node priority only affects the order of job submissionwithin a given DAG; but
once jobs are submitted, theirJobPrio value affects the order in which they will be run relative to all jobs submitted
by the same user.

Sub-DAGs can have priorities, just as "regular" nodes can. (The priority of a sub-DAG will affect the priorities of
its nodes: see "effective node priorities" below.) Splicescannot be assigned a priority, but individual nodes within a
splicecanbe assigned priorities.

Note that node priority doesnotoverride the DAG dependencies. Also note that node priorities are notguarantees
of the relative order in which nodes will be run, even among nodes that become ready at the same time – so node
priorities should not be used as a substitute for parent/child dependencies. In other words, priorities should be used
when it is preferable, but not required, that some jobs run before others. (The order in which jobs are run once they
are submitted can be affected by many things other than the job’s priority; for example, whether there are machines
available in the pool that match the job’s requirements.)

PRE scripts can affect the order in which jobs run, so DAGs containing PRE scripts may not submit the nodes in
exact priority order, even if doing so would satisfy the DAG dependencies.

Node priority is most relevant if node submission is throttled (via the-maxjobsor -maxidlecommand-line ar-
guments or theDAGMAN_MAX_JOBS_SUBMITTEDor DAGMAN_MAX_JOBS_IDLEconfiguration variables), or if
there are not enough resources in the pool to immediately runall submitted node jobs. This is often the case for DAGs
with large numbers of "sibling" nodes, or DAGs running on heavily-loaded pools.

Example

AddingPRIORITYfor node C in the diamond-shaped DAG:

File name: diamond.dag
#
JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
Retry C 3
PRIORITY C 1

This will cause node C to be submitted (and, mostly likely, run) before node B. Without this priority setting for
node C, node B would be submitted first because the "JOB" statement for node B comes earlier in the DAG file than
the "JOB" statement for node C.

Effective node priorities

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 98

The "effective" priority for a node (the priority controlli ng the order in which nodes are actually submitted,
and which is assigned toJobPrio) is the sum of the explicit priority (specified in the DAG file)and the priority
of the DAG itself. DAG priorities also default to 0, so they are most relevant for sub-DAGs (although a top-level
DAG can be submitted with a non-zero priority by specifying a-priority value on thecondor_submit_dagcommand
line). This algorithm for calculating effective priorities is a simplification introduced in version 8.5.7 (a node’s
effective priority is no longer dependent on the prioritiesof its parents).

Here is an example to clarify:

File name: priorities.dag
#

JOB A A.sub
SUBDAG EXTERNAL B SD.dag
PARENT A CHILD B
PRIORITY A 60
PRIORITY B 100

File name: SD.dag
#

JOB SA SA.sub
JOB SB SB.sub
PARENT SA CHILD SB
PRIORITY SA 10
PRIORITY SB 20

In this example (assuming that priorities.dag is submittedwith the default priority of 0), the effective priority of
node A will be 60, and the effective priority of sub-DAG B willbe 100. Therefore, the effective priority of node SA
will be 110 and the effective priority of node SB will be 120.

The effective priorities listed above are assigned by DAGMan. There is no way to change the priority in the submit
description file for a job, as DAGMan will override anypriority command placed in a submit description file (unless
the effective node priority is 0; in this case, any priority specified in the submit file will take effect).

Throttling Nodes by Category

In order to limit the number of submitted job clusters withina DAG, the nodes may be placed into categories by
assignment of a name. Then, a maximum number of submitted clusters may be specified for each category.

TheCATEGORYcommand assigns a category name to a DAG node. The syntax forCATEGORYis

CATEGORY JobName|ALL_NODES CategoryName

Category names cannot contain white space.

The MAXJOBScommand limits the number of submitted job clusters on a per category basis. The syntax for
MAXJOBSis

MAXJOBS CategoryName MaxJobsValue

If the number of submitted job clusters for a given category reaches the limit, no further job clusters in that category

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 99

will be submitted until other job clusters within the category terminate. If MAXJOBS is not set for a defined category,
then there is no limit placed on the number of submissions within that category.

Note that a single invocation ofcondor_submitresults in one job cluster. The number of HTCondor jobs within a
cluster may be greater than 1.

The configuration variableDAGMAN_MAX_JOBS_SUBMITTEDand thecondor_submit_dag -maxjobscommand-
line option are still enforced if theseCATEGORYandMAXJOBSthrottles are used.

Please see the end of section 2.10.9 on DAG Splicing for a description of the interaction between categories and
splices.

Configuration Specific to a DAG

All configuration variables and their definitions that relate to DAGMan may be found in section 3.5.24.

Configuration variables forcondor_dagmancan be specified in several ways, as given within the ordered list:

1. In an HTCondor configuration file.

2. With an environment variable. Prepend the string_CONDOR_to the configuration variable’s name.

3. With a line in the DAG input file using the keywordCONFIG, such that there is a configuration file specified
that is specific to an instance ofcondor_dagman. The configuration file specification may instead be specified
on thecondor_submit_dagcommand line using the-configoption.

4. For some configuration variables,condor_submit_dagcommand line argument specifies a configuration vari-
able. For example, the configuration variableDAGMAN_MAX_JOBS_SUBMITTEDhas the corresponding com-
mand line argument-maxjobs.

For this ordered list, configuration values specified or parsed later in the list override ones specified earlier. For ex-
ample, a value specified on thecondor_submit_dagcommand line overrides corresponding values in any configuration
file. And, a value specified in a DAGMan-specific configurationfile overrides values specified in a general HTCondor
configuration file.

The CONFIG command within the DAG input file specifies a configuration fileto be used to set configuration
variables related tocondor_dagmanwhen running this DAG. The syntax forCONFIG is

CONFIG ConfigFileName

As an example, if the DAG input file contains:

CONFIG dagman.config

then the configuration values in filedagman.config will be used for this DAG. If the contents of file
dagman.config is

DAGMAN_MAX_JOBS_IDLE = 10

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 100

then this configuration is defined for this DAG.

Only a single configuration file can be specified for a givencondor_dagmanrun. For example, if one file is
specified within a DAG input file, and a different file is specified on thecondor_submit_dagcommand line, this is a
fatal error at submit time. The same is true if different configuration files are specified in multiple DAG input files and
referenced in a singlecondor_submit_dagcommand.

If multiple DAGs are run in a singlecondor_dagmanrun, the configuration options specified in thecondor_dagman
configuration file, if any, apply to all DAGs, even if some of the DAGs specify no configuration file.

Configuration variables that are not forcondor_dagmanand not utilized by DaemonCore, yet are specified in a
condor_dagman-specific configuration file are ignored.

Setting ClassAd attributes in the DAG file

The SET_JOB_ATTRkeyword within the DAG input file specifies an attribute/value pair to be set in the DAGMan
job’s ClassAd. The syntax forSET_JOB_ATTRis

SET_JOB_ATTR AttributeName=AttributeValue

As an example, if the DAG input file contains:

SET_JOB_ATTR TestNumber = 17

the ClassAd of the DAGMan job itself will have an attributeTestNumber with the value17 .

The attribute set by theSET_JOB_ATTRcommand is set only in the ClassAd of the DAGMan job itself – itis not
propagated to node jobs of the DAG.

Values with spaces can be set by surrounding the string containing a space with single or double quotes. (Note that
the quote marks themselves will be part of the value.)

Only a single attribute/value pair can be specified perSET_JOB_ATTRcommand. If the same attribute is specified
multiple times in the DAG (or in multiple DAGs run by the same DAGMan instance) the last-specified value is the one
that will be utilized. An attribute set in the DAG file can be overridden by specifying

-append '+<attribute> = <value>'

on thecondor_submit_dagcommand line.

Optimization of Submission Time

condor_dagmanworks by watching log files for events, such as submission, termination, and going on hold. When
a new job is ready to be run, it is submitted to thecondor_schedd, which needs to acquire a computing resource.
Acquisition requires thecondor_scheddto contact the central manager and get a claim on a machine, and this claim
cycle can take many minutes.

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 101

Configuration variableDAGMAN_HOLD_CLAIM_TIMEavoids the wait for a negotiation cycle. When set to a non
zero value, thecondor_scheddkeeps a claim idle, such that thecondor_startddelays in shifting from the Claimed
to the Preempting state (see Figure 3.1). Thus, if another job appears that is suitable for the claimed resource, then
thecondor_scheddwill submit the job directly to thecondor_startd, avoiding the wait and overhead of a negotiation
cycle. This results in a speed up of job completion, especially for linear DAGs in pools that have lengthy negotiation
cycle times.

By default,DAGMAN_HOLD_CLAIM_TIMEis 20, causing a claim to remain idle for 20 seconds, during which
time a new job can be submitted directly to the already-claimedcondor_startd. A value of 0 means that claims are
not held idle for a running DAG. If a DAG node has no children, the value ofDAGMAN_HOLD_CLAIM_TIMEwill be
ignored; theKeepClaimIdle attribute will not be defined in the job ClassAd of the node job, unless the job requests
it using the submit commandkeep_claim_idle.

Single Submission of Multiple, Independent DAGs

A single use ofcondor_submit_dagmay execute multiple, independent DAGs. Each independent DAG has its own,
distinct DAG input file. These DAG input files are command-line arguments tocondor_submit_dag.

Internally, all of the independent DAGs are combined into a single, larger DAG, with no dependencies between
the original independent DAGs. As a result, any generated Rescue DAG file represents all of the original independent
DAGs with a single DAG. The file name of this Rescue DAG is basedon the DAG input file listed first within the
command-line arguments. For example, assume that three independent DAGs are submitted with

condor_submit_dag A.dag B.dag C.dag

The first listed isA.dag . The remainder of the specialized file name adds a suffix onto this first DAG input file name,
A.dag . The suffix is_multi.rescue<XXX> , where<XXX> is substituted by the 3-digit number of the Rescue
DAG created as defined in section 2.10.10. The first time a Rescue DAG is created for the example, it will have the
file nameA.dag_multi.rescue001 .

Other files such asdagman.out and the lock file also have names based on this first DAG input file.

The success or failure of the independent DAGs is well defined. When multiple, independent DAGs are submitted
with a single command, the success of the composite DAG is defined as the logical AND of the success of each
independent DAG. This implies that failure is defined as the logical OR of the failure of any of the independent DAGs.

By default, DAGMan internally renames the nodes to avoid node name collisions. If all node names are unique, the
renaming of nodes may be disabled by setting the configuration variableDAGMAN_MUNGE_NODE_NAMESto False
(see 3.5.24).

INCLUDE

The INCLUDE command allows the contents of one DAG file to be parsed as if they were physically included in the
referencing DAG file. The syntax forINCLUDE is

INCLUDE FileName

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 102

For example, if we have two DAG files like this:

File name: foo.dag
#

JOB A A.sub
INCLUDE bar.dag

File name: bar.dag
#

JOB B B.sub
JOB C C.sub

this is equivalent to the single DAG file:

JOB A A.sub
JOB B B.sub
JOB C C.sub

Note that the included file must be in proper DAG syntax. Also,there are many cases where a valid included DAG
file will cause a parse error, such as the including and included files defining nodes with the same name.

INCLUDEs can be nested to any depth (be sure not to create a cycle of includes!).

Example: Using INCLUDE to simplify multiple similar workflo ws

One use of theINCLUDE command is to simplify the DAG files when we have a single workflow that we want to
run on a number of data sets. In that case, we can do something like this:

File name: workflow.dag
Defines the structure of the workflow

JOB Split split.sub
JOB Process00 process.sub
...
JOB Process99 process.sub
JOB Combine combine.sub
PARENT Split CHILD Process00 ... Process99
PARENT Process00 ... Process99 CHILD Combine

File name: split.sub
executable = my_split
input = $(dataset).phase1
output = $(dataset).phase2
...

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 103

File name: data57.vars
VARS Split dataset="data57"
VARS Process00 dataset="data57"
...
VARS Process99 dataset="data57"
VARS Combine dataset="data57"

File name: run_dataset57.dag
INCLUDE workflow.dag
INCLUDE data57.vars

Then, to run our workflow on dataset 57, we run the following command:

condor_submit_dag run_dataset57.dag

This avoids having to duplicate theJOBandPARENT/CHILDcommands for every dataset – we can just re-use the
workflow.dag file, in combination with a dataset-specific vars file.

Composing workflows from multiple DAG files

The organization and dependencies of the jobs within a DAG are the keys to its utility. Some workflows are naturally
constructed hierarchically, such that a node within a DAG isalso a DAG (instead of a "simple" HTCondor job).
HTCondor DAGMan handles this situation easily, and allows DAGs to be nested to any depth.

There are two ways that DAGs can be nested within other DAGs: sub-DAGs (see 2.10.9) and splices (see 2.10.9).

With sub-DAGs, each DAG has its owncondor_dagmanjob, which then becomes a node job within the higher-
level DAG. With splices, on the other hand, the nodes of the spliced DAG are directly incorporated into the higher-level
DAG. Therefore, splices do not result in additionalcondor_dagmaninstances.

A weakness in scalability exists when submitting external sub-DAGs, because each executing independent DAG
requires its own instance ofcondor_dagmanto be running. The outer DAG has an instance ofcondor_dagman, and
each named SUBDAG has an instance ofcondor_dagmanwhile it is in the HTCondor queue. The scaling issue
presents itself when a workflow contains hundreds or thousands of sub-DAGs that are queued at the same time. (In
this case, the resources (especially memory) consumed by the multiplecondor_dagmaninstances can be a problem.)
Further, there may be many Rescue DAGs created if a problem occurs. (Note that the scaling issue depends only on
how many sub-DAGs are queued at any given time, not the total number of sub-DAGs in a given workflow; division
of a large workflow intosequentialsub-DAGs can actually enhance scalability.) To alleviate these concerns, the
DAGMan language introduces the concept of graph splicing.

Because splices are simpler in some ways than sub-DAGs, theyare generally preferred un-
less certain features are needed that are only available with sub-DAGs. This document:
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=SubDagsVsSplices explains the pros and cons of splices
and external sub-DAGs, and should help users decide which alternative is better for their application.

HTCondor Version 8.6.4 Manual

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=SubDagsVsSplices

2.10.9. Advanced Features of DAGMan 104

Note that sub-DAGs and splices can be combined in a single workflow, and can be nested to any depth (but be sure
to avoid recursion, which will cause problems!).

A DAG Within a DAG Is a SUBDAG

As stated above, the SUBDAG EXTERNAL command causes the specified DAG file to be run by a separate instance
of condor_dagman, with thecondor_dagmanjob becoming a node job within the higher-level DAG.

The syntax for the SUBDAG command is

SUBDAG EXTERNAL JobName DagFileName[DIR directory] [NOOP] [DONE]

The optional specifications ofDIR , NOOP, andDONE, if used, must appear in this order within the entry.NOOP
andDONE for SUBDAG nodes have the same effect that they do forJOB nodes.

A SUBDAG node is essentially the same as any other node, except that the DAG input file for the inner DAG is
specified, instead of the HTCondor submit file. The keywordEXTERNAL means that the SUBDAG is run within its
own instance ofcondor_dagman.

Since more than one DAG is being discussed, here is terminology introduced to clarify which DAG is which.
Reuse the example diamond-shaped DAG as given in Figure 2.2.Assume that node B of this diamond-shaped DAG
will itself be a DAG. The DAG of node B is called a SUBDAG, innerDAG, or lower-level DAG. The diamond-shaped
DAG is called the outer or top-level DAG.

Work on the inner DAG first. Here is a very simple linear DAG input file used as an example of the inner DAG.

File name: inner.dag
#
JOB X X.submit
JOB Y Y.submit
JOB Z Z.submit
PARENT X CHILD Y
PARENT Y CHILD Z

The HTCondor submit description file, used bycondor_dagman, corresponding toinner.dag will be
named inner.dag.condor.sub . The DAGMan submit description file is always named<DAG file
name>.condor.sub . Each DAG or SUBDAG results in the submission ofcondor_dagmanas an HTCondor job,
andcondor_submit_dagcreates this submit description file.

The preferred specification of the DAG input file for the outerDAG is

File name: diamond.dag
#

JOB A A.submit
SUBDAG EXTERNAL B inner.dag
JOB C C.submit
JOB D D.submit

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 105

PARENT A CHILD B C
PARENT B C CHILD D

Within the outer DAG’s input file, theSUBDAG command specifies a special case of aJOB node, where the job
is itself a DAG.

One of the benefits of using the SUBDAG feature is that portions of the overall workflow can be constructed
and modified during the execution of the DAG (a SUBDAG file doesn’t have to exist until just before it is submit-
ted). A drawback can be that each SUBDAG causes its own distinct job submission ofcondor_dagman, leading to a
larger number of jobs, together with their potential need ofcarefully constructed policy configuration to throttle node
submission or execution (because each SUBDAG has its own throttles).

Here are details that affect SUBDAGs:

• Nested DAG Submit Description File Generation

There are three ways to generate the<DAG file name>.condor.sub file of a SUBDAG:

– Lazily (the default in HTCondor version 7.5.2 and later versions)

– Eagerly (the default in HTCondor versions 7.4.1 through 7.5.1)

– Manually (the only way prior to version HTCondor version 7.4.1)

When the<DAG file name>.condor.sub file is generatedlazily, this file is generated immediately be-
fore the SUBDAG job is submitted. Generation is accomplished by running

condor_submit_dag -no_submit

on the DAG input file specified in theSUBDAG entry. This is the default behavior. There are advantages tothis
lazy mode of submit description file creation for the SUBDAG:

– The DAG input file for a SUBDAG does not have to exist until the SUBDAG is ready to run, so this file
can be dynamically created by earlier parts of the outer DAG or by the PRE script of the node containing
the SUBDAG.

– It is now possible to have SUBDAGs within splices. That is notpossible with eager submit description file
creation, becausecondor_submit_dagdoes not understand splices.

The main disadvantage of lazy submit file generation is that asyntax error in the DAG input file of a SUBDAG
will not be discovered until the outer DAG tries to run the inner DAG.

When<DAG file name>.condor.sub files are generatedeagerly, condor_submit_dagruns itself recur-
sively (with the -no_submitoption) on each SUBDAG, so all of the<DAG file name>.condor.sub
files are generated before the top-level DAG is actually submitted. To generate the<DAG file
name>.condor.sub files eagerly, pass the-do_recurse flag to condor_submit_dag; also set the
DAGMAN_GENERATE_SUBDAG_SUBMITSconfiguration variable toFalse , so thatcondor_dagmandoes
not re-runcondor_submit_dagat run time thereby regenerating the submit description files.

To generate the.condor.sub filesmanually, run

condor_submit_dag -no_submit

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 106

on each lower-level DAG file, before runningcondor_submit_dagon the top-level DAG file; also set
the DAGMAN_GENERATE_SUBDAG_SUBMITSconfiguration variable toFalse , so thatcondor_dagman
does not re-runcondor_submit_dagat run time. The main reason for generating the<DAG file
name>.condor.sub files manually is to set options for the lower-level DAG that one would not otherwise
be able to set An example of this is the-insert_sub_fileoption. For instance, using the given example do the
following to manually generate HTCondor submit description files:

condor_submit_dag -no_submit -insert_sub_file fragment .sub inner.dag
condor_submit_dag diamond.dag

Note that mostcondor_submit_dagcommand-line flags have corresponding configuration variables, so we en-
courage the use of per-DAG configuration files, especially inthe case of nested DAGs. This is the easiest way
to set different options for different DAGs in an overall workflow.

It is possible to combine more than one method of generating the <DAG file name>.condor.sub
files. For example, one might pass the-do_recurse flag to condor_submit_dag, but leave the
DAGMAN_GENERATE_SUBDAG_SUBMITSconfiguration variable set to the default ofTrue . Doing this
would provide the benefit of an immediate error message at submit time, if there is a syntax error in one of
the inner DAG input files, but the lower-level<DAG file name>.condor.sub files would still be regen-
erated before each nested DAG is submitted.

The values of the following command-line flags are passed from the top-levelcondor_submit_daginstance to
any lower-levelcondor_submit_daginstances. This occurs whether the lower-level submit description files are
generated lazily or eagerly:

– -verbose

– -force

– -notification

– -allowlogerror

– -dagman

– -usedagdir

– -outfile_dir

– -oldrescue

– -autorescue

– -dorescuefrom

– -allowversionmismatch

– -no_recurse/do_recurse

– -update_submit

– -import_env

– -suppress_notification

– -priority

– -dont_use_default_node_log

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 107

The values of the following command-line flags are preservedin any already-existing lower-level DAG submit
description files:

– -maxjobs

– -maxidle

– -maxpre

– -maxpost

– -debug

Other command-line arguments are set to their defaults in any lower-level invocations ofcondor_submit_dag.

The -force option will cause existing DAG submit description files to beoverwritten without preserving any
existing values.

• Submission of the outer DAG

The outer DAG is submitted as before, with the command

condor_submit_dag diamond.dag

• Interaction with Rescue DAGs

The use of new-style Rescue DAGs is now the default. With new-style rescue DAGs, the appropriate res-
cue DAG(s) will be run automatically if there is a failure somewhere in the workflow. For example (given
the DAGs in the example at the beginning of the SUBDAG section), if one of the nodes ininner.dag
fails, this will produce a Rescue DAG forinner.dag (namedinner.dag.rescue.001). Then, since
inner.dag failed, node B ofdiamond.dag will fail, producing a Rescue DAG fordiamond.dag (named
diamond.dag.rescue.001 , etc.). If the command

condor_submit_dag diamond.dag

is re-run, the most recent outer Rescue DAG will be run, and this will re-run the inner DAG, which will in turn
run the most recent inner Rescue DAG.

• File Paths

Remember that, unless the DIR keyword is used in the outer DAG, the inner DAG utilizes the current working
directory when the outer DAG is submitted. Therefore, all paths utilized by the inner DAG file must be specified
accordingly.

DAG Splicing

As stated above, the SPLICE command causes the nodes of the spliced DAG to be directly incorporated into the
higher-level DAG (the DAG containing the SPLICE command).

The syntax for theSPLICEcommand is

SPLICE SpliceName DagFileName[DIR directory]

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 108

A splice is a named instance of a subgraph which is specified ina separate DAG file. The splice is treated as an
entity for dependency specification in the including DAG. (Conceptually, a splice is treated as a node within the DAG
containing the SPLICE command, although there are some limitations, which are discussed below. This means, for
example, that splices can have parents and children.) A splice can also be incorporated into an including DAG without
any dependencies; it is then considered a disjoint DAG within the including DAG.

The same DAG file can be reused as differently named splices, each one incorporating a copy of the dependency
graph (and nodes therein) into the including DAG.

The nodes within a splice are scoped according to a hierarchyof names associated with the splices, as the splices
are parsed from the top level DAG file. The scoping character to describe the inclusion hierarchy of nodes into the
top level dag is'+' . (In other words, if a splice named "SpliceX" contains a nodenamed "NodeY", the full node
name once the DAGs are parsed is "SpliceX+NodeY". This character is chosen due to a restriction in the allowable
characters which may be in a file name across the variety of platforms that HTCondor supports. In any DAG input file,
all splices must have unique names, but the same splice name may be reused in different DAG input files.

HTCondor does not detect nor support splices that form a cycle within the DAG. A DAGMan job that causes a
cyclic inclusion of splices will eventually exhaust available memory and crash.

TheSPLICEcommand in a DAG input file creates a named instance of a DAG as specified in another file as an
entity which may havePARENTandCHILD dependencies associated with other splice names or node names in the
including DAG file.

The following series of examples illustrate potential usesof splicing. To simplify the examples, presume that each
and every job uses the same, simple HTCondor submit description file:

BEGIN SUBMIT FILE submit.condor
executable = /bin/echo
arguments = OK
universe = vanilla
output = $(jobname).out
error = $(jobname).err
log = submit.log
notification = NEVER
queue
END SUBMIT FILE submit.condor

This first simple example splices a diamond-shaped DAG in between the two nodes of a top level DAG. Here is
the DAG input file for the diamond-shaped DAG:

BEGIN DAG FILE diamond.dag
JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor
VARS B jobname="$(JOB)"

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 109

JOB C submit.condor
VARS C jobname="$(JOB)"

JOB D submit.condor
VARS D jobname="$(JOB)"

PARENT A CHILD B C
PARENT B C CHILD D
END DAG FILE diamond.dag

The top level DAG incorporates the diamond-shaped splice:

BEGIN DAG FILE toplevel.dag
JOB X submit.condor
VARS X jobname="$(JOB)"

JOB Y submit.condor
VARS Y jobname="$(JOB)"

This is an instance of diamond.dag, given the symbolic name DIAMOND
SPLICE DIAMOND diamond.dag

Set up a relationship between the nodes in this dag and the sp lice

PARENT X CHILD DIAMOND
PARENT DIAMOND CHILD Y

END DAG FILE toplevel.dag

Figure 2.3 illustrates the resulting top level DAG and the dependencies produced. Notice the naming of nodes
scoped with the splice name. This hierarchy of splice names assures unique names associated with all nodes.

Figure 2.4 illustrates the starting point for a more complexexample. The DAG input fileX.dag describes this
X-shaped DAG. The completed example displays more of the spatial constructs provided by splices. Pay particular
attention to the notion that each named splice creates a new graph, even when the same DAG input file is specified.

BEGIN DAG FILE X.dag

JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor
VARS B jobname="$(JOB)"

JOB C submit.condor

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 110

DIAMOND+A

DIAMOND+B DIAMOND+C

DIAMOND+D

Y

X

Figure 2.3: The diamond-shaped DAG spliced between two nodes.

VARS C jobname="$(JOB)"

JOB D submit.condor
VARS D jobname="$(JOB)"

JOB E submit.condor
VARS E jobname="$(JOB)"

JOB F submit.condor
VARS F jobname="$(JOB)"

JOB G submit.condor
VARS G jobname="$(JOB)"

Make an X-shaped dependency graph
PARENT A B C CHILD D
PARENT D CHILD E F G

END DAG FILE X.dag

File s1.dag continues the example, presenting the DAG input file that incorporates two separate splices of the
X-shaped DAG. Figure 2.5 illustrates the resulting DAG.

BEGIN DAG FILE s1.dag

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 111

A

D

B C

E F G

Figure 2.4: The X-shaped DAG.

JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor
VARS B jobname="$(JOB)"

name two individual splices of the X-shaped DAG
SPLICE X1 X.dag
SPLICE X2 X.dag

Define dependencies
A must complete before the initial nodes in X1 can start
PARENT A CHILD X1
All final nodes in X1 must finish before
the initial nodes in X2 can begin
PARENT X1 CHILD X2
All final nodes in X2 must finish before B may begin.
PARENT X2 CHILD B

END DAG FILE s1.dag

The top level DAG in the hierarchy of this complex example is described by the DAG input filetoplevel.dag .
Figure 2.6 illustrates the final DAG. Notice that the DAG has two disjoint graphs in it as a result of splice S3 not having
any dependencies associated with it in this top level DAG.

BEGIN DAG FILE toplevel.dag

JOB A submit.condor
VARS A jobname="$(JOB)"

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 112

A

X1+A X1+B X1+C

B

X1+D

X1+E X1+F X1+G

X2+A X2+B X2+C

X2+D

X2+E X2+F X2+G

Figure 2.5: The DAG described bys1.dag .

JOB B submit.condor
VARS B jobname="$(JOB)"

JOB C submit.condor
VARS C jobname="$(JOB)"

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 113

JOB D submit.condor
VARS D jobname="$(JOB)"

a diamond-shaped DAG
PARENT A CHILD B C
PARENT B C CHILD D

This splice of the X-shaped DAG can only run after
the diamond dag finishes
SPLICE S2 X.dag
PARENT D CHILD S2

Since there are no dependencies for S3,
the following splice is disjoint
SPLICE S3 s1.dag

END DAG FILE toplevel.dag

Splices and rescue DAGs

Because the nodes of a splice are directly incorporated intothe DAG containing the SPLICE command, splices do
not generate their own rescue DAGs, unlike SUBDAG EXTERNALs.

The DIR option with splices

TheDIR option specifies a working directory for a splice, from whichthe splice will be parsed and the jobs within
the splice submitted. The directory associated with the splice’s DIR specification will be propagated as a prefix to
all nodes in the splice and any included splices. If a node already has aDIR specification, then the splice’sDIR
specification will be a prefix to the node’s, separated by a directory separator character. Jobs in included splices with
an absolute path for theirDIR specification will have theirDIR specification untouched. Note that a DAG containing
DIR specifications cannot be run in conjunction with the-usedagdircommand-line argument tocondor_submit_dag.

A "full" rescue DAG generated by a DAG run with the-usedagdirargument will contain DIR specifications, so
such a rescue DAG must be runwithout the -usedagdirargument. (Note that "full" rescue DAGs are no longer the
default.)

Limitation: splice DAGs must exist at submit time

Unlike the DAG files referenced in a SUBDAG EXTERNAL command,DAG files referenced in a SPLICE command
must exist when the DAG containing the SPLICE command is submitted. (Note that, if a SPLICE is contained within
a sub-DAG, the splice DAG must exist at the time that the sub-DAG is submitted, not when the top-most DAG is
submitted, so the splice DAG can be created by a part of the workflow that runs before the relevant sub-DAG.)

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 114

A

B C

D

S2+A S2+B S2+C

S2+D

S2+E S2+F S2+G

S3+A

S3+X1+A S3+X1+B S3+X1+C

S3+B

S3+X1+D

S3+X1+E S3+X1+F S3+X1+G

S3+X2+A S3+X2+B S3+X2+C

S3+X2+D

S3+X2+E S3+X2+F S3+X2+G

Figure 2.6: The complex splice example DAG.

Limitation: Splices and PRE or POST Scripts

A PRE or POST script may not be specified for a splice (however,nodes within a spliced DAG can have PRE and
POST scripts). (The reason for this is that, when the DAG is parsed, the splices are also parsed and the splice nodes
are directly incorporated into the DAG containing the SPLICE command. Therefore, once parsing is complete, there
are no actual nodes corresponding to the splice itself to which to "attach" the PRE or POST scripts.)

To achieve the desired effect of having a PRE script associated with a splice, introduce a new NOOP node into the
DAG with the splice as a dependency. Attach the PRE script to the NOOP node.

BEGIN DAG FILE example1.dag

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 115

Names a node with no associated node job, a NOOP node
Note that the file noop.submit does not need to exist
JOB OnlyPreNode noop.submit NOOP

Attach a PRE script to the NOOP node
SCRIPT PRE OnlyPreNode prescript.sh

Define the splice
SPLICE TheSplice thenode.dag

Define the dependency
PARENT OnlyPreNode CHILD TheSplice

END DAG FILE example1.dag

The same technique is used to achieve the effect of having a POST script associated with a splice. Introduce a new
NOOP node into the DAG as a child of the splice, and attach the POST script to the NOOP node.

BEGIN DAG FILE example2.dag

Names a node with no associated node job, a NOOP node
Note that the file noop.submit does not need to exist.
JOB OnlyPostNode noop.submit NOOP

Attach a POST script to the NOOP node
SCRIPT POST OnlyPostNode postscript.sh

Define the splice
SPLICE TheSplice thenode.dag

Define the dependency
PARENT TheSplice CHILD OnlyPostNode

END DAG FILE example2.dag

Limitation: Splices and the RETRY of a Node, use of VARS, or use of PRIORITY

A RETRY, VARS or PRIORITY command cannot be specified for a SPLICE; however, individual nodes within a
spliced DAG can have a RETRY, VARS or PRIORITY specified.

Here is an example showing a DAG that will not be parsed successfully:

top level DAG input file
JOB A a.sub
SPLICE B b.dag
PARENT A CHILD B

cannot work, as B is not a node in the DAG once
splice B is incorporated
RETRY B 3

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 116

VARS B dataset="10"
PRIORITY B 20

The following examplewill work:

top level DAG input file
JOB A a.sub
SPLICE B b.dag
PARENT A CHILD B

file: b.dag
JOB X x.sub
RETRY X 3
VARS X dataset="10"
PRIORITY X 20

When RETRY is desired on an entire subgraph of a workflow, sub-DAGs (see above) must be used instead of
splices.

Here is the same example, now defining job B as a SUBDAG, and effecting RETRY on that SUBDAG.

top level DAG input file
JOB A a.sub
SUBDAG EXTERNAL B b.dag
PARENT A CHILD B

RETRY B 3

Limitation: The Interaction of Categories and MAXJOBS with Splices

Categories normally refer only to nodes within a given splice. All of the assignments of nodes to a category, and
the setting of the category throttle, should be done within asingle DAG file. However, it is now possible to have
categories include nodes from within more than one splice. To do this, the category name is prefixed with the ’+’
(plus) character. This tells DAGMan that the category is a cross-splice category. Towards deeper understanding, what
this really does is prevent renaming of the category when thesplice is incorporated into the upper-level DAG. The
MAXJOBS specification for the category can appear in either the upper-level DAG file or one of the splice DAG files.
It probably makes the most sense to put it in the upper-level DAG file.

Here is an example which applies a single limitation on submitted jobs, identifying the category with+init .

relevant portion of file name: upper.dag

SPLICE A splice1.dag
SPLICE B splice2.dag

MAXJOBS +init 2

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 117

relevant portion of file name: splice1.dag

JOB C C.sub
CATEGORY C +init
JOB D D.sub
CATEGORY D +init

relevant portion of file name: splice2.dag

JOB X X.sub
CATEGORY X +init
JOB Y Y.sub
CATEGORY Y +init

For both global and non-global category throttles, settings at a higher level in the DAG override settings at a lower
level. In this example:

relevant portion of file name: upper.dag

SPLICE A lower.dag

MAXJOBS A+catX 10
MAXJOBS +catY 2

relevant portion of file name: lower.dag

MAXJOBS catX 5
MAXJOBS +catY 1

the resulting throttle settings are 2 for the+catY category and 10 for theA+catX category in splice. Note that
non-global category names are prefixed with their splice name(s), so to refer to a non-global category at a higher level,
the splice name must be included.

DAG Splice Connections

In the "default" usage of splices described above, when one splice is the parent of another splice, all "terminal" nodes
(nodes with no children) of the parent splice become parentsof all "initial" nodes (nodes with no parents) of the child
splice. The CONNECT, PIN_IN, and PIN_OUT commands (added inversion 8.5.7) allow more flexible dependencies
between splices. (The terms PIN_IN and PIN_OUT were chosen because of the hardware analogy.)

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 118

The syntax forCONNECTis

CONNECT OutputSpliceName InputSpliceName

The syntax forPIN_IN is

PIN_IN NodeName PinNumber

The syntax forPIN_OUT is

PIN_OUT NodeName PinNumber

All output splice nodes connected to a given pin_out will become parents of all input splice nodes connected to the
corresponding pin_in. (The pin_ins and pin_outs exist onlyto create the correct parent/child dependencies between
nodes. Once the DAG is parsed, there are no actual DAG objectscorresponding to the pin_ins and pin_outs.)

Any given splice can contain both PIN_IN and PIN_OUT definitions, and can be both an input and output splice
in different CONNECT commands. Furthermore, a splice can appear in any number of CONNECT commands (for
example, a given splice could be the output splice in two CONNECT commands that have different input splices). It is
not an error for a splice to have PIN_IN or PIN_OUT definitions that are not associated with a CONNECT command
– such PIN_IN and PIN_OUT commands are simply ignored.

Note that the pin_ins and pin_outs must be definedwithin the relevant splices (this can be done withINCLUDE
commands), not in the DAG that connects the splices.

There are a number of restrictions on splice connections:

• Connections can be made only between two splices; "regular" nodes or sub-DAGs cannot be used in a CON-
NECT command.

• Pin_ins and pin_outs must be numbered consecutively starting at 1.

• The pin_outs of the output splice in a connect command must match the pin_ins of the input splice in the
command.

• All "initial" nodes (nodes with no parents) of an input splice used in a CONNECT command must be connected
to a pin_in.

Violating any of these restrictions will result in an error during the parsing of the DAG files.

Note: it is probably desireable for any "terminal" node (a node with no children) in the output splice to be connected
to a pin_out – but this is not required.

Here is a simple example:

File: top.dag
SPLICE A spliceA.dag
SPLICE B spliceB.dag
SPLICE C spliceC.dag

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 119

CONNECT A B
CONNECT B C

File: spliceA.dag
JOB A1 A1.sub
JOB A2 A2.sub

PIN_OUT A1 1
PIN_OUT A2 2

File: spliceB.dag
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB B4 B4.sub

PIN_IN B1 1
PIN_IN B2 1
PIN_IN B3 2
PIN_IN B4 2

PIN_OUT B1 1
PIN_OUT B2 2
PIN_OUT B3 3
PIN_OUT B4 4

File: spliceC.dag
JOB C1 C1.sub

PIN_IN C1 1
PIN_IN C1 2
PIN_IN C1 3
PIN_IN C1 4

In this example, node A1 will be the parent of B1 and B2; node A2will be the parent of B3 and B4; and nodes B1,
B2, B3 and B4 will all be parents of C1.

A diagram of the above example:

FINAL node

A FINAL node is a single and special node that is always run at the end of the DAG, even if previous nodes in the
DAG have failed. A FINAL node can be used for tasks such as cleaning up intermediate files and checking the output
of previous nodes. TheFINAL command in the DAG input file specifies a node job to be run at theend of the DAG.

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 120

C1
Splice C

A1 A2 Splice A

B4B3B2B1 Splice B

po1

pi1 pi2

pi1 pi2

po2 po3 po4

po1 po2

pi3 pi4

Figure 2.7: Diagram of the splice connect example

The syntax used for theFINAL command is

FINAL JobName SubmitDescriptionFileName[DIR directory] [NOOP]

The FINAL node within the DAG is identified byJobName, and the HTCondor job is described by the contents of
the HTCondor submit description file given bySubmitDescriptionFileName.

The keywordsDIR andNOOPare as detailed in section 2.10.2. If bothDIR andNOOPare used, they must appear
in the order shown within the syntax specification.

There may only be one FINAL node in a DAG. A parse error will be logged by thecondor_dagmanjob in the
dagman.out file, if more than one FINAL node is specified.

The FINAL node is virtually always run. It is run if thecondor_dagmanjob is removed withcondor_rm. The only
case in which a FINAL node is not run is if the configuration variableDAGMAN_STARTUP_CYCLE_DETECTis set
to True , and a cycle is detected at start up time. IfDAGMAN_STARTUP_CYCLE_DETECTis set toFalse and a

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 121

cycle is detected during the course of the run, the FINAL nodewill be run.

The success or failure of the FINAL node determines the success or failure of the entire DAG, overriding the status
of all previous nodes. This includes any status specified by any ABORT-DAG-ON specification that has taken effect.
If some nodes of a DAG fail, but the FINAL node succeeds, the DAG will be considered successful. Therefore, it is
important to be careful about setting the exit status of the FINAL node.

The$DAG_STATUSand$FAILED_COUNTmacros can be used both as PRE and POST script arguments, and in
node job submit description files. As an example of this, hereare the partial contents of the DAG input file,

FINAL final_node final_node.sub
SCRIPT PRE final_node final_pre.pl $DAG_STATUS $FAILED_C OUNT

and here are the partial contents of the submit description file, final_node.sub

arguments = "$(DAG_STATUS) $(FAILED_COUNT)"

If there is a FINAL node specified for a DAG, it will be run at theend of the workflow. If this FINAL node must
not do anything in certain cases, use the$DAG_STATUSand$FAILED_COUNTmacros to take appropriate actions.
Here is an example of that behavior. It uses a PRE script that aborts if the DAG has been removed withcondor_rm,
which, in turn, causes the FINAL node to be considered failedwithout actually submitting the HTCondor job specified
for the node. Partial contents of the DAG input file:

FINAL final_node final_node.sub
SCRIPT PRE final_node final_pre.pl $DAG_STATUS

and partial contents of the Perl PRE script,final_pre.pl :

#! /usr/bin/env perl

if ($ARGV[0] eq 4) {
exit(1);

}

There are restrictions on the use of a FINAL node. The DONE option is not allowed for a FINAL node. And, a
FINAL node may not be referenced in any of the following specifications:

• PARENT, CHILD

• RETRY

• ABORT-DAG-ON

• PRIORITY

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 122

• CATEGORY

As of HTCondor version 8.3.7, DAGMan allows at most two submit attempts of a FINAL node, if the DAG has
been removed from the queue withcondor_rm.

The ALL_NODES option

In the following commands, a specific node name can be replaced by the optionALL_NODES:

• SCRIPT

• PRE_SKIP

• RETRY

• ABORT-DAG-ON

• VARS

• PRIORITY

• CATEGORY

This will cause the given command to apply to all nodes (except any FINAL node) in that DAG.

The ALL_NODESneverapplies to a FINAL node. (If theALL_NODESoption is used in a DAG that has a FINAL
node, thedagman.out file will contain messages noting that the FINAL node is skipped when parsing the relevant
commands.)

TheALL_NODESoption is case-insensitive.

It is important to note that theALL_NODESoption doesnot apply across splices and sub-DAGs. In other words,
anALL_NODESoption within a splice or sub-DAG will apply only to nodes within that splice or sub-DAG; also, an
ALL_NODESoption in a parent DAG will not apply to any splices or sub-DAGs referenced by the parent DAG.

TheALL_NODESoptiondoeswork in combination with theINCLUDE command. In other words, a command
within an included file that uses theALL_NODESoption will apply to all nodes in the including DAG (again, except
any FINAL node).

As of version 8.5.8, theALL_NODESoption cannot be used when multiple DAG files are specified on thecon-
dor_submit_dagcommand line. Hopefully this limitation will be fixed in a future release.

When multiple commands (whether using theALL_NODESoption or not) set a given property of a DAG node, the
last relevant command overrides earlier commands, as shownin the following examples:

For example, in this DAG:

JOB A node.sub
VARS A name="A"
VARS ALL_NODES name="X"

HTCondor Version 8.6.4 Manual

2.10.10. The Rescue DAG 123

the value ofnamefor node A will be "X".

In this DAG:

JOB A node.sub
VARS A name="A"
VARS ALL_NODES name="X"
VARS A name="foo"

the value ofnamefor node A will be "foo".

Here is an example DAG using theALL_NODESoption:

File: all_ex.dag
JOB A node.sub
JOB B node.sub
JOB C node.sub

SCRIPT PRE ALL_NODES my_script $JOB

VARS ALL_NODES name="$(JOB)"

This overrides the above VARS command for node B.
VARS B name="nodeB"

RETRY all_nodes 3

2.10.10 The Rescue DAG

Any time a DAG exits unsuccessfully, DAGMan generates a Rescue DAG. The Rescue DAG records the state of the
DAG, with information such as which nodes completed successfully, and the Rescue DAG will be used when the DAG
is again submitted. With the Rescue DAG, nodes that have already successfully completed are not re-run.

There are a variety of circumstances under which a Rescue DAGis generated. If a node in the DAG fails, the DAG
does not exit immediately; the remainder of the DAG is continued until no more forward progress can be made based
on the DAG’s dependencies. At this point, DAGMan produces the Rescue DAG and exits. A Rescue DAG is produced
on Unix platforms if thecondor_dagmanjob itself is removed withcondor_rm. On Windows, a Rescue DAG isnot
generated in this situation, but re-submitting the original DAG will invoke a lower-level recovery functionality, andit
will produce similar behavior to using a Rescue DAG. A RescueDAG is produced when a node sets and triggers an
ABORT-DAG-ONevent with a non-zero return value. A zero return value constitutes successful DAG completion, and
therefore a Rescue DAG is not generated.

By default, if a Rescue DAG exists, it will be used when the DAGis submitted specifying the original DAG
input file. If more than one Rescue DAG exists, the newest one will be used. By using the Rescue DAG, DAGMan
will avoid re-running nodes that completed successfully inthe previous run.Note that passing the-force option

HTCondor Version 8.6.4 Manual

2.10.10. The Rescue DAG 124

to condor_submit_dagor condor_dagmanwill causecondor_dagmanto not use any existing rescue DAG. This
means that previously-completed node jobs will be re-run.

The granularity defining success or failure in the Rescue DAGis the node. For a node that fails, all parts of the
node will be re-run, even if some parts were successful the first time. For example, if a node’s PRE script succeeds,
but then the node’s HTCondor job cluster fails, the entire node, including the PRE script, will be re-run. A job cluster
may result in the submission of multiple HTCondor jobs. If one of the jobs within the cluster fails, the node fails.
Therefore, the Rescue DAG will re-run the entire node, implying the submission of the entire cluster of jobs, not just
the one(s) that failed.

Statistics about the failed DAG execution are presented as comments at the beginning of the Rescue DAG input
file.

Rescue DAG Naming

The file name of the Rescue DAG is obtained by appending the string .rescue<XXX> to the original DAG
input file name. Values for<XXX>start at001 and continue to002 , 003 , and beyond. The configuration variable
DAGMAN_MAX_RESCUE_NUMsets a maximum value for<XXX>; see section 3.5.24 for the complete definition of
this configuration variable. If you hit theDAGMAN_MAX_RESCUE_NUMlimit, the last Rescue DAG file is overwritten
if the DAG fails again.

If a Rescue DAG exists when the original DAG is re-submitted,the Rescue DAG with the largest magnitude value
for <XXX>will be used, and its usage is implied.

Example

Here is an example showing file naming and DAG submission for the case of a failed DAG. The initial DAG is
submitted with

condor_submit_dag my.dag

A failure of this DAG results in the Rescue DAG namedmy.dag.rescue001 . The DAG is resubmitted using the
same command:

condor_submit_dag my.dag

This resubmission of the DAG uses the Rescue DAG filemy.dag.rescue001 , because it exists. Failure of this
Rescue DAG results in another Rescue DAG calledmy.dag.rescue002 . If the DAG is again submitted, using the
same command as with the first two submissions, but not repeated here, then this third submission uses the Rescue
DAG file my.dag.rescue002 , because it exists, and because the value002 is larger in magnitude than001 .

Backtracking to an Older Rescue DAG

HTCondor Version 8.6.4 Manual

2.10.10. The Rescue DAG 125

To explicitly specify a particular Rescue DAG, use the optional command-line argument-dorescuefromwith con-
dor_submit_dag. Note that this will have the side effect of renaming existing Rescue DAG files with larger magnitude
values of<XXX>. Each renamed file has its existing name appended with the string .old . For example, assume that
my.dag has failed 4 times, resulting in the Rescue DAGs namedmy.dag.rescue001 , my.dag.rescue002 ,
my.dag.rescue003 , andmy.dag.rescue004 . A decision is made to re-run usingmy.dag.rescue002 .
The submit command is

condor_submit_dag -dorescuefrom 2 my.dag

The DAG specified by the DAG input filemy.dag.rescue002 is submitted. And, the existing Rescue
DAG my.dag.rescue003 is renamed to bemy.dag.rescue003.old , while the existing Rescue DAG
my.dag.rescue004 is renamed to bemy.dag.rescue004.old .

Special Cases

Note that if multiple DAG input files are specified on thecondor_submit_dagcommand line, a single Rescue DAG
encompassing all of the input DAGs is generated. A DAG file containing splices also produces a single Rescue DAG
file. On the other hand, a DAG containing sub-DAGs will produce a separate Rescue DAG for each sub-DAG that is
queued (and for the top-level DAG).

If the Rescue DAG file is generated before all retries of a nodeare completed, then the Rescue DAG file will
also containRetryentries. The number of retries will be set to the appropriateremaining number of retries. The
configuration variableDAGMAN_RESET_RETRIES_UPON_RESCUE, section 3.5.24, controls whether or not node
retries are reset in a Rescue DAG.

Partial versus Full Rescue DAGs

As of HTCondor version 7.7.2, the Rescue DAG file is a partial DAG file, not a complete DAG input file as in the
past.

A partial Rescue DAG file contains only information about which nodes are done, and the number of retries
remaining for nodes with retries. It does not contain information such as the actual DAG structure and the specification
of the submit description file for each node job. Partial Rescue DAGs are automatically parsed in combination with
the original DAG input file, which contains information about the DAG structure. This updated implementation means
that a change in the original DAG input file, such as specifying a different submit description file for a node job, will
take effect when running the partial Rescue DAG. In other words, you can fix mistakes in the original DAG file while
still gaining the benefit of using the Rescue DAG.

To use a partial Rescue DAG, youmustre-runcondor_submit_dagon the original DAG file, not the Rescue DAG
file.

Note that the existence of a DONE specification in a partial Rescue DAG for a node that no longer exists in the
original DAG input file is a warning, as opposed to an error, unless theDAGMAN_USE_STRICTconfiguration variable
is set to a value of 1 or higher (which is now the default). Comment out the line withDONE in the partial Rescue
DAG file to avoid a warning or error.

HTCondor Version 8.6.4 Manual

2.10.11. DAG Recovery 126

The previous (prior to version 7.7.2) behavior of producingfull DAG input file as the Rescue DAG is obtained by
setting the configuration variableDAGMAN_WRITE_PARTIAL_RESCUEto the non-default value ofFalse . Note
that the option to generate full Rescue DAGs is likely to disappear some time during the 8.3 series.

To run a full Rescue DAG, either one left over from an older version of DAGMan, or one produced by setting
DAGMAN_WRITE_PARTIAL_RESCUEto False , directly specify the full Rescue DAG file on the command line
instead of the original DAG file. For example:

condor_submit_dag my.dag.rescue002

Attempting to re-submit the original DAG file, if the Rescue DAG file is a complete DAG, will result in a parse
failure.

Rescue DAG Generated When There Are Parse Errors

Starting in HTCondor version 7.5.5, passing the-DumpRescue option to eithercondor_dagmanor con-
dor_submit_dagcausescondor_dagmanto output a Rescue DAG file, even if the parsing of a DAG input file fails. In
this parse failure case,condor_dagmanproduces a specially named Rescue DAG containing whatever it had success-
fully parsed up until the point of the parse error. This Rescue DAG may be useful in debugging parse errors in complex
DAGs, especially ones using splices. This incomplete Rescue DAG is not meant to be used when resubmitting a failed
DAG. Note that this incomplete Rescue DAG generated by the-DumpRescueoption is a full DAG input file, as pro-
duced by versions of HTCondor prior to HTCondor version 7.7.2. It is not a partial Rescue DAG file, regardless of the
value of the configuration variableDAGMAN_WRITE_PARTIAL_RESCUE.

To avoid confusion between this incomplete Rescue DAG generated in the case of a parse failure and a usable Res-
cue DAG, a different name is given to the incomplete Rescue DAG. The name appends the string.parse_failed
to the original DAG input file name. Therefore, if the submission of a DAG with

condor_submit_dag my.dag

has a parse failure, the resulting incomplete Rescue DAG will be namedmy.dag.parse_failed .

To further prevent one of these incomplete Rescue DAG files from being used, a line within the file contains the
single commandREJECT. This causescondor_dagmanto reject the DAG, if used as a DAG input file. This is done
because the incomplete Rescue DAG may be a syntactically correct DAG input file. It will be incomplete relative to
the original DAG, such that if the incomplete Rescue DAG could be run, it could erroneously be perceived as having
successfully executed the desired workflow, when, in fact, it did not.

2.10.11 DAG Recovery

DAG recovery restores the state of a DAG upon resubmission. Recovery is accomplished by reading the.nodes.log
file that is used to enforce the dependencies of the DAG. The DAG can then continue towards completion.

HTCondor Version 8.6.4 Manual

2.10.12. Visualizing DAGs withdot 127

Recovery is different than a Rescue DAG. Recovery is appropriate when no Rescue DAG has been created. There
will be no Rescue DAG if the machine running thecondor_dagmanjob crashes, or if thecondor_schedddaemon
crashes, or if thecondor_dagmanjob crashes, or if thecondor_dagmanjob is placed on hold.

Much of the time, when a not-completed DAG is re-submitted, it will automatically be placed into recovery mode
due to the existence and contents of a lock file created as the DAG is first run. In recovery mode, the.nodes.log is
used to identify nodes that have completed and should not be re-submitted.

DAGMan can be told to work in recovery mode by including the-DoRecoveryoption on the command line, as in
the example

condor_submit_dag diamond.dag -DoRecovery

wherediamond.dag is the name of the DAG input file.

When debugging a DAG in which something has gone wrong, a firstdetermination is whether a resubmission
will use a Rescue DAG or benefit from recovery. The existence of a Rescue DAG means that recovery would be
inappropriate. A Rescue DAG is has a file name ending in.rescue<XXX> , where<XXX> is replaced by a 3-digit
number.

Determine if a DAG ever completed (independent of whether itwas successful or not) by looking at the last lines
of the.dagman.out file. If there is a line similar to

(condor_DAGMAN) pid 445 EXITING WITH STATUS 0

then the DAG completed. This line explains that thecondor_dagmanjob finished normally. If there is no line similar
to this at the end of the.dagman.out file, and output fromcondor_qshows that thecondor_dagmanjob for the
DAG being debugged is not in the queue, then recovery is indicated.

2.10.12 Visualizing DAGs withdot

It can be helpful to see a picture of a DAG. DAGMan can assist you in visualizing a DAG by creating the input
files used by the AT&T Research Labsgraphvizpackage. dot is a program within this package, available from
http://www.graphviz.org/, and it is used to draw pictures of DAGs.

DAGMan produces one or more dot files as the result of an extra line in a DAG input file. The line appears as

DOT dag.dot

This creates a file calleddag.dot . which contains a specification of the DAG before any jobs within the DAG
are submitted to HTCondor. Thedag.dot file is used to create a visualization of the DAG by using this file as input
to dot. This example creates a Postscript file, with a visualization of the DAG:

dot -Tps dag.dot -o dag.ps

HTCondor Version 8.6.4 Manual

http://www.graphviz.org/

2.10.13. Capturing the Status of Nodes in a File 128

Within the DAG input file, the DOT command can take several optional parameters:

• UPDATE This will update the dot file every time a significant update happens.

• DONT-UPDATE Creates a single dot file, when the DAGMan begins executing. This is the default if the
parameterUPDATE is not used.

• OVERWRITE Overwrites the dot file each time it is created. This is the default, unlessDONT-OVERWRITE
is specified.

• DONT-OVERWRITE Used to create multiple dot files, instead of overwriting thesingle one specified. To
create file names, DAGMan uses the name of the file concatenated with a period and an integer. For example,
the DAG input file line

DOT dag.dot DONT-OVERWRITE

causes filesdag.dot.0 , dag.dot.1 , dag.dot.2 , etc. to be created. This option is most useful when
combined with theUPDATE option to visualize the history of the DAG after it has finished executing.

• INCLUDE path-to-filenameIncludes the contents of a file given bypath-to-filename in the file produced
by theDOT command. The include file contents are always placed after the line of the formlabel= . This
may be useful if further editing of the created files would be necessary, perhaps because you are automatically
visualizing the DAG as it progresses.

If conflicting parameters are used in a DOT command, the last one listed is used.

2.10.13 Capturing the Status of Nodes in a File

DAGMan can capture the status of the overall DAG and all DAG nodes in anode status file, such that the user or a
script can monitor this status. This file is periodically rewritten while the DAG runs. To enable this feature, the DAG
input file must contain a line with theNODE_STATUS_FILEcommand.

The syntax for aNODE_STATUS_FILEcommand is

NODE_STATUS_FILE statusFileName[minimumUpdateTime] [ALWAYS-UPDATE]

The status file is written on the machine on which the DAG is submitted; its location is given bystatusFileName,
and it may be a full path and file name.

The optionalminimumUpdateTimespecifies the minimum number of seconds that must elapse between updates to
the node status file. This setting exists to avoid having DAGMan spend too much time writing the node status file for
very large DAGs. If no value is specified, this value defaultsto 60 seconds (as of version 8.5.8; previously, it defaulted
to 0). The node status file can be updated at most once perDAGMAN_USER_LOG_SCAN_INTERVAL, as defined at
section 3.5.24, no matter how small theminimumUpdateTimevalue. Also, the node status file will be updated when
the DAG finishes, whether successfully or not, even ifminimumUpdateTimeseconds have not elapsed since the last
update.

HTCondor Version 8.6.4 Manual

2.10.13. Capturing the Status of Nodes in a File 129

Normally, the node status file is only updated if the status ofsome nodes has changed since the last time the file
was written. However, the optionalALWAYS-UPDATEkeyword specifies that the node status file should be updated
every time the minimum update time (andDAGMAN_USER_LOG_SCAN_INTERVAL), has passed, even if no nodes
have changed status since the last time the file was updated. (The file will change slightly, because timestamps will
be updated.) For performance reasons, large DAGs with approximately 10,000 or more nodes are poor candidates for
using theALWAYS-UPDATEoption.

As an example, if the DAG input file contains the line

NODE_STATUS_FILE my.dag.status 30

the filemy.dag.status will be rewritten at intervals of 30 seconds or more.

This node status file is overwritten each time it is updated. Therefore, it only holds information about thecurrent
status of each node; it does not provide a history of the node status.

NOTE: HTCondor version 8.1.6 changes the format of the node status file.

The node status file is a collection of ClassAds in New ClassAdformat. There is one ClassAd for the overall status
of the DAG, one ClassAd for the status of each node, and one ClassAd with the time at which the node status file was
completed as well as the time of the next update.

Here is an example portion of a node status file:

[
Type = "DagStatus";
DagFiles = {

"job_dagman_node_status.dag"
};
Timestamp = 1399674138; / * "Fri May 9 17:22:18 2014" * /
DagStatus = 3; / * "STATUS_SUBMITTED ()" * /
NodesTotal = 12;
NodesDone = 11;
NodesPre = 0;
NodesQueued = 1;
NodesPost = 0;
NodesReady = 0;
NodesUnready = 0;
NodesFailed = 0;
JobProcsHeld = 0;
JobProcsIdle = 1;

]
[

Type = "NodeStatus";
Node = "A";
NodeStatus = 5; / * "STATUS_DONE" * /
StatusDetails = "";

HTCondor Version 8.6.4 Manual

2.10.14. A Machine-Readable Event History, the jobstate.log File 130

RetryCount = 0;
JobProcsQueued = 0;
JobProcsHeld = 0;

]
...
[

Type = "NodeStatus";
Node = "C";
NodeStatus = 3; / * "STATUS_SUBMITTED" * /
StatusDetails = "idle";
RetryCount = 0;
JobProcsQueued = 1;
JobProcsHeld = 0;

]
[

Type = "StatusEnd";
EndTime = 1399674138; / * "Fri May 9 17:22:18 2014" * /
NextUpdate = 1399674141; / * "Fri May 9 17:22:21 2014" * /

]

PossibleDagStatus andNodeStatus attribute values are:

• 0 (STATUS_NOT_READY): At least one parent has not yet finished or the node is a FINALnode.

• 1 (STATUS_READY): All parents have finished, but the node is not yet running.

• 2 (STATUS_PRERUN): The node’s PRE script is running.

• 3 (STATUS_SUBMITTED): The node’s HTCondor job(s) are in the queue.

• 4 (STATUS_POSTRUN): The node’s POST script is running.

• 5 (STATUS_DONE): The node has completed successfully.

• 6 (STATUS_ERROR): The node has failed.

A NODE_STATUS_FILEcommand inside any splice is ignored. If multiple DAG files are specified on thecon-
dor_submit_dagcommand line, and more than one specifies a node status file, the first specification takes precedence.

2.10.14 A Machine-Readable Event History, the jobstate.log File

DAGMan can produce a machine-readable history of events. The jobstate.log file is designed for use by
the Pegasus Workflow Management System, which operates as a layer on top of DAGMan. Pegasus uses the
jobstate.log file to monitor the state of a workflow. Thejobstate.log file can used by any automated
tool for the monitoring of workflows.

HTCondor Version 8.6.4 Manual

2.10.14. A Machine-Readable Event History, the jobstate.log File 131

DAGMan produces this file when the commandJOBSTATE_LOGis in the DAG input file. The syntax for
JOBSTATE_LOGis

JOBSTATE_LOG JobstateLogFileName

No more than onejobstate.log file can be created by a single instance ofcondor_dagman. If more than one
jobstate.log file is specified, the first file name specified will take effect,and a warning will be printed in the
dagman.out file when subsequentJOBSTATE_LOGspecifications are parsed. Multiple specifications may exist in
the same DAG file, within splices, or within multiple, independent DAGs run with a singlecondor_dagmaninstance.

The jobstate.log file can be considered a filtered version of thedagman.out file, in a machine-readable
format. It contains the actual node job events that fromcondor_dagman, plus some additional meta-events.

The jobstate.log file is different from the node status file, in that thejobstate.log file is appended to,
rather than being overwritten as the DAG runs. Therefore, itcontains a history of the DAG, rather than a snapshot of
the current state of the DAG.

There are 5 line types in thejobstate.log file. Each line begins with a Unix timestamp in the form of seconds
since the Epoch. Fields within each line are separated by a single space character.

DAGMan start This line identifies thecondor_dagmanjob. The formatting of the line is

timestampINTERNAL *** DAGMAN_STARTED dagmanCondorID***

The dagmanCondorIDfield is thecondor_dagmanjob’s ClusterId attribute, a period, and theProcId
attribute.

DAGMan exit This line identifies the completion of thecondor_dagmanjob. The formatting of the line is

timestampINTERNAL *** DAGMAN_FINISHED exitCode***

TheexitCodefield is value thecondor_dagmanjob returns upon exit.

Recovery started If the condor_dagmanjob goes into recovery mode, this meta-event is printed. During recovery
mode, events will only be printed in the file if they were not already printed before recovery mode started. The
formatting of the line is

timestampINTERNAL *** RECOVERY_STARTED ***

Recovery finished or Recovery failureAt the end of recovery mode, either a RECOVERY_FINISHED or RECOV-
ERY_FAILURE meta-event will be printed, as appropriate.

The formatting of the line is

timestampINTERNAL *** RECOVERY_FINISHED ***

or

timestampINTERNAL *** RECOVERY_FAILURE ***

Normal This line is used for all other event and meta-event types. The formatting of the line is

timestamp JobName eventName condorID jobTag- sequenceNumber

TheJobNameis the name given to the node job as defined in the DAG input file with the commandJOB. It
identifies the node within the DAG.

HTCondor Version 8.6.4 Manual

2.10.14. A Machine-Readable Event History, the jobstate.log File 132

TheeventNameis one of the many defined event or meta-events given in the lists below.

ThecondorIDfield is the job’sClusterId attribute, a period, and theProcId attribute. There is nocondorID
assigned yet for some meta-events, such as PRE_SCRIPT_STARTED. For these, the dash character (’-’) is
printed.

The jobTagfield is defined for the Pegasus workflow manager. Its usage is generalized to be useful to other
workflow managers. Pegasus-managed jobs add a line of the following form to their HTCondor submit descrip-
tion file:

+pegasus_site = "local"

This defines the stringlocal as thejobTagfield.

Generalized usage adds a set of 2 commands to the HTCondor submit description file to define a string as the
jobTagfield:

+job_tag_name = "+job_tag_value"
+job_tag_value = "viz"

This defines the stringviz as thejobTagfield. Without any of these added lines within the HTCondor submit
description file, the dash character (’-’) is printed for thejobTagfield.

ThesequenceNumberis a monotonically-increasing number that starts at one. Itis associated with each attempt
at running a node. If a node is retried, it gets a new sequence number; a submit failure does not result in a new
sequence number. When a Rescue DAG is run, the sequence numbers pick up from where they left off within
the previous attempt at running the DAG. Note that this only applies if the Rescue DAG is run automatically or
with the-dorescuefromcommand-line option.

Here is an example of a very simple Pegasusjobstate.log file, assuming the examplejobTagfield of local :

1292620511 INTERNAL *** DAGMAN_STARTED 4972.0***
1292620523 NodeA PRE_SCRIPT_STARTED - local - 1
1292620523 NodeA PRE_SCRIPT_SUCCESS - local - 1
1292620525 NodeA SUBMIT 4973.0 local - 1
1292620525 NodeA EXECUTE 4973.0 local - 1
1292620526 NodeA JOB_TERMINATED 4973.0 local - 1
1292620526 NodeA JOB_SUCCESS 0 local - 1
1292620526 NodeA POST_SCRIPT_STARTED 4973.0 local - 1
1292620531 NodeA POST_SCRIPT_TERMINATED 4973.0 local - 1
1292620531 NodeA POST_SCRIPT_SUCCESS 4973.0 local - 1
1292620535 INTERNAL *** DAGMAN_FINISHED 0***

Events defining the eventName field • SUBMIT

• EXECUTE

• EXECUTABLE_ERROR

• CHECKPOINTED

HTCondor Version 8.6.4 Manual

2.10.14. A Machine-Readable Event History, the jobstate.log File 133

• JOB_EVICTED

• JOB_TERMINATED

• IMAGE_SIZE

• SHADOW_EXCEPTION

• GENERIC

• JOB_ABORTED

• JOB_SUSPENDED

• JOB_UNSUSPENDED

• JOB_HELD

• JOB_RELEASED

• NODE_EXECUTE

• NODE_TERMINATED

• POST_SCRIPT_TERMINATED

• GLOBUS_SUBMIT

• GLOBUS_SUBMIT_FAILED

• GLOBUS_RESOURCE_UP

• GLOBUS_RESOURCE_DOWN

• REMOTE_ERROR

• JOB_DISCONNECTED

• JOB_RECONNECTED

• JOB_RECONNECT_FAILED

• GRID_RESOURCE_UP

• GRID_RESOURCE_DOWN

• GRID_SUBMIT

• JOB_AD_INFORMATION

• JOB_STATUS_UNKNOWN

• JOB_STATUS_KNOWN

• JOB_STAGE_IN

• JOB_STAGE_OUT

Meta-Events defining the eventName field • SUBMIT_FAILURE

• JOB_SUCCESS

• JOB_FAILURE

• PRE_SCRIPT_STARTED

• PRE_SCRIPT_SUCCESS

• PRE_SCRIPT_FAILURE

HTCondor Version 8.6.4 Manual

2.10.15. Status Information for the DAG in a ClassAd 134

• POST_SCRIPT_STARTED

• POST_SCRIPT_SUCCESS

• POST_SCRIPT_FAILURE

• DAGMAN_STARTED

• DAGMAN_FINISHED

• RECOVERY_STARTED

• RECOVERY_FINISHED

• RECOVERY_FAILURE

2.10.15 Status Information for the DAG in a ClassAd

Thecondor_dagmanjob places information about the status of the DAG into its own job ClassAd. The attributes are
fully described at section 12. The attributes are

• DAG_NodesTotal

• DAG_NodesDone

• DAG_NodesPrerun

• DAG_NodesQueued

• DAG_NodesPostrun

• DAG_NodesReady

• DAG_NodesFailed

• DAG_NodesUnready

• DAG_Status

• DAG_InRecovery

Note that most of this information is also available in thedagman.out file as described in section 2.10.7.

2.10.16 Utilizing the Power of DAGMan for Large Numbers of Jobs

Using DAGMan is recommended when submitting large numbers of jobs. The recommendation holds whether the
jobs are represented by a DAG due to dependencies, or all the jobs are independent of each other, such as they might
be in a parameter sweep. DAGMan offers:

Throttling Throttling limits the number of submitted jobs at any point in time.

HTCondor Version 8.6.4 Manual

2.10.16. Utilizing the Power of DAGMan for Large Numbers of Jobs 135

Retry of jobs that fail This is a useful tool when an intermittent error may cause a job to fail or may cause a job to
fail to run to completion when attempted at one point in time,but not at another point in time. The conditions
under which retry occurs are user-defined. In addition, the administrative support that facilitates the rerunning
of only those jobs that fail is automatically generated.

Scripts associated with node jobsPRE and POST scripts run on the submit host before and/or after the execution of
specified node jobs.

Each of these capabilities is described in detail within this manual section about DAGMan. To make effective use
of DAGMan, there is no way around reading the appropriate subsections.

To run DAGMan with large numbers of independent jobs, there are generally two ways of organizing and speci-
fying the files that control the jobs. Both ways presume that programs or scripts will generate needed files, because
the file contents are either large and repetitive, or becausethere are a large number of similar files to be generated
representing the large numbers of jobs. The two file types needed are the DAG input file and the submit description
file(s) for the HTCondor jobs represented. Each of the two ways is presented separately:

A unique submit description file for each of the many jobs.A single DAG input file lists each of the jobs and spec-
ifies a distinct submit description file for each job. The DAG input file is simple to generate, as it chooses an
identifier for each job and names the submit description file.For example, the simplest DAG input file for a set
of 1000 independent jobs, as might be part of a parameter sweep, appears as

file sweep.dag
JOB job0 job0.submit
JOB job1 job1.submit
JOB job2 job2.submit
.
.
.
JOB job999 job999.submit

There are 1000 submit description files, with a unique one foreach of the job<N> jobs. Assuming that all files
associated with this set of jobs are in the same directory, and that files continue the same naming and numbering
scheme, the submit description file forjob6.submit might appear as

file job6.submit
universe = vanilla
executable = /path/to/executable
log = job6.log
input = job6.in
output = job6.out
arguments = "-file job6.out"
queue

Submission of the entire set of jobs uses the command line

condor_submit_dag sweep.dag

HTCondor Version 8.6.4 Manual

2.10.16. Utilizing the Power of DAGMan for Large Numbers of Jobs 136

A benefit to having unique submit description files for each ofthe jobs is that they are available if one of the
jobs needs to be submitted individually. A drawback to having unique submit description files for each of the
jobs is that there are lots of submit description files.

Single submit description file. A single HTCondor submit description file might be used for all the many jobs of the
parameter sweep. To distinguish the jobs and their associated distinct input and output files, the DAG input file
assigns a unique identifier with theVARScommand.

file sweep.dag
JOB job0 common.submit
VARS job0 runnumber="0"
JOB job1 common.submit
VARS job1 runnumber="1"
JOB job2 common.submit
VARS job2 runnumber="2"
.
.
.
JOB job999 common.submit
VARS job999 runnumber="999"

The single submit description file for all these jobs utilizes therunnumber variable value in its identification
of the job’s files. This submit description file might appear as

file common.submit
universe = vanilla
executable = /path/to/executable
log = wholeDAG.log
input = job$(runnumber).in
output = job$(runnumber).out
arguments = "-$(runnumber)"
queue

The job withrunnumber="8" expects to find its input filejob8.in in the single, common directory, and it
sends its output tojob8.out . The single log for all job events of the entire DAG iswholeDAG.log . Using
one file for the entire DAG meets the limitation that no macro substitution may be specified for the job log file,
and it is likely more efficient as well. This node’s executable is invoked with

/path/to/executable -8

These examples work well with respect to file naming and file location when there are less than several thousand
jobs submitted as part of a DAG. The large numbers of files per directory becomes an issue when there are greater
than several thousand jobs submitted as part of a DAG. In thiscase, consider a more hierarchical structure for the files
instead of a single directory. Introduce a separate directory for each run. For example, if there were 10,000 jobs, there
would be 10,000 directories, one for each of these jobs. The directories are presumed to be generated and populated
by programs or scripts that, like the previous examples, utilize a run number. Each of these directories named utilizing
the run number will be used for the input, output, and log filesfor one of the many jobs.

HTCondor Version 8.6.4 Manual

2.10.17. Workflow Metrics 137

As an example, for this set of 10,000 jobs and directories, assume that there is a run number of 600. The directory
will be nameddir600 , and it will hold the 3 files calledin , out , and log , representing the input, output, and
HTCondor job log files associated with run number 600.

The DAG input file sets a variable representing the run number, as in the previous example:

file biggersweep.dag
JOB job0 bigger.submit
VARS job0 runnumber="0"
JOB job1 bigger.submit
VARS job1 runnumber="1"
JOB job2 bigger.submit
VARS job2 runnumber="2"
.
.
.
JOB job9999 bigger.submit
VARS job9999 runnumber="9999"

A single HTCondor submit description file may be written. It resides in the same directory as the DAG input file.

file bigger.submit
universe = vanilla
executable = /path/to/executable
log = log
input = in
output = out
arguments = "-$(runnumber)"
initialdir = dir$(runnumber)
queue

One item to care about with this set up is the underlying file system for the pool. The transfer of files (or not) when
usinginitialdir differs based upon the jobuniverseand whether or not there is a shared file system. See section 11
for the details on the submit commandinitialdir .

Submission of this set of jobs is no different than the previous examples. With the current working directory the
same as the one containing the submit description file, the DAG input file, and the subdirectories,

condor_submit_dag biggersweep.dag

2.10.17 Workflow Metrics

condor_dagmanmay report workflow metrics to one or more HTTP servers. This capability is currently only used for
workflows run underPegasus. The reporting is disabled by setting theCONDOR_DEVELOPERSconfiguration variable

HTCondor Version 8.6.4 Manual

2.10.17. Workflow Metrics 138

to NONE, or by setting thePEGASUS_METRICSenvironment variable to any value other thanTrue (case-insensitive)
or 1. Thedagman.out file will indicate whether or not metrics were reported.

For every DAG, a metrics file is created independent of the reporting of those metrics. This metrics file is named
<dag_file_name>.metrics , where<dag_file_name> is the name of the DAG input file. In a workflow
with nested DAGs, each nested DAG will create its own metricsfile.

Here is an example metrics output file:

{
"client":"condor_dagman",
"version":"8.1.0",
"planner":"/lfs1/devel/Pegasus/pegasus/bin/pegasus- plan",
"planner_version":"4.3.0cvs",
"type":"metrics",
"wf_uuid":"htcondor-test-job_dagman_metrics-A-subda g",
"root_wf_uuid":"htcondor-test-job_dagman_metrics-A" ,
"start_time":1375313459.603,
"end_time":1375313491.498,
"duration":31.895,
"exitcode":1,
"dagman_id":"26",
"parent_dagman_id":"11",
"rescue_dag_number":0,
"jobs":4,
"jobs_failed":1,
"jobs_succeeded":3,
"dag_jobs":0,
"dag_jobs_failed":0,
"dag_jobs_succeeded":0,
"total_jobs":4,
"total_jobs_run":4,
"total_job_time":0.000,
"dag_status":2

}

Here is an explanation of each of the items in the file:

• client : the name of the client workflow software; in the example, it is "condor_dagman"

• version : the version of the client workflow software

• planner : the workflow planner, as read from thebraindump.txt file

• planner_version : the planner software version, as read from thebraindump.txt file

• type : the type of data,"metrics"

HTCondor Version 8.6.4 Manual

2.10.17. Workflow Metrics 139

• wf_uuid : the workflow ID, generated bypegasus-plan, as read from thebraindump.txt file

• root_wf_uuid : the root workflow ID, which is relevant for nested workflows.It is generated bypegasus-
plan, as read from thebraindump.txt file.

• start_time : the start time of the client, in epoch seconds, with millisecond precision

• end_time : the end time of the client, in epoch seconds, with millisecond precision

• duration : the duration of the client, in seconds, with millisecond precision

• exitcode : thecondor_dagmanexit code

• dagman_id : the value of theClusterId attribute of thecondor_dagmaninstance

• parent_dagman_id : the value of theClusterId attribute of the parentcondor_dagmaninstance of this
DAG; empty if this DAG isnot a SUBDAG

• rescue_dag_number : the number of the Rescue DAG being run, or 0 if not running a Rescue DAG

• jobs : the number of nodes in the DAG input file, not including SUBDAG nodes

• jobs_failed : the number of failed nodes in the workflow, not including SUBDAG nodes

• jobs_succeeded : the number of successful nodes in the workflow, not including SUBDAG nodes; this
includes jobs that succeeded after retries

• dag_jobs : the number of SUBDAG nodes in the DAG input file

• dag_jobs_failed : the number of SUBDAG nodes that failed

• dag_jobs_succeeded : the number of SUBDAG nodes that succeeded

• total_jobs : the total number of jobs in the DAG input file

• total_jobs_run : the total number of nodes executed in a DAG. It should be equal to
jobs_succeeded + jobs_failed + dag_jobs_succeeded + dag_j obs_failed

• total_job_time : the sum of the time between the first execute event and the terminated event for all jobs
that are not SUBDAGs

• dag_status : the final status of the DAG, with values

– 0: OK

– 1: error; an error condition different than those listed here

– 2: one or more nodes in the DAG have failed

– 3: the DAG has been aborted by an ABORT-DAG-ON specification

– 4: removed; the DAG has been removed bycondor_rm

– 5: a cycle was found in the DAG

– 6: the DAG has been halted; see section 2.10.8 for an explanation of halting a DAG

HTCondor Version 8.6.4 Manual

2.10.18. DAGMan and Accounting Groups 140

Note that anydag_status other than 0 corresponds to a non-zero exit code.

The braindump.txt file is generated bypegasus-plan; the name of thebraindump.txt file is spec-
ified with the PEGASUS_BRAINDUMP_FILEenvironment variable. If not specified, the file name defaults to
braindump.txt , and it is placed in the current directory.

Note that thetotal_job_time value is always zero, because the calculation of that value has not yet been
implemented.

If a DAG succeeds, but the metrics reporting fails, the DAG isstill considered successful.

The metrics are reported only at the end of a DAG run. This includes reporting the metrics if thecondor_dagman
job is removed, or if the DAG drains from the queue because of being halted by a halt file.

The metrics are reported by thecondor_dagman_metrics_reporterexecutable as described in the manual page at
794.

2.10.18 DAGMan and Accounting Groups

As of version 8.5.6,condor_dagmanpropagatesaccounting_groupandaccounting_group_uservalues specified for
condor_dagmanitself to all jobs within the DAG (including sub-DAGs).

The accounting_group and accounting_group_uservalues can be specified using the-append flag to con-
dor_submit_dag, for example:

condor_submit_dag -append accounting_group=group_phys ics -append accounting_group_user=albert

See section 3.6.7 for a discussion of group accounting and section 3.6.8 for a discussion of accounting groups with
hierarchical group quotas.

2.11 Virtual Machine Applications

Thevm universe facilitates an HTCondor job that matches and then lands a disk image on an execute machine within
an HTCondor pool. This disk image is intended to be a virtual machine. In this manner, the virtual machine is the job
to be executed.

This section describes this type of HTCondor job. See section 3.5.26 for details of configuration variables.

2.11.1 The Submit Description File

Different than all other universe jobs, thevm universe job specifies a disk image, not an executable. Therefore, the
submit commandsinput , output, anderror do not apply. If specified,condor_submitrejects the job with an error.

HTCondor Version 8.6.4 Manual

2.11.1. The Submit Description File 141

Theexecutablecommand changes definition within avm universe job. It no longer specifies an executable file, but
instead provides a string that identifies the job for tools such ascondor_q. Other commands specific to the type of
virtual machine software identify the disk image.

VMware, Xen, and KVM virtual machine software are supported. As these differ from each other, the submit
description file specifies one of

vm_type = vmware

or

vm_type = xen

or

vm_type = kvm

The job is required to specify its memory needs for the disk image withvm_memory, which is given in Mbytes.
HTCondor uses this number to assure a match with a machine that can provide the needed memory space.

Virtual machine networking is enabled with the command

vm_networking = true

And, when networking is enabled, a definition ofvm_networking_typeasbridge matches the job only with a machine
that is configured to use bridge networking. A definition ofvm_networking_typeasnat matches the job only with a
machine that is configured to use NAT networking. When no definition of vm_networking_type is given, HTCondor
may match the job with a machine that enables networking, andfurther, the choice of bridge or NAT networking is
determined by the machine’s configuration.

Modified disk images are transferred back to the machine fromwhich the job was submitted as thevm universe job
completes. Job completion for avm universe job occurs when the virtual machine is shut down, and HTCondor notices
(as the result of a periodic check on the state of the virtual machine). Should the job not want any files transferred back
(modified or not), for example because the job explicitly transferred its own files, the submit command to prevent the
transfer is

vm_no_output_vm = true

The required disk image must be identified for a virtual machine. Thisvm_disk command specifies a list of
comma-separated files. Each disk file is specified by colon-separated fields. The first field is the path and file name
of the disk file. The second field specifies the device. The third field specifies permissions, and the optional fourth
specifies the format. Here is an example that identifies a single file:

vm_disk = swap.img:sda2:w:raw

HTCondor Version 8.6.4 Manual

2.11.1. The Submit Description File 142

If HTCondor will be transferring the disk file, then the file name given invm_disk should not contain any path
information. Otherwise, the full path to the file should be given.

Setting values in the submit description file for some commands have consequences for the virtual machine de-
scription file. These commands are

• vm_memory

• vm_macaddr

• vm_networking

• vm_networking_type

• vm_disk

For VMware virtual machines, setting values for these commands causes HTCondor to modify the.vmx file, overwrit-
ing existing values. For KVM and Xen virtual machines, HTCondor uses these values when it produces the description
file.

For Xen and KVM jobs, if any files need to be transferred from the submit machine to the machine where thevm
universe job will execute, HTCondor must be explicitly toldto do so with the standard file transfer attributes:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /myxen/diskfile.img,/myxen/swa p.img

Any and all needed files that will not accessible directly from the machines where the job may execute must be listed.

Further commands specify information that is specific to thevirtual machine type targeted.

VMware-Specific Submit Commands

Specific to VMware, the submit description file commandvmware_dir gives the path and directory (on the machine
from which the job is submitted) to where VMware-specific files and applications reside. One example of a VMware-
specific application is the VMDK files, which form a virtual hard drive (disk image) for the virtual machine. VMX
files containing the primary configuration for the virtual machine would also be in this directory.

HTCondor must be told whether or not the contents of thevmware_dir directory must be transferred to
the machine where the job is to be executed. This required information is given with the submit command
vmware_should_transfer_files. With a value ofTrue , HTCondor does transfer the contents of the directory. With
a value ofFalse , HTCondor does not transfer the contents of the directory, and instead presumes that access to this
directory is available through a shared file system.

By default, HTCondor uses a snapshot disk for new and modifiedfiles. They may also be utilized for check-
points. The snapshot disk is initially quite small, growingonly as new files are created or files are modified. When
vmware_should_transfer_filesis True , a job may specify that a snapshot disk isnot to be used with the command

HTCondor Version 8.6.4 Manual

2.11.1. The Submit Description File 143

vmware_snapshot_disk = False

In this case, HTCondor will utilize original disk files in producing checkpoints. Note thatcondor_submitissues an
error message and does not submit the job if bothvmware_should_transfer_filesandvmware_snapshot_diskare
False .

BecauseVMware Playerdoes not support snapshots, machines usingVMware Playermay only runvm jobs that
setvmware_snapshot_diskto False . These jobs will also setvmware_should_transfer_filesto True . A job
usingVMware Playerwill go on hold if it attempts to use a snapshot. The pool administrator should have configured
the pool such that machines will not start jobs they can not run.

Note that if snapshot disks are requested and file transfer isnot being used, thevmware_dir setting given
in the submit description file should not contain any symbolic link path components, as described on the
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToAdminRecipes page under the answer to why VMware
jobs with symbolic links fail.

Here is a sample submit description file for a VMware virtual machine:

universe = vm
executable = vmware_sample_job
log = simple.vm.log.txt
vm_type = vmware
vm_memory = 64
vmware_dir = C:\condor-test
vmware_should_transfer_files = True
queue

This sample uses thevmware_dir command to identify the location of the disk image to be executed as an HTCondor
job. The contents of this directory are transferred to the machine assigned to execute the HTCondor job.

Xen-Specific Submit Commands

A Xen vm universe job requires specification of the guest kernel. Thexen_kernel command accomplishes this,
utilizing one of the following definitions.

1. xen_kernel = included implies that the kernel is to be found in disk image given by the definition of the
single file specified invm_disk.

2. xen_kernel = path-to-kernel gives the file name of the required kernel. If this kernel mustbe trans-
ferred to machine on which thevm universe job will execute, it must also be included in thetransfer_input_files
command.

This form of thexen_kernel command also requires further definition of thexen_root command.xen_root
defines the device containing files needed byroot .

HTCondor Version 8.6.4 Manual

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToAdminRecipes

2.11.2. Checkpoints 144

2.11.2 Checkpoints

Creating a checkpoint is straightforward for a virtual machine, as a checkpoint is a set of files that represent a snapshot
of both disk image and memory. The checkpoint is created and all files are transferred back to the$(SPOOL) directory
on the machine from which the job was submitted. The submit command to create checkpoints is

vm_checkpoint = true

Without this command, no checkpoints are created (by default). With the command, a checkpoint is created any time
thevm universe jobs is evicted from the machine upon which it is executing. This occurs as a result of the machine
configuration indicating that it will no longer execute thisjob.

vm universe jobs cannot use a checkpoint server.

Periodic creation of checkpoints is not supported at this time.

Enabling both networking and checkpointing for avm universe job can cause networking problems when the job
restarts, particularly if the job migrates to a different machine. condor_submitwill normally reject such jobs. To
enable both, then add the command

when_to_transfer_output = ON_EXIT_OR_EVICT

Take care with respect to the use of network connections within the virtual machine and their interaction with
checkpoints. Open network connections at the time of the checkpoint will likely be lost when the checkpoint is
subsequently used to resume execution of the virtual machine. This occurs whether or not the execution resumes on
the same machine or a different one within the HTCondor pool.

2.11.3 Disk Images

VMware on Windows and Linux

Following the platform-specific guest OS installation instructions found at
http://partnerweb.vmware.com/GOSIG/home.html, creates a VMware disk image.

Xen and KVM

While the following web page contains instructions specificto Fedora on how to create a virtual guest image, it should
provide a good starting point for other platforms as well.

http://fedoraproject.org/wiki/Virtualization_Quick_Start

HTCondor Version 8.6.4 Manual

http://partnerweb.vmware.com/GOSIG/home.html
http://fedoraproject.org/wiki/Virtualization_Quick_Start

2.11.4. Job Completion in the vm Universe 145

2.11.4 Job Completion in the vm Universe

Job completion for avm universe job occurs when the virtual machine is shut down, and HTCondor notices (as
the result of a periodic check on the state of the virtual machine). This is different from jobs executed under the
environment of other universes.

Shut down of a virtual machine occurs from within the virtualmachine environment. A script, executed with the
proper authorization level, is the likely source of the shutdown commands.

Under a Windows 2000, Windows XP, or Vista virtual machine, an administrator issues the command

shutdown -s -t 01

Under a Linux virtual machine, theroot user executes

/sbin/poweroff

The command/sbin/halt will not completely shut down some Linux distributions, andinstead causes the job to
hang.

Since the successful completion of thevm universe job requires the successful shut down of the virtual machine,
it is good advice to try the shut down procedure outside of HTCondor, before avm universe job is submitted.

2.11.5 Failures to Launch

It is not uncommon for avm universe job to fail to launch because of a problem with the execute machine. In these
cases, HTCondor will reschedule the job and note, in its userevent log (if requested), the reason for the failure and
that the job will be rescheduled. The reason is unlikely to bedirectly useful to you as an HTCondor user, but may help
your HTCondor administrator understand the problem.

If the VM fails to launch for other reasons, the job will be placed on hold and the reason placed in the job ClassAd’s
HoldReason attribute. The following table may help in understanding such reasons.

VMGAHP_ERR_JOBCLASSAD_NO_VM_MEMORY_PARAM

The attribute JobVMMemory was not set in the job ad sent to the
VM GAHP. HTCondor will usually prevent you from submitting a VM universe job
without JobVMMemory set. Examine your job and verify that Jo bVMMemory is set.
If it is, please contact your administrator.

VMGAHP_ERR_JOBCLASSAD_NO_VMWARE_VMX_PARAM

The attribute VMPARAM_VMware_Dir was not set in the job ad se nt to the
VM GAHP. HTCondor will usually set this attribute when you su bmit a valid

HTCondor Version 8.6.4 Manual

2.11.5. Failures to Launch 146

VMWare job (it is derived from vmware_dir). If you used condo r_submit to
submit this job, contact your administrator. Otherwise, ex amine your job
and verify that VMPARAM_VMware_Dir is set. If it is, contact your
administrator.

VMGAHP_ERR_JOBCLASSAD_KVM_NO_DISK_PARAM

The attribute VMPARAM_vm_Disk was not set in the job ad sent t o the
VM GAHP. HTCondor will usually set this attribute when you su bmit a valid
KVM job (it is derived from vm_disk). Examine your job and ver ify that
VMPARAM_vm_Disk is set. If it is, please contact your admini strator.

VMGAHP_ERR_JOBCLASSAD_KVM_INVALID_DISK_PARAM

The attribute vm_disk was invalid. Please consult the manua l,
or the condor_submit man page, for information about the syn tax of
vm_disk. A syntactically correct value may be invalid if the
on-disk permissions of a file specified in it do not match the requested
permissions. Presently, files not transferred to the root o f the working
directory must be specified with full paths.

VMGAHP_ERR_JOBCLASSAD_KVM_MISMATCHED_CHECKPOINT

KVM jobs can not presently checkpoint if any of their disk fil es are not
on a shared filesystem. Files on a shared filesystem must be s pecified in
vm_disk with full paths.

VMGAHP_ERR_JOBCLASSAD_XEN_NO_KERNEL_PARAM

The attribute VMPARAM_Xen_Kernel was not set in the job ad se nt to the
VM GAHP. HTCondor will usually set this attribute when you su bmit a valid
Xen job (it is derived from xen_kernel). Examine your job and verify that
VMPARAM_Xen_Kernel is set. If it is, please contact your adm inistrator.

VMGAHP_ERR_JOBCLASSAD_MISMATCHED_HARDWARE_VT

Don't use 'vmx' as the name of your kernel image. Pick somethi ng else and
change xen_kernel to match.

VMGAHP_ERR_JOBCLASSAD_XEN_KERNEL_NOT_FOUND

HTCondor could not read from the file specified by xen_kerne l.
Check the path and the file's permissions. If it's on a shared filesystem,
you may need to alter your job's requirements expression to e nsure the
filesystem's availability.

HTCondor Version 8.6.4 Manual

2.12. Docker Universe Applications 147

VMGAHP_ERR_JOBCLASSAD_XEN_INITRD_NOT_FOUND

HTCondor could not read from the file specified by xen_initr d.
Check the path and the file's permissions. If it's on a shared filesystem,
you may need to alter your job's requirements expression to e nsure the
filesystem's availability.

VMGAHP_ERR_JOBCLASSAD_XEN_NO_ROOT_DEVICE_PARAM

The attribute VMPARAM_Xen_Root was not set in the job ad sent to the
VM GAHP. HTCondor will usually set this attribute when you su bmit a valid
Xen job (it is derived from xen_root). Examine your job and ve rify that
VMPARAM_Xen_Root is set. If it is, please contact your admin istrator.

VMGAHP_ERR_JOBCLASSAD_XEN_NO_DISK_PARAM

The attribute VMPARAM_vm_Disk was not set in the job ad sent t o the
VM GAHP. HTCondor will usually set this attribute when you su bmit a valid
Xen job (it is derived from vm_disk). Examine your job and ver ify that
VMPARAM_vm_Disk is set. If it is, please contact your admini strator.

VMGAHP_ERR_JOBCLASSAD_XEN_INVALID_DISK_PARAM

The attribute vm_disk was invalid. Please consult the manua l,
or the condor_submit man page, for information about the syn tax of
vm_disk. A syntactically correct value may be invalid if the
on-disk permissions of a file specified in it do not match the requested
permissions. Presently, files not transferred to the root o f the working
directory must be specified with full paths.

VMGAHP_ERR_JOBCLASSAD_XEN_MISMATCHED_CHECKPOINT

Xen jobs can not presently checkpoint if any of their disk fil es are not
on a shared filesystem. Files on a shared filesystem must be s pecified in
vm_disk with full paths.

2.12 Docker Universe Applications

A docker universe job instantiates a Docker container from aDocker image, and HTCondor manages the running
of that container as an HTCondor job, on an execute machine. This running container can then be managed as any
HTCondor job. For example, it can be scheduled, removed, puton hold, or be part of a workflow managed by
DAGMan.

HTCondor Version 8.6.4 Manual

2.12. Docker Universe Applications 148

The docker universe job will only be matched with an execute host that advertises its capability to run docker
universe jobs. When an execute machine with docker support starts, the machine checks to see if thedockercommand
is available and has the correct settings for HTCondor. Docker support is advertised if available and if it has the correct
settings.

The image from which the container is instantiated is definedby specifying a Docker image with the submit
commanddocker_image. This image must be pre-staged on a docker hub that the execute machine can access.

After submission, the job is treated much the same way as a vanilla universe job. Details of file transfer are the same
as applied to the vanilla universe. One of the benefits of Docker containers is the file system isolation they provide.
Each container has a distinct file system, from the root on down, and this file system is completely independent of the
file system on the host machine. The container does not share afile system with either the execute host or the submit
host, with the exception of the scratch directory, which is volume mounted to the host, and is the initial working
directory of the job. Optionally, the administrator may configure other directories from the host machine to be volume
mounted, and thus visible inside the container. See the docker section of the administrator’s manual for details.

Therefore, the submit description file should contain the submit command

should_transfer_files = YES

With this command, all input and output files will be transferred as required to and from the scratch directory mounted
as a Docker volume.

If no executableis specified in the submit description file, it is presumed that the Docker container has a default
command to run.

When the job completes, is held, evicted, or is otherwise removed from the machine, the container will be removed.

Here is a complete submit description file for a sample dockeruniverse job:

universe = docker
docker_image = debian
executable = /bin/cat
arguments = /etc/hosts
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
output = out.$(Process)
error = err.$(Process)
log = log.$(Process)
request_memory = 100M
queue 1

A debian container is the HTCondor job, and it runs the/bin/catprogram on the/etc/hosts file before exiting.

HTCondor Version 8.6.4 Manual

2.13. Time Scheduling for Job Execution 149

2.13 Time Scheduling for Job Execution

Jobs may be scheduled to begin execution at a specified time inthe future with HTCondor’s job deferral functionality.
All specifications are in a job’s submit description file. Jobdeferral functionality is expanded to provide for the
periodic execution of a job, known as the CronTab scheduling.

2.13.1 Job Deferral

Job deferral allows the specification of the exact date and time at which a job is to begin executing. HTCondor attempts
to match the job to an execution machine just like any other job, however, the job will wait until the exact time to begin
execution. A user can define the job to allow some flexibility in the execution of jobs that miss their execution time.

Deferred Execution Time

A job’s deferral time is the exact time that HTCondor should attempt to execute the job. The deferral time attribute is
defined as an expression that evaluates to a Unix Epoch timestamp (the number of seconds elapsed since 00:00:00 on
January 1, 1970, Coordinated Universal Time). This is the time that HTCondor will begin to execute the job.

After a job is matched and all of its files have been transferred to an execution machine, HTCondor checks to
see if the job’s ClassAd contains a deferral time. If it does,HTCondor calculates the number of seconds between the
execution machine’s current system time and the job’s deferral time. If the deferral time is in the future, the job waits
to begin execution. While a job waits, its job ClassAd attributeJobStatus indicates the job is in the Running state.
As the deferral time arrives, the job begins to execute. If a job misses its execution time, that is, if the deferral time is
in the past, the job is evicted from the execution machine andput on hold in the queue.

The specification of a deferral time does not interfere with HTCondor’s behavior. For example, if a job is waiting
to begin execution when acondor_holdcommand is issued, the job is removed from the execution machine and is put
on hold. If a job is waiting to begin execution when acondor_suspendcommand is issued, the job continues to wait.
When the deferral time arrives, HTCondor begins execution for the job, but immediately suspends it.

The deferral time is specified in the job’s submit description file with the commanddeferral_time.

Deferral Window

If a job arrives at its execution machine after the deferral time has passed, the job is evicted from the machine and put
on hold in the job queue. This may occur, for example, becausethe transfer of needed files took too long due to a slow
network connection. A deferral window permits the execution of a job that misses its deferral time by specifying a
window of time within which the job may begin.

The deferral window is the number of seconds after the deferral time, within which the job may begin. When a job
arrives too late, HTCondor calculates the difference in seconds between the execution machine’s current time and the
job’s deferral time. If this difference is less than or equalto the deferral window, the job immediately begins execution.

HTCondor Version 8.6.4 Manual

2.13.1. Job Deferral 150

If this difference is greater than the deferral window, the job is evicted from the execution machine and is put on hold
in the job queue.

The deferral window is specified in the job’s submit description file with the commanddeferral_window.

Preparation Time

When a job defines a deferral time far in the future and then is matched to an execution machine, potential computation
cycles are lost because the deferred job has claimed the machine, but is not actually executing. Other jobs could
execute during the interval when the job waits for its deferral time. To make use of the wasted time, a job defines
a deferral_prep_time with an integer expression that evaluates to a number of seconds. At this number of seconds
before the deferral time, the job may be matched with a machine.

Usage Examples

Here are examples of how the job deferral time, deferral window, and the preparation time may be used.

The job’s submit description file specifies that the job is to begin execution on January 1st, 2006 at 12:00 pm:

deferral_time = 1136138400

The Unixdateprogram may be used to calculate a Unix epoch time. The syntaxof the command to do this depends
on the options provided within that flavor of Unix. In some, itappears as

% date --date "MM/DD/YYYY HH:MM:SS" +%s

and in others, it appears as

% date -d "YYYY-MM-DD HH:MM:SS" +%s

MMis a 2-digit month number,DD is a 2-digit day of the month number, andYYYYis a 4-digit year.HH is the
2-digit hour of the day,MMis the 2-digit minute of the hour, andSS are the 2-digit seconds within the minute. The
characters+%stell thedateprogram to give the output as a Unix epoch time.

The job always waits 60 seconds before beginning execution:

deferral_time = (time() + 60)

In this example, assume that the deferral time is 45 seconds in the past as the job is available. The job begins
execution, because 75 seconds remain in the deferral window:

deferral_window = 120

HTCondor Version 8.6.4 Manual

2.13.2. CronTab Scheduling 151

In this example, a job is scheduled to execute far in the future, on January 1st, 2010 at 12:00 pm. Thedefer-
ral_prep_time attribute delays the job from being matched until 60 secondsbefore the job is to begin execution.

deferral_time = 1262368800
deferral_prep_time = 60

Limitations

There are some limitations to HTCondor’s job deferral feature.

• Job deferral is not available for scheduler universe jobs.A scheduler universe job defining the
deferral_time produces a fatal error when submitted.

• The time that the job begins to execute is based on the execution machine’s system clock, and not the submission
machine’s system clock. Be mindful of the ramifications whenthe two clocks show dramatically different times.

• A job’s JobStatus attribute is always in the Running state when job deferral isused. There is currently no
way to distinguish between a job that is executing and a job that is waiting for its deferral time.

2.13.2 CronTab Scheduling

HTCondor’s CronTab scheduling functionality allows jobs to be scheduled to execute periodically. A job’s execution
schedule is defined by commands within the submit description file. The notation is much like that used by the Unix
crondaemon. As such, HTCondor developers are fond of referring to CronTab scheduling asCrondor. The scheduling
of jobs using HTCondor’s CronTab feature calculates and utilizes theDeferralTime ClassAd attribute.

Also, unlike the Unixcron daemon, HTCondor never runs more than one instance of a job atthe same time.

The capability for repetitive or periodic execution of the job is enabled by specifying anon_exit_removecommand
for the job, such that the job does not leave the queue until desired.

Semantics for CronTab Specification

A job’s execution schedule is defined by a set of specifications within the submit description file. HTCondor uses
these to calculate aDeferralTime for the job.

Table 2.3 lists the submit commands and acceptable values for these commands. At least one of these must be
defined in order for HTCondor to calculate aDeferralTime for the job. Once one CronTab value is defined, the
default for all the others uses all the values in the allowed values ranges.

The day of a job’s execution can be specified by both thecron_day_of_monthand thecron_day_of_weekat-
tributes. The day will be the logical or of both.

The semantics allow more than one value to be specified by using the* operator, ranges, lists, and steps (strides)
within ranges.

HTCondor Version 8.6.4 Manual

2.13.2. CronTab Scheduling 152

Submit Command Allowed Values
cron_minute 0 - 59
cron_hour 0 - 23
cron_day_of_month 1 - 31
cron_month 1 - 12
cron_day_of_week 0 - 7 (Sunday is 0 or 7)

Table 2.3: The list of submit commands and their value ranges.

The asterisk operator The* (asterisk) operator specifies that all of the allowed valuesare used for scheduling. For
example,

cron_month = *

becomes any and all of the list of possible months: (1,2,3,4,5,6,7,8,9,10,11,12). Thus, a job runs any month in
the year.

Ranges A range creates a set of integers from all the allowed values between two integers separated by a hyphen. The
specified range is inclusive, and the integer to the left of the hyphen must be less than the right hand integer. For
example,

cron_hour = 0-4

represents the set of hours from 12:00 am (midnight) to 4:00 am, or (0,1,2,3,4).

Lists A list is the union of the values or ranges separated by commas. Multiple entries of the same value are ignored.
For example,

cron_minute = 15,20,25,30
cron_hour = 0-3,9-12,15

where thiscron_minute example represents (15,20,25,30) andcron_hour represents (0,1,2,3,9,10,11,12,15).

Steps Steps select specific numbers from a range, based on an interval. A step is specified by appending a range or
the asterisk operator with a slash character (/), followed by an integer value. For example,

cron_minute = 10-30/5
cron_hour = * /3

where this cron_minute example specifies every five minutes within the specified range to represent
(10,15,20,25,30), andcron_hour specifies every three hours of the day to represent (0,3,6,9,12,15,18,21).

HTCondor Version 8.6.4 Manual

2.13.2. CronTab Scheduling 153

Preparation Time and Execution Window

The cron_prep_time command is analogous to the deferral time’sdeferral_prep_time command. It specifies the
number of seconds before the deferral time that the job is to be matched and sent to the execution machine. This
permits HTCondor to make necessary preparations before thedeferral time occurs.

Consider the submit description file example that includes

cron_minute = 0
cron_hour = *
cron_prep_time = 300

The job is scheduled to begin execution at the top of every hour. Note that the setting ofcron_hour in this example is
not required, as the default value will be* , specifying any and every hour of the day. The job will be matched and sent
to an execution machine no more than five minutes before the next deferral time. For example, if a job is submitted
at 9:30am, then the next deferral time will be calculated to be 10:00am. HTCondor may attempt to match the job to a
machine and send the job once it is 9:55am.

As the CronTab scheduling calculates and uses deferral time, jobs may also make use of the deferral window.
The submit commandcron_window is analogous to the submit commanddeferral_window. Consider the submit
description file example that includes

cron_minute = 0
cron_hour = *
cron_window = 360

As the previous example, the job is scheduled to begin execution at the top of every hour. Yet with no preparation
time, the job is likely to miss its deferral time. The 6-minute window allows the job to begin execution, as long as it
arrives and can begin within 6 minutes of the deferral time, as seen by the time kept on the execution machine.

Scheduling

When a job using the CronTab functionality is submitted to HTCondor, use of at least one of the submit description file
commands beginning withcron_ causes HTCondor to calculate and set a deferral time for whenthe job should run. A
deferral time is determined based on the current time rounded later in time to the next minute. The deferral time is the
job’s DeferralTime attribute. A new deferral time is calculated when the job first enters the job queue, when the
job is re-queued, or when the job is released from the hold state. New deferral times forall jobs in the job queue using
the CronTab functionality are recalculated when acondor_reconfigor acondor_restartcommand that affects the job
queue is issued.

A job’s deferral time is not always the same time that a job will receive a match and be sent to the execution
machine. This is because HTCondor operates on the job queue at times that are independent of job events, such
as when job execution completes. Therefore, HTCondor may operate on the job queue just after a job’s deferral
time states that it is to begin execution. HTCondor attemptsto start a job when the following pseudo-code boolean
expression evaluates toTrue :

HTCondor Version 8.6.4 Manual

2.13.2. CronTab Scheduling 154

(time() + SCHEDD_INTERVAL) >= (DeferralTime - CronPrepTim e)

If the time() plus the number of seconds until the next time HTCondor checks the job queue is greater than or
equal to the time that the job should be submitted to the execution machine, then the job is to be matched and sent
now.

Jobs using the CronTab functionality are not automaticallyre-queued by HTCondor after their execution is com-
plete. The submit description file for a job must specify an appropriateon_exit_removecommand to ensure that a job
remains in the queue. This job maintains its originalClusterId andProcId .

Usage Examples

Here are some examples of the submit commands necessary to schedule jobs to run at multifarious times. Please note
that it is not necessary to explicitly define each attribute;the default value is* .

Run 23 minutes after every two hours, every day of the week:

on_exit_remove = false
cron_minute = 23
cron_hour = 0-23/2
cron_day_of_month = *
cron_month = *
cron_day_of_week = *

Run at 10:30pm on each of May 10th to May 20th, as well as every remaining Monday within the month of May:

on_exit_remove = false
cron_minute = 30
cron_hour = 20
cron_day_of_month = 10-20
cron_month = 5
cron_day_of_week = 2

Run every 10 minutes and every 6 minutes before noon on January 18th with a 2-minute preparation time:

on_exit_remove = false
cron_minute = * /10, * /6
cron_hour = 0-11
cron_day_of_month = 18
cron_month = 1
cron_day_of_week = *
cron_prep_time = 120

HTCondor Version 8.6.4 Manual

2.14. Special Environment Considerations 155

Limitations

The use of the CronTab functionality has all of the same limitations of deferral times, because the mechanism is based
upon deferral times.

• It is impossible to schedule vanilla and standard universejobs at intervals that are smaller than the in-
terval at which HTCondor evaluates jobs. This interval is determined by the configuration variable
SCHEDD_INTERVAL. As a vanilla or standard universe job completes execution and is placed back into the job
queue, it may not be placed in the idle state in time. This problem does not afflict local universe jobs.

• HTCondor cannot guarantee that a job will be matched in order to make its scheduled deferral time. A job
must be matched with an execution machine just as any other HTCondor job; if HTCondor is unable to find a
match, then the job will miss its chance for executing and must wait for the next execution time specified by the
CronTab schedule.

2.14 Special Environment Considerations

2.14.1 AFS

The HTCondor daemons do not run authenticated to AFS; they donot possess AFS tokens. Therefore, no child process
of HTCondor will be AFS authenticated. The implication of this is that you must set file permissions so that your job
can access any necessary files residing on an AFS volume without relying on having your AFS permissions.

If a job you submit to HTCondor needs to access files residing in AFS, you have the following choices:

1. Copy the needed files from AFS to either a local hard disk where HTCondor can access them using remote
system calls (if this is a standard universe job), or copy them to an NFS volume.

2. If the files must be kept on AFS, then set a host ACL (using theAFS fs setaclcommand) on the subdirectory to
serve as the current working directory for the job. If this isa standard universe job, then the host ACL needs to
give read/write permission to any process on the submit machine. If this is a vanilla universe job, then set the
ACL such that any host in the pool can access the files without being authenticated. If you do not know how to
use an AFS host ACL, ask the person at your site responsible for the AFS configuration.

The Center for High Throughput Computing hopes to improve upon how HTCondor deals with AFS authentication
in a subsequent release.

Please see section 3.14.1 for further discussion of this problem.

2.14.2 NFS

If the current working directory when a job is submitted is accessed via an NFS automounter, HTCondor may have
problems if the automounter later decides to unmount the volume before the job has completed. This is because

HTCondor Version 8.6.4 Manual

2.14.3. HTCondor Daemons That Do Not Run as root 156

condor_submitlikely has stored the dynamic mount point as the job’s initial current working directory, and this mount
point could become automatically unmounted by the automounter.

There is a simple work around. When submitting the job, use the submit commandinitialdir to point to the
stable access point. For example, suppose the NFS automounter is configured to mount a volume at mount point
/a/myserver.company.com/vol1/johndoe whenever the directory/home/johndoe is accessed. Adding
the following line to the submit description file solves the problem.

initialdir = /home/johndoe

HTCondor attempts to flush the NFS cache on a submit machine inorder to refresh a job’s initial working directory.
This allows files written by the job into an NFS mounted initial working directory to be immediately visible on the
submit machine. Since the flush operation can require multiple round trips to the NFS server, it is expensive. Therefore,
a job may disable the flushing by setting

+IwdFlushNFSCache = False

in the job’s submit description file. See page 1010 for a definition of the job ClassAd attribute.

2.14.3 HTCondor Daemons That Do Not Run as root

HTCondor is normally installed such that the HTCondor daemons have root permission. This allows HTCondor to
run thecondor_shadowdaemon and the job with the submitting user’s UID and file access rights. When HTCondor
is started as root, HTCondor jobs can access whatever files the user that submits the jobs can.

However, it is possible that the HTCondor installation doesnot have root access, or has decided not to run the
daemons as root. That is unfortunate, since HTCondor is designed to be run as root. To see if HTCondor is running as
root on a specific machine, use the command

condor_status -master -l <machine-name>

where<machine-name> is the name of the specified machine. This command displays the full condor_master
ClassAd; if the attributeRealUid equals zero, then the HTCondor daemons are indeed running with root access. If
theRealUid attribute is not zero, then the HTCondor daemons do not have root access.

NOTE: The Unix programps is not an effective method of determining if HTCondor is running with root access.
When usingps, it may often appear that the daemons are running as the condor user instead of root. However, note that
thepscommand shows the currenteffectiveowner of the process, not thereal owner. (See thegetuid(2) andgeteuid(2)
Unix man pages for details.) In Unix, a process running underthe real UID of root may switch its effective UID.
(See theseteuid(2) man page.) For security reasons, the daemons only set theeffective UID to root when absolutely
necessary, as it will be to perform a privileged operation.

If daemons are not running with root access, make any and all files and/or directories that the job will touch
readable and/or writable by the UID (user id) specified by theRealUid attribute. Often this may mean using the
Unix commandchmod 777 on the directory from which the HTCondor job is submitted.

HTCondor Version 8.6.4 Manual

2.14.4. Job Leases 157

2.14.4 Job Leases

A job leasespecifies how long a given job will attempt to run on a remote resource, even if that resource loses contact
with the submitting machine. Similarly, it is the length of time the submitting machine will spend trying to reconnect
to the (now disconnected) execution host, before the submitting machine gives up and tries to claim another resource
to run the job. The goal aims at run only once semantics, so that thecondor_schedddaemon does not allow the same
job to run on multiple sites simultaneously.

If the submitting machine is alive, it periodically renews the job lease, and all is well. If the submitting machine is
dead, or the network goes down, the job lease will no longer berenewed. Eventually the lease expires. While the lease
has not expired, the execute host continues to try to run the job, in the hope that the submit machine will come back
to life and reconnect. If the job completes and the lease has not expired, yet the submitting machine is still dead, the
condor_starterdaemon will wait for acondor_shadowdaemon to reconnect, before sending final information on the
job, and its output files. Should the lease expire, thecondor_startddaemon kills off thecondor_starterdaemon and
user job.

A default value equal to 40 minutes exists for a job’s ClassAdattributeJobLeaseDuration , or this attribute
may be set in the submit description file, usingjob_lease_duration, to keep a job running in the case that the submit
side no longer renews the lease. There is a trade off in setting the value ofjob_lease_duration. Too small a value,
and the job might get killed before the submitting machine has a chance to recover. Forward progress on the job will
be lost. Too large a value, and an execute resource will be tied up waiting for the job lease to expire. The value should
be chosen based on how long the user is willing to tie up the execute machines, how quickly submit machines come
back up, and how much work would be lost if the lease expires, the job is killed, and the job must start over from its
beginning.

As a special case, a submit description file setting of

job_lease_duration = 0

as well as utilizing submission other thancondor_submitthat do not setJobLeaseDuration (such as using the
web services interface) results in the corresponding job ClassAd attribute to be explicitly undefined. This has the
further effect of changing the duration of a claim lease, theamount of time that the execution machine waits before
dropping a claim due to missing keep alive messages.

2.15 Potential Problems

2.15.1 Renaming of argv[0]

When HTCondor starts up your job, it renames argv[0] (which usually contains the name of the program) to con-
dor_exec. This is convenient when examining a machine’s processes with the Unix commandps; the process is easily
identified as an HTCondor job.

Unfortunately, some programs read argv[0] expecting theirown program name and get confused if they find
something unexpected like condor_exec.

HTCondor Version 8.6.4 Manual

CHAPTER

THREE

Administrators’ Manual

3.1 Introduction

This is the HTCondor Administrator’s Manual. Its purpose isto aid in the installation and administration of an
HTCondor pool. For help on using HTCondor, see the HTCondor User’s Manual.

An HTCondor pool is comprised of a single machine which serves as thecentral manager, and an arbitrary
number of other machines that have joined the pool. Conceptually, the pool is a collection of resources (machines)
and resource requests (jobs). The role of HTCondor is to match waiting requests with available resources. Every part
of HTCondor sends periodic updates to the central manager, the centralized repository of information about the state
of the pool. Periodically, the central manager assesses thecurrent state of the pool and tries to match pending requests
with the appropriate resources.

Each resource has an owner, the one who sets the policy for theuse of the machine. This person has absolute
power over the use of the machine, and HTCondor goes out of itsway to minimize the impact on this owner caused
by HTCondor. It is up to the resource owner to define a policy for when HTCondor requests will serviced and when
they will be denied.

Each resource request has an owner as well: the user who submitted the job. These people want HTCondor to
provide as many CPU cycles as possible for their work. Often the interests of the resource owners are in conflict with
the interests of the resource requesters. The job of the HTCondor administrator is to configure the HTCondor pool to
find the happy medium that keeps both resource owners and users of resources satisfied. The purpose of this manual
is to relate the mechanisms that HTCondor provides to enablethe administrator to find this happy medium.

158

3.1.1. The Different Roles a Machine Can Play 159

3.1.1 The Different Roles a Machine Can Play

Every machine in an HTCondor pool can serve a variety of roles. Most machines serve more than one role simultane-
ously. Certain roles can only be performed by a single machine in the pool. The following list describes what these
roles are and what resources are required on the machine thatis providing that service:

Central Manager There can be only one central manager for the pool. This machine is the collector of information,
and the negotiator between resources and resource requests. These two halves of the central manager’s respon-
sibility are performed by separate daemons, so it would be possible to have different machines providing those
two services. However, normally they both live on the same machine. This machine plays a very important part
in the HTCondor pool and should be reliable. If this machine crashes, no further matchmaking can be performed
within the HTCondor system, although all current matches remain in effect until they are broken by either party
involved in the match. Therefore, choose for central manager a machine that is likely to be up and running all
the time, or at least one that will be rebooted quickly if something goes wrong. The central manager will ideally
have a good network connection to all the machines in the pool, since these pool machines all send updates over
the network to the central manager.

Execute Any machine in the pool, including the central manager, can be configured as to whether or not it should
execute HTCondor jobs. Obviously, some of the machines willhave to serve this function, or the pool will not
be useful. Being an execute machine does not require lots of resources. About the only resource that might
matter is disk space. In general the more resources a machinehas in terms of swap space, memory, number of
CPUs, the larger variety of resource requests it can serve.

Submit Any machine in the pool, including the central manager, can be configured as to whether or not it should
allow HTCondor jobs to be submitted. The resource requirements for a submit machine are actually much
greater than the resource requirements for an execute machine. First, every submitted job that is currently
running on a remote machine runs a process on the submit machine. As a result, lots of running jobs will need
a fair amount of swap space and/or real memory. In addition, the checkpoint files from standard universe jobs
are stored on the local disk of the submit machine. If these jobs have a large memory image and there are a lot
of them, the submit machine will need a lot of disk space to hold these files. This disk space requirement can be
somewhat alleviated by using a checkpoint server, however the binaries of the jobs are still stored on the submit
machine.

Checkpoint Server Machines in the pool can be configured to act as checkpoint servers. This is optional, and is not
part of the standard HTCondor binary distribution. A checkpoint server is a machine that stores checkpoint files
for sets of jobs. A machine with this role should have lots of disk space and a good network connection to the
rest of the pool, as the traffic can be quite heavy.

3.1.2 The HTCondor Daemons

The following list describes all the daemons and programs that could be started under HTCondor and what they do:

condor_masterThis daemon is responsible for keeping all the rest of the HTCondor daemons running on each ma-
chine in the pool. It spawns the other daemons, and it periodically checks to see if there are new binaries

HTCondor Version 8.6.4 Manual

3.1.2. The HTCondor Daemons 160

installed for any of them. If there are, thecondor_masterdaemon will restart the affected daemons. In addi-
tion, if any daemon crashes, thecondor_masterwill send e-mail to the HTCondor administrator of the pool and
restart the daemon. Thecondor_masteralso supports various administrative commands that enablethe adminis-
trator to start, stop or reconfigure daemons remotely. Thecondor_masterwill run on every machine in the pool,
regardless of the functions that each machine is performing.

condor_startdThis daemon represents a given resource to the HTCondor pool, as a machine capable of running
jobs. It advertises certain attributes about machine that are used to match it with pending resource requests.
Thecondor_startdwill run on any machine in the pool that is to be able to executejobs. It is responsible for
enforcing the policy that the resource owner configures, which determines under what conditions jobs will be
started, suspended, resumed, vacated, or killed. When thecondor_startdis ready to execute an HTCondor job,
it spawns thecondor_starter.

condor_starterThis daemon is the entity that actually spawns the HTCondor job on a given machine. It sets up
the execution environment and monitors the job once it is running. When a job completes, thecondor_starter
notices this, sends back any status information to the submitting machine, and exits.

condor_scheddThis daemon represents resource requests to the HTCondor pool. Any machine that is to be a submit
machine needs to have acondor_scheddrunning. When users submit jobs, the jobs go to thecondor_schedd,
where they are stored in thejob queue. The condor_scheddmanages the job queue. Various tools to view
and manipulate the job queue, such ascondor_submit, condor_q, andcondor_rm, all must connect to thecon-
dor_scheddto do their work. If thecondor_scheddis not running on a given machine, none of these commands
will work.

Thecondor_scheddadvertises the number of waiting jobs in its job queue and is responsible for claiming avail-
able resources to serve those requests. Once a job has been matched with a given resource, thecondor_schedd
spawns acondor_shadowdaemon to serve that particular request.

condor_shadowThis daemon runs on the machine where a given request was submitted and acts as the resource
manager for the request. Jobs that are linked for HTCondor’sstandard universe, which perform remote system
calls, do so via thecondor_shadow. Any system call performed on the remote execute machine is sent over the
network, back to thecondor_shadowwhich performs the system call on the submit machine, and theresult is
sent back over the network to the job on the execute machine. In addition, thecondor_shadowis responsible
for making decisions about the request, such as where checkpoint files should be stored, and how certain files
should be accessed.

condor_collectorThis daemon is responsible for collecting all the information about the status of an HTCondor pool.
All other daemons periodically send ClassAd updates to thecondor_collector. These ClassAds contain all
the information about the state of the daemons, the resources they represent or resource requests in the pool.
Thecondor_statuscommand can be used to query thecondor_collectorfor specific information about various
parts of HTCondor. In addition, the HTCondor daemons themselves query thecondor_collectorfor important
information, such as what address to use for sending commands to a remote machine.

condor_negotiatorThis daemon is responsible for all the match making within the HTCondor system. Periodically,
thecondor_negotiatorbegins anegotiation cycle, where it queries thecondor_collectorfor the current state of
all the resources in the pool. It contacts eachcondor_scheddthat has waiting resource requests in priority order,
and tries to match available resources with those requests.Thecondor_negotiatoris responsible for enforcing
user priorities in the system, where the more resources a given user has claimed, the less priority they have to
acquire more resources. If a user with a better priority has jobs that are waiting to run, and resources are claimed

HTCondor Version 8.6.4 Manual

3.1.2. The HTCondor Daemons 161

by a user with a worse priority, thecondor_negotiatorcan preempt that resource and match it with the user with
better priority.

NOTE: A higher numerical value of the user priority in HTCondor translate into worse priority for that user.
The best priority is 0.5, the lowest numerical value, and this priority gets worse as this number grows.

condor_kbddThis daemon is used on both Linux and Windows platforms. On those platforms, thecondor_startd
frequently cannot determine console (keyboard or mouse) activity directly from the system, and requires a
separate process to do so. On Linux, thecondor_kbddconnects to the X Server and periodically checks to
see if there has been any activity. On Windows, thecondor_kbddruns as the logged-in user and registers with
the system to receive keyboard and mouse events. When it detects console activity, thecondor_kbddsends a
command to thecondor_startd. That way, thecondor_startdknows the machine owner is using the machine
again and can perform whatever actions are necessary, giventhe policy it has been configured to enforce.

condor_ckpt_serverThe checkpoint server services requests to store and retrieve checkpoint files. If the pool is
configured to use a checkpoint server, but that machine or theserver itself is down, HTCondor will revert to
sending the checkpoint files for a given job back to the submitmachine.

condor_gridmanagerThis daemon handles management and execution of allgrid universe jobs. Thecondor_schedd
invokes thecondor_gridmanagerwhen there aregrid universe jobs in the queue, and thecondor_gridmanager
exits when there are no moregrid universe jobs in the queue.

condor_creddThis daemon runs on Windows platforms to manage password storage in a secure manner.

condor_had This daemon implements the high availability of a pool’s central manager through monitoring the com-
munication of necessary daemons. If the current, functioning, central manager machine stops working, then this
daemon ensures that another machine takes its place, and becomes the central manager of the pool.

condor_replicationThis daemon assists thecondor_haddaemon by keeping an updated copy of the pool’s state. This
state provides a better transition from one machine to the next, in the event that the central manager machine
stops working.

condor_transfererThis short lived daemon is invoked by thecondor_replicationdaemon to accomplish the task of
transferring a state file before exiting.

condor_procdThis daemon controls and monitors process families within HTCondor. Its use is optional in general,
but it must be used if group-ID based tracking (see Section 3.14.11) is enabled.

condor_job_routerThis daemon transformsvanilla universe jobs intogrid universe jobs, such that the transformed
jobs are capable of running elsewhere, as appropriate.

condor_lease_managerThis daemon manages leases in a persistent manner. Leases are represented by ClassAds.

condor_roosterThis daemon wakes hibernating machines based upon configuration details.

condor_defragThis daemon manages the draining of machines with fragmented partitionable slots, so that they be-
come available for jobs requiring a whole machine or larger fraction of a machine.

condor_shared_portThis daemon listens for incoming TCP packets on behalf of HTCondor daemons, thereby reduc-
ing the number of required ports that must be opened when HTCondor is accessible through a firewall.

HTCondor Version 8.6.4 Manual

3.2. Installation, Start Up, Shut Down, and Reconfiguration 162

When compiled from source code, the following daemons may becompiled in to provide optional functionality.

condor_hdfsThis daemon manages the configuration of a Hadoop file system as well as the invocation of a properly
configured Hadoop file system.

3.2 Installation, Start Up, Shut Down, and Reconfiguration

This section contains the instructions for installing HTCondor. The installation will have a default configuration that
can be customized. Sections of the manual below explain customization.

Please read thisentiresection before starting installation.

Please read the copyright and disclaimer information in section . Installation and use of HTCondor is acknowledg-
ment that you have read and agree to the terms.

Before installing HTCondor, please consider joining the htcondor-world mailing list. Traffic on this list is
kept to an absolute minimum; it is only used to announce new releases of HTCondor. To subscribe, go to
https://lists.cs.wisc.edu/mailman/listinfo/htcondor-world, and fill out the online form.

You might also want to consider joining the htcondor-users mailing list. This list is meant to be
a forum for HTCondor users to learn from each other and discuss using HTCondor. It is an excel-
lent place to ask the HTCondor community about using and configuring HTCondor. To subscribe, go to
https://lists.cs.wisc.edu/mailman/listinfo/htcondor-users, and fill out the online form.

Note that forward and reverse DNS lookup must be enabled for HTCondor to work properly.

3.2.1 Obtaining the HTCondor Software

The first step to installing HTCondor is to download it from the HTCondor web site, http://htcondor.org/. The down-
loads are available from the downloads page, at http://htcondor.org/downloads/.

3.2.2 Installation on Unix

The HTCondor binary distribution is packaged in the following files and directories:

LICENSE-2.0.txt the licensing agreement. By installing HTCondor, you agreeto the contents of this file

README general information

bin directory which contains the distribution HTCondor user programs.

bosco_install the Perl script used to install Bosco.

condor_configure the Perl script used to install and configure HTCondor.

HTCondor Version 8.6.4 Manual

https://lists.cs.wisc.edu/mailman/listinfo/htcondor-world
https://lists.cs.wisc.edu/mailman/listinfo/htcondor-users
http://htcondor.org/
http://htcondor.org/downloads/

3.2.2. Installation on Unix 163

condor_install the Perl script used to install HTCondor.

etc directory which contains the distribution HTCondor configuration data.

examples directory containing C, Fortran and C++ example programs torun with HTCondor.

include directory containing HTCondor header files.

lib directory which contains the distribution HTCondor libraries.

libexec directory which contains the distribution HTCondor auxiliary programs for use internally by HTCondor.

man directory which contains the distribution HTCondor manualpages.

sbin directory containing HTCondor daemon binaries and admin tools.

src directory containing source for some interfaces.

Preparation

Before installation, you need to make a few important decisions about the basic layout of your pool. These decisions
answer the following questions:

1. What machine will be the central manager?

2. What machines should be allowed to submit jobs?

3. Will HTCondor run as root or not?

4. Who will be administering HTCondor on the machines in yourpool?

5. Will you have a Unix user named condor and will its home directory be shared?

6. Where should the machine-specific directories for HTCondor go?

7. Where should the parts of the HTCondor system be installed?

• Configuration files

• Release directory

– user binaries

– system binaries

– lib directory

– etc directory

• Documentation

8. Am I using AFS?

9. Do I have enough disk space for HTCondor?

HTCondor Version 8.6.4 Manual

3.2.2. Installation on Unix 164

1. What machine will be the central manager?One machine in your pool must be the central manager. Install
HTCondor on this machine first. This is the centralized information repository for the HTCondor pool, and
it is also the machine that does match-making between available machines and submitted jobs. If the central
manager machine crashes, any currently active matches in the system will keep running, but no new matches
will be made. Moreover, most HTCondor tools will stop working. Because of the importance of this machine
for the proper functioning of HTCondor, install the centralmanager on a machine that is likely to stay up all the
time, or on one that will be rebooted quickly if it does crash.

Also consider network traffic and your network layout when choosing your central manager. All the daemons
send updates (by default, every 5 minutes) to this machine. Memory requirements for the central manager differ
by the number of machines in the pool: a pool with up to about 100 machines will require approximately 25
Mbytes of memory for the central manager’s tasks, and a pool with about 1000 machines will require approxi-
mately 100 Mbytes of memory for the central manager’s tasks.

A faster CPU will speed up matchmaking.

Generally jobs should not be either submitted or run on the central manager machine.

2. Which machines should be allowed to submit jobs?HTCondor can restrict the machines allowed to submit jobs.
Alternatively, it can allow any machine the network allows to connect to a submit machine to submit jobs. If
the HTCondor pool is behind a firewall, and all machines inside the firewall are trusted, theALLOW_WRITE
configuration entry can be set to */*. Otherwise, it should beset to reflect the set of machines permitted to
submit jobs to this pool. HTCondor tries to be secure by default: it is shipped with an invalid value that allows
no machine to connect and submit jobs.

3. Will HTCondor run as root or not? We strongly recommend that the HTCondor daemons be installed and run
as the Unix user root. Without this, HTCondor can do very little to enforce security and policy decisions. You
can install HTCondor as any user; however there are serious security and performance consequences do doing a
non-root installation. Please see section 3.8.13 in the manual for the details and ramifications of installing and
running HTCondor as a Unix user other than root.

4. Who will administer HTCondor? Either root will be administering HTCondor directly, or someone else will be
acting as the HTCondor administrator. If root has delegatedthe responsibility to another person, keep in mind
that as long as HTCondor is started up as root, it should be clearly understood that whoever has the ability to
edit the condor configuration files can effectively run arbitrary programs as root.

The HTCondor administrator will be regularly updating HTCondor by following these instructions or by using
the system-specific installation methods below. The administrator will also customize policies of the HTCondor
submit and execute nodes. This person will also receive information from HTCondor if something goes wrong
with the pool, as described in the documentation of theCONDOR_ADMINconfiguration variable.

5. Will you have a Unix user named condor, and will its home directory be shared?To simplify installation of
HTCondor, you should create a Unix user named condor on all machines in the pool. The HTCondor dae-
mons will create files (such as the log files) owned by this user, and the home directory can be used to specify
the location of files and directories needed by HTCondor. Thehome directory of this user can either be shared
among all machines in your pool, or could be a separate home directory on the local partition of each machine.
Both approaches have advantages and disadvantages. Havingthe directories centralized can make administra-
tion easier, but also concentrates the resource usage such that you potentially need a lot of space for a single
shared home directory. See the section below on machine-specific directories for more details.

HTCondor Version 8.6.4 Manual

3.2.2. Installation on Unix 165

Note that the user condor must not be an account into which a person can log in. If a person can log in as user
condor, it permits a major security breach, in that the user condor could submit jobs that run as any other user,
providing complete access to the user’s data by the jobs. A standard way of not allowing log in to an account on
Unix platforms is to enter an invalid shell in the password file.

If you choose not to create a user named condor, then you must specify either via theCONDOR_IDSenviron-
ment variable or theCONDOR_IDSconfig file setting which uid.gid pair should be used for the ownership of
various HTCondor files. See section 3.8.13 on UIDs in HTCondor in the Administrator’s Manual for details.

6. Where should the machine-specific directories for HTCondor go? HTCondor needs a few directories that are
unique on every machine in your pool. These areexecute , spool , log , (and possiblylock). Generally,
all of them are subdirectories of a single machine specific directory called the local directory (specified by the
LOCAL_DIRmacro in the configuration file). Each should be owned by the user that HTCondor is to be run as.
Do not stage other files in any of these directories; any files not created by HTCondor in these directories are
subject to removal.

If you have a Unix user namedcondor with a local home directory on each machine, theLOCAL_DIRcould
just be usercondor ’s home directory (LOCAL_DIR = $(TILDE) in the configuration file). If this user’s
home directory is shared among all machines in your pool, youwould want to create a directory for each host
(named by host name) for the local directory (for example,LOCAL_DIR= $(TILDE) /hosts/$(HOSTNAME)).
If you do not have acondor account on your machines, you can put these directories wherever you’d like.
However, where to place the directories will require some thought, as each one has its own resource needs:

execute This is the directory that acts as the current working directory for any HTCondor jobs that run on a
given execute machine. The binary for the remote job is copied into this directory, so there must be enough
space for it. (HTCondor will not send a job to a machine that does not have enough disk space to hold the
initial binary..) In addition, if the remote job dumps core for some reason, it is first dumped to the execute
directory before it is sent back to the submit machine. So, put the execute directory on a partition with
enough space to hold a possible core file from the jobs submitted to your pool.

spool Thespool directory holds the job queue and history files, and the checkpoint files for all jobs submit-
ted from a given machine. As a result, disk space requirements for thespool directory can be quite large,
particularly if users are submitting jobs with very large executables or image sizes. By using a checkpoint
server (see section 3.10 on Installing a Checkpoint Server on for details), you can ease the disk space
requirements, since all checkpoint files are stored on the server instead of the spool directories for each
machine. However, the initial checkpoint files (the executables for all the clusters you submit) are still
stored in the spool directory, so you will need some space, even with a checkpoint server. The amount of
space will depend on how many executables, and what size theyare, that need to be stored in the spool
directory.

log Each HTCondor daemon writes its own log file, and each log file is placed in thelog directory. You
can specify what size you want these files to grow to before they are rotated, so the disk space require-
ments of the directory are configurable. The larger the log files, the more historical information they
will hold if there is a problem, but the more disk space they use up. If you have a network file sys-
tem installed at your pool, you might want to place the log directories in a shared location (such as
/usr/local/condor/logs/$(HOSTNAME)), so that you can view the log files from all your ma-
chines in a single location. However, if you take this approach, you will have to specify a local partition
for the lock directory (see below).

HTCondor Version 8.6.4 Manual

3.2.2. Installation on Unix 166

lock HTCondor uses a small number of lock files to synchronize access to certain files that are shared be-
tween multiple daemons. Because of problems encountered with file locking and network file systems
(particularly NFS), these lock files should be placed on a local partition on each machine. By default,
they are placed in thelog directory. If you place yourlog directory on a network file system parti-
tion, specify a local partition for the lock files with theLOCKparameter in the configuration file (such as
/var/lock/condor).

Generally speaking, it is recommended that you do not put these directories (exceptlock) on the same partition
as/var , since if the partition fills up, you will fill up/var as well. This will cause lots of problems for your
machines. Ideally, you will have a separate partition for the HTCondor directories. Then, the only consequence
of filling up the directories will be HTCondor’s malfunction, not your whole machine.

7. Where should the parts of the HTCondor system be installed? • Configuration Files

• Release directory

– User Binaries

– System Binaries

– lib Directory

– etc Directory

• Documentation

Configuration Files There can be more than one configuration file. They allow different levels of control over
how HTCondor is configured on each machine in the pool. The global configuration file is shared by all
machines in the pool. For ease of administration, this file should be located on a shared file system, if
possible. Local configuration files override settings in theglobal file permitting different daemons to run,
different policies for when to start and stop HTCondor jobs,and so on. There may be configuration files
specific to each platform in the pool. See section 3.14.3 on about Configuring HTCondor for Multiple
Platforms for details.

The location of configuration files is described in section 3.5.1.

Release DirectoryEvery binary distribution contains a contains five subdirectories: bin , etc , lib , sbin ,
and libexec . Wherever you choose to install these five directories we call the release directory (spec-
ified by theRELEASE_DIRmacro in the configuration file). Each release directory contains platform-
dependent binaries and libraries, so you will need to install a separate one for each kind of machine in your
pool. For ease of administration, these directories shouldbe located on a shared file system, if possible.

• User Binaries:
All of the files in thebin directory are programs that HTCondor users should expect tohave in their
path. You could either put them in a well known location (suchas /usr/local/condor/bin)
which you have HTCondor users add to theirPATHenvironment variable, or copy those files directly
into a well known place already in the user’s PATHs (such as/usr/local/bin). With the above
examples, you could also leave the binaries in/usr/local/condor/bin and put in soft links
from /usr/local/bin to point to each program.

• System Binaries:
All of the files in thesbin directory are HTCondor daemons and agents, or programs thatonly the
HTCondor administrator would need to run. Therefore, add these programs only to thePATHof the
HTCondor administrator.

HTCondor Version 8.6.4 Manual

3.2.2. Installation on Unix 167

• Private HTCondor Binaries:
All of the files in thelibexec directory are HTCondor programs that should never be run by hand,
but are only used internally by HTCondor.

• lib Directory:
The files in thelib directory are the HTCondor libraries that must be linked in with user jobs for all
of HTCondor’s checkpointing and migration features to be used. lib also contains scripts used by
thecondor_compileprogram to help re-link jobs with the HTCondor libraries. These files should be
placed in a location that is world-readable, but they do not need to be placed in anyone’sPATH. The
condor_compilescript checks the configuration file for the location of thelib directory.

• etc Directory:
etc contains anexamples subdirectory which holds various example configuration files and other
files used for installing HTCondor.etc is the recommended location to keep the master copy of your
configuration files. You can put in soft links from one of the places mentioned above that HTCondor
checks automatically to find its global configuration file.

Documentation The documentation provided with HTCondor is currently available in HTML, Postscript and
PDF (Adobe Acrobat). It can be locally installed wherever iscustomary at your site. You can also find the
HTCondor documentation on the web at: http://htcondor.org/manual.

8. Am I using AFS? If you are using AFS at your site, be sure to read the section 3.14.1 in the manual. HTCondor
does not currently have a way to authenticate itself to AFS. Asolution is not ready for Version 8.6.4. This
implies that you are probably not going to want to have theLOCAL_DIRfor HTCondor on AFS. However, you
can (and probably should) have the HTCondorRELEASE_DIRon AFS, so that you can share one copy of those
files and upgrade them in a centralized location. You will also have to do something special if you submit jobs
to HTCondor from a directory on AFS. Again, read manual section 3.14.1 for all the details.

9. Do I have enough disk space for HTCondor?The compressed downloads of HTCondor currently range from a
low of about 13 Mbytes for 64-bit Ubuntu 12/Linux to about 115Mbytes for Windows. The compressed source
code takes approximately 17 Mbytes.

In addition, you will need a lot of disk space in the local directory of any machines that are submitting jobs to
HTCondor. See question 6 above for details on this.

Unix Installation from an RPM

RPMs are available for HTCondor Version 8.6.4. We provide a Yum repository, as well as installation and configuration
in one easy step. This RPM installation is currently available for Red Hat-compatible systems only. As of HTCondor
version 7.5.1, the HTCondor RPM installs into File HierachyStandard locations.

Yum repositories and instructions are at http://htcondor.org/yum/ . The repositories are named to distinguish stable
releases from development releases and by Red Hat version number. The 4 repositories are:

• condor-stable-rhel6.repo

• condor-stable-rhel7.repo

• condor-development-rhel6.repo

HTCondor Version 8.6.4 Manual

http://htcondor.org/manual
http://htcondor.org/yum/

3.2.2. Installation on Unix 168

• condor-development-rhel7.repo

Here is an ordered set of steps that get HTCondor running using the RPM.

1. The HTCondor package will automatically add acondor user/group, if it does not exist already. Sites wishing
to control the attributes of this user/group should add thecondor user/group manually before installation.

2. Download and install the meta-data that describes the appropriate YUM repository. This example is for the
stable series, on RHEL 7.

cd /etc/yum.repos.d
wget http://htcondor.org/yum/repo.d/condor-stable-rh el7.repo

Note that this step need be done only once; do not get the same repository more than once.

3. Import signing key The RPMs are signed in the Redhat 6 and RedHat 7 repositories.

wget http://htcondor.org/yum/RPM-GPG-KEY-HTCondor
rpm --import RPM-GPG-KEY-HTCondor

4. Install HTCondor.

yum install condor-all

5. As needed, edit the HTCondor configuration files to customize. The configuration files are in the directory
/etc/condor/ . Do not usecondor_configureor condor_installfor configuration. The installation will
be able to find configuration files without additional administrative intervention, as the configuration files are
placed in/etc , and HTCondor searches this directory.

6. Start HTCondor daemons:

/sbin/service condor start

Unix Installation from a Debian Package

Debian packages are available in HTCondor Version 8.6.4. Weprovide an APT repository, as well as installation and
configuration in one easy step. These Debian packages of HTCondor are currently available for Debian 7 (wheezy) and
Debian 8 (jessie). As of HTCondor version 7.5.1, the HTCondor Debian package installs into File Hierachy Standard
locations.

The HTCondor APT repositories are specified at http://htcondor.org/debian/ . See this web page for repository
information.

Here is an ordered set of steps that get HTCondor running.

1. The HTCondor package will automatically add acondor user/group, if it does not exist already. Sites wishing
to control the attributes of this user/group should add thecondor user/group manually before installation.

HTCondor Version 8.6.4 Manual

http://htcondor.org/debian/

3.2.2. Installation on Unix 169

2. If not already present, set up access to the appropriate APT repository; they are distinguished as stable or
development release, and by operating system. Ensure that the correct one of the following release and operating
system-specific lines is in the file/etc/apt/sources.list .

deb http://htcondor.org/debian/stable/ wheezy contrib
deb http://htcondor.org/debian/development/ wheezy con trib
deb http://htcondor.org/debian/stable/ jessie contrib
deb http://htcondor.org/debian/development/ jessie con trib

Note that this step need be done only once; do not add the same repository more than once.

3. Install and start HTCondor services:

apt-get update
apt-get install condor

4. As needed, edit the HTCondor configuration files to customize. The configuration files are in the directory
/etc/condor/ . Do not usecondor_configureor condor_installfor configuration. The installation will
be able to find configuration files without additional administrative intervention, as the configuration files are
placed in/etc , and HTCondor searches this directory.

Then, if any configuration changes are made, restart HTCondor with

/etc/init.d/condor restart

Unix Installation from a Tarball

Note that installation from a tarball is no longer the preferred method for installing HTCondor on Unix systems.
Installation via RPM or Debian package is recommended if available for your Unix version.

An overview of the tarball-based installation process is asfollows:

1. Untar the HTCondor software.

2. Runcondor_installor condor_configureto install the software.

Details are given below.

After download, all the files are in a compressed, tar format.They need to be untarred, as

tar xzf <completename>.tar.gz

After untarring, the directory will have the Perl scriptscondor_configureandcondor_install(andbosco_install), as
well asbin , etc , examples , include , lib , libexec , man, sbin , sql andsrc subdirectories.

The Perl scriptcondor_configureinstalls HTCondor. Command-line arguments specify all needed information to
this script. The script can be executed multiple times, to modify or further set the configuration.condor_configurehas
been tested using Perl 5.003. Use this or a more recent version of Perl.

HTCondor Version 8.6.4 Manual

3.2.2. Installation on Unix 170

condor_configureandcondor_installare the same program, but have different default behaviors.condor_installis
identical to running

condor_configure --install=.

condor_configureandcondor_installwork on the named directories. As the names imply,condor_installis used to
install HTCondor, whereascondor_configureis used to modify the configuration of an existing HTCondor install.

condor_configureand condor_installare completely command-line driven and are not interactive. Several
command-line arguments are always needed withcondor_configureandcondor_install. The argument

--install=/path/to/release

specifies the path to the HTCondor release directories. The default command-line argument forcondor_installis

--install=.

The argument

--install-dir=<directory>

or

--prefix=<directory>

specifies the path to the install directory.

The argument

--local-dir=<directory>

specifies the path to the local directory.

The -- type option tocondor_configurespecifies one or more of the roles that a machine can take on within the
HTCondor pool: central manager, submit or execute. These options are given in a comma separated list. So, if a
machine is both a submit and execute machine, the proper command-line option is

--type=submit,execute

Install HTCondor on the central manager machine first. If HTCondor will run as root in this pool (Item 3 above),
run condor_installas root, and it will install and set the file permissions correctly. On the central manager machine,
runcondor_installas follows.

HTCondor Version 8.6.4 Manual

3.2.2. Installation on Unix 171

% condor_install --prefix=~condor \
--local-dir=/scratch/condor --type=manager

To update the above HTCondor installation, for example, to also be submit machine:

% condor_configure --prefix=~condor \
--local-dir=/scratch/condor --type=manager,submit

As in the above example, the central manager can also be a submit point or an execute machine, but this is
only recommended for very small pools. If this is the case, the -- type option changes tomanager,execute or
manager,submit or manager,submit,execute .

After the central manager is installed, the execute and submit machines should then be configured. Decisions about
whether to run HTCondor as root should be consistent throughout the pool. For each machine in the pool, run

% condor_install --prefix=~condor \
--local-dir=/scratch/condor --type=execute,submit

See thecondor_configuremanual page 779 for details.

Starting HTCondor Under Unix After Installation

Now that HTCondor has been installed on the machine(s), there are a few things to check before starting up HTCondor.

1. Read through the<release_dir>/etc/condor_config file. There are a lot of possible settings and
you should at least take a look at the first two main sections tomake sure everything looks okay. In particular,
you might want to set up security for HTCondor. See the section 3.8.1 to learn how to do this.

2. For Linux platforms, run thecondor_kbddto monitor keyboard and mouse activity on all machines within the
pool that will run acondor_startd; these are machines that execute jobs. To do this, the subsystemKBDDwill
need to be added to theDAEMON_LISTconfiguration variable definition.

For Unix platforms other than Linux, HTCondor can monitor the activity of your mouse and keyboard, pro-
vided that you tell it where to look. You do this with theCONSOLE_DEVICESentry in the condor_startd
section of the configuration file. On most platforms, reasonable defaults are provided. For example, the default
device for the mouse is ’mouse’, since most installations have a soft link from/dev/mouse that points to
the right device (such astty00 if you have a serial mouse,psaux if you have a PS/2 bus mouse, etc). If
you do not have a/dev/mouse link, you should either create one (you will be glad you did),or change the
CONSOLE_DEVICESentry in HTCondor’s configuration file. This entry is a comma separated list, so you
can have any devices in/dev count as ’console devices’ and activity will be reported in the condor_startd’s
ClassAd asConsoleIdleTime .

3. (Linux only) HTCondor needs to be able to find theutmp file. According to the Linux File System Standard,
this file should be/var/run/utmp . If HTCondor cannot find it there, it looks in/var/adm/utmp . If it
still cannot find it, it gives up. So, if your Linux distribution places this file somewhere else, be sure to put a soft
link from /var/run/utmp to point to the real location.

HTCondor Version 8.6.4 Manual

3.2.2. Installation on Unix 172

To start up the HTCondor daemons, execute the command<release_dir>/sbin/condor_master . This
is the HTCondor master, whose only job in life is to make sure the other HTCondor daemons are running. The master
keeps track of the daemons, restarts them if they crash, and periodically checks to see if you have installed new binaries
(and, if so, restarts the affected daemons).

If you are setting up your own pool, you should start HTCondoron your central manager machine first. If you
have done a submit-only installation and are adding machines to an existing pool, the start order does not matter.

To ensure that HTCondor is running, you can run either:

ps -ef | egrep condor_

or

ps -aux | egrep condor_

depending on your flavor of Unix. On a central manager machinethat can submit jobs as well as execute them, there
will be processes for:

• condor_master

• condor_collector

• condor_negotiator

• condor_startd

• condor_schedd

On a central manager machine that does not submit jobs nor execute them, there will be processes for:

• condor_master

• condor_collector

• condor_negotiator

For a machine that only submits jobs, there will be processesfor:

• condor_master

• condor_schedd

For a machine that only executes jobs, there will be processes for:

• condor_master

HTCondor Version 8.6.4 Manual

3.2.3. Installation on Windows 173

• condor_startd

Once you are sure the HTCondor daemons are running, check to make sure that they are communicating with each
other. You can runcondor_statusto get a one line summary of the status of each machine in your pool.

Once you are sure HTCondor is working properly, you should add condor_masterinto your startup/bootup scripts
(i.e. /etc/rc) so that your machine runscondor_masterupon bootup.condor_masterwill then fire up the necessary
HTCondor daemons whenever your machine is rebooted.

If your system uses System-V style init scripts, you can lookin
<release_dir>/etc/examples/condor.boot for a script that can be used to start and stop HTCon-
dor automatically by init. Normally, you would install thisscript as/etc/init.d/condor and put in soft link
from various directories (for example,/etc/rc2.d) that point back to/etc/init.d/condor . The exact
location of these scripts and links will vary on different platforms.

If your system uses BSD style boot scripts, you probably havean /etc/rc.local file. Add a line to start up
<release_dir>/sbin/condor_master .

Now that the HTCondor daemons are running, there are a few things you can and should do:

1. (Optional) Do a full install for thecondor_compilescript. condor_compile assists in linking jobs with the
HTCondor libraries to take advantage of all of HTCondor’s features. As it is currently installed, it will work by
placing it in front of any of the following commands that you would normally use to link your code: gcc, g++,
g77, cc, acc, c89, CC, f77, fort77 and ld. If you complete the full install, you will be able to use condor_compile
with any command whatsoever, in particular, make. See section 3.14.4 in the manual for directions.

2. Try building and submitting some test jobs. Seeexamples/README for details.

3. If your site uses the AFS network file system, see section 3.14.1 in the manual.

4. We strongly recommend that you start up HTCondor (run thecondor_masterdaemon) as user root. If you must
start HTCondor as some user other than root, see section 3.8.13.

3.2.3 Installation on Windows

This section contains the instructions for installing the Windows version of HTCondor. The install program will set
up a slightly customized configuration file that can be further customized after the installation has completed.

Be sure that the HTCondor tools are of the same version as the daemons installed. The HTCondor executable for
distribution is packaged in a single file named similarly to:

condor-8.4.11-390598-Windows-x86.msi

This file is approximately 107 Mbytes in size, and it can be removed once HTCondor is fully installed.

For any installation, HTCondor services are installed and run as the Local System account. Running the HTCondor
services as any other account (such as a domain user) is not supported and could be problematic.

HTCondor Version 8.6.4 Manual

3.2.3. Installation on Windows 174

Installation Requirements

• HTCondor for Windows is supported for Windows Vista or a more recent version.

• 300 megabytes of free disk space is recommended. Significantly more disk space could be necessary to be able
to run jobs with large data files.

• HTCondor for Windows will operate on either an NTFS or FAT32file system. However, for security purposes,
NTFS is preferred.

• HTCondor for Windows uses the Visual C++ 2012 C runtime library.

Preparing to Install HTCondor under Windows

Before installing the Windows version of HTCondor, there are two major decisions to make about the basic layout of
the pool.

1. What machine will be the central manager?

2. Is there enough disk space for HTCondor?

If the answers to these questions are already known, skip to the Windows Installation Procedure section below,
section 3.2.3. If unsure, read on.

• What machine will be the central manager?

One machine in your pool must be the central manager. This is the centralized information repository for
the HTCondor pool and is also the machine that matches available machines with waiting jobs. If the central
manager machine crashes, any currently active matches in the system will keep running, but no new matches
will be made. Moreover, most HTCondor tools will stop working. Because of the importance of this machine
for the proper functioning of HTCondor, we recommend installing it on a machine that is likely to stay up all
the time, or at the very least, one that will be rebooted quickly if it does crash. Also, because all the services
will send updates (by default every 5 minutes) to this machine, it is advisable to consider network traffic and
network layout when choosing the central manager.

Install HTCondor on the central manager before installing on the other machines within the pool.

Generally jobs should not be either submitted or run on the central manager machine.

• Is there enough disk space for HTCondor?

The HTCondor release directory takes up a fair amount of space. The size requirement for the release directory
is approximately 250 Mbytes. HTCondor itself, however, needs space to store all of the jobs and their input
files. If there will be large numbers of jobs, consider installing HTCondor on a volume with a large amount of
free space.

HTCondor Version 8.6.4 Manual

3.2.3. Installation on Windows 175

Installation Procedure Using the MSI Program

Installation of HTCondor must be done by a user with administrator privileges. After installation, the HTCondor
services will be run under the local system account. When HTCondor is running a user job, however, it will run that
user job with normal user permissions.

Download HTCondor, and start the installation process by running the installer. The HTCondor installation is
completed by answering questions and choosing options within the following steps.

If HTCondor is already installed. If HTCondor has been previously installed, a dialog box willappear before the
installation of HTCondor proceeds. The question asks if youwish to preserve your current HTCondor configu-
ration files. Answer yes or no, as appropriate.

If you answer yes, your configuration files will not be changed, and you will proceed to the point where the new
binaries will be installed.

If you answer no, then there will be a second question that asks if you want to use answers given during the
previous installation as default answers.

STEP 1: License Agreement.The first step in installing HTCondor is a welcome screen and license agreement. You
are reminded that it is best to run the installation when no other Windows programs are running. If you need to
close other Windows programs, it is safe to cancel the installation and close them. You are asked to agree to the
license. Answer yes or no. If you should disagree with the License, the installation will not continue.

Also fill in name and company information, or use the defaultsas given.

STEP 2: HTCondor Pool Configuration. The HTCondor configuration needs to be set based upon if this is a new
pool or to join an existing one. Choose the appropriate radiobutton.

For a new pool, enter a chosen name for the pool. To join an existing pool, enter the host name of the central
manager of the pool.

STEP 3: This Machine’s Roles.Each machine within an HTCondor pool can either submit jobs or execute submitted
jobs, or both submit and execute jobs. A check box determinesif this machine will be a submit point for the
pool.

A set of radio buttons determines the ability and configuration of the ability to execute jobs. There are four
choices:

Do not run jobs on this machine. This machine will not execute HTCondor jobs.

Always run jobs and never suspend them.

Run jobs when the keyboard has been idle for 15 minutes.

Run jobs when the keyboard has been idle for 15 minutes, and the CPU is idle.

For testing purposes, it is often helpful to use the always run HTCondor jobs option.

For a machine that is to execute jobs and the choice is one of the last two in the list, HTCondor needs to further
know what to do with the currently running jobs. There are twochoices:

Keep the job in memory and continue when the machine meets thecondition chosen for when to run jobs.

HTCondor Version 8.6.4 Manual

3.2.3. Installation on Windows 176

Restart the job on a different machine.

This choice involves a trade off. Restarting the job on a different machine is less intrusive on the workstation
owner than leaving the job in memory for a later time. A suspended job left in memory will require swap space,
which could be a scarce resource. Leaving a job in memory, however, has the benefit that accumulated run time
is not lost for a partially completed job.

STEP 4: The Account Domain. Enter the machine’s accounting (or UID) domain. On this version of HTCondor for
Windows, this setting is only used for user priorities (see section 3.6) and to form a default e-mail address for
the user.

STEP 5: E-mail Settings. Various parts of HTCondor will send e-mail to an HTCondor administrator if something
goes wrong and requires human attention. Specify the e-mailaddress and the SMTP relay host of this adminis-
trator. Please pay close attention to this e-mail, since it will indicate problems in the HTCondor pool.

STEP 6: Java Settings.In order to run jobs in thejava universe, HTCondor must have the path to the jvm executable
on the machine. The installer will search for and list the jvmpath, if it finds one. If not, enter the path. To
disable use of thejava universe, leave the field blank.

STEP 7: Host Permission Settings.Machines within the HTCondor pool will need various types ofaccess permis-
sion. The three categories of permission are read, write, and administrator. Enter the machines or domain to be
given access permissions, or use the defaults provided. Wild cards and macros are permitted.

Read Read access allows a machine to obtain information about HTCondor such as the status of machines in
the pool and the job queues. All machines in the pool should begiven read access. In addition, giving read
access to *.cs.wisc.edu will allow the HTCondor team to obtain information about the HTCondor pool, in
the event that debugging is needed.

Write All machines in the pool should be given write access. It allows the machines you specify to send
information to your local HTCondor daemons, for example, tostart an HTCondor job. Note that for a
machine to join the HTCondor pool, it must have both read and write access to all of the machines in the
pool.

Administrator A machine with administrator access will be allowed more extended permission to do things
such as change other user’s priorities, modify the job queue, turn HTCondor services on and off, and restart
HTCondor. The central manager should be given administrator access and is the default listed. This setting
is granted to the entire machine, so care should be taken not to make this too open.

For more details on these access permissions, and others that can be manually changed in your configuration
file, please see the section titled Setting Up IP/Host-BasedSecurity in HTCondor in section section 3.8.9.

STEP 8: VM Universe Setting. A radio button determines whether this machine will be configured to runvm uni-
verse jobs utilizing VMware. In addition to having the VMware Server installed, HTCondor also needsPerl
installed. The resources available forvm universe jobs can be tuned with these settings, or the defaults listed
can be used.

Version Use the default value, as only one version is currently supported.

Maximum Memory The maximum memory that each virtual machine is permitted touse on the target ma-
chine.

Maximum Number of VMs The number of virtual machines that can be run in parallel on the target machine.

HTCondor Version 8.6.4 Manual

3.2.3. Installation on Windows 177

Networking Support The VMware instances can be configured to use network support. There are four options
in the pull-down menu.

• None: No networking support.

• NAT: Network address translation.

• Bridged: Bridged mode.

• NAT and Bridged: Allow both methods.

Path to Perl Executable The path to thePerl executable.

STEP 9: HDFS Settings.A radio button enables support for the Hadoop Distributed File System (HDFS). When
enabled, a further radio button specifies either name node ordata node mode.

Running HDFS requires Java to be installed, and HTCondor must know where the installation is. Running
HDFS in data node mode also requires the installation of Cygwin, and the path to the Cygwin directory must be
added to the globalPATHenvironment variable.

HDFS has several configuration options that must be filled in to be used.

Primary Name Node The full host name of the primary name node.

Name Node Port The port that the name node is listening on.

Name Node Web Port The port the name node’s web interface is bound to. It should be different from the
name node’s main port.

STEP 10: Choose Setup TypeThe next step is where the destination of the HTCondor files will be decided. We
recommend that HTCondor be installed in the location shown as the default in the install choice:C:\Condor .
This is due to several hard coded paths in scripts and configuration files. Clicking on the Custom choice permits
changing the installation directory.

Installation on the local disk is chosen for several reasons. The HTCondor services run as local system, and
within Microsoft Windows, local system has no network privileges. Therefore, for HTCondor to operate, HT-
Condor should be installed on a local hard drive, as opposed to a network drive (file server).

The second reason for installation on the local disk is that the Windows usage of drive letters has implications
for where HTCondor is placed. The drive letter used must be not change, even when different users are logged
in. Local drive letters do not change under normal operationof Windows.

While it is strongly discouraged, it may be possible to placeHTCondor on a hard drive that is not local, if a
dependency is added to the service control manager such thatHTCondor starts after the required file services
are available.

Unattended Installation Procedure Using the Included Setup Program

This section details how to run the HTCondor for Windows installer in an unattended batch mode. This mode is one
that occurs completely from the command prompt, without theGUI interface.

The HTCondor for Windows installer uses the Microsoft Installer (MSI) technology, and it can be configured for
unattended installs analogous to any other ordinary MSI installer.

The following is a sample batch file that is used to set all the properties necessary for an unattended install.

HTCondor Version 8.6.4 Manual

3.2.3. Installation on Windows 178

@echo on
set ARGS=
set ARGS=NEWPOOL="N"
set ARGS=%ARGS% POOLNAME=""
set ARGS=%ARGS% RUNJOBS="C"
set ARGS=%ARGS% VACATEJOBS="Y"
set ARGS=%ARGS% SUBMITJOBS="Y"
set ARGS=%ARGS% CONDOREMAIL="you@yours.com"
set ARGS=%ARGS% SMTPSERVER="smtp.localhost"
set ARGS=%ARGS% HOSTALLOWREAD="* "
set ARGS=%ARGS% HOSTALLOWWRITE="* "
set ARGS=%ARGS% HOSTALLOWADMINISTRATOR="$(IP_ADDRESS)"
set ARGS=%ARGS% INSTALLDIR="C:\Condor"
set ARGS=%ARGS% POOLHOSTNAME="$(IP_ADDRESS)"
set ARGS=%ARGS% ACCOUNTINGDOMAIN="none"
set ARGS=%ARGS% JVMLOCATION="C:\Windows\system32\java .exe"
set ARGS=%ARGS% USEVMUNIVERSE="N"
set ARGS=%ARGS% VMMEMORY="128"
set ARGS=%ARGS% VMMAXNUMBER="$(NUM_CPUS)"
set ARGS=%ARGS% VMNETWORKING="N"
REM set ARGS=%ARGS% LOCALCONFIG="http://my.example.com /condor_config.$(FULL_HOSTNAME)"

msiexec /qb /l * condor-install-log.txt /i condor-8.0.0-133173-Windows -x86.msi %ARGS%

Each property corresponds to answers that would have been supplied while running an interactive installer. The
following is a brief explanation of each property as it applies to unattended installations:

NEWPOOL = < Y | N > determines whether the installer will create a new pool withthe target machine as the
central manager.

POOLNAME sets the name of the pool, if a new pool is to be created. Possible values are either the name or the
empty string"" .

RUNJOBS =< N | A | I | C > determines when HTCondor will run jobs. This can be set to:

• Never run jobs (N)

• Always run jobs (A)

• Only run jobs when the keyboard and mouse are Idle (I)

• Only run jobs when the keyboard and mouse are idle and the CPUusage is low (C)

VACATEJOBS = < Y | N > determines what HTCondor should do when it has to stop the execution of a user job.
When set to Y, HTCondor will vacate the job and start it somewhere else if possible. When set to N, HTCondor
will merely suspend the job in memory and wait for the machineto become available again.

SUBMITJOBS = < Y | N > will cause the installer to configure the machine as a submit node when set to Y.

HTCondor Version 8.6.4 Manual

3.2.3. Installation on Windows 179

CONDOREMAIL sets the e-mail address of the HTCondor administrator. Possible values are an e-mail address or
the empty string"" .

HOSTALLOWREAD is a list of host names that are allowed to issue READ commandsto HTCondor daemons. This
value should be set in accordance with theHOSTALLOW_READsetting in the configuration file, as described in
section 3.8.9.

HOSTALLOWWRITE is a list of host names that are allowed to issue WRITE commands to HTCondor daemons.
This value should be set in accordance with theHOSTALLOW_WRITEsetting in the configuration file, as de-
scribed in section 3.8.9.

HOSTALLOWADMINISTRATOR is a list of host names that are allowed to issue ADMINISTRATOR commands
to HTCondor daemons. This value should be set in accordance with the HOSTALLOW_ADMINISTRATOR
setting in the configuration file, as described in section 3.8.9.

INSTALLDIR defines the path to the directory where HTCondor will be installed.

POOLHOSTNAME defines the host name of the pool’s central manager.

ACCOUNTINGDOMAIN defines the accounting (or UID) domain the target machine will be in.

JVMLOCATION defines the path to Java virtual machine on the target machine.

SMTPSERVER defines the host name of the SMTP server that the target machine is to use to send e-mail.

VMMEMORY an integer value that defines the maximum memory each VM run onthe target machine.

VMMAXNUMBER an integer value that defines the number of VMs that can be run in parallel on the target machine.

VMNETWORKING = < N | A | B | C > determines if VM Universe can use networking. This can be setto:

• None (N)

• NAT (A)

• Bridged (B)

• NAT and Bridged (C)

USEVMUNIVERSE = < Y | N > will cause the installer to enable VM Universe jobs on the target machine.

LOCALCONFIG defines the location of the local configuration file. The valuecan be the path to a file on the local
machine, or it can be a URL beginning withhttp . If the value is a URL, then thecondor_urlfetchtool is
invoked to fetch configuration whenever the configuration isread.

PERLLOCATION defines the path toPerl on the target machine. This is required in order to use thevm universe.

After defining each of these properties for the MSI installer, the installer can be started with themsiexeccommand.
The following command starts the installer in unattended mode, and it dumps a journal of the installer’s progress to a
log file:

msiexec /qb /lxv * condor-install-log.txt /i condor-8.0.0-173133-Windows -x86.msi [property=value] ...

More information on the features ofmsiexec can be found at Microsoft’s website at
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/msiexec.mspx.

HTCondor Version 8.6.4 Manual

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/msiexec.mspx

3.2.3. Installation on Windows 180

Manual Installation HTCondor on Windows

If you are to install HTCondor on many different machines, you may wish to use some other mechanism to install
HTCondor on additional machines rather than running the Setup program described above on each machine.

WARNING: This is for advanced users only! All others should use the Setup program described above.

Here is a brief overview of how to install HTCondor manually without using the provided GUI-based setup pro-
gram:

The Service The service that HTCondor will install is called "Condor". The Startup Type is Automatic. The service
should log on as System Account, butdo not enable"Allow Service to Interact with Desktop". The program
that is run iscondor_master.exe.

The HTCondor service can be installed and removed using thesc.exe tool, which is included in Windows XP
and Windows 2003 Server. The tool is also available as part ofthe Windows 2000 Resource Kit.

Installation can be done as follows:

sc create Condor binpath= c:\condor\bin\condor_master.e xe

To remove the service, use:

sc delete Condor

The Registry HTCondor uses a few registry entries in its operation. The key that HTCondor uses is
HKEY_LOCAL_MACHINE/Software/Condor. The values that HTCondor puts in this registry key serve two
purposes.

1. The values of CONDOR_CONFIG and RELEASE_DIR are used for HTCondor to start its service.

CONDOR_CONFIG should point to thecondor_config file. In this version of HTCondor, itmust
reside on the local disk.

RELEASE_DIR should point to the directory where HTCondor isinstalled. This is typicallyC:\Condor ,
and again, thismust reside on the local disk.

2. The other purpose is storing the entries from the last installation so that they can be used for the next one.

The File System The files that are needed for HTCondor to operate are identical to the Unix version of HTCondor,
except that executable files end in.exe . For example the on Unix one of the files iscondor_master and on
HTCondor the corresponding file iscondor_master.exe .

These files currently must reside on the local disk for a variety of reasons. Advanced Windows users might be
able to put the files on remote resources. The main concern is twofold. First, the files must be there when the
service is started. Second, the files must always be in the same spot (including drive letter), no matter who is
logged into the machine.

Note also that when installing manually, you will need to create the directories that HTCondor will expect to be
present given your configuration. This normally is simply a matter of creating thelog , spool , andexecute
directories. Do not stage other files in any of these directories; any files not created by HTCondor in these
directories are subject to removal.

HTCondor Version 8.6.4 Manual

3.2.3. Installation on Windows 181

Starting HTCondor Under Windows After Installation

After the installation of HTCondor is completed, the HTCondor service must be started. If you used the GUI-based
setup program to install HTCondor, the HTCondor service should already be started. If you installed manually,
HTCondor must be started by hand, or you can simply reboot. NOTE: The HTCondor service will start automatically
whenever you reboot your machine.

To start HTCondor by hand:

1. From the Start menu, choose Settings.

2. From the Settings menu, choose Control Panel.

3. From the Control Panel, choose Services.

4. From Services, choose Condor, and Start.

Or, alternatively you can enter the following command from acommand prompt:

net start condor

Run the Task Manager (Control-Shift-Escape) to check that HTCondor services are running. The following tasks
should be running:

• condor_master.exe

• condor_negotiator.exe, if this machine is a central manager.

• condor_collector.exe, if this machine is a central manager.

• condor_startd.exe, if you indicated that this HTCondor node should start jobs

• condor_schedd.exe, if you indicated that this HTCondor node should submit jobsto the HTCondor pool.

Also, you should now be able to open up a new cmd (DOS prompt) window, and the HTCondor bin directory
should be in your path, so you can issue the normal HTCondor commands, such ascondor_qandcondor_status.

HTCondor is Running Under Windows ... Now What?

Once HTCondor services are running, try submitting test jobs. Example 2 within section 2.5.1 presents a vanilla
universe job.

HTCondor Version 8.6.4 Manual

3.2.4. Upgrading – Installing a New Version on an Existing Pool 182

3.2.4 Upgrading – Installing a New Version on an Existing Pool

An upgrade changes the running version of HTCondor from the current installation to a newer version. The safe
method to install and start running a newer version of HTCondor in essence is: shut down the current installation of
HTCondor, install the newer version, and then restart HTCondor using the newer version. To allow for falling back to
the current version, place the new version in a separate directory. Copy the existing configuration files, and modify the
copy to point to and use the new version, as well as incorporate any configuration variables that are new or changed
in the new version. Set theCONDOR_CONFIGenvironment variable to point to the new copy of the configuration, so
the new version of HTCondor will use the new configuration when restarted.

As of HTCondor version 8.2.0, the default configuration file has been substantially reduced in size by defining
compile-time default values for most configuration variables. Therefore, when upgrading from a version of HTCon-
dor earlier than 8.2.0 to a more recent version, the option ofreducing the size of the configuration file is an option.
The goal is to identify and use only the configuration variable values that differ from the compile-time default val-
ues. This is facilitated by usingcondor_config_valwith the -writeconfig:upgrade argument, to create a file that
behaves the same as the current configuration, but is much smaller, because values matching the default values (as
well as some obsolete variables) have been removed. Items inthe file created by runningcondor_config_valwith the
-writeconfig:upgrade argument will be in the order that they were read from the original configuration files. This file
is a convenient guide to stripping the cruft from old configuration files.

When upgrading from a version of HTCondor earlier than 6.8 tomore recent version, note that the configuration
settings must be modified for security reasons. Specifically, theHOSTALLOW_WRITEconfiguration variable must be
explicitly changed, or no jobs can be submitted, and error messages will be issued by HTCondor tools.

Another way to upgrade leaves HTCondor running. HTCondor will automatically restart itself if thecon-
dor_masterbinary is updated, and this method takes advantage of this. Download the newer version, placing it such
that it does not overwrite the currently running version. With the download will be a new set of configuration files;
update this new set with any specializations implemented inthe currently running version of HTCondor. Then, modify
the currently running installation by changing its configuration such that the path to binaries points instead to the new
binaries. One way to do that (under Unix) is to use a symbolic link that points to the current HTCondor installation
directory (for example,/opt/condor). Change the symbolic link to point to the new directory. If HTCondor is
configured to locate its binaries via the symbolic link, thenafter the symbolic link changes, thecondor_masterdae-
mon notices the new binaries and restarts itself. How frequently it checks is controlled by the configuration variable
MASTER_CHECK_NEW_EXEC_INTERVAL, which defaults 5 minutes.

When thecondor_masternotices new binaries, it begins a graceful restart. On an execute machine, a graceful
restart means that running jobs are preempted. Standard universe jobs will attempt to take a checkpoint. This could be
a bottleneck if all machines in a large pool attempt to do thisat the same time. If they do not complete within the cutoff
time specified by theKILL policy expression (defaults to 10 minutes), then the jobs are killed without producing a
checkpoint. It may be appropriate to increase this cutoff time, and a better approach may be to upgrade the pool in
stages rather than all at once.

For universes other than the standard universe, jobs are preempted. If jobs have been guaranteed a certain amount
of uninterrupted run time withMaxJobRetirementTime , then the job is not killed until the specified amount of
retirement time has been exceeded (which is 0 by default). The first step of killing the job is a soft kill signal, which
can be intercepted by the job so that it can exit gracefully, perhaps saving its state. If the job has not gone away once
theKILL expression fires (10 minutes by default), then the job is forcibly hard-killed. Since the graceful shutdown of

HTCondor Version 8.6.4 Manual

3.2.5. Shutting Down and Restarting an HTCondor Pool 183

jobs may rely on shared resources such as disks where state issaved, the same reasoning applies as for the standard
universe: it may be appropriate to increase the cutoff time for large pools, and a better approach may be to upgrade
the pool in stages to avoid jobs running out of time.

Another time limit to be aware of is the configuration variableSHUTDOWN_GRACEFUL_TIMEOUT. This defaults
to 30 minutes. If the graceful restart is not completed within this time, a fast restart ensues. This causes jobs to be
hard-killed.

3.2.5 Shutting Down and Restarting an HTCondor Pool

All of the commands described in this section are subject to the security policy chosen for the HTCondor pool. As
such, the commands must be either run from a machine that has the proper authorization, or run by a user that is
authorized to issue the commands. Section 3.8 details the implementation of security in HTCondor.

Shutting Down HTCondor There are a variety of ways to shut down all or parts of an HTCondor pool. All utilize
thecondor_offtool.

To stop a single execute machine from running jobs, thecondor_offcommand specifies the machine by host
name.

condor_off -startd <hostname>

A runningstandard universe job will be allowed to take a checkpoint before the job is killed. A running job
under another universe will be killed. If it is instead desired that the machine stops running jobs only after the
currently executing job completes, the command is

condor_off -startd -peaceful <hostname>

Note that this waits indefinitely for the running job to finish, before thecondor_startddaemon exits.

Th shut down all execution machines within the pool,

condor_off -all -startd

To wait indefinitely for each machine in the pool to finish its current HTCondor job, shutting down all of the
execute machines as they no longer have a running job,

condor_off -all -startd -peaceful

To shut down HTCondor on a machine from which jobs are submitted,

condor_off -schedd <hostname>

If it is instead desired that the submit machine shuts down only after all jobs that are currently in the queue are
finished, first disable new submissions to the queue by setting the configuration variable

MAX_JOBS_SUBMITTED = 0

HTCondor Version 8.6.4 Manual

3.2.6. Reconfiguring an HTCondor Pool 184

See instructions below in section 3.2.6 for how to reconfigure a pool. After the reconfiguration, the command to
wait for all jobs to complete and shut down the submission of jobs is

condor_off -schedd -peaceful <hostname>

Substitute the option-all for the host name, if all submit machines in the pool are to be shut down.

Restarting HTCondor, If HTCondor Daemons Are Not Running If HTCondor is not running, perhaps because
one of thecondor_offcommands was used, then starting HTCondor daemons back up depends on which part
of HTCondor is currently not running.

If no HTCondor daemons are running, then starting HTCondor is a matter of executing thecondor_master
daemon. Thecondor_masterdaemon will then invoke all other specified daemons on that machine. Thecon-
dor_masterdaemon executes on every machine that is to run HTCondor.

If a specific daemon needs to be started up, and thecondor_masterdaemon is already running, then issue the
command on the specific machine with

condor_on -subsystem <subsystemname>

where<subsystemname> is replaced by the daemon’s subsystem name. Or, this commandmight be issued
from another machine in the pool (which has administrative authority) with

condor_on <hostname> -subsystem <subsystemname>

where<subsystemname> is replaced by the daemon’s subsystem name, and<hostname> is replaced by
the host name of the machine where thiscondor_oncommand is to be directed.

Restarting HTCondor, If HTCondor Daemons Are Running If HTCondor daemons are currently running, but
need to be killed and newly invoked, thecondor_restarttool does this. This would be the case for a new
value of a configuration variable for which usingcondor_reconfigis inadequate.

To restart all daemons on all machines in the pool,

condor_restart -all

To restart all daemons on a single machine in the pool,

condor_restart <hostname>

where<hostname> is replaced by the host name of the machine to be restarted.

3.2.6 Reconfiguring an HTCondor Pool

To change a global configuration variable and have all the machines start to use the new setting, change the value
within the file, and send acondor_reconfigcommand to each host. Do this with asinglecommand,

condor_reconfig -all

HTCondor Version 8.6.4 Manual

3.3. Introduction to Configuration 185

If the global configuration file is not shared among all the machines, as it will be if using a shared file system, the
change must be made to each copy of the global configuration file before issuing thecondor_reconfigcommand.

Issuing acondor_reconfigcommand is inadequate for some configuration variables. Forthose, a restart of HT-
Condor is required. Those configuration variables that require a restart are listed in section 3.5.1. The manual page for
condor_restartis at 873.

3.3 Introduction to Configuration

This section of the manual contains general information about HTCondor configuration, relating to all parts of the
HTCondor system. If you’re setting up an HTCondor pool, you should read this section before you read the other
configuration-related sections:

• Section 3.4 contains information about configuration templates, which are now the preferred way to set many
configuration macros.

• Section 3.5 contains information about the hundreds of individual configuration macros. In general, it is best
to try to achieve your desired configuration using configuration templates before resorting to setting individual
configuration macros, but it is sometimes necessary to set individual configuration macros.

• The settings that control the policy under which HTCondor will start, suspend, resume, vacate or kill jobs are
described in section 3.7 on Policy Configuration for thecondor_startd.

3.3.1 HTCondor Configuration Files

The HTCondor configuration files are used to customize how HTCondor operates at a given site. The basic con-
figuration as shipped with HTCondor can be used as a starting point, but most likely you will want to modify that
configuration to some extent.

Each HTCondor program will, as part of its initialization process, configure itself by calling a library routine which
parses the various configuration files that might be used, including pool-wide, platform-specific, and machine-specific
configuration files. Environment variables may also contribute to the configuration.

The result of configuration is a list of key/value pairs. Eachkey is a configuration variable name, and each value is
a string literal that may utilize macro substitution (as defined below). Some configuration variables are evaluated by
HTCondor as ClassAd expressions; some are not. Consult the documentation for each specific case. Unless otherwise
noted, configuration values that are expected to be numeric or boolean constants can be any valid ClassAd expression
of operators on constants. Example:

MINUTE = 60
HOUR = (60 * $(MINUTE))
SHUTDOWN_GRACEFUL_TIMEOUT = ($(HOUR)* 24)

HTCondor Version 8.6.4 Manual

3.3.2. Ordered Evaluation to Set the Configuration 186

3.3.2 Ordered Evaluation to Set the Configuration

Multiple files, as well as a program’s environment variables, determine the configuration. The order in which attributes
are defined is important, as later definitions override earlier definitions. The order in which the (multiple) configuration
files are parsed is designed to ensure the security of the system. Attributes which must be set a specific way must appear
in the last file to be parsed. This prevents both the naive and the malicious HTCondor user from subverting the system
through its configuration. The order in which items are parsed is:

1. a single initial configuration file, which has historically been known as the global configuration file (see below);

2. other configuration files that are referenced and parsed due to specification within the single initial configuration
file (these files have historically been known as local configuration files);

3. if HTCondor daemons are not running as root on Unix platforms, the file
$(HOME)/.condor/user_config if it exists, or the file defined by configuration variable
USER_CONFIG_FILE;

if HTCondor daemons arenot running as Local System on Windows platforms, the file
%USERPROFILE\.condor\user_config if it exists, or the file defined by configuration variable
USER_CONFIG_FILE;

4. specific environment variables whose names are prefixed with _CONDOR_(note that these environment vari-
ables directly define macro name/value pairs, not the names of configuration files).

Some HTCondor tools utilize environment variables to set their configuration; these tools search for specifically-
named environment variables. The variable names are prefixed by the string_CONDOR_or _condor_ . The tools
strip off the prefix, and utilize what remains as configuration. As the use of environment variables is the last within
the ordered evaluation, the environment variable definition is used. The security of the system is not compromised, as
only specific variables are considered for definition in thismanner, not any environment variables with the_CONDOR_
prefix.

The location of the single initial configuration file differson Windows from Unix platforms. For Unix platforms,
the location of the single initial configuration file starts at the top of the following list. The first file that exists is used,
and then remaining possible file locations from this list become irrelevant.

1. the file specified by theCONDOR_CONFIGenvironment variable. If there is a problem reading that file, HT-
Condor will print an error message and exit right away.

2. /etc/condor/condor_config

3. /usr/local/etc/condor_config

4. ˜condor/condor_config

For Windows platforms, the location of the single initial configuration file is determined by the contents of the
environment variableCONDOR_CONFIG. If this environment variable is not defined, then the location is the registry
value ofHKEY_LOCAL_MACHINE/Software/Condor/CONDOR_CONFIG.

HTCondor Version 8.6.4 Manual

3.3.3. Configuration File Macros 187

The single, initial configuration file may contain the specification of one or more other configuration files, referred
to here as local configuration files. Since more than one file may contain a definition of the same variable, and since
the last definition of a variable sets the value, the parse order of these local configuration files is fully specified here.
In order:

1. The value of configuration variableLOCAL_CONFIG_DIRlists one or more directories which contain config-
uration files. The list is parsed from left to right. The leftmost (first) in the list is parsed first. Within each
directory, a lexicographical ordering by file name determines the ordering of file consideration.

2. The value of configuration variableLOCAL_CONFIG_FILElists one or more configuration files. These listed
files are parsed from left to right. The leftmost (first) in thelist is parsed first.

3. If one of these steps changes the value (right hand side) ofLOCAL_CONFIG_DIR, thenLOCAL_CONFIG_DIR
is processed for a second time, using the changed list of directories.

The parsing and use of configuration files may be bypassed by setting environment variableCONDOR_CONFIG
with the stringONLY_ENV. With this setting, there is no attempt to locate or read configuration files. This may be
useful for testing where the environment contains all needed information.

3.3.3 Configuration File Macros

Macro definitions are of the form:

<macro_name> = <macro_definition>

The macro name given on the left hand side of the definition is acase insensitive identifier. There may be white
space between the macro name, the equals sign (=), and the macro definition. The macro definition is a string literal
that may utilize macro substitution.

Macro invocations are of the form:

$(macro_name[:<default if macro_name not defined>])

The colon and default are optional in a macro invocation. Macro definitions may contain references to other
macros, even ones that are not yet defined, as long as they are eventually defined in the configuration files. All macro
expansion is done after all configuration files have been parsed, with the exception of macros that reference themselves.

A = xxx
C = $(A)

is a legal set of macro definitions, and the resulting value ofC is xxx . Note thatC is actually bound to$(A) , not its
value.

As a further example,

HTCondor Version 8.6.4 Manual

3.3.3. Configuration File Macros 188

A = xxx
C = $(A)
A = yyy

is also a legal set of macro definitions, and the resulting value ofC is yyy .

A macro may be incrementally defined by invoking itself in itsdefinition. For example,

A = xxx
B = $(A)
A = $(A)yyy
A = $(A)zzz

is a legal set of macro definitions, and the resulting value ofA is xxxyyyzzz . Note that invocations of a macro in
its own definition are immediately expanded.$(A) is immediately expanded in line 3 of the example. If it were not,
then the definition would be impossible to evaluate.

Recursively defined macros such as

A = $(B)
B = $(A)

arenot allowed. They create definitions that HTCondor refuses to parse.

A macro invocation where the macro name is not defined resultsin a substitution of the empty string. Consider the
example

MAX_ALLOC_CPUS = $(NUMCPUS)-1

If NUMCPUSis not defined, then this macro substitution becomes

MAX_ALLOC_CPUS = -1

The default value may help to avoid this situation. The default value may be a literal

MAX_ALLOC_CPUS = $(NUMCPUS:4)-1

such that ifNUMCPUSis not defined, the result of macro substitution becomes

MAX_ALLOC_CPUS = 4-1

The default may be another macro invocation:

MAX_ALLOC_CPUS = $(NUMCPUS:$(DETECTED_CPUS))-1

HTCondor Version 8.6.4 Manual

3.3.3. Configuration File Macros 189

These default specifications are restricted such that a macro invocation with a default can not be nested inside of
another default. An alternative way of stating this restriction is that there can only be one colon character per line. The
effect of nested defaults can be achieved by placing the macro definitions on separate lines of the configuration.

All entries in a configuration file must have an operator, which will be an equals sign (=). Identifiers are alphanu-
merics combined with the underscore character, optionallywith a subsystem name and a period as a prefix. As a
special case, a line without an operator that begins with a left square bracket will be ignored. The following two-line
example treats the first line as a comment, and correctly handles the second line.

[HTCondor Settings]
my_classad = [foo=bar]

To simplify pool administration, any configuration variable name may be prefixed by a subsystem (see the
$(SUBSYSTEM) macro in section 3.5.1 for the list of subsystems) and the period (.) character. For configura-
tion variables defined this way, the value is applied to the specific subsystem. For example, the ports that HTCondor
may use can be restricted to a range using theHIGHPORTandLOWPORTconfiguration variables.

MASTER.LOWPORT = 20000
MASTER.HIGHPORT = 20100

Note that all configuration variables may utilize this syntax, but nonsense configuration variables may result. For
example, it makes no sense to define

NEGOTIATOR.MASTER_UPDATE_INTERVAL = 60

since thecondor_negotiatordaemon does not use theMASTER_UPDATE_INTERVALvariable.

It makes little sense to do so, but HTCondor will configure correctly with a definition such as

MASTER.MASTER_UPDATE_INTERVAL = 60

Thecondor_masteruses this configuration variable, and the prefix ofMASTER.causes this configuration to be specific
to thecondor_masterdaemon.

As of HTCondor version 8.1.1, evaluation works in the expected manner when combining the definition of a macro
with use of a prefix that gives the subsystem name and a period.Consider the example

FILESPEC = A
MASTER.FILESPEC = B

combined with a later definition that incorporatesFILESPEC in a macro:

USEFILE = mydir/$(FILESPEC)

HTCondor Version 8.6.4 Manual

3.3.3. Configuration File Macros 190

When thecondor_masterevaluates variableUSEFILE, it evaluates tomydir/B . Previous to HTCondor version
8.1.1, it evaluated tomydir/A . When any other subsystem evaluates variableUSEFILE, it evaluates tomydir/A .

This syntax has been further expanded to allow for the specification of a local name on the command line using
the command line option

-local-name <local-name>

This allows multiple instances of a daemon to be run by the samecondor_masterdaemon, each instance with its own
local configuration variable.

The ordering used to look up a variable, called<parameter name> :

1. <subsystem name>.<local name>.<parameter name>

2. <local name>.<parameter name>

3. <subsystem name>.<parameter name>

4. <parameter name>

If this local name is not specified on the command line, numbers 1 and 2 are skipped. As soon as the first match is
found, the search is completed, and the corresponding valueis used.

This example configures acondor_masterto run 2condor_schedddaemons. Thecondor_masterdaemon needs
the configuration:

XYZZY = $(SCHEDD)
XYZZY_ARGS = -local-name xyzzy
DAEMON_LIST = $(DAEMON_LIST) XYZZY
DC_DAEMON_LIST = + XYZZY
XYZZY_LOG = $(LOG)/SchedLog.xyzzy

Using this example configuration, thecondor_masterstarts up a secondcondor_schedddaemon, where this second
condor_schedddaemon is passed-local-namexyzzyon the command line.

Continuing the example, configure thecondor_schedddaemon namedxyzzy . Thiscondor_schedddaemon will
share all configuration variable definitions with the othercondor_schedddaemon, except for those specified separately.

SCHEDD.XYZZY.SCHEDD_NAME = XYZZY
SCHEDD.XYZZY.SCHEDD_LOG = $(XYZZY_LOG)
SCHEDD.XYZZY.SPOOL = $(SPOOL).XYZZY

Note that the exampleSCHEDD_NAMEandSPOOLare specific to thecondor_schedddaemon, as opposed to a
different daemon such as thecondor_startd. Other HTCondor daemons using this feature will have different require-
ments for which parameters need to be specified individually. This example works for thecondor_schedd, and more
local configuration can, and likely would be specified.

HTCondor Version 8.6.4 Manual

3.3.4. Comments and Line Continuations 191

Also note that each daemon’s log file must be specified individually, and in two places: one specification is for use
by thecondor_master, and the other is for use by the daemon itself. In the example,theXYZZYcondor_scheddconfig-
uration variableSCHEDD.XYZZY.SCHEDD_LOGdefinition references thecondor_masterdaemon’sXYZZY_LOG.

3.3.4 Comments and Line Continuations

An HTCondor configuration file may contain comments and line continuations. A comment is any line beginning
with a pound character (#). A continuation is any entry that continues across multiples lines. Line continuation
is accomplished by placing the backslash character (\) at the end of any line to be continued onto another. Valid
examples of line continuation are

START = (KeyboardIdle > 15 * $(MINUTE)) && \
((LoadAvg - CondorLoadAvg) <= 0.3)

and

ADMIN_MACHINES = condor.cs.wisc.edu, raven.cs.wisc.edu , \
stork.cs.wisc.edu, ostrich.cs.wisc.edu, \
bigbird.cs.wisc.edu
HOSTALLOW_ADMINISTRATOR = $(ADMIN_MACHINES)

Where a line continuation character directly precedes a comment, the entire comment line is ignored, and the
following line is used in the continuation. Line continuation characters within comments are ignored.

Both this example

A = $(B) \
$(C)
$(D)

and this example

A = $(B) \
$(C) \
$(D)

result in the same value forA:

A = $(B) $(D)

3.3.5 Multi-Line Values

As of version 8.5.6, the value for a macro can comprise multiple lines of text. The syntax for this is as follows:

HTCondor Version 8.6.4 Manual

3.3.6. Executing a Program to Produce Configuration Macros 192

<macro_name> @=<tag>
<macro_definition lines>
@<tag>

For example:

JOB_ROUTER_DEFAULTS @=jrd
[

requirements=target.WantJobRouter is True;
MaxIdleJobs = 10;
MaxJobs = 200;

/ * now modify routed job attributes * /
/ * remove routed job if it goes on hold or stays idle for over 6 hou rs * /
set_PeriodicRemove = JobStatus == 5 ||

(JobStatus == 1 && (time() - QDate) > 3600 * 6);
delete_WantJobRouter = true;
set_requirements = true;

]
@jrd

Note that in this example, the square brackets are part of theJOB_ROUTER_DEFAULTS value.

3.3.6 Executing a Program to Produce Configuration Macros

Instead of reading from a file, HTCondor can run a program to obtain configuration macros. The vertical bar character
(|) as the last character defining a file name provides the syntaxnecessary to tell HTCondor to run a program. This syn-
tax may only be used in the definition of theCONDOR_CONFIGenvironment variable, or theLOCAL_CONFIG_FILE
configuration variable.

The command line for the program is formed by the characters preceding the vertical bar character. The standard
output of the program is parsed as a configuration file would be.

An example:

LOCAL_CONFIG_FILE = /bin/make_the_config|

Program/bin/make_the_configis executed, and its output is the set of configuration macros.

Note that either a program is executed to generate the configuration macros or the configuration is read from one
or more files. The syntax uses space characters to separate command line elements, if an executed program produces
the configuration macros. Space characters would otherwiseseparate the list of files. This syntax does not permit
distinguishing one from the other, so only one may be specified.

(Note that theinclude command syntax (see below) is now the preferred way to execute a program to generate
configuration macros.)

HTCondor Version 8.6.4 Manual

3.3.7. Including Configuration from Elsewhere 193

3.3.7 Including Configuration from Elsewhere

Externally defined configuration can be incorporated using the following syntax:

include [ifexist] : <file>
include : <cmdline>|
include [ifexist] command [into <cache-file>] : <cmdline>

(Note that theifexist andinto options were added in version 8.5.7. Also note that thecommandoption must
be specified in order to use theinto option – just using the bar after<cmdline> will not work.)

In the file form of theinclude command, the<file> specification must describe a single file, the contents
of which will be parsed and incorporated into the configuration. Unless theifexist option is specified, the non-
existence of the file is a fatal error.

In the command line form of theinclude command (specified with either thecommandoption or by appending
a bar (|) character after the<cmdline> specification), the<cmdline> specification must describe a command line
(program and arguments); the command line will be executed,and the output will be parsed and incorporated into the
configuration.

If the into option is not used, the command line will be executed every time the configuration file is referenced.
This may well be undesirable, and can be avoided by using theinto option. Theinto keyword must be followed
by the full pathname of a file into which to write the output of the command line. If that file exists, it will be read and
the command line will not be executed. If that file does not exist, the output of the command line will be written into it
and then the cache file will be read and incorporated into the configuration. If the command line produces no output,
a zero length file will be created. If the command line returnsa non-zero exit code, configuration will abort and the
cache file will not be created unless theifexist keyword is also specified.

Theinclude key word is case insensitive. There areno requirements for white space characters surrounding the
colon character.

Consider the example

FILE = config.$(FULL_HOSTNAME)
include : $(LOCAL_DIR)/$(FILE)

Values are acquired for configuration variablesFILE , andLOCAL_DIR by immediate evaluation, causing variable
FULL_HOSTNAMEto also be immediately evaluated. The resulting value formsa full path and file name. This file is
read and parsed. The resulting configuration is incorporated into the current configuration. This resulting configuration
may contain further nestedinclude specifications, which are also parsed, evaluated, and incorporated. Levels of
nestedinclude s are limited, such that infinite nesting is discovered and thwarted, while still permitting nesting.

Consider the further example

SCRIPT_FILE = script.$(IP_ADDRESS)
include : $(RELEASE_DIR)/$(SCRIPT_FILE) |

HTCondor Version 8.6.4 Manual

3.3.8. Reporting Errors and Warnings 194

In this example, the bar character at the end of the line causes a script to be invoked, and the output of the script is
incorporated into the current configuration. The same immediate parsing and evaluation occurs in this case as when a
file’s contents are included.

For pools that are transitioning to using this new syntax in configuration, while still having some tools and daemons
with HTCondor versions earlier than 8.1.6, special syntax in the configuration will cause those daemons to fail upon
startup, rather than continuing, but incorrectly parsing the new syntax. Newer daemons will ignore the extra syntax.
Placing the@character before theinclude key word causes the older daemons to fail when they attempt toparse
this syntax.

Here is the same example, but with the syntax that causes older daemons to fail when reading it.

FILE = config.$(FULL_HOSTNAME)
@include : $(LOCAL_DIR)/$(FILE)

A daemon older than version 8.1.6 will fail to start. Runningan oldercondor_config_validentifies the@include
line as being bad. A daemon of HTCondor version 8.1.6 or more recent sees:

FILE = config.$(FULL_HOSTNAME)
include : $(LOCAL_DIR)/$(FILE)

and starts up successfully.

Here is an example using the newifexist andinto options:

stuff.pl writes "STUFF=1" to stdout
include ifexist command into $(LOCAL_DIR)/stuff.config : perl $(LOCAL_DIR)/stuff.pl

3.3.8 Reporting Errors and Warnings

As of version 8.5.7, warning and error messages can be included in HTCondor configuration files.

The syntax for warning and error messages is as follows:

warning : <warning message>
error : <error message>

The warning and error messages will be printed when the configuration file is used (when almost any HTCondor
command is run, for example). Error messages (unlike warnings) will prevent the successful use of the configuration
file. This will, for example, prevent a daemon from starting,and preventcondor_config_valfrom returning a value.

Here’s an example of using an error message in a configurationfile (combined with some of the new include
features documented above):

HTCondor Version 8.6.4 Manual

3.3.9. Conditionals in Configuration 195

stuff.pl writes "STUFF=1" to stdout
include command into $(LOCAL_DIR)/stuff.config : perl $(L OCAL_DIR)/stuff.pl
if ! defined stuff

error : stuff is needed!
endif

3.3.9 Conditionals in Configuration

Conditionalif /else semantics are available in a limited form. The syntax:

if <simple condition>
<statement>
. . .
<statement>

else
<statement>
. . .
<statement>

endif

An else key word and statements are not required, such that simpleif semantics are implemented. The
<simple condition> does not permit compound conditions. It optionally contains the exclamation point char-
acter (!) to represent the not operation, followed by

• the defined keyword followed by the name of a variable. If the variable isdefined, the statement(s) are
incorporated into the expanded input. If the variable isnot defined, the statement(s) are not incorporated into
the expanded input. As an example,

if defined MY_UNDEFINED_VARIABLE
X = 12

else
X = -1

endif

results inX = -1 , whenMY_UNDEFINED_VARIABLEis not yet defined.

• theversion keyword, representing the version number of of the daemon ortool currently reading this con-
ditional. This keyword is followed by an HTCondor version number. That version number can be of the form
x.y.z or x.y . The version of the daemon or tool is compared to the specifiedversion number. The comparison
operators are

– == for equality. Current version 8.2.3 is equal to 8.2.

– >= to see if the current version number is greater than or equal to. Current version 8.2.3 is greater than
8.2.2, and current version 8.2.3 is greater than or equal to 8.2.

HTCondor Version 8.6.4 Manual

3.3.9. Conditionals in Configuration 196

– <= to see if the current version number is less than or equal to. Current version 8.2.0 is less than 8.2.2, and
current version 8.2.3 is less than or equal to 8.2.

As an example,

if version >= 8.1.6
DO_X = True

else
DO_Y = True

endif

results in definingDO_XasTrue if the current version of the daemon or tool reading this if statement is 8.1.6
or a more recent version.

• True or yes or the value 1. The statement(s) are incorporated.

• False or no or the value 0 The statement(s) arenot incorporated.

• $(<variable>) may be used where the immediately evaluated value is a simpleboolean value. A value that
evaluates to the empty string is consideredFalse , otherwise a value that does not evaluate to a simple boolean
value is a syntax error.

The syntax

if <simple condition>
<statement>
. . .
<statement>

elif <simple condition>
<statement>
. . .
<statement>

endif

is the same as syntax

if <simple condition>
<statement>
. . .
<statement>

else
if <simple condition>

<statement>
. . .
<statement>

endif
endif

HTCondor Version 8.6.4 Manual

3.3.10. Function Macros in Configuration 197

3.3.10 Function Macros in Configuration

A set of predefined functions increase flexibility. Both submit description files and configuration files are read using
the same parser, so these functions may be used in both submitdescription files and configuration files.

Case is significant in the function’s name, so use the same letter case as given in these definitions.

$CHOICE(index, listname) or $CHOICE(index, item1, item2, . . .) An item within the list is re-
turned. The list is represented by a parameter name, or the list items are the parameters. Theindex parameter
determines which item. The first item in the list is at index 0.If the index is out of bounds for the list contents,
an error occurs.

$ENV(environment-variable-name[:default-value]) Evaluates to the value of environment variable
environment-variable-name . If there is no environment variable with that name, Evaluates to UN-
DEFINED unless the optional:default-value is used; in which case it evaluates to default-value. For
example,

A = $ENV(HOME)

bindsA to the value of theHOMEenvironment variable.

$F[fpduwnxbqa](filename) One or more of the lower case letters may be combined to form the function
name and thus, its functionality. Each letter operates on the filename in its own way.

• f convert relative path to full path by prefixing the current working directory to it. This option works only
in condor_submitfiles.

• p refers to the entire directory portion offilename , with a trailing slash or backslash character. Whether
a slash or backslash is used depends on the platform of the machine. The slash will be recognized on Linux
platforms; either a slash or backslash will be recognized onWindows platforms, and the parser will use
the same character specified.

• d refers to the last portion of the directory within the path, if specified. It will have a trailing slash or
backslash, as appropriate to the platform of the machine. The slash will be recognized on Linux platforms;
either a slash or backslash will be recognized on Windows platforms, and the parser will use the same
character specified unless u or w is used. if b is used the trailing slash or backslash will be omitted.

• u convert path separators to Unix style slash characters

• wconvert path separators to Windows style backslash characters

• n refers to the file name at the end of any path, but without any file name extension. As an example, the
return value from$Fn(/tmp/simulate.exe) will be simulate (without the.exe extension).

• x refers to a file name extension, with the associated period (.). As an example, the return value from
$Fn(/tmp/simulate.exe) will be .exe .

• b when combined with the d option, causes the trailing slash orbackslash to be omitted. When combined
with the x option, causes the leading period (.) to be omitted.

• q causes the return value to be enclosed within quotes. Doublequote marks are used unless a is also
specified.

HTCondor Version 8.6.4 Manual

3.3.10. Function Macros in Configuration 198

• a When combined with the q option, causes the return value to beenclosed within single quotes.

$DIRNAME(filename) is the same as$Fp(filename)

$BASENAME(filename) is the same as$Fnx(filename)

$INT(item-to-convert) or $INT(item-to-convert, format-specifier) Expands, evaluates,
and returns a string version ofitem-to-convert . The format-specifier has the same syntax as a
C language or Perl format specifier. If noformat-specifier is specified,"%d" is used as the format
specifier.

$RANDOM_CHOICE(choice1, choice2, choice3, . . .) A random choice of one of the parameters in the
list of parameters is made. For example, if one of the integers 0-8 (inclusive) should be randomly chosen:

$RANDOM_CHOICE(0,1,2,3,4,5,6,7,8)

$RANDOM_INTEGER(min, max [, step]) A random integer within the rangemin and max, inclusive, is
selected. The optionalstep parameter controls the stride within the range, and it defaults to the value 1. For
example, to randomly chose an even integer in the range 0-8 (inclusive):

$RANDOM_INTEGER(0, 8, 2)

$REAL(item-to-convert) or $REAL(item-to-convert, format-specifier) Expands, evaluates,
and returns a string version ofitem-to-convert for a floating point type. Theformat-specifier is
a C language or Perl format specifier. If noformat-specifier is specified,"%16G" is used as a format
specifier.

$SUBSTR(name, start-index) or $SUBSTR(name, start-index, length) Expandsnameand re-
turns a substring of it. The first character of the string is atindex 0. The first character of the substring is at
indexstart-index . If the optionallength is not specified, then the substring includes characters up to the
end of the string. A negative value ofstart-index works back from the end of the string. A negative value
of length eliminates use of characters from the end of the string. Hereare some examples that all assume

Name = abcdef

• $SUBSTR(Name, 2) is cdef .

• $SUBSTR(Name, 0, -2) is abcd .

• $SUBSTR(Name, 1, 3) is bcd .

• $SUBSTR(Name, -1) is f .

• $SUBSTR(Name, 4, -3) is the empty string, as there are no characters in the substring for this re-
quest.

Environment references are not currently used in standard HTCondor configurations. However, they can sometimes
be useful in custom configurations.

HTCondor Version 8.6.4 Manual

3.3.11. Macros That Will Require a Restart When Changed 199

3.3.11 Macros That Will Require a Restart When Changed

When any of the following listed configuration variables arechanged, HTCondor must be restarted. Reconfiguration
usingcondor_reconfigwill not be enough.

• BIND_ALL_INTERFACES

• FetchWorkDelay

• MAX_NUM_CPUS

• MAX_TRACKING_GID

• MEMORY

• MIN_TRACKING_GID

• NETWORK_HOSTNAME

• NETWORK_INTERFACE

• NUM_CPUS

• PREEMPTION_REQUIREMENTS_STABLE

• PRIVSEP_ENABLED

• PROCD_ADDRESS

• SLOT_TYPE_<N>

• OFFLINE_MACHINE_RESOURCE_<name>

3.3.12 Pre-Defined Macros

HTCondor provides pre-defined macros that help configure HTCondor. Pre-defined macros are listed as
$(macro_name) .

This first set are entries whose values are determined at run time and cannot be overwritten. These are inserted
automatically by the library routine which parses the configuration files. This implies that a change to the underlying
value of any of these variables will require a full restart ofHTCondor in order to use the changed value.

$(FULL_HOSTNAME) The fully qualified host name of the local machine, which is host name plus domain name.

$(HOSTNAME) The host name of the local machine,withouta domain name.

HTCondor Version 8.6.4 Manual

3.3.12. Pre-Defined Macros 200

$(IP_ADDRESS) The ASCII string version of the local machine’s “most public” IP address. This address may be
IPv4 or IPv6, but the macro will always be set.

HTCondor selects the “most public” address heuristically.Your configuration should not depend on HTCondor
picking any particular IP address for this macro; this macro’s value may not even be one of the IP addresses
HTCondor is configured to advertise.

labelparam:IPv4Address

$(IPV4_ADDRESS) The ASCII string version of the local machine’s “most public” IPv4 address; unset if the local
machine has no IPv4 address.

SeeIP_ADDRESSabout “most public”.

$(IPV6_ADDRESS) The ASCII string version of the local machine’s “most public” IPv6 address; unset if the local
machine has no IPv6 address.

SeeIP_ADDRESSabout “most public”.

$(IP_ADDRESS_IS_V6) A boolean which is true if and only ifIP_ADDRESSis an IPv6 address. Useful for
conditonal configuration.

$(TILDE) The full path to the home directory of the Unix usercondor , if such a user exists on the local machine.

$(SUBSYSTEM) The subsystem name of the daemon or tool that is evaluating the macro. This is a unique string
which identifies a given daemon within the HTCondor system. The possible subsystem names are:

• C_GAHP

• C_GAHP_WORKER_THREAD

• CKPT_SERVER

• COLLECTOR

• DBMSD

• DEFRAG

• EC2_GAHP

• GANGLIAD

• GCE_GAHP

• GRIDMANAGER

• HAD

• HDFS

• JOB_ROUTER

• KBDD

• LEASEMANAGER

• MASTER

• NEGOTIATOR

• QUILL

HTCondor Version 8.6.4 Manual

3.3.12. Pre-Defined Macros 201

• REPLICATION

• ROOSTER

• SCHEDD

• SHADOW

• SHARED_PORT

• STARTD

• STARTER

• SUBMIT

• TOOL

• TRANSFERER

$(DETECTED_CPUS) The integer number of hyper-threaded CPUs, as given by$(DETECTED_CORES), when
COUNT_HYPERTHREAD_CPUSis True . The integer number of physical (non hyper-threaded) CPUs,
as given by$(DETECTED_PHYSICAL_CPUS), whenCOUNT_HYPERTHREAD_CPUSis False . When
COUNT_HYPERTHREAD_CPUSis True .

$(DETECTED_PHYSICAL_CPUS) The integer number of physical (non hyper-threaded) CPUs. This will be equal
the number of unique CPU IDs.

This second set of macros are entries whose default values are determined automatically at run time but which can
be overwritten.

$(ARCH) Defines the string used to identify the architecture of the local machine to HTCondor. Thecondor_startd
will advertise itself with this attribute so that users can submit binaries compiled for a given platform and force
them to run on the correct machines.condor_submitwill append a requirement to the job ClassAd that it must
run on the sameARCHandOPSYSof the machine where it was submitted, unless the user specifiesARCHand/or
OPSYSexplicitly in their submit file. See thecondor_submitmanual page on page 911 for details.

$(OPSYS) Defines the string used to identify the operating system of the local machine to HTCondor. If it is not
defined in the configuration file, HTCondor will automatically insert the operating system of this machine as
determined byuname.

$(OPSYS_VER) Defines the integer used to identify the operating system version number.

$(OPSYS_AND_VER) Defines the string used prior to HTCondor version 7.7.2 as$(OPSYS) .

$(UNAME_ARCH) The architecture as reported byuname(2)’s machine field. Always the same asARCHon Win-
dows.

$(UNAME_OPSYS) The operating system as reported byuname(2)’s sysname field. Always the same asOPSYS
on Windows.

$(DETECTED_MEMORY) The amount of detected physical memory (RAM) in MiB.

$(DETECTED_CORES) The number of CPU cores that the operating system schedules.On machines that support
hyper-threading, this will be the number of hyper-threads.

HTCondor Version 8.6.4 Manual

3.4. Configuration Templates 202

$(PID) The process ID for the daemon or tool.

$(PPID) The process ID of the parent process for the daemon or tool.

$(USERNAME) The user name of the UID of the daemon or tool. For daemons started as root, but running under
another UID (typically the usercondor), this will be the other UID.

$(FILESYSTEM_DOMAIN) Defaults to the fully qualified host name of the machine it is evaluated on. See sec-
tion 3.5.6, Shared File System Configuration File Entries for the full description of its use and under what
conditions it could be desirable to change it.

$(UID_DOMAIN) Defaults to the fully qualified host name of the machine it is evaluated on. See section 3.5.6 for
the full description of this configuration variable.

Since$(ARCH) and$(OPSYS) will automatically be set to the correct values, we recommend that you do not
overwrite them.

3.4 Configuration Templates

Achieving certain behaviors in an HTCondor pool often requires setting the values of a number of configuration macros
in concert with each other. We have added configuration templates as a way to do this more easily, at a higher level,
without having to explicitly set each individual configuration macro.

Configuration templates are pre-defined; users cannot definetheir own templates.

Note that the value of an individual configuration macro thatis set by a configuration template can be overridden
by setting that configuration macro later in the configuration.

Detailed information about configuration templates (such as the macros they set) can be obtained using thecon-
dor_config_valuse option (see 11). (This document does not contain such information because thecondor_config_val
command is a better way to obtain it.)

3.4.1 Configuration Templates: Using Predefined Sets of Configuration

Predefined sets of configuration can be identified and incorporated into the configuration using the syntax

use <category name> : <template name>

Theuse key word is case insensitive. There areno requirements for white space characters surrounding the colon
character. More than one<template name> identifier may be placed within a singleuse line. Separate the names
by a space character. There is no mechanism by which the administrator may define their own custom<category
name> or <template name> .

Each predefined<category name> has a fixed, case insensitive name for the sets of configuration that are
predefined. Placement of ause line in the configuration brings in the predefined configuration it identifies.

HTCondor Version 8.6.4 Manual

3.4.2. Available Configuration Templates 203

As of version 8.5.6, some of the configuration templates takearguments (as described below).

3.4.2 Available Configuration Templates

There are four<category name> values. Within a category, a predefined, case insensitive name identifies the set
of configuration it incorporates.

ROLE category Describes configuration for the various roles that a machinemight play within an HTCondor pool.
The configuration will identify which daemons are running ona machine.

• Personal

Settings needed for when a single machine is the entire pool.

• Submit

Settings needed to allow this machine to submit jobs to the pool. May be combined withExecute and
CentralManager roles.

• Execute

Settings needed to allow this machine to execute jobs. May becombined with Submit and
CentralManager roles.

• CentralManager

Settings needed to allow this machine to act as the central manager for the pool. May be combined with
Submit andExecute roles.

FEATURE category Describes configuration for implemented features.

• Remote_Runtime_Config

Enables the use ofcondor_config_val-rset to the machine with this configuration. Note that there are
security implications for use of this configuration, as it potentially permits the arbitrary modification of
configuration. VariableSETTABLE_ATTRS_CONFIGmust also be defined.

• Remote_Config

Enables the use ofcondor_config_val-set to the machine with this configuration. Note that there are
security implications for use of this configuration, as it potentially permits the arbitrary modification of
configuration. VariableSETTABLE_ATTRS_CONFIGmust also be defined.

• VMware

Enables use of the vm universe with VMware virtual machines.Note that this feature depends on Perl.

• GPUs

Sets configuration based on detection with thecondor_gpu_discoverytool, and defines a custom resource
using the nameGPUs. Supports both OpenCL and CUDA if detected.

• PartitionableSlot(slot_type_num [, allocation])

Sets up a partitionable slot of the specified slot type numberand allocation (defaults for slot_type_num
and allocation are 1 and 100% respectively). See 3.7.1 for information on partitionalble slot policies.

HTCondor Version 8.6.4 Manual

3.4.2. Available Configuration Templates 204

• AssignAccountingGroup(map_filename) Sets up acondor_scheddjob transform that as-
signs an accounting group to each job as it is submitted. The accounting is determined by mapping the
Owner attribute of the job using the given map file.

• ScheddUserMapFile(map_name, map_filename) Defines a condor_scheddusermap
named map_name using the given map file.

• SetJobAttrFromUserMap(dst_attr, src_attr, map_name [, m ap_filename])
Sets up acondor_scheddjob transform that sets the dst_attr attribute of each job asit is submitted. The
value of dst_attr is determined by mapping the src_attr of the job using the usermap named map_name.
If the optional map_filename argument is specifed, then thismetaknob also defines acondor_schedd
usermap named map_Name using the given map file.

• StartdCronOneShot(job_name, exe [, hook_args])

Create a one-shotcondor_startdjob hook. (See 4.4.3 for more information about job hooks.)

• StartdCronPeriodic(job_name, period, exe [, hook_args])

Create a periodic-shotcondor_startdjob hook. (See 4.4.3 for more information about job hooks.)

• StartdCronContinuous(job_name, exe [, hook_args])

Create a (nearly) continuouscondor_startdjob hook. (See 4.4.3 for more information about job hooks.)

• ScheddCronOneShot(job_name, exe [, hook_args])

Create a one-shotcondor_scheddjob hook. (See 4.4.3 for more information about job hooks.)

• ScheddCronPeriodic(job_name, period, exe [, hook_args])

Create a periodic-shotcondor_scheddjob hook. (See 4.4.3 for more information about job hooks.)

• ScheddCronContinuous(job_name, exe [, hook_args])

Create a (nearly) continuouscondor_scheddjob hook. (See 4.4.3 for more information about job hooks.)

• OneShotCronHook(STARTD_CRON | SCHEDD_CRON, job_name, ho ok_exe
[,hook_args])

Create a one-shot job hook. (See 4.4.3 for more information about job hooks.)

• PeriodicCronHook(STARTD_CRON | SCHEDD_CRON , job_name, p eriod,
hook_exe [,hook_args])

Create a periodic job hook. (See 4.4.3 for more information about job hooks.)

• ContinuousCronHook(STARTD_CRON | SCHEDD_CRON , job_name , hook_exe
[,hook_args])

Create a (nearly) continuous job hook. (See 4.4.3 for more information about job hooks.)

• UWCS_Desktop_Policy_Values

Configuration values used in theUWCS_DESKTOPpolicy. (Note that these values were pre-
viously in the parameter table; configuration that uses these values will have to use the
UWCS_Desktop_Policy_Values template. For example,POLICY : UWCS_Desktop uses the
FEATURE : UWCS_Desktop_Policy_Values template.)

POLICY category Describes configuration for the circumstances under which machines choose to run jobs.

HTCondor Version 8.6.4 Manual

3.4.2. Available Configuration Templates 205

• Always_Run_Jobs

Always start jobs and run them to completion, without consideration ofcondor_negotiatorgenerated pre-
emption or suspension. This is the default policy, and it is intended to be used with dedicated resources. If
this policy is used together with theLimit_Job_Runtimes policy, order the specification by placing
thisAlways_Run_Jobs policy first.

• UWCS_Desktop

This was the default policy before HTCondor version 8.1.6. It is intended to be used with desktop machines
not exclusively running HTCondor jobs. It injectsUWCSinto the name of some configuration variables.

• Desktop

An updated and reimplementation of theUWCS_Desktop policy, butwithout theUWCSnaming of some
configuration variables.

• Limit_Job_Runtimes(limit_in_seconds)

Limits running jobs to a maximum of the specified time using preemption. (The default limit is 24 hours.)
If this policy is used together with theAlways_Run_Jobs policy, order the specification by placing this
Limit_Job_Runtimes policy second.

• Preempt_If_Cpus_Exceeded

If the startd observes the number of CPU cores used by the job exceed the number of cores in the slot by
more than 0.8 on average over the past minute, preempt the jobimmediately ignoring any job retirement
time.

• Hold_If_Cpus_Exceeded

If the startd observes the number of CPU cores used by the job exceed the number of cores in the slot
by more than 0.8 on average over the past minute, immediatelyplace the job on hold ignoring any job
retirement time. The job will go on hold with a reasonable hold reason in job attributeHoldReason
and a value of 101 in job attributeHoldReasonCode . The hold reason and code can be customized by
specifyingHOLD_REASON_CPU_EXCEEDEDandHOLD_SUBCODE_CPU_EXCEEDEDrespectively.

• Preempt_If_Memory_Exceeded

If the startd observes the memory usage of the job exceed the memory provisioned in the slot, preempt the
job immediately ignoring any job retirement time.

• Hold_If_Memory_Exceeded

If the startd observes the memory usage of the job exceed the memory provisioned in the slot, imme-
diately place the job on hold ignoring any job retirement time. The job will go on hold with a reason-
able hold reason in job attributeHoldReason and a value of 102 in job attributeHoldReasonCode .
The hold reason and code can be customized by specifyingHOLD_REASON_MEMORY_EXCEEDEDand
HOLD_SUBCODE_MEMORY_EXCEEDEDrespectively.

• Preempt_If(policy_variable)

Preempt jobs according to the specified policy.policy_variable must be the name of a configuration
macro containing an expression that evaluates toTrue if the job should be preempted.
See an example here: 3.4.4.

• Want_Hold_If(policy_variable, subcode, reason_text)

Add the given policy to theWANT_HOLDexpression; if theWANT_HOLDexpression is defined,
policy_variable is prepended to the existing expression; otherwiseWANT_HOLDis simply set to
the value of the textttpolicy_variable macro.
See an example here: 3.4.4.

HTCondor Version 8.6.4 Manual

3.4.3. Configuration Template Transition Syntax 206

• Startd_Publish_CpusUsage

Publish the number of CPU cores being used by the job into to slot ad as attributeCpusUsage . This
value will be the average number of cores used by the job over the past minute, sampling every 5 seconds.

SECURITY category Describes configuration for an implemented security model.

• Host_Based

The default security model (based on IPs and DNS names). Donot combine withUser_Based security.

• User_Based

Grants permissions to an administrator and usesWith_Authentication . Do not combine with
Host_Based security.

• With_Authentication

Requires both authentication and integrity checks.

• Strong

Requires authentication, encryption, and integrity checks.

3.4.3 Configuration Template Transition Syntax

For pools that are transitioning to using this new syntax in configuration, while still having some tools and daemons
with HTCondor versions earlier than 8.1.6, special syntax in the configuration will cause those daemons to fail upon
start up, rather than use the new, but misinterpreted, syntax. Newer daemons will ignore the extra syntax. Placing the
@character before theuse key word causes the older daemons to fail when they attempt toparse this syntax.

As an example, consider thecondor_startdas it starts up. Acondor_startdprevious to HTCondor version 8.1.6
fails to start when it sees:

@use feature : GPUs

Running an oldercondor_config_valalso identifies the@useline as being bad. Acondor_startdof HTCondor version
8.1.6 or more recent sees

use feature : GPUs

3.4.4 Configuration Template Examples

• Preempt a job if its memory usage exceeds the requested memory:

MEMORY_EXCEEDED = (isDefined(MemoryUsage) && MemoryUsag e > RequestMemory)
use POLICY : PREEMPT_IF(MEMORY_EXCEEDED)

• Put a job on hold if its memory usage exceeds the requested memory:

HTCondor Version 8.6.4 Manual

3.5. Configuration Macros 207

MEMORY_EXCEEDED = (isDefined(MemoryUsage) && MemoryUsag e > RequestMemory)
use POLICY : WANT_HOLD_IF(MEMORY_EXCEEDED, 102, memory usage exceeded request_memory)

• Update dynamic GPU information every 15 minutes:

use FEATURE : StartdCronPeriodic(DYNGPU, 15 * 60, $(LOCAL_DIR)\dynamic_gpu_info.pl, $(LIBEXEC)\cond or_gpu_discovery

wheredynamic_gpu_info.pl is a simple perl script that strips off the DetectedGPUs linefrom textttcon-
dor_gpu_discovery:

#!/usr/bin/env perl
my @attrs = `@ARGV`;
for (@attrs) {
next if ($_ =~ /^Detected/i);
print $_;
}

3.5 Configuration Macros

The section contains a list of the individual configuraton macros for HTCondor. Before attempting to set up HTCondor
configuration, you should probably read the introduction toconfiguration section (3.3) and possibly the configuration
template section (3.4).

The settings that control the policy under which HTCondor will start, suspend, resume, vacate or kill jobs are
described in section 3.7 on Policy Configuration for thecondor_startd, not in this section.

3.5.1 Introduction to Configuration Files

The HTCondor configuration files are used to customize how HTCondor operates at a given site. The basic configura-
tion as shipped with HTCondor works well for most sites.

Each HTCondor program will, as part of its initialization process, configure itself by calling a library routine which
parses the various configuration files that might be used, including pool-wide, platform-specific, and machine-specific
configuration files. Environment variables may also contribute to the configuration.

The result of configuration is a list of key/value pairs. Eachkey is a configuration variable name, and each value is
a string literal that may utilize macro substitution (as defined below). Some configuration variables are evaluated by
HTCondor as ClassAd expressions; some are not. Consult the documentation for each specific case. Unless otherwise
noted, configuration values that are expected to be numeric or boolean constants may be any valid ClassAd expression
of operators on constants. Example:

HTCondor Version 8.6.4 Manual

3.5.1. Introduction to Configuration Files 208

MINUTE = 60
HOUR = (60 * $(MINUTE))
SHUTDOWN_GRACEFUL_TIMEOUT = ($(HOUR)* 24)

Ordered Evaluation to Set the Configuration

Multiple files, as well as a program’s environment variablesdetermine the configuration. The order in which attributes
are defined is important, as later definitions override existing definitions. The order in which the (multiple) configura-
tion files are parsed is designed to ensure the security of thesystem. Attributes which must be set a specific way must
appear in the last file to be parsed. This prevents both the naive and the malicious HTCondor user from subverting the
system through its configuration. The order in which items are parsed is

1. a single initial configuration file, which has historically been known as the global configuration file

2. other configuration files that are referenced and parsed due to specification within the single initial configuration
file; these files have historically been known as local configuration files

3. If HTCondor daemons are not running as root on Unix platforms, parse file
$(HOME)/.condor/user_config if it exists, or the file defined by configuration variable
USER_CONFIG_FILE.

If HTCondor daemons arenot running as Local System on Windows platforms, parse file
%USERPROFILE\.condor\user_config if it exists, or the file defined by configuration variable
USER_CONFIG_FILE.

4. specific environment variables whose names are prefixed with _CONDOR_

Some HTCondor tools utilize environment variables to set their configuration. These tools search for specifically-
named environment variables. The variables are prefixed by the string_CONDOR_or _condor_ . The tools strip off
the prefix, and utilize what remains as configuration. As the use of environment variables is the last within the ordered
evaluation, the environment variable definition is used. The security of the system is not compromised, as only specific
variables are considered for definition in this manner, not any environment variables with the_CONDOR_prefix.

The location of the single initial configuration file differson Windows from Unix platforms. For Unix platforms,
the location of the single initial configuration file starts at the top of the following list. The first file that exists is used,
and then remaining possible file locations from this list become irrelevant.

1. the file specified by theCONDOR_CONFIGenvironment variable. If there is a problem reading that file, HT-
Condor will print an error message and exit right away.

2. /etc/condor/condor_config

3. /usr/local/etc/condor_config

4. ˜condor/condor_config

HTCondor Version 8.6.4 Manual

3.5.1. Introduction to Configuration Files 209

For Windows platforms, the location of the single initial configuration file is determined by the contents of the
environment variableCONDOR_CONFIG. If this environment variable is not defined, then the location is the registry
value ofHKEY_LOCAL_MACHINE/Software/Condor/CONDOR_CONFIG.

The single, initial configuration file may contain the specification of one or more other configuration files, referred
to here as local configuration files. Since more than one file may contain a definition of the same variable, and since
the last definition of a variable sets the value, the parse order of these local configuration files is fully specified here.
In order:

1. The value of configuration variableLOCAL_CONFIG_DIRlists one or more directories which contain config-
uration files. The list is parsed from left to right. The leftmost (first) in the list is parsed first. Within each
directory, a lexicographical ordering by file name determines the ordering of file consideration.

2. The value of configuration variableLOCAL_CONFIG_FILElists one or more configuration files. These listed
files are parsed from left to right. The leftmost (first) in thelist is parsed first.

3. If one of these steps changes the value (right hand side) ofLOCAL_CONFIG_DIR, thenLOCAL_CONFIG_DIR
is processed for a second time, using the changed list of directories.

The parsing and use of configuration files may be bypassed by setting environment variableCONDOR_CONFIG
with the stringONLY_ENV. With this setting, there is no attempt to locate or read configuration files. This may be
useful for testing where the environment contains all needed information.

Configuration File Macros

Macro definitions are of the form:

<macro_name> = <macro_definition>

The macro name given on the left hand side of the definition is acase insensitive identifier. There may be white
space between the macro name, the equals sign (=), and the macro definition. The macro definition is a string literal
that may utilize macro substitution.

Macro invocations are of the form:

$(macro_name:default if macro_name not defined)

The colon and default are optional in a macro invocation. Macro definitions may contain references to other
macros, even ones that are not yet defined, as long as they are eventually defined in the configuration files. All macro
expansion is done after all configuration files have been parsed, with the exception of macros that reference themselves.

A = xxx
C = $(A)

HTCondor Version 8.6.4 Manual

3.5.1. Introduction to Configuration Files 210

is a legal set of macro definitions, and the resulting value ofC is xxx . Note thatC is actually bound to$(A) , not its
value.

As a further example,

A = xxx
C = $(A)
A = yyy

is also a legal set of macro definitions, and the resulting value ofC is yyy .

A macro may be incrementally defined by invoking itself in itsdefinition. For example,

A = xxx
B = $(A)
A = $(A)yyy
A = $(A)zzz

is a legal set of macro definitions, and the resulting value ofA is xxxyyyzzz . Note that invocations of a macro in
its own definition are immediately expanded.$(A) is immediately expanded in line 3 of the example. If it were not,
then the definition would be impossible to evaluate.

Recursively defined macros such as

A = $(B)
B = $(A)

arenot allowed. They create definitions that HTCondor refuses to parse.

A macro invocation where the macro name is not defined resultsin a substitution of the empty string. Consider the
example

MAX_ALLOC_CPUS = $(NUMCPUS)-1

If NUMCPUSis not defined, then this macro substitution becomes

MAX_ALLOC_CPUS = -1

The default value may help to avoid this situation. The default value may be a literal

MAX_ALLOC_CPUS = $(NUMCPUS:4)-1

such that ifNUMCPUSis not defined, the result of macro substitution becomes

HTCondor Version 8.6.4 Manual

3.5.1. Introduction to Configuration Files 211

MAX_ALLOC_CPUS = 4-1

The default may be another macro invocation:

MAX_ALLOC_CPUS = $(NUMCPUS:$(DETECTED_CPUS))-1

These default specifications are restricted such that a macro invocation with a default can not be nested inside of
another default. An alternative way of stating this restriction is that there can only be one colon character per line. The
effect of nested defaults can be achieved by placing the macro definitions on separate lines of the configuration.

All entries in a configuration file must have an operator, which will be an equals sign (=). Identifiers are alphanu-
merics combined with the underscore character, optionallywith a subsystem name and a period as a prefix. As a
special case, a line without an operator that begins with a left square bracket will be ignored. The following two-line
example treats the first line as a comment, and correctly handles the second line.

[HTCondor Settings]
my_classad = [foo=bar]

To simplify pool administration, any configuration variable name may be prefixed by a subsystem (see the
$(SUBSYSTEM) macro in section 3.5.1 for the list of subsystems) and the period (.) character. For configura-
tion variables defined this way, the value is applied to the specific subsystem. For example, the ports that HTCondor
may use can be restricted to a range using theHIGHPORTandLOWPORTconfiguration variables.

MASTER.LOWPORT = 20000
MASTER.HIGHPORT = 20100

Note that all configuration variables may utilize this syntax, but nonsense configuration variables may result. For
example, it makes no sense to define

NEGOTIATOR.MASTER_UPDATE_INTERVAL = 60

since thecondor_negotiatordaemon does not use theMASTER_UPDATE_INTERVALvariable.

It makes little sense to do so, but HTCondor will configure correctly with a definition such as

MASTER.MASTER_UPDATE_INTERVAL = 60

Thecondor_masteruses this configuration variable, and the prefix ofMASTER.causes this configuration to be specific
to thecondor_masterdaemon.

As of HTCondor version 8.1.1, evaluation works in the expected manner when combining the definition of a macro
with use of a prefix that gives the subsystem name and a period.Consider the example

FILESPEC = A
MASTER.FILESPEC = B

HTCondor Version 8.6.4 Manual

3.5.1. Introduction to Configuration Files 212

combined with a later definition that incorporatesFILESPEC in a macro:

USEFILE = mydir/$(FILESPEC)

When thecondor_masterevaluates variableUSEFILE, it evaluates tomydir/B . Previous to HTCondor version
8.1.1, it evaluated tomydir/A . When any other subsystem evaluates variableUSEFILE, it evaluates tomydir/A .

This syntax has been further expanded to allow for the specification of a local name on the command line using
the command line option

-local-name <local-name>

This allows multiple instances of a daemon to be run by the samecondor_masterdaemon, each instance with its own
local configuration variable.

The ordering used to look up a variable, called<parameter name> :

1. <subsystem name>.<local name>.<parameter name>

2. <local name>.<parameter name>

3. <subsystem name>.<parameter name>

4. <parameter name>

If this local name is not specified on the command line, numbers 1 and 2 are skipped. As soon as the first match is
found, the search is completed, and the corresponding valueis used.

This example configures acondor_masterto run 2condor_schedddaemons. Thecondor_masterdaemon needs
the configuration:

XYZZY = $(SCHEDD)
XYZZY_ARGS = -local-name xyzzy
DAEMON_LIST = $(DAEMON_LIST) XYZZY
DC_DAEMON_LIST = + XYZZY
XYZZY_LOG = $(LOG)/SchedLog.xyzzy

Using this example configuration, thecondor_masterstarts up a secondcondor_schedddaemon, where this second
condor_schedddaemon is passed-local-namexyzzyon the command line.

Continuing the example, configure thecondor_schedddaemon namedxyzzy . Thiscondor_schedddaemon will
share all configuration variable definitions with the othercondor_schedddaemon, except for those specified separately.

SCHEDD.XYZZY.SCHEDD_NAME = XYZZY
SCHEDD.XYZZY.SCHEDD_LOG = $(XYZZY_LOG)
SCHEDD.XYZZY.SPOOL = $(SPOOL).XYZZY

HTCondor Version 8.6.4 Manual

3.5.1. Introduction to Configuration Files 213

Note that the exampleSCHEDD_NAMEandSPOOLare specific to thecondor_schedddaemon, as opposed to a
different daemon such as thecondor_startd. Other HTCondor daemons using this feature will have different require-
ments for which parameters need to be specified individually. This example works for thecondor_schedd, and more
local configuration can, and likely would be specified.

Also note that each daemon’s log file must be specified individually, and in two places: one specification is for use
by thecondor_master, and the other is for use by the daemon itself. In the example,theXYZZYcondor_scheddconfig-
uration variableSCHEDD.XYZZY.SCHEDD_LOGdefinition references thecondor_masterdaemon’sXYZZY_LOG.

Comments and Line Continuations

An HTCondor configuration file may contain comments and line continuations. A comment is any line beginning
with a pound character (#). A continuation is any entry that continues across multiples lines. Line continuation
is accomplished by placing the backslash character (\) at the end of any line to be continued onto another. Valid
examples of line continuation are

START = (KeyboardIdle > 15 * $(MINUTE)) && \
((LoadAvg - CondorLoadAvg) <= 0.3)

and

ADMIN_MACHINES = condor.cs.wisc.edu, raven.cs.wisc.edu , \
stork.cs.wisc.edu, ostrich.cs.wisc.edu, \
bigbird.cs.wisc.edu
HOSTALLOW_ADMINISTRATOR = $(ADMIN_MACHINES)

Where a line continuation character directly precedes a comment, the entire comment line is ignored, and the
following line is used in the continuation. Line continuation characters within comments are ignored.

Both this example

A = $(B) \
$(C)
$(D)

and this example

A = $(B) \
$(C) \
$(D)

result in the same value forA:

A = $(B) $(D)

HTCondor Version 8.6.4 Manual

3.5.1. Introduction to Configuration Files 214

Executing a Program to Produce Configuration Macros

Instead of reading from a file, HTCondor may run a program to obtain configuration macros. The vertical bar character
(|) as the last character defining a file name provides the syntaxnecessary to tell HTCondor to run a program. This syn-
tax may only be used in the definition of theCONDOR_CONFIGenvironment variable, or theLOCAL_CONFIG_FILE
configuration variable.

The command line for the program is formed by the characters preceding the vertical bar character. The standard
output of the program is parsed as a configuration file would be.

An example:

LOCAL_CONFIG_FILE = /bin/make_the_config|

Program/bin/make_the_configis executed, and its output is the set of configuration macros.

Note that either a program is executed to generate the configuration macros or the configuration is read from one
or more files. The syntax uses space characters to separate command line elements, if an executed program produces
the configuration macros. Space characters would otherwiseseparate the list of files. This syntax does not permit
distinguishing one from the other, so only one may be specified.

Including Configuration from Elsewhere

Externally defined configuration can be incorporated using the syntax

include : <what-to-include>

The<what-to-include> specification may describe a single file, where the contents of the file will be parsed
and incorporated into the configuration. Or,<what-to-include> may cause a program to be executed, where the
output of the program is parsed and incorporated into the configuration.

Theinclude key word is case insensitive. There areno requirements for white space characters surrounding the
colon character.

Consider the example

FILE = config.$(FULL_HOSTNAME)
include : $(LOCAL_DIR)/$(FILE)

Values are acquired for configuration variablesFILE , andLOCAL_DIR by immediate evaluation, causing variable
FULL_HOSTNAMEto also be immediately evaluated. The resulting value formsa full path and file name. This file is
read and parsed. The resulting configuration is incorporated into the current configuration. This resulting configuration
may contain further nestedinclude specifications, which are also parsed, evaluated, and incorporated. Levels of
nestedinclude s are limited, such that infinite nesting is discovered and thwarted, while still permitting nesting.

Consider the further example

HTCondor Version 8.6.4 Manual

3.5.1. Introduction to Configuration Files 215

SCRIPT_FILE = script.$(IP_ADDRESS)
include : $(RELEASE_DIR)/$(SCRIPT_FILE) |

In this example, the bar character at the end of the line causes a script to be invoked, and the output of the script is
incorporated into the current configuration. The same immediate parsing and evaluation occurs in this case as when a
file’s contents are included.

For pools that are transitioning to using this new syntax in configuration, while still having some tools and daemons
with HTCondor versions earlier than 8.1.6, special syntax in the configuration will cause those daemons to fail upon
start up, rather than use the new, but misinterpreted, syntax. Newer daemons will ignore the extra syntax. Placing the
@character before theinclude key word causes the older daemons to fail when they attempt toparse this syntax.

Here is the same example, but with the syntax that causes older daemons to fail when reading it.

FILE = config.$(FULL_HOSTNAME)
@include : $(LOCAL_DIR)/$(FILE)

A daemon previous to HTCondor version 8.1.6 fails to start. Running an oldercondor_config_validentifies the
@include line as being bad. A daemon of HTCondor version 8.1.6 or more recent sees

FILE = config.$(FULL_HOSTNAME)
include : $(LOCAL_DIR)/$(FILE)

Metaknobs: Using Predefined Sets of Configuration

Predefined sets of configuration may be identified and incorporated into the configuration using the syntax

use <category id> : <name of set>

Theuse key word is case insensitive. There areno requirements for white space characters surrounding the colon
character. More than one<name of set> identifier may be placed within a singleuse line. Separate the names
by a space character. There is no mechanism by which the administrator may define their own custom<category
id> or <name of set> .

Each predefined<category id> has a fixed, case insensitive name for the sets of configuration that are prede-
fined. Placement of ause line in the configuration brings in the predefined configuration it identifies.

There are four<category id> values. Within a category, a predefined, case insensitive name identifies the set
of configuration it incorporates.

ROLE Describes configuration for the various roles that a machinemight play within an HTCondor pool. The config-
uration will identify which daemons are running on a machine.

• Personal Settings needed for when a single machine is the entire pool.

HTCondor Version 8.6.4 Manual

3.5.1. Introduction to Configuration Files 216

• Submit Settings needed to allow this machine to submit jobs to the pool. May be combined with
Execute andCentralManager roles.

• Execute Settings needed to allow this machine to execute jobs. May becombined withSubmit and
CentralManager roles.

• CentralManager Settings needed to allow this machine to act as the central manager for the pool. May
be combined withSubmit andExecute roles.

FEATURE Describes configuration for implemented features.

• Remote_Runtime_Config Enables the use ofcondor_config_val-rset to the machine with this con-
figuration. Note that there are security implications for use of this configuration, as it potentially permits
the arbitrary modification of configuration. VariableSETTABLE_ATTRS_CONFIGmust also be defined.

• Remote_Config Enables the use ofcondor_config_val-set to the machine with this configuration.
Note that there are security implications for use of this configuration, as it potentially permits the arbitrary
modification of configuration. VariableSETTABLE_ATTRS_CONFIGmust also be defined.

• VMware Enables use of the vm universe with VMware virtual machines.Note that this feature depends
on Perl.

• GPUsSets configuration based on detection with thecondor_gpu_discoverytool, and defines a custom
resource using the nameGPUs. Supports both OpenCL and CUDA if detected.

POLICY Describes configuration for the circumstances under which machines choose to run jobs.

• Always_Run_Jobs Always start jobs and run them to completion, without consideration of con-
dor_negotiatorgenerated preemption or suspension. This is the default policy, and it is intended to be
used with dedicated resources. If this policy is used together with theLimit_Job_Runtimes policy,
order the specification by placing thisAlways_Run_Jobs policy first.

• UWCS_Desktop This was the default policy before HTCondor version 8.1.6. It is intended to be used
with desktop machines not exclusively running HTCondor jobs. It injectsUWCSinto the name of some
configuration variables.

• Desktop An updated and reimplementation of theUWCS_Desktop policy, butwithout theUWCSnam-
ing of some configuration variables.

• Limit_Job_Runtimes Limits running jobs to a maximum of 24 hours using preemption. To
set the limit to a different amount of time, define configuration variable MAX_JOB_RUNTIME
with the desired limit in seconds; place this definition ofMAX_JOB_RUNTIMEafter the
use POLICY : Limit_Job_Runtimes line within the configuration file. If this policy
is used together with theAlways_Run_Jobs policy, order the specification by placing this
Limit_Job_Runtimes policy second.

• Preempt_If_Cpus_Exceeded If the startd observes the number of CPU cores used by the job ex-
ceed the number of cores in the slot by more than 0.8 on averageover the past minute, preempt the job
immediately ignoring any job retirement time.

• Hold_If_Cpus_Exceeded If the startd observes the number of CPU cores used by the job exceed the
number of cores in the slot by more than 0.8 on average over thepast minute, immediately place the job on
hold ignoring any job retirement time. The job will go on holdwith a reasonable hold reason in job attribute
HoldReason and a value of 101 in job attributeHoldReasonCode . The hold reason and code can be

HTCondor Version 8.6.4 Manual

3.5.1. Introduction to Configuration Files 217

customized by specifyingHOLD_REASON_CPU_EXCEEDEDandHOLD_SUBCODE_CPU_EXCEEDED
respectively.

• Preempt_If_Memory_Exceeded If the startd observes the memory usage of the job exceed the mem-
ory provisioned in the slot, preempt the job immediately ignoring any job retirement time.

• Hold_If_Memory_Exceeded If the startd observes the memory usage of the job exceed the mem-
ory provisioned in the slot, immediately place the job on hold ignoring any job retirement time. The
job will go on hold with a reasonable hold reason in job attribute HoldReason and a value of 102
in job attribute HoldReasonCode . The hold reason and code can be customized by specifying
HOLD_REASON_MEMORY_EXCEEDEDandHOLD_SUBCODE_MEMORY_EXCEEDEDrespectively.

SECURITY Describes configuration for an implemented security model.

• Host_Based The default security model used. Donot combine withUser_Based security.

• User_Based Grants permissions to an administrator and usesWith_Authentication . Donotcom-
bine withHost_Based security.

• With_Authentication Requires both authentication and integrity checks.

• Strong Requires authentication, encryption, and integrity checks.

For pools that are transitioning to using this new syntax in configuration, while still having some tools and daemons
with HTCondor versions earlier than 8.1.6, special syntax in the configuration will cause those daemons to fail upon
start up, rather than use the new, but misinterpreted, syntax. Newer daemons will ignore the extra syntax. Placing the
@character before theuse key word causes the older daemons to fail when they attempt toparse this syntax.

As an example, consider thecondor_startdas it starts up. Acondor_startdprevious to HTCondor version 8.1.6
fails to start when it sees:

@use feature : GPUs

Running an oldercondor_config_valalso identifies the@useline as being bad. Acondor_startdof HTCondor version
8.1.6 or more recent sees

use feature : GPUs

Conditionals in Configuration

Conditionalif /else semantics are available in a limited form. The syntax:

if <simple condition>
<statement>
. . .
<statement>

else
<statement>

HTCondor Version 8.6.4 Manual

3.5.1. Introduction to Configuration Files 218

. . .
<statement>

endif

An else key word and statements are not required, such that simpleif semantics are implemented. The
<simple condition> does not permit compound conditions. It optionally contains the exclamation point char-
acter (!) to represent the not operation, followed by

• the defined keyword followed by the name of a variable. If the variable isdefined, the statement(s) are
incorporated into the expanded input. If the variable isnot defined, the statement(s) are not incorporated into
the expanded input. As an example,

if defined MY_UNDEFINED_VARIABLE
X = 12

else
X = -1

endif

results inX = -1 , whenMY_UNDEFINED_VARIABLEis not yet defined.

• theversion keyword, representing the version number of of the daemon ortool currently reading this con-
ditional. This keyword is followed by an HTCondor version number. That version number can be of the form
x.y.z or x.y . The version of the daemon or tool is compared to the specifiedversion number. The comparison
operators are

– == for equality. Current version 8.2.3 is equal to 8.2.

– >= to see if the current version number is greater than or equal to. Current version 8.2.3 is greater than
8.2.2, and current version 8.2.3 is greater than or equal to 8.2.

– <= to see if the current version number is less than or equal to. Current version 8.2.0 is less than 8.2.2, and
current version 8.2.3 is less than or equal to 8.2.

As an example,

if version >= 8.1.6
DO_X = True

else
DO_Y = True

endif

results in definingDO_XasTrue if the current version of the daemon or tool reading this if statement is 8.1.6
or a more recent version.

• True or yes or the value 1. The statement(s) are incorporated.

• False or no or the value 0 The statement(s) arenot incorporated.

• $(<variable>) may be used where the immediately evaluated value is a simpleboolean value. A value that
evaluates to the empty string is consideredFalse , otherwise a value that does not evaluate to a simple boolean
value is a syntax error.

HTCondor Version 8.6.4 Manual

3.5.1. Introduction to Configuration Files 219

The syntax

if <simple condition>
<statement>
. . .
<statement>

elif <simple condition>
<statement>
. . .
<statement>

endif

is the same as syntax

if <simple condition>
<statement>
. . .
<statement>

else
if <simple condition>

<statement>
. . .
<statement>

endif
endif

Function Macros in Configuration

A set of predefined functions increase flexibility. Both submit description files and configuration files are read using
the same parser, so these functions may be used in both submitdescription files and configuration files.

Case is significant in the function’s name, so use the same letter case as given in these definitions.

$CHOICE(index, listname) or $CHOICE(index, item1, item2, . . .) An item within the list is re-
turned. The list is represented by a parameter name, or the list items are the parameters. Theindex parameter
determines which item. The first item in the list is at index 0.If the index is out of bounds for the list contents,
an error occurs.

$ENV(environment-variable-name[:default-value]) Evaluates to the value of environment variable
environment-variable-name . If there is no environment variable with that name, Evaluates to UN-
DEFINED unless the optional:default-value is used; in which case it evaluates to default-value. For
example,

A = $ENV(HOME)

HTCondor Version 8.6.4 Manual

3.5.1. Introduction to Configuration Files 220

bindsA to the value of theHOMEenvironment variable.

$F[fpduwnxbqa](filename) One or more of the lower case letters may be combined to form the function
name and thus, its functionality. Each letter operates on the filename in its own way.

• f convert relative path to full path by prefixing the current working directory to it. This option works only
in condor_submitfiles.

• p refers to the entire directory portion offilename , with a trailing slash or backslash character. Whether
a slash or backslash is used depends on the platform of the machine. The slash will be recognized on Linux
platforms; either a slash or backslash will be recognized onWindows platforms, and the parser will use
the same character specified.

• d refers to the last portion of the directory within the path, if specified. It will have a trailing slash or
backslash, as appropriate to the platform of the machine. The slash will be recognized on Linux platforms;
either a slash or backslash will be recognized on Windows platforms, and the parser will use the same
character specified unless u or w is used. if b is used the trailing slash or backslash will be omitted.

• u convert path separators to Unix style slash characters

• wconvert path separators to Windows style backslash characters

• n refers to the file name at the end of any path, but without any file name extension. As an example, the
return value from$Fn(/tmp/simulate.exe) will be simulate (without the.exe extension).

• x refers to a file name extension, with the associated period (.). As an example, the return value from
$Fn(/tmp/simulate.exe) will be .exe .

• b when combined with the d option, causes the trailing slash orbackslash to be omitted. When combined
with the x option, causes the leading period (.) to be omitted.

• q causes the return value to be enclosed within quotes. Doublequote marks are used unless a is also
specified.

• a When combined with the q option, causes the return value to beenclosed within single quotes.

$DIRNAME(filename) is the same as$Fp(filename)

$BASENAME(filename) is the same as$Fnx(filename)

$INT(item-to-convert) or $INT(item-to-convert, format-specifier) Expands, evaluates,
and returns a string version ofitem-to-convert . The format-specifier has the same syntax as a
C language or Perl format specifier. If noformat-specifier is specified,"%d" is used as the format
specifier.

$RANDOM_CHOICE(choice1, choice2, choice3, . . .) A random choice of one of the parameters in the
list of parameters is made. For example, if one of the integers 0-8 (inclusive) should be randomly chosen:

$RANDOM_CHOICE(0,1,2,3,4,5,6,7,8)

$RANDOM_INTEGER(min, max [, step]) A random integer within the rangemin and max, inclusive, is
selected. The optionalstep parameter controls the stride within the range, and it defaults to the value 1. For
example, to randomly chose an even integer in the range 0-8 (inclusive):

$RANDOM_INTEGER(0, 8, 2)

HTCondor Version 8.6.4 Manual

3.5.1. Introduction to Configuration Files 221

$REAL(item-to-convert) or $REAL(item-to-convert, format-specifier) Expands, evaluates,
and returns a string version ofitem-to-convert for a floating point type. Theformat-specifier is
a C language or Perl format specifier. If noformat-specifier is specified,"%16G" is used as a format
specifier.

$SUBSTR(name, start-index) or $SUBSTR(name, start-index, length) Expandsnameand re-
turns a substring of it. The first character of the string is atindex 0. The first character of the substring is at
indexstart-index . If the optionallength is not specified, then the substring includes characters up to the
end of the string. A negative value ofstart-index works back from the end of the string. A negative value
of length eliminates use of characters from the end of the string. Hereare some examples that all assume

Name = abcdef

• $SUBSTR(Name, 2) is cdef .

• $SUBSTR(Name, 0, -2) is abcd .

• $SUBSTR(Name, 1, 3) is bcd .

• $SUBSTR(Name, -1) is f .

• $SUBSTR(Name, 4, -3) is the empty string, as there are no characters in the substring for this re-
quest.

Environment references are not currently used in standard HTCondor configurations. However, they can sometimes
be useful in custom configurations.

Macros That Will Require a Restart When Changed

When any of the following listed configuration variables arechanged, HTCondor must be restarted; reconfiguration
usingcondor_reconfigwill not be enough to cause the new values to take effect.

• BIND_ALL_INTERFACES

• FetchWorkDelay

• MAX_NUM_CPUS

• MAX_TRACKING_GID

• MEMORY

• MIN_TRACKING_GID

• NETWORK_HOSTNAME

• NETWORK_INTERFACE

• NUM_CPUS

• PREEMPTION_REQUIREMENTS_STABLE

HTCondor Version 8.6.4 Manual

3.5.1. Introduction to Configuration Files 222

• PRIVSEP_ENABLED

• PROCD_ADDRESS

• SLOT_TYPE_<N>

• OFFLINE_MACHINE_RESOURCE_<name>

Pre-Defined Macros

HTCondor provides pre-defined macros that help configure HTCondor. Pre-defined macros are listed as
$(macro_name) .

This first set are entries whose values are determined at run time and cannot be overwritten. These are inserted
automatically by the library routine which parses the configuration files. This implies that a change to the underlying
value of any of these variables will require a full restart ofHTCondor in order to use the changed value.

$(FULL_HOSTNAME) The fully qualified host name of the local machine, which is host name plus domain name.

$(HOSTNAME) The host name of the local machine,withouta domain name.

$(IP_ADDRESS) The ASCII string version of the local machine’s IP address.

$(TILDE) The full path to the home directory of the Unix usercondor , if such a user exists on the local machine.

$(SUBSYSTEM) The subsystem name of the daemon or tool that is evaluating the macro. This is a unique string
which identifies a given daemon within the HTCondor system. The possible subsystem names are:

• C_GAHP

• C_GAHP_WORKER_THREAD

• CKPT_SERVER

• COLLECTOR

• DBMSD

• DEFRAG

• EC2_GAHP

• GANGLIAD

• GCE_GAHP

• GRIDMANAGER

• HAD

• HDFS

• JOB_ROUTER

• KBDD

• LEASEMANAGER

HTCondor Version 8.6.4 Manual

3.5.1. Introduction to Configuration Files 223

• MASTER

• NEGOTIATOR

• QUILL

• REPLICATION

• ROOSTER

• SCHEDD

• SHADOW

• SHARED_PORT

• STARTD

• STARTER

• SUBMIT

• TOOL

• TRANSFERER

$(DETECTED_CPUS) The integer number of hyper-threaded CPUs, as given by$(DETECTED_CORES), when
COUNT_HYPERTHREAD_CPUSis True . The integer number of physical (non hyper-threaded) CPUs,
as given by$(DETECTED_PHYSICAL_CPUS), whenCOUNT_HYPERTHREAD_CPUSis False . When
COUNT_HYPERTHREAD_CPUSis True .

$(DETECTED_PHYSICAL_CPUS) The integer number of physical (non hyper-threaded) CPUs. This will be equal
the number of unique CPU IDs.

This second set of macros are entries whose default values are determined automatically at run time but which can
be overwritten.

$(ARCH) Defines the string used to identify the architecture of the local machine to HTCondor. Thecondor_startd
will advertise itself with this attribute so that users can submit binaries compiled for a given platform and force
them to run on the correct machines.condor_submitwill append a requirement to the job ClassAd that it must
run on the sameARCHandOPSYSof the machine where it was submitted, unless the user specifiesARCHand/or
OPSYSexplicitly in their submit file. See thecondor_submitmanual page on page 911 for details.

$(OPSYS) Defines the string used to identify the operating system of the local machine to HTCondor. If it is not
defined in the configuration file, HTCondor will automatically insert the operating system of this machine as
determined byuname.

$(OPSYS_VER) Defines the integer used to identify the operating system version number.

$(OPSYS_AND_VER) Defines the string used prior to HTCondor version 7.7.2 as$(OPSYS) .

$(UNAME_ARCH) The architecture as reported byuname(2)’s machine field. Always the same asARCHon Win-
dows.

$(UNAME_OPSYS) The operating system as reported byuname(2)’s sysname field. Always the same asOPSYS
on Windows.

HTCondor Version 8.6.4 Manual

3.5.2. HTCondor-wide Configuration File Entries 224

$(DETECTED_MEMORY) The amount of detected physical memory (RAM) in MiB.

$(DETECTED_CORES) The number of CPU cores that the operating system schedules.On machines that support
hyper-threading, this will be the number of hyper-threads.

$(PID) The process ID for the daemon or tool.

$(PPID) The process ID of the parent process for the daemon or tool.

$(USERNAME) The user name of the UID of the daemon or tool. For daemons started as root, but running under
another UID (typically the usercondor), this will be the other UID.

$(FILESYSTEM_DOMAIN) Defaults to the fully qualified host name of the machine it is evaluated on. See sec-
tion 3.5.6, Shared File System Configuration File Entries for the full description of its use and under what
conditions it could be desirable to change it.

$(UID_DOMAIN) Defaults to the fully qualified host name of the machine it is evaluated on. See section 3.5.6 for
the full description of this configuration variable.

Since$(ARCH) and$(OPSYS) will automatically be set to the correct values, we recommend that you do not
overwrite them.

3.5.2 HTCondor-wide Configuration File Entries

This section describes settings which affect all parts of the HTCondor system. Other system-wide settings can be
found in section 3.5.5 on “Network-Related Configuration File Entries”, and section 3.5.6 on “Shared File System
Configuration File Entries”.

CONDOR_HOST This macro is used to define the$(COLLECTOR_HOST)macro. Normally thecondor_collector
and condor_negotiatorwould run on the same machine. If for some reason they were notrun on the
same machine,$(CONDOR_HOST)would not be needed. Some of the host-based security macros use
$(CONDOR_HOST)by default. See section 3.8.9, on Setting up IP/host-based security in HTCondor for details.

COLLECTOR_HOST The host name of the machine where thecondor_collectoris running for your pool. Nor-
mally, it is defined relative to the$(CONDOR_HOST)macro. There is no default value for this macro;
COLLECTOR_HOSTmust be defined for the pool to work properly.

In addition to defining the host name, this setting can optionally be used to specify the network port of the
condor_collector. The port is separated from the host name by a colon (’: ’). For example,

COLLECTOR_HOST = $(CONDOR_HOST):1234

If no port is specified, the default port of 9618 is used. Usingthe default port is recommended for most sites. It is
only changed if there is a conflict with another service listening on the same network port. For more information
about specifying a non-standard port for thecondor_collectordaemon, see section 3.9.1 on page 451.

HTCondor Version 8.6.4 Manual

3.5.2. HTCondor-wide Configuration File Entries 225

Multiple condor_collectordaemons may be running simultaneously, ifCOLLECTOR_HOSTis defined with a
comma separated list of hosts. Multiplecondor_collectordaemons may run for the implementation of high
availability; see section 3.13 for details. With more than one running, updates are sent to all. With more than
one running, queries are sent to one of thecondor_collectordaemons, chosen at random.

COLLECTOR_PORT The default port used when contacting thecondor_collectorand the default port thecon-
dor_collectorlistens on if no port is specified. This variable is referenced if no port is given and there is no
other means to find thecondor_collectorport. The default value is 9618.

NEGOTIATOR_HOST This configuration variable is no longer used. It previouslydefined the host name of the ma-
chine where thecondor_negotiatoris running. At present, the port where thecondor_negotiatoris listening is
dynamically allocated.

CONDOR_VIEW_HOST A list of HTCondorView servers, separated by commas and/or spaces. Each HTCondorView
server is denoted by the host name of the machine it is runningon, optionally appended by a colon and the port
number. This service is optional, and requires additional configuration to enable it. There is no default value
for CONDOR_VIEW_HOST. If CONDOR_VIEW_HOSTis not defined, no HTCondorView server is used. See
section 3.14.6 on page 491 for more details.

SCHEDD_HOST The host name of the machine where thecondor_scheddis running for your pool. This is the host
that queues submitted jobs. If the host specifiesSCHEDD_NAMEorMASTER_NAME, that name must be included
in the form name@hostname. In most condor installations, there is acondor_scheddrunning on each host from
which jobs are submitted. The default value ofSCHEDD_HOSTis the current host with the optional name
included. For most pools, this macro is not defined, nor does it need to be defined..

RELEASE_DIR The full path to the HTCondor release directory, which holdsthebin , etc , lib , andsbin direc-
tories. Other macros are defined relative to this one. There is no default value forRELEASE_DIR.

BIN This directory points to the HTCondor directory where user-level programs are installed. The default value is
$(RELEASE_DIR)/bin .

LIB This directory points to the HTCondor directory where libraries used to link jobs for HTCondor’s standard
universe are stored. Thecondor_compileprogram uses this macro to find these libraries, so it must be defined
for condor_compileto function. The default value is$(RELEASE_DIR)/lib .

LIBEXEC This directory points to the HTCondor directory where support commands that HTCondor needs will be
placed. Do not add this directory to a user or system-wide path.

INCLUDE This directory points to the HTCondor directory where header files reside. The default value is
$(RELEASE_DIR)/include . It can make inclusion of necessary header files for compilation of programs
(such as those programs that uselibcondorapi.a) easier through the use ofcondor_config_val.

SBIN This directory points to the HTCondor directory where HTCondor’s system binaries (such as the binaries for
the HTCondor daemons) and administrative tools are installed. Whatever directory$(SBIN) points to ought
to be in thePATHof users acting as HTCondor administrators. The default value is$(BIN) in Windows and
$(RELEASE_DIR)/sbin on all other platforms.

LOCAL_DIR The location of the local HTCondor directory on each machinein your pool. The default value is
$(RELEASE_DIR) on Windows and$(RELEASE_DIR)/hosts/$(HOSTNAME) on all other platforms.

Another possibility is to use the condor user’s home directory, which may be specified with$(TILDE) . For
example:

HTCondor Version 8.6.4 Manual

3.5.2. HTCondor-wide Configuration File Entries 226

LOCAL_DIR = $(tilde)

LOG Used to specify the directory where each HTCondor daemon writes its log files. The names of the log files
themselves are defined with other macros, which use the$(LOG) macro by default. The log directory also
acts as the current working directory of the HTCondor daemons as the run, so if one of them should produce
a core file for any reason, it would be placed in the directory defined by this macro. The default value is
$(LOCAL_DIR)/log .

Do not stage other files in this directory; any files not created by HTCondor in this directory are subject to
removal.

RUN A path and directory name to be used by the HTCondor init script to specify the directory where thecon-
dor_mastershould write its process ID (PID) file. The default if not defined is$(LOG) .

SPOOL The spool directory is where certain files used by thecondor_scheddare stored, such as the job queue file
and the initial executables of any jobs that have been submitted. In addition, for systems not using a checkpoint
server, all the checkpoint files from jobs that have been submitted from a given machine will be store in that
machine’s spool directory. Therefore, you will want to ensure that the spool directory is located on a partition
with enough disk space. If a given machine is only set up to execute HTCondor jobs and not submit them, it
would not need a spool directory (or this macro defined). The default value is$(LOCAL_DIR)/spool . The
condor_scheddwill not function if SPOOLis not defined.

Do not stage other files in this directory; any files not created by HTCondor in this directory are subject to
removal.

EXECUTE This directory acts as a place to create the scratch directory of any HTCondor job that is executing on
the local machine. The scratch directory is the destinationof any input files that were specified for transfer. It
also serves as the job’s working directory if the job is usingfile transfer mode and no other working directory
was specified. If a given machine is set up to only submit jobs and not execute them, it would not need an
execute directory, and this macro need not be defined. The default value is$(LOCAL_DIR)/execute . The
condor_startdwill not function if EXECUTEis undefined. To customize the execute directory independently
for each batch slot, useSLOT<N>_EXECUTE.

Do not stage other files in this directory; any files not created by HTCondor in this directory are subject to
removal.

TMP_DIR A directory path to a directory where temporary files are placed by various portions of the HTCondor sys-
tem. The daemons and tools that use this directory are thecondor_gridmanager, condor_config_valwhen using
the-rset option, systems that use lock files when configuration variable CREATE_LOCKS_ON_LOCAL_DISK
is True , the Web Service API, and thecondor_credddaemon. There is no default value.

If both TMP_DIRandTEMP_DIRare defined, the value set forTMP_DIRis used andTEMP_DIRis ignored.

TEMP_DIR A directory path to a directory where temporary files are placed by various portions of the HTCondor sys-
tem. The daemons and tools that use this directory are thecondor_gridmanager, condor_config_valwhen using
the-rset option, systems that use lock files when configuration variable CREATE_LOCKS_ON_LOCAL_DISK
is True , the Web Service API, and thecondor_credddaemon. There is no default value.

If both TMP_DIRandTEMP_DIRare defined, the value set forTMP_DIRis used andTEMP_DIRis ignored.

HTCondor Version 8.6.4 Manual

3.5.2. HTCondor-wide Configuration File Entries 227

SLOT<N>_EXECUTE Specifies an execute directory for use by a specific batch slot. <N> represents the number of
the batch slot, such as 1, 2, 3, etc. This execute directory serves the same purpose asEXECUTE, but it allows
the configuration of the directory independently for each batch slot. Having slots each using a different partition
would be useful, for example, in preventing one job from filling up the same disk that other jobs are trying to
write to. If this parameter is undefined for a given batch slot, it will useEXECUTEas the default. Note that each
slot will advertiseTotalDisk andDisk for the partition containing its execute directory.

LOCAL_CONFIG_FILE Identifies the location of the local, machine-specific configuration file for each machine in
the pool. The two most common choices would be putting this file in the$(LOCAL_DIR) , or putting all local
configuration files for the pool in a shared directory, each one named by host name. For example,

LOCAL_CONFIG_FILE = $(LOCAL_DIR)/condor_config.local

or,

LOCAL_CONFIG_FILE = $(release_dir)/etc/$(hostname).lo cal

or, not using the release directory

LOCAL_CONFIG_FILE = /full/path/to/configs/$(hostname) .local

The value ofLOCAL_CONFIG_FILE is treated as a list of files, not a single file. The items in the list are
delimited by either commas or space characters. This allowsthe specification of multiple files as the local
configuration file, each one processed in the order given (with parameters set in later files overriding values from
previous files). This allows the use of one global configuration file for multiple platforms in the pool, defines
a platform-specific configuration file for each platform, anduses a local configuration file for each machine.
If the list of files is changed in one of the later read files, thenew list replaces the old list, but any files that
have already been processed remain processed, and are removed from the new list if they are present to prevent
cycles. See section 3.5.1 on page 214 for directions on usinga program to generate the configuration macros
that would otherwise reside in one or more files as described here. If LOCAL_CONFIG_FILEis not defined,
no local configuration files are processed. For more information on this, see section 3.14.3 about Configuring
HTCondor for Multiple Platforms on page 486.

If all files in a directory are local configuration files to be processed, then consider usingLOCAL_CONFIG_DIR,
defined at section 3.5.2.

REQUIRE_LOCAL_CONFIG_FILE A boolean value that defaults toTrue . WhenTrue , HTCondor exits with an
error, if any file listed inLOCAL_CONFIG_FILEcannot be read. A value ofFalse allows local configuration
files to be missing. This is most useful for sites that have both large numbers of machines in the pool and a local
configuration file that uses the$(HOSTNAME)macro in its definition. Instead of having an empty file for every
host in the pool, files can simply be omitted.

LOCAL_CONFIG_DIR A directory may be used as a container for local configurationfiles. The files found
in the directory are sorted into lexicographical order by file name, and then each file is treated as though
it was listed in LOCAL_CONFIG_FILE. LOCAL_CONFIG_DIR is processed before any files listed in

HTCondor Version 8.6.4 Manual

3.5.2. HTCondor-wide Configuration File Entries 228

LOCAL_CONFIG_FILE, and is checked again after processing theLOCAL_CONFIG_FILE list. It is
a list of directories, and each directory is processed in theorder it appears in the list. The process
is not recursive, so any directories found inside the directory being processed are ignored. See also
LOCAL_CONFIG_DIR_EXCLUDE_REGEXP.

USER_CONFIG_FILE The file name of a configuration file to be parsed after other local configuration files and
before environment variables set configuration. Relevant only if HTCondor daemons arenot run asroot on
Unix platforms or Local System on Windows platforms. The default is$(HOME)/.condor/user_config
on Unix platforms. The default is%USERPROFILE\.condor\user_config on Windows plat-
forms. If a fully qualified path is given, that is used. If a fully qualified path isnot given, then the
Unix path $(HOME)/.condor/ prefixes the file name given on Unix platforms, or the Windows path
%USERPROFILE\.condor\ prefixes the file name given on Windows platforms.

The ability of a user to use this user-specified configurationfile can be disabled by setting this variable to the
empty string:

USER_CONFIG_FILE =

LOCAL_CONFIG_DIR_EXCLUDE_REGEXP A regular expression that specifies file names to be ignored when look-
ing for configuration files within the directories specified via LOCAL_CONFIG_DIR. The default expression
ignores files with names beginning with a ‘.’ or a ‘#’, as well as files with names ending in ‘˜’. This avoids
accidents that can be caused by treating temporary files created by text editors as configuration files.

CONDOR_IDS The User ID (UID) and Group ID (GID) pair that the HTCondor daemons should run as, if the dae-
mons are spawned as root. This value can also be specified in the CONDOR_IDSenvironment variable. If
the HTCondor daemons are not started as root, then neither this CONDOR_IDSconfiguration macro nor the
CONDOR_IDSenvironment variable are used. The value is given by two integers, separated by a period. For
example,CONDOR_IDS = 1234.1234. If this pair is not specified in either the configuration file or in the
environment, and the HTCondor daemons are spawned as root, then HTCondor will search for acondor user
on the system, and run as that user’s UID and GID. See section 3.8.13 on UIDs in HTCondor for more details.

CONDOR_ADMIN The email address that HTCondor will send mail to if something goes wrong in the pool. For
example, if a daemon crashes, thecondor_mastercan send anobituaryto this address with the last few lines of
that daemon’s log file and a brief message that describes whatsignal or exit status that daemon exited with. The
default value is root@$(FULL_HOSTNAME).

<SUBSYS>_ADMIN_EMAIL The email address that HTCondor will send mail to if something goes wrong with the
named<SUBSYS>. Identical toCONDOR_ADMIN, but done on a per subsystem basis. There is no default value.

CONDOR_SUPPORT_EMAIL The email address to be included at the bottom of all email HTCondor sends out under
the label “Email address of the local HTCondor administrator:”. This is the address where HTCondor users at
your site should send their questions about HTCondor and gettechnical support. If this setting is not defined,
HTCondor will use the address specified inCONDOR_ADMIN(described above).

EMAIL_SIGNATURE Every e-mail sent by HTCondor includes a short signature line appended to the body. By
default, this signature includes the URL to the global HTCondor project website. When set, this variable defines
an alternative signature line to be used instead of the default. Note that the value can only be one line in length.
This variable could be used to direct users to look at local web site with information specific to the installation
of HTCondor.

HTCondor Version 8.6.4 Manual

3.5.2. HTCondor-wide Configuration File Entries 229

MAIL The full path to a mail sending program that uses-s to specify a subject for the message. On all platforms,
the default shipped with HTCondor should work. Only if you installed things in a non-standard location on
your system would you need to change this setting. The default value is$(BIN)/condor_mail.exe on
Windows and/usr/bin/mail on all other platforms. Thecondor_scheddwill not function unlessMAIL is
defined. For security reasons, non-Windows platforms should not use this setting and should useSENDMAIL
instead.

SENDMAIL The full path to thesendmailexecutable. If defined, which it is by default on non-Windowsplatforms,
sendmailis used instead of the mail program defined byMAIL.

MAIL_FROM The e-mail address that notification e-mails appear to come from. Contents is that of theFrom header.
There is no default value; if undefined, theFrom header may be nonsensical.

SMTP_SERVER For Windows platforms only, the host name of the server through which to route notification e-mail.
There is no default value; if undefined and the debug level is at FULLDEBUG, an error message will be generated.

RESERVED_SWAP The amount of swap space in MiB to reserve for this machine. HTCondor will not start up more
condor_shadowprocesses if the amount of free swap space on this machine falls below this level. The default
value is 0, which disables this check. It is anticipated thatthis configuration variable will no longer be used in
the near future. IfRESERVED_SWAPis not set to 0, the value ofSHADOW_SIZE_ESTIMATEis used.

RESERVED_DISK Determines how much disk space you want to reserve for your own machine. When HTCondor is
reporting the amount of free disk space in a given partition on your machine, it will always subtract this amount.
An example is thecondor_startd, which advertises the amount of free space in the$(EXECUTE) directory.
The default value ofRESERVED_DISKis zero.

LOCK HTCondor needs to create lock files to synchronize access to various log files. Because of problems with
network file systems and file locking over the years, wehighly recommend that you put these lock files on a
local partition on each machine. If you do not have your$(LOCAL_DIR) on a local partition, be sure to change
this entry.

Whatever user or group HTCondor is running as needs to have write access to this directory. If you are not
running as root, this is whatever user you started up thecondor_masteras. If you are running as root, and
there is a condor account, it is most likely condor. Otherwise, it is whatever you set in theCONDOR_IDS
environment variable, or whatever you define in theCONDOR_IDSsetting in the HTCondor config files. See
section 3.8.13 on UIDs in HTCondor for details.

If no value forLOCKis provided, the value ofLOGis used.

HISTORY Defines the location of the HTCondor history file, which stores information about all HTCondor jobs
that have completed on a given machine. This macro is used by both thecondor_scheddwhich appends the
information andcondor_history, the user-level program used to view the history file. This configuration macro
is given the default value of$(SPOOL)/history in the default configuration. If not defined, no history file
is kept.

ENABLE_HISTORY_ROTATION If this is defined to be true, then the history file will be rotated. If it is false, then
it will not be rotated, and it will grow indefinitely, to the limits allowed by the operating system. If this is not
defined, it is assumed to be true. The rotated files will be stored in the same directory as the history file.

MAX_HISTORY_LOG Defines the maximum size for the history file, in bytes. It defaults to 20MB. This parameter is
only used if history file rotation is enabled.

HTCondor Version 8.6.4 Manual

3.5.2. HTCondor-wide Configuration File Entries 230

MAX_HISTORY_ROTATIONS When history file rotation is turned on, this controls how many backup files there are.
It default to 2, which means that there may be up to three history files (two backups, plus the history file that is
being currently written to). When the history file is rotated, and this rotation would cause the number of backups
to be too large, the oldest file is removed.

HISTORY_HELPER_MAX_CONCURRENCY Specifies the maximum number of concurrent remotecondor_history
queries allowed at a time; defaults to 2. When this maximum isexceeded, further queries will be queued in a
non-blocking manner. Setting this option to 0 disables remote history access. A remote history access is defined
as an invocation ofcondor_historythat specifies a-nameoption to query acondor_scheddrunning on a remote
machine.

HISTORY_HELPER_MAX_HISTORY Specifies the maximum number of ClassAds to parse on behalf ofremote
history clients. The default is 10,000. This allows the system administrator to indirectly manage the maximum
amount of CPU time spent on each client. Setting this option to 0 disables remote history access.

MAX_JOB_QUEUE_LOG_ROTATIONS Thecondor_schedddaemon periodically rotates the job queue database file,
in order to save disk space. This option controls how many rotated files are saved. It defaults to 1, which means
there may be up to two history files (the previous one, which was rotated out of use, and the current one that is
being written to). When the job queue file is rotated, and thisrotation would cause the number of backups to be
larger the the maximum specified, the oldest file is removed.

CLASSAD_LOG_STRICT_PARSING A boolean value that defaults toTrue . WhenTrue , ClassAd log files will
be read using a strict syntax checking for ClassAd expressions. ClassAd log files include the job queue log and
the accountant log. WhenFalse , ClassAd log files are read without strict expression syntaxchecking, which
allows some legacy ClassAd log data to be read in a backward compatible manner. This configuration variable
may no longer be supported in future releases, eventually requiring all ClassAd log files to pass strict ClassAd
syntax checking.

DEFAULT_DOMAIN_NAME The value to be appended to a machine’s host name, representing a domain name, which
HTCondor then uses to form a fully qualified host name. This isrequired if there is no fully qualified host name
in file /etc/hosts or in NIS. Set the value in the global configuration file, as HTCondor may depend on
knowing this value in order to locate the local configurationfile(s). The default value as given in the sample
configuration file of the HTCondor download is bogus, and mustbe changed. If this variable is removed from
the global configuration file, or if the definition is empty, then HTCondor attempts to discover the value.

NO_DNS A boolean value that defaults toFalse . WhenTrue , HTCondor constructs host names using the host’s IP
address together with the value defined forDEFAULT_DOMAIN_NAME.

CM_IP_ADDR If neitherCOLLECTOR_HOSTnorCOLLECTOR_IP_ADDRmacros are defined, then this macro will
be used to determine the IP address of the central manager (collector daemon). This macro is defined by an IP
address.

EMAIL_DOMAIN By default, if a user does not specifynotify_user in the submit description file, any email
HTCondor sends about that job will go to "username@UID_DOMAIN". If your machines all share a common
UID domain (so that you would setUID_DOMAINto be the same across all machines in your pool), but email
to user@UID_DOMAIN is not the right place for HTCondor to send email for your site, you can define the
default domain to use for email. A common example would be to set EMAIL_DOMAINto the fully qualified
host name of each machine in your pool, so users submitting jobs from a specific machine would get email sent
to user@machine.your.domain, instead of user@your.domain. You would do this by settingEMAIL_DOMAIN

HTCondor Version 8.6.4 Manual

3.5.2. HTCondor-wide Configuration File Entries 231

to $(FULL_HOSTNAME). In general, you should leave this setting commented out unless two things are true:
1) UID_DOMAINis set to your domain, not$(FULL_HOSTNAME), and 2) email to user@UID_DOMAIN will
not work.

CREATE_CORE_FILES Defines whether or not HTCondor daemons are to create a core file in theLOGdirectory if
something really bad happens. It is used to set the resource limit for the size of a core file. If not defined, it
leaves in place whatever limit was in effect when the HTCondor daemons (normally thecondor_master) were
started. This allows HTCondor to inherit the default systemcore file generation behavior at start up. For Unix
operating systems, this behavior can be inherited from the parent shell, or specified in a shell script that starts
HTCondor. If this parameter is set andTrue , the limit is increased to the maximum. If it is set toFalse , the
limit is set at 0 (which means that no core files are created). Core files greatly help the HTCondor developers
debug any problems you might be having. By using the parameter, you do not have to worry about tracking
down where in your boot scripts you need to set the core limit before starting HTCondor. You set the parameter
to whatever behavior you want HTCondor to enforce. This parameter defaults to undefined to allow the initial
operating system default value to take precedence, and is commented out in the default configuration file.

CKPT_PROBE Defines the path and executable name of the helper process HTCondor will use to determine
information for theCheckpointPlatform attribute in the machine’s ClassAd. The default value is
$(LIBEXEC)/condor_ckpt_probe .

ABORT_ON_EXCEPTION When HTCondor programs detect a fatal internal exception, they normally log an error
message and exit. If you have turned onCREATE_CORE_FILES, in some cases you may also want to turn on
ABORT_ON_EXCEPTIONso that core files are generated when an exception occurs. Setthe following to True
if that is what you want.

Q_QUERY_TIMEOUT Defines the timeout (in seconds) thatcondor_quses when trying to connect to thecon-
dor_schedd. Defaults to 20 seconds.

DEAD_COLLECTOR_MAX_AVOIDANCE_TIME Defines the interval of time (in seconds) between checks for afailed
primarycondor_collectordaemon. If connections to the dead primarycondor_collectortake very little time to
fail, new attempts to query the primarycondor_collectormay be more frequent than the specified maximum
avoidance time. The default value equals one hour. This variable has relevance to flocked jobs, as it defines the
maximum time they may be reporting to the primarycondor_collectorwithout thecondor_negotiatornoticing.

PASSWD_CACHE_REFRESH HTCondor can cause NIS servers to become overwhelmed by queries for uid and group
information in large pools. In order to avoid this problem, HTCondor caches UID and group information
internally. This integer value allows pool administratorsto specify (in seconds) how long HTCondor should
wait until refreshes a cache entry. The default is set to 72000 seconds, or 20 hours, plus a random number of
seconds between 0 and 60 to avoid having lots of processes refreshing at the same time. This means that if a
pool administrator updates the user or group database (for example,/etc/passwd or /etc/group), it can
take up to 6 minutes before HTCondor will have the updated information. This caching feature can be disabled
by setting the refresh interval to 0. In addition, the cache can also be flushed explicitly by running the command
condor_reconfig. This configuration variable has no effect on Windows.

SYSAPI_GET_LOADAVG If set to False, then HTCondor will not attempt to compute theload average on the system,
and instead will always report the system load average to be 0.0. Defaults to True.

NETWORK_MAX_PENDING_CONNECTS This specifies a limit to the maximum number of simultaneous network
connection attempts. This is primarily relevant tocondor_schedd, which may try to connect to large numbers

HTCondor Version 8.6.4 Manual

3.5.2. HTCondor-wide Configuration File Entries 232

of startds when claiming them. The negotiator may also connect to large numbers of startds when initiating
security sessions used for sending MATCH messages. On Unix,the default for this parameter is eighty percent
of the process file descriptor limit. On windows, the defaultis 1600.

WANT_UDP_COMMAND_SOCKET This setting, added in version 6.9.5, controls if HTCondor daemons should create
a UDP command socket in addition to the TCP command socket (which is required). The default isTrue , and
modifying it requires restarting all HTCondor daemons, notjust acondor_reconfigor SIGHUP.

Normally, updates sent to thecondor_collectoruse UDP, in addition to certain keep alive messages and other
non-essential communication. However, in certain situations, it might be desirable to disable the UDP command
port.

Unfortunately, due to a limitation in how these command sockets are created, it is not possible to define this
setting on a per-daemon basis, for example, by trying to setSTARTD.WANT_UDP_COMMAND_SOCKET. At
least for now, this setting must be defined machine wide to function correctly.

If this setting is set to true on a machine running acondor_collector, the pool should be configured to use TCP
updates to that collector (see section 3.9.5 on page 461 for more information).

ALLOW_SCRIPTS_TO_RUN_AS_EXECUTABLES A boolean value that, whenTrue , permits scripts on Windows
platforms to be used in place of theexecutablein a job submit description file, in place of acondor_dagman
pre or post script, or in producing the configuration, for example. Allows a script to be used in any circumstance
previously limited to a Windows executable or a batch file. The default value isTrue . See section 7.2.7 on
page 666 for further description.

OPEN_VERB_FOR_<EXT>_FILES A string that defines a Windowsverb for use in a root hive registry look up.
<EXT>defines the file name extension, which represents a scriptinglanguage, also needed for the look up. See
section 7.2.7 on page 666 for a more complete description.

ENABLE_CLASSAD_CACHING A boolean value that controls the caching of ClassAds. Caching saves memory
when an HTCondor process contains many ClassAds with the same expressions. The default value isTrue
for all daemons other than thecondor_shadow, condor_starter, andcondor_master. A value ofTrue enables
caching.

STRICT_CLASSAD_EVALUATION A boolean value that controls how ClassAd expressions are evaluated. If set to
True , then New ClassAd evaluation semantics are used. This meansthat attribute references without aMY. or
TARGET. prefix are only looked up in the local ClassAd. If set to the default value ofFalse , Old ClassAd
evaluation semantics are used. See section 4.1.1 on page 524for details.

CLASSAD_USER_LIBS A comma separated list of paths to shared libraries that contain additional ClassAd func-
tions to be used during ClassAd evaluation.

CLASSAD_USER_PYTHON_MODULES A comma separated list of python modules to load, which are tobe used
during ClassAd evaluation. If modulefoo is in this list, then functionbar can be invoked in ClassAds
via the expressionpython_invoke("foo", "bar", ...) . Any further arguments are converted from
ClassAd expressions to python; the function return value isconverted back to ClassAds. The python mod-
ules are loaded at configuration time, so any module-level statements are executed. Module writers can invoke
classad.register at the module-level in order to use python functions directly.

Functions executed by ClassAds should be non-blocking and have no side-effects; otherwise, unpredictable
HTCondor behavior may occur.

HTCondor Version 8.6.4 Manual

3.5.2. HTCondor-wide Configuration File Entries 233

CLASSAD_USER_PYTHON_LIB Specifies the path to the python libraries, which
is needed when CLASSAD_USER_PYTHON_MODULESis set. Defaults to
$(LIBEXEC)/libclassad_python_user.so , and would rarely be changed from the default value.

CONDOR_FSYNC A boolean value that controls whether HTCondor callsfsync() when writing the user job and
transaction logs. Setting this value toFalse will disable calls tofsync() , which can help performance for
condor_scheddlog writes at the cost of some durability of the log contents,should there be a power or hardware
failure. The default value isTrue .

STATISTICS_TO_PUBLISH A comma and/or space separated list that identifies which statistics collections are to
place attributes in ClassAds. Additional information specifies a level of verbosity and other identification of
which attributes to include and which to omit from ClassAds.The special valueNONEdisables all publishing,
so no statistics will be published; no option is included. For other list items that define this variable, the syntax
defines the two aspects by separating them with a colon. The first aspect defines a collection, which may
specify which daemon is to publish the statistics, and the second aspect qualifies and refines the details of which
attributes to publish for the collection, including a verbosity level. If the first aspect isALL, the option is applied
to all collections. If the first aspect isDEFAULT, the option is applied to all collections, with the intent that
further list items will specify publishing that is to be different than the default. This first aspect may beSCHEDD
or SCHEDULERto publish Statistics attributes in the ClassAd of thecondor_schedd. It may beTRANSFER
to publish file transfer statistics. It may beSTARTERto publish Statistics attributes in the ClassAd of the
condor_starter. Or, it may beDCor DAEMONCOREto publish DaemonCore statistics. One or more options are
specified after the colon.

Option Description

0 turns off the publishing of any statistics attributes
1 the default level, where some statistics attributes are published and others are omitted
2 the verbose level, where all statistics attributes are published
3 the super verbose level, which is currently unused, but intended to be all statistics

attributes published at the verbose level plus extra information
R include attributes from the most recent time interval; thedefault
!R omit attributes from the most recent time interval
D include attributes for debugging
!D omit attributes for debugging; the default
Z include attributes even if the attribute’s value is 0
!Z omit attributes when the attribute’s value is 0
L include attributes that represent the lifetime value; thedefault
!L omit attributes that represent the lifetime value

If this variable is not defined, then the default for each collection is used. If this variable is defined, and the
definition does not specify each possible collection, then no statistics are published for those collections not
defined. If an option specifies conflicting possibilities, such asR!R, then the last one takes precedence and is
applied.

As an example, to cause a verbose setting of the publication of Statistics attributes only for thecondor_schedd,
and do not publish any other Statistics attributes:

HTCondor Version 8.6.4 Manual

3.5.2. HTCondor-wide Configuration File Entries 234

STATISTICS_TO_PUBLISH = SCHEDD:2

As a second example, to cause all collections other than those forDAEMONCOREto publish at a verbosity setting
of 1, and omit lifetime values, where theDAEMONCOREincludes all statistics at the verbose level:

STATISTICS_TO_PUBLISH = DEFAULT:1!L, DC:2RDZL

STATISTICS_TO_PUBLISH_LIST A comma and/or space separated list of statistics attributenames that
should be published in updates to thecondor_collectordaemon, even though the verbosity specified in
STATISTICS_TO_PUBLISH would not normally send them. This setting has the effect of redefining the
verbosity level of the statistics attributes that it mentions, so that they will always match the current statistics
publication level as specified inSTATISTICS_TO_PUBLISH.

STATISTICS_WINDOW_SECONDS An integer value that controls the time window size, in seconds, for collecting
windowed daemon statistics. These statistics are, by convention, those attributes with names that are of the form
Recent<attrname> . Any data contributing to a windowed statistic that is olderthan this number of seconds
is dropped from the statistic. For example, ifSTATISTICS_WINDOW_SECONDS = 300, then any jobs
submitted more than 300 seconds ago are not counted in the windowed statisticRecentJobsSubmitted .
Defaults to 1200 seconds, which is 20 minutes.

The window is broken into smaller time pieces called quantum. The window advances one quantum at a time.

STATISTICS_WINDOW_SECONDS_<collection> The same asSTATISTICS_WINDOW_SECONDS, but
used to override the global setting for a particular statistic collection. Collection names currently implemented
areDCor DAEMONCOREandSCHEDDor SCHEDULER.

STATISTICS_WINDOW_QUANTUM For experts only, an integer value that controls the time quantization that form
a time window, in seconds, for the data structures that maintain windowed statistics. Defaults to 240 sec-
onds, which is 6 minutes. This default is purposely set to be slightly smaller than the update rate to thecon-
dor_collector. Setting a smaller value than the default increases the memory requirement for the statistics.
Graphing of statistics at the level of the quantum expects tosee counts that appear like a saw tooth.

STATISTICS_WINDOW_QUANTUM_<collection> The same asSTATISTICS_WINDOW_QUANTUM, but
used to override the global setting for a particular statistic collection. Collection names currently implemented
areDCor DAEMONCOREandSCHEDDor SCHEDULER.

TCP_KEEPALIVE_INTERVAL The number of seconds specifying a keep alive interval to usefor any HTCondor
TCP connection. The default keep alive interval is 360 (6 minutes); this value is chosen to minimize the like-
lihood that keep alive packets are sent, while still detecting dead TCP connections before job leases expire. A
smaller value will consume more operating system and network resources, while a larger value may cause jobs
to fail unnecessarily due to network disconnects. Most users will not need to tune this configuration variable. A
value of 0 will use the operating system default, and a value of -1 will disable HTCondor’s use of a TCP keep
alive.

ENABLE_IPV4 A boolean with the additional special value ofauto . If true, HTCondor will use IPv4 if available,
and fail otherwise. If false, HTCondor will not use IPv4. Ifauto , HTCondor will use IPv4 if it can find an
interface with an IPv4 address; this is the default.

HTCondor Version 8.6.4 Manual

3.5.2. HTCondor-wide Configuration File Entries 235

ENABLE_IPV6 A boolean with the additional special value ofauto . If true, HTCondor will use IPv6 if available,
and fail otherwise. If false, HTCondor will not use IPv6. Ifauto , HTCondor will use IPv6 if it can find an
interface with an IPv6 address; this is the default.

PREFER_IPV4 A boolean which will cause HTCondor to prefer IPv4 when it is able to choose. HTCondor will
otherwise prefer IPv6. The default isTrue .

ADVERTISE_IPV4_FIRST A string (treated as a boolean). IfADVERTISE_IPV4_FIRST evaluates toTrue ,
HTCondor will advertise its IPv4 addresses before its IPv6 addresses; otherwise the IPv6 addresses will come
first. Defaults to$(PREFER_IPV4) .

IGNORE_TARGET_PROTOCOL_PREFERENCE A string (treated as a boolean). If
IGNORE_TARGET_PROTOCOL_PREFERENCEevaluates toTrue , the target’s listed protocol preferences
will be ignored; othwerwise they will not. Defaults to$(PREFER_IPV4) .

IGNORE_DNS_PROTOCOL_PREFERENCE A string (treated as a boolean).
IGNORE_DNS_PROTOCOL_PREFERENCEevaluates toTrue , the protocol order returned by the DNS
will be ignored; otherwise it will not. Defaults to$(PREFER_IPV4) .

PREFER_OUTBOUND_IPV4 A string (treated as a boolean).PREFER_OUTBOUND_IPV4evaluates toTrue , HT-
Condor will prefer IPv4; otherwise it will not. Defaults to$(PREFER_IPV4) .

<SUBSYS>_CLASSAD_USER_MAP_NAMES A string defining a list of names for username-to-accountinggroup
mappings for the specified daemon. Names must be separated byspaces or commas.

CLASSAD_USER_MAPFILE_<name> A string giving the name of a file to parse to initialize the mapfor the given
username. Note that this macro is only used if<SUBSYS>_CLASSAD_USER_MAP_NAMESis defined for the
relevant daemon.

CLASSAD_USER_MAPDATA_<name> A string containing data to be used to initialize the map for the given user-
name. Note that this macro is only used if<SUBSYS>_CLASSAD_USER_MAP_NAMESis defined for the
relevant daemon, andCLASSAD_USER_MAPFILE_<name>is not defined for the given name.

The format for the map file and map data is the same as the formatfor the security unified map file (see 3.8.4
for details).

The first field must be * (or a subset name - see below), the second field is a regex that we will match against
the input, and the third field will be the output if the regex matches, the 3 and 4 argument form of the ClassAd
userMap() function (see 4.1.2) expect that the third field will be a comma separated list of values. for example:

file: groups.mapdata

* John chemistry,physics,glassblowing

* Juan physics,chemistry

* Bob security

* Alice security,math

Optional submaps: If the first field of the mapfile contains something other than *, then a submap is defined.
To select a submap for lookup, the first argument for userMap() should be "mapname.submap". For example:

HTCondor Version 8.6.4 Manual

3.5.3. Daemon Logging Configuration File Entries 236

mapdata 'groups' with submaps

* Bob security

* Alice security,math
alt Alice math,hacking

IGNORE_LEAF_OOM A boolean value that, whenTrue , tells HTCondornot to kill and hold a job that is within its
memory allocation, even if other processes within the same cgroup have exceeded theirs. The default value is
True . (Note that this represents a change in behavior compared toversions of HTCondor older than 8.6.0; this
configuration macro first appeared in version 8.4.11. To restore the previous behavior, set this value toFalse .)

3.5.3 Daemon Logging Configuration File Entries

These entries control how and where the HTCondor daemons write to log files. Many of the entries in this section
represents multiple macros. There is one for each subsystem(listed in section 3.5.1). The macro name for each
substitutes<SUBSYS>with the name of the subsystem corresponding to the daemon.

<SUBSYS>_LOG Defines the path and file name of the log file for a given subsystem. For example,
$(STARTD_LOG) gives the location of the log file for thecondor_startddaemon. The default value for
most daemons is the daemon’s name in camel case, concatenated with Log . For example, the default log
defined for thecondor_masterdaemon is$(LOG)/MasterLog . The default value for other subsystems is
$(LOG)/<SUBSYS>LOG. If the log file cannot be written to, then the daemon will attempt to log this into a
new file of the name$(LOG)/dprintf_failure.<SUBSYS> before the daemon exits.

MAX_<SUBSYS>_LOG Controls the maximum size in bytes or amount of time that a logwill be allowed to grow.
For any log not specified, the default is$(MAX_DEFAULT_LOG), which currently defaults to 10 MiB in size.
Values are specified with the same syntax asMAX_DEFAULT_LOG.

Note that a log file for thecondor_procddoes not use this configuration variable definition. Its implementation
is separate. See section 3.5.17 for the definition ofMAX_PROCD_LOG.

MAX_DEFAULT_LOG Controls the maximum size in bytes or amount of time that any log not explicitly specified
using MAX_<SUBSYS>_LOGwill be allowed to grow. When it is time to rotate a log file, it will be
saved to a file with an ISO timestamp suffix. The oldest rotatedfile receives the ending.old . The
.old files are overwritten each time the maximum number of rotatedfiles (determined by the value of
MAX_NUM_<SUBSYS>_LOG) is exceeded. The default value is 10 MiB in size. A value of 0 specifies
that the file may grow without bounds. A single integer value is specified; without a suffix, it defaults to
specifying a size in bytes. A suffix is case insensitive, except for MbandMin ; these both start with the
same letter, and the implementation attaches meaning to theletter case when only the first letter is present.
Therefore, use the following suffixes to qualify the integer:

Bytes for bytes

Kb for KiB, 210 numbers of bytes

Mbfor MiB, 220 numbers of bytes

Gb for GiB, 230 numbers of bytes

Tb for TiB, 240 numbers of bytes

HTCondor Version 8.6.4 Manual

3.5.3. Daemon Logging Configuration File Entries 237

Sec for seconds

Min for minutes

Hr for hours

Day for days

Wkfor weeks

MAX_NUM_<SUBSYS>_LOG An integer that controls the maximum number of rotations a log file is allowed to
perform before the oldest one will be rotated away. Thus, at mostMAX_NUM_<SUBSYS>_LOG + 1log files
of the same program coexist at a given time. The default valueis 1.

TRUNC_<SUBSYS>_LOG_ON_OPEN If this macro is defined and set toTrue , the affected log will be truncated and
started from an empty file with each invocation of the program. Otherwise, new invocations of the program will
append to the previous log file. By default this setting isFalse for all daemons.

<SUBSYS>_LOG_KEEP_OPEN A boolean value that controls whether or not the log file is kept open between writes.
WhenTrue , the daemon will not open and close the log file between writes. Instead the daemon will hold the
log file open until the log needs to be rotated. WhenFalse , the daemon reverts to the previous behavior
of opening and closing the log file between writes. When the$(<SUBSYS>_LOCK) macro is defined, set-
ting $(<SUBSYS>_LOG_KEEP_OPEN)has no effect, as the daemon will unconditionally revert back to the
open/close between writes behavior. On Windows platforms,the value defaults toTrue for all daemons. On
Linux platforms, the value defaults toTrue for all daemons, except thecondor_shadow, due to a global file
descriptor limit.

<SUBSYS>_LOCK This macro specifies the lock file used to synchronize append operations to the log file for this
subsystem. It must be a separate file from the$(<SUBSYS>_LOG) file, since the$(<SUBSYS>_LOG) file
may be rotated and you want to be able to synchronize access across log file rotations. A lock file is only
required for log files which are accessed by more than one process. Currently, this includes only theSHADOW
subsystem. This macro is defined relative to the$(LOCK) macro.

JOB_QUEUE_LOG A full path and file name, specifying the job queue log. The default value, when not defined is
$(SPOOL)/job_queue.log . This specification can be useful, if there is a solid state drive which is big
enough to hold the frequently written tojob_queue.log , but not big enough to hold the whole contents of
the spool directory.

FILE_LOCK_VIA_MUTEX This macro setting only works on Win32 – it is ignored on Unix.If set to beTrue , then
log locking is implemented via a kernel mutex instead of via file locking. On Win32, mutex access is FIFO,
while obtaining a file lock is non-deterministic. Thus setting toTrue fixes problems on Win32 where processes
(usually shadows) could starve waiting for a lock on a log file. Defaults toTrue on Win32, and is always
False on Unix.

LOCK_DEBUG_LOG_TO_APPEND A boolean value that defaults toFalse . This variable controls whether a dae-
mon’s debug lock is used when appending to the log. WhenFalse , the debug lock is only used when rotating
the log file. This is more efficient, especially when many processes share the same log file. WhenTrue , the
debug lock is used when writing to the log, as well as when rotating the log file. This setting is ignored under
Windows, and the behavior of Windows platforms is as though this variable wereTrue . Under Unix, the default
value ofFalse is appropriate when logging to file systems that support the POSIX semantics ofO_APPEND.
On non-POSIX-compliant file systems, it is possible for the characters in log messages from multiple processes

HTCondor Version 8.6.4 Manual

3.5.3. Daemon Logging Configuration File Entries 238

sharing the same log to be interleaved, unless locking is used. Since HTCondor does not support sharing of
debug logs between processes running on different machines, many non-POSIX-compliant file systems will still
avoid interleaved messages without requiring HTCondor to use a lock. Tests of AFS and NFS have not revealed
any problems when appending to the log without locking.

ENABLE_USERLOG_LOCKING A boolean value that defaults toFalse on Unix platforms andTrue on Windows
platforms. WhenTrue , a user’s job event log will be locked before being written to. If False , HTCondor will
not lock the file before writing.

ENABLE_USERLOG_FSYNC A boolean value that isTrue by default. WhenTrue , writes to the user’s job event
log are sync-ed to disk before releasing the lock.

USERLOG_FILE_CACHE_MAX The integer number of job event log files that thecondor_scheddwill keep open for
writing during an interval of time (specified byUSERLOG_FILE_CACHE_CLEAR_INTERVAL). The default
value is 0, causing no files to remain open; when 0, each job event log is opened, the event is written, and then
the file is closed. Individual file descriptors are removed from this count when thecondor_schedddetects that
no jobs are currently using them. Opening a file is a relatively time consuming operation on a networked file
system (NFS), and therefore, allowing a set of files to remainopen can improve performance. The value of
this variable needs to be set low enough such that thecondor_schedddaemon process does not run out of file
descriptors by leaving these job event log files open. The Linux operating system defaults to permitting 1024
assigned file descriptors per process; thecondor_scheddwill have one file descriptor per running job for the
condor_shadow.

USERLOG_FILE_CACHE_CLEAR_INTERVAL The integer number of seconds that forms the time interval within
which job event logs will be permitted to remain open whenUSERLOG_FILE_CACHE_MAXis greater than
zero. The default is 60 seconds. When the interval has passed, all job event logs that thecondor_scheddhas
permitted to stay open will be closed, and the interval within which job event logs may remain open between
writes of events begins anew. This time interval may be set toa longer duration if the administrator determines
that thecondor_scheddwill not exceed the maximum number of file descriptors; a longer interval may yield
higher performance due to fewer files being opened and closed.

EVENT_LOG_COUNT_EVENTS A boolean value that isFalse by default. WhenTrue , upon rotation of the user’s
job event log, a count of the number of job events is taken by scanning the log, such that the newly created,
post-rotation user job event log will have this count in its header. This configuration variable is relevant when
rotation of the user’s job event log is enabled.

CREATE_LOCKS_ON_LOCAL_DISK A boolean value utilized only for Unix operating systems, that defaults to
True . This variable is only relevant ifENABLE_USERLOG_LOCKINGis True . WhenTrue , lock files are
written to a directory namedcondorLocks , thereby using a local drive to avoid known problems with locking
on NFS. The location of thecondorLocks directory is determined by

1. The value ofTEMP_DIR, if defined.

2. The value ofTMP_DIR, if defined andTEMP_DIRis not defined.

3. The default value of/tmp , if neitherTEMP_DIRnorTMP_DIRis defined.

TOUCH_LOG_INTERVAL The time interval in seconds between when daemons touch their log files. The change
in last modification time for the log file is useful when a daemon restarts after failure or shut down. The last
modification date is printed, and it provides an upper bound on the length of time that the daemon was not
running. Defaults to 60 seconds.

HTCondor Version 8.6.4 Manual

3.5.3. Daemon Logging Configuration File Entries 239

LOGS_USE_TIMESTAMP This macro controls how the current time is formatted at the start of each
line in the daemon log files. WhenTrue , the Unix time is printed (number of seconds since
00:00:00 UTC, January 1, 1970). WhenFalse (the default value), the time is printed like so:
<Month>/<Day> <Hour>:<Minute>:<Second> in the local timezone.

DEBUG_TIME_FORMAT This string defines how to format the current time printed at the start of each line in the
daemon log files. The value is a format string is passed to the Cstrftime() function, so see that manual
page for platform-specific details. If not defined, the default value is

"%m/%d/%y %H:%M:%S"

<SUBSYS>_DEBUG All of the HTCondor daemons can produce different levels of output depending on how much
information is desired. The various levels of verbosity fora given daemon are determined by this macro. All
daemons have the default levelD_ALWAYS, and log messages for that level will be printed to the daemon’s log,
regardless of this macro’s setting. Settings are a comma- orspace-separated list of the following values:

D_ALL This flag turns onall debugging output by enabling all of the debug levels at once.There is no need
to list any other debug levels in addition toD_ALL; doing so would be redundant. Be warned: this will
generate about aHUGE amount of output. To obtain a higher level of output than the default, consider
usingD_FULLDEBUGbefore using this option.

D_FULLDEBUG This level provides verbose output of a general nature into the log files. Frequent log messages
for very specific debugging purposes would be excluded. In those cases, the messages would be viewed
by having that another flag andD_FULLDEBUGboth listed in the configuration file.

D_DAEMONCORE Provides log file entries specific to DaemonCore, such as timers the daemons have set and the
commands that are registered. If bothD_FULLDEBUGandD_DAEMONCOREare set, expectveryverbose
output.

D_PRIV This flag provides log messages about theprivilege stateswitching that the daemons do. See sec-
tion 3.8.13 on UIDs in HTCondor for details.

D_COMMAND With this flag set, any daemon that uses DaemonCore will printout a log message whenever a
command comes in. The name and integer of the command, whether the command was sent via UDP or
TCP, and where the command was sent from are all logged. Because the messages about the command
used bycondor_kbddto communicate with thecondor_startdwhenever there is activity on the X server,
and the command used for keep-alives are both only printed with D_FULLDEBUGenabled, it is best if this
setting is used for all daemons.

D_LOAD The condor_startdkeeps track of the load average on the machine where it is running. Both the
general system load average, and the load average being generated by HTCondor’s activity there are deter-
mined. With this flag set, thecondor_startdwill log a message with the current state of both of these load
averages whenever it computes them. This flag only affects thecondor_startd.

D_KEYBOARD With this flag set, thecondor_startdwill print out a log message with the current values for
remote and local keyboard idle time. This flag affects only thecondor_startd.

D_JOB When this flag is set, thecondor_startdwill send to its log file the contents of any job ClassAd that the
condor_scheddsends to claim thecondor_startdfor its use. This flag affects only thecondor_startd.

D_MACHINE When this flag is set, thecondor_startdwill send to its log file the contents of its resource
ClassAd when thecondor_scheddtries to claim thecondor_startdfor its use. This flag affects only the
condor_startd.

HTCondor Version 8.6.4 Manual

3.5.3. Daemon Logging Configuration File Entries 240

D_SYSCALLS This flag is used to make thecondor_shadowlog remote syscall requests and return values. This
can help track down problems a user is having with a particular job by providing the system calls the job
is performing. If any are failing, the reason for the failureis given. Thecondor_scheddalso uses this flag
for the server portion of the queue management code. WithD_SYSCALLSdefined inSCHEDD_DEBUG
there will be verbose logging of all queue management operations thecondor_scheddperforms.

D_MATCH When this flag is set, thecondor_negotiatorlogs a message for every match.

D_NETWORK When this flag is set, all HTCondor daemons will log a message on every TCP accept, connect,
and close, and on every UDP send and receive. This flag is not yet fully supported in thecondor_shadow.

D_HOSTNAME When this flag is set, the HTCondor daemons and/or tools will print verbose messages explain-
ing how they resolve host names, domain names, and IP addresses. This is useful for sites that are having
trouble getting HTCondor to work because of problems with DNS, NIS or other host name resolving
systems in use.

D_CKPT When this flag is set, the HTCondor process checkpoint support code, which is linked into a STAN-
DARD universe user job, will output some low-level details about the checkpoint procedure into the
$(SHADOW_LOG).

D_SECURITY This flag will enable debug messages pertaining to the setup of secure network communication,
including messages for the negotiation of a socket authentication mechanism, the management of a session
key cache. and messages about the authentication process itself. See section 3.8.1 for more information
about secure communication configuration.

D_PROCFAMILY HTCondor often times needs to manage an entire family of processes, (that is, a process and
all descendants of that process). This debug flag will turn ondebugging output for the management of
families of processes.

D_ACCOUNTANT When this flag is set, thecondor_negotiatorwill output debug messages relating to the com-
putation of user priorities (see section 3.6).

D_PROTOCOL Enable debug messages relating to the protocol for HTCondor’s matchmaking and resource
claiming framework.

D_STATS Enable debug messages relating to the TCP statistics for filetransfers. Note that the shadow and
starter, by default, log these statistics to special log files (seeSHADOW_STATS_LOGsection 3.5.11 and
STARTER_STATS_LOG, section 3.5.12). Note that, as of version 8.5.6,C_GAHP_DEBUGdefaults to
D_STATS.

D_PID This flag is different from the other flags, because it is used to change the formatting of all log messages
that are printed, as opposed to specifying what kinds of messages should be printed. IfD_PID is set,
HTCondor will always print out the process identifier (PID) of the process writing each line to the log
file. This is especially helpful for HTCondor daemons that can fork multiple helper-processes (such as
the condor_scheddor condor_collector) so the log file will clearly show which thread of execution is
generating each log message.

D_FDS This flag is different from the other flags, because it is used to change the formatting of all log mes-
sages that are printed, as opposed to specifying what kinds of messages should be printed. IfD_FDSis
set, HTCondor will always print out the file descriptor that the open of the log file was allocated by the
operating system. This can be helpful in debugging HTCondor’s use of system file descriptors as it will
generally track the number of file descriptors that HTCondorhas open.

D_CATEGORY This flag is different from the other flags, because it is used to change the formatting of all
log messages that are printed, as opposed to specifying whatkinds of messages should be printed. If

HTCondor Version 8.6.4 Manual

3.5.3. Daemon Logging Configuration File Entries 241

D_CATEGORYis set, Condor will include the debugging level flags that were in effect for each line of
output. This may be used to filter log output by the level or tagit, for example, identifying all logging
output at levelD_SECURITY, or D_ACCOUNTANT.

D_TIMESTAMP This flag is different from the other flags, because it is used to change the formatting of all
log messages that are printed, as opposed to specifying whatkinds of messages should be printed. If
D_TIMESTAMPis set, the time at the beginning of each line in the log file with be a number of seconds
since the start of the Unix era. This form of timestamp can be more convenient for tools to process.

D_SUB_SECOND This flag is different from the other flags, because it is used to change the formatting of all
log messages that are printed, as opposed to specifying whatkinds of messages should be printed. If
D_SUB_SECONDis set, the time at the beginning of each line in the log file will contain a fractional part
to the seconds field that is accurate to the millisecond.

ALL_DEBUG Used to make all subsystems share a debug flag. Set the parameter ALL_DEBUGinstead of
changing all of the individual parameters. For example, to turn on all debugging in all subsystems, set
ALL_DEBUG = D_ALL.

TOOL_DEBUG Uses the same values (debugging levels) as<SUBSYS>_DEBUGto describe the amount of debugging
information sent tostderr for HTCondor tools.

Log files may optionally be specified per debug level as follows:

<SUBSYS>_<LEVEL>_LOG The name of a log file for messages at a specific debug level for aspecific subsystem.
<LEVEL> is defined by any debug level, but without theD_ prefix. See section 3.5.3 for the list of debug levels.
If the debug level is included in$(<SUBSYS>_DEBUG), then all messages of this debug level will be written
both to the log file defined by<SUBSYS>_LOGand the the log file defined by<SUBSYS>_<LEVEL>_LOG.
As examples,SHADOW_SYSCALLS_LOGspecifies a log file for all remote system call debug messages,and
NEGOTIATOR_MATCH_LOGspecifies a log file that only capturescondor_negotiatordebug events occurring
with matches.

MAX_<SUBSYS>_<LEVEL>_LOG See section 3.5.3, the definition ofMAX_<SUBSYS>_LOG.

TRUNC_<SUBSYS>_<LEVEL>_LOG_ON_OPEN Similar toTRUNC_<SUBSYS>_LOG_ON_OPEN.

The following macros control where and what is written to theevent log, a file that receives job events, but across
all users and user’s jobs.

EVENT_LOG The full path and file name of the event log. There is no defaultvalue for this variable, so no event log
will be written, if not defined.

EVENT_LOG_MAX_SIZE Controls the maximum length in bytes to which the event log will be allowed to grow.
The log file will grow to the specified length, then be saved to afile with the suffix .old. The .old files are
overwritten each time the log is saved. A value of 0 specifies that the file may grow without bounds (and
disables rotation). The default is 1 MiB. For backwards compatibility, MAX_EVENT_LOGwill be used if
EVENT_LOG_MAX_SIZEis not defined. IfEVENT_LOGis not defined, this parameter has no effect.

MAX_EVENT_LOG SeeEVENT_LOG_MAX_SIZE.

HTCondor Version 8.6.4 Manual

3.5.4. DaemonCore Configuration File Entries 242

EVENT_LOG_MAX_ROTATIONS Controls the maximum number of rotations of the event log that will be stored. If
this value is 1 (the default), the event log will be rotated toa “.old” file as described above. However, if this is
greater than 1, then multiple rotation files will be stores, up toEVENT_LOG_MAX_ROTATIONSof them. These
files will be named, instead of the “.old” suffix, “.1”, “.2”, with the “.1” being the most recent rotation. This is
an integer parameter with a default value of 1. IfEVENT_LOGis not defined, or ifEVENT_LOG_MAX_SIZE
has a value of 0 (which disables event log rotation), this parameter has no effect.

EVENT_LOG_ROTATION_LOCK Specifies the lock file that will be used to ensure that, when rotating files, the
rotation is done by a single process. This is a string parameter; its default value is$(LOCK)/EventLogLock .
If an empty value is set, then the file that is used is the file path of the event log itself, with the string.lock
appended. IfEVENT_LOGis not defined, or ifEVENT_LOG_MAX_SIZEhas a value of 0 (which disables event
log rotation), this configuration variable has no effect.

EVENT_LOG_FSYNC A boolean value that controls whether HTCondor will performan fsync() after writing
each event to the event log. WhenTrue , anfsync() operation is performed after each event. Thisfsync()
operation forces the operating system to synchronize the updates to the event log to the disk, but can negatively
affect the performance of the system. Defaults toFalse .

EVENT_LOG_LOCKING A boolean value that defaults toFalse on Unix platforms andTrue on Windows plat-
forms. WhenTrue , the event log (as specified byEVENT_LOG) will be locked before being written to. When
False , HTCondor does not lock the file before writing.

EVENT_LOG_USE_XML A boolean value that defaults toFalse . WhenTrue , events are logged in XML format.
If EVENT_LOGis not defined, this parameter has no effect.

EVENT_LOG_JOB_AD_INFORMATION_ATTRS A comma separated list of job ClassAd attributes, whose eval-
uated values form a new event, theJobAdInformationEvent , given Event Number 028. This new
event is placed in the event log in addition to each logged event. If EVENT_LOGis not defined, this
configuration variable has no effect. This configuration variable is the same as the job ClassAd attribute
JobAdInformationAttrs (see page 1010), but it applies to the system Event Log ratherthan the user
job log.

3.5.4 DaemonCore Configuration File Entries

Please read section 3.11 for details on DaemonCore. There are certain configuration file settings that DaemonCore uses
which affect all HTCondor daemons (except the checkpoint server, standard universe shadow, and standard universe
starter, none of which use DaemonCore).

HOSTALLOW. . . All macros that begin with eitherHOSTALLOWor HOSTDENYare settings for HTCondor’s host-
based security. See section 3.8.9 on Setting up IP/host-based security in HTCondor for details on these macros
and how to configure them.

ENABLE_RUNTIME_CONFIG Thecondor_config_valtool has an option-rset for dynamically setting run time con-
figuration values, and which only affect the in-memory configuration variables. Because of the potential security
implications of this feature, by default, HTCondor daemonswill not honor these requests. To use this function-
ality, HTCondor administrators must specifically enable itby settingENABLE_RUNTIME_CONFIGto True ,

HTCondor Version 8.6.4 Manual

3.5.4. DaemonCore Configuration File Entries 243

and specify what configuration variables can be changed using theSETTABLE_ATTRS. . . family of configura-
tion options. Defaults toFalse .

ENABLE_PERSISTENT_CONFIG The condor_config_valtool has a-set option for dynamically setting persis-
tent configuration values. These values override options inthe normal HTCondor configuration files. Be-
cause of the potential security implications of this feature, by default, HTCondor daemons will not honor
these requests. To use this functionality, HTCondor administrators must specifically enable it by setting
ENABLE_PERSISTENT_CONFIGto True , creating a directory where the HTCondor daemons will hold these
dynamically-generated persistent configuration files (declared usingPERSISTENT_CONFIG_DIR, described
below) and specify what configuration variables can be changed using theSETTABLE_ATTRS. . . family of
configuration options. Defaults toFalse .

PERSISTENT_CONFIG_DIR Directory where daemons should store dynamically-generated persistent configura-
tion files (used to supportcondor_config_val-set) This directory shouldonly be writable by root, or the user
the HTCondor daemons are running as (if non-root). There is no default, administrators that wish to use this
functionality must create this directory and define this setting. This directory must not be shared by multiple
HTCondor installations, though it can be shared by all HTCondor daemons on the same host. Keep in mind
that this directory should not be placed on an NFS mount where“root-squashing” is in effect, or else HTCondor
daemons running as root will not be able to write to them. A directory (only writable by root) on the local file
system is usually the best location for this directory.

SETTABLE_ATTRS_<PERMISSION-LEVEL> All macros that begin with SETTABLE_ATTRS or
<SUBSYS>.SETTABLE_ATTRSare settings used to restrict the configuration values that can be changed
using thecondor_config_valcommand. Section 3.8.9 on Setting up IP/Host-Based Security in HTCondor for
details on these macros and how to configure them. In particular, section 3.8.9 on page 439 contains details
specific to these macros.

SHUTDOWN_GRACEFUL_TIMEOUT Determines how long HTCondor will allow daemons try their graceful shut-
down methods before they do a hard shutdown. It is defined in terms of seconds. The default is 1800 (30
minutes).

<SUBSYS>_ADDRESS_FILE A complete path to a file that is to contain an IP address and port number for a dae-
mon. Every HTCondor daemon that uses DaemonCore has a command port where commands are sent. The
IP/port of the daemon is put in that daemon’s ClassAd, so thatother machines in the pool can query thecon-
dor_collector(which listens on a well-known port) to find the address of a given daemon on a given machine.
When tools and daemons are all executing on the same single machine, communications do not require a query
of the condor_collectordaemon. Instead, they look in a file on the local disk to find theIP/port. This macro
causes daemons to write the IP/port of their command socket to a specified file. In this way, local tools will
continue to operate, even if the machine running thecondor_collectorcrashes. Using this file will also gen-
erate slightly less network traffic in the pool, since tools includingcondor_qandcondor_rmdo not need to
send any messages over the network to locate thecondor_schedddaemon. This macro is not necessary for the
condor_collectordaemon, since its command socket is at a well-known port.

The macro is named by substituting<SUBSYS>with the appropriate subsystem string as defined in sec-
tion 3.5.1.

<SUBSYS>_SUPER_ADDRESS_FILE A complete path to a file that is to contain an IP address and port num-
ber for a command port that is serviced with priority for a daemon. Every HTCondor daemon that uses
DaemonCore may have a higher priority command port where commands are sent. Any command that

HTCondor Version 8.6.4 Manual

3.5.4. DaemonCore Configuration File Entries 244

goes throughcondor_sos, and any command issued by the super user (root or local system) for a dae-
mon on the local machine will have the command sent to this port. Default values are provided for the
condor_schedddaemon at$(SPOOL)/.schedd_address.super and thecondor_collectordaemon at
$(LOG)/.collector_address.super . When not defined for other DaemonCore daemons, there will
be no higher priority command port.

<SUBSYS>_DAEMON_AD_FILE A complete path to a file that is to contain the ClassAd for a daemon. When the
daemon sends a ClassAd describing itself to thecondor_collector, it will also place a copy of the ClassAd in
this file. Currently, this setting only works for thecondor_schedd.

<SUBSYS>_ATTRS or <SUBSYS>_EXPRS Allows any DaemonCore daemon to advertise arbitrary expressions
from the configuration file in its ClassAd. Give the comma-separated list of entries from the configuration
file you want in the given daemon’s ClassAd. Frequently used to add attributes to machines so that the machines
can discriminate between other machines in a job’srank andrequirements.

The macro is named by substituting<SUBSYS>with the appropriate subsystem string as defined in sec-
tion 3.5.1.

<SUBSYS>_EXPRSis a historic setting that functions identically to<SUBSYS>_ATTRS. It may be removed
in the future, so use<SUBSYS>_ATTRS.

NOTE: The condor_kbdddoes not send ClassAds now, so this entry does not affect it. The condor_startd,
condor_schedd, condor_master, andcondor_collectordo send ClassAds, so those would be valid subsystems
to set this entry for.

SUBMIT_ATTRSnot part of the<SUBSYS>_ATTRS, it is documented in section 3.5.13

Because of the different syntax of the configuration file and ClassAds, a little extra work is required to get a
given entry into a ClassAd. In particular, ClassAds requirequote marks (") around strings. Numeric values
and boolean expressions can go in directly. For example, if thecondor_startdis to advertise a string macro, a
numeric macro, and a boolean expression, do something similar to:

STRING = This is a string
NUMBER = 666
BOOL1 = True
BOOL2 = time() >= $(NUMBER) || $(BOOL1)
MY_STRING = "$(STRING)"
STARTD_ATTRS = MY_STRING, NUMBER, BOOL1, BOOL2

DAEMON_SHUTDOWN Starting with HTCondor version 6.9.3, whenever a daemon is about to publish a ClassAd
update to thecondor_collector, it will evaluate this expression. If it evaluates toTrue , the daemon will
gracefully shut itself down, exit with the exit code 99, and will not be restarted by thecondor_master
(as if it sent itself acondor_off command). The expression is evaluated in the context of the ClassAd
that is being sent to thecondor_collector, so it can reference any attributes that can be seen with
condor_status -long [-daemon_type] (for example,condor_status -long [-master]
for thecondor_master). Since each daemon’s ClassAd will contain different attributes, administrators should
define these shutdown expressions specific to each daemon, for example:

HTCondor Version 8.6.4 Manual

3.5.4. DaemonCore Configuration File Entries 245

STARTD.DAEMON_SHUTDOWN = when to shutdown the startd
MASTER.DAEMON_SHUTDOWN = when to shutdown the master

Normally, these expressions would not be necessary, so if not defined, they default to FALSE.

NOTE: This functionality does not work in conjunction with HTCondor’s high-availability support (see sec-
tion 3.13 on page 475 for more information). If you enable high-availability for a particular daemon, you should
not define this expression.

DAEMON_SHUTDOWN_FAST Identical toDAEMON_SHUTDOWN(defined above), except the daemon will use the fast
shutdown mode (as if it sent itself acondor_offcommand using the-fast option).

USE_CLONE_TO_CREATE_PROCESSES A boolean value that controls how an HTCondor daemon createsa new
process on Linux platforms. If set to the default value ofTrue , theclone system call is used. Otherwise,
the fork system call is used.clone provides scalability improvements for daemons using a large amount of
memory, for example, acondor_scheddwith a lot of jobs in the queue. Currently, the use ofclone is available
on Linux systems. If HTCondor detects that it is running under thevalgrindanalysis tools, this setting is ignored
and treated asFalse , to work around incompatibilities.

MAX_TIME_SKIP When an HTCondor daemon notices the system clock skip forwards or backwards more than the
number of seconds specified by this parameter, it may take special action. For instance, thecondor_masterwill
restart HTCondor in the event of a clock skip. Defaults to a value of 1200, which in effect means that HTCondor
will restart if the system clock jumps by more than 20 minutes.

NOT_RESPONDING_TIMEOUT When an HTCondor daemon’s parent process is another HTCondor daemon, the
child daemon will periodically send a short message to its parent stating that it is alive and well. If the parent
does not hear from the child for a while, the parent assumes that the child is hung, kills the child, and restarts
the child. This parameter controls how long the parent waitsbefore killing the child. It is defined in terms of
seconds and defaults to 3600 (1 hour). The child sends its alive and well messages at an interval of one third of
this value.

<SUBSYS>_NOT_RESPONDING_TIMEOUT Identical toNOT_RESPONDING_TIMEOUT, but controls the timeout
for a specific type of daemon. For example,SCHEDD_NOT_RESPONDING_TIMEOUTcontrols how long the
condor_schedd’s parent daemon will wait without receiving an alive and well message from thecondor_schedd
before killing it.

NOT_RESPONDING_WANT_CORE A boolean value with a default value ofFalse . This parameter is for debugging
purposes on Unix systems, and it controls the behavior of theparent process when the parent process deter-
mines that a child process is not responding. IfNOT_RESPONDING_WANT_COREis True , the parent will
send a SIGABRT instead of SIGKILL to the child process. If thechild process is configured with the con-
figuration variableCREATE_CORE_FILESenabled, the child process will then generate a core dump. See
NOT_RESPONDING_TIMEOUTon page 245, andCREATE_CORE_FILESon page 231 for related details.

LOCK_FILE_UPDATE_INTERVAL An integer value representing seconds, controlling how often valid lock files
should have their on disk timestamps updated. Updating the timestamps prevents administrative programs, such
astmpwatch, from deleting long lived lock files. If set to a value less than 60, the update time will be 60 seconds.
The default value is 28800, which is 8 hours. This variable only takes effect at the start or restart of a daemon.

HTCondor Version 8.6.4 Manual

3.5.5. Network-Related Configuration File Entries 246

SOCKET_LISTEN_BACKLOG An integer value that defaults to 500, which defines the backlog value for the
listen() network call when a daemon creates a socket for incoming connections. It limits the number of
new incoming network connections the operating system willaccept for a daemon that the daemon has not yet
serviced.

MAX_ACCEPTS_PER_CYCLE An integer value that defaults to 8. It is a rarely changed performance tuning param-
eter to limit the number of accepts of new, incoming, socket connect requests per DaemonCore event cycle. A
value of zero or less means no limit. It has the most noticeable effect on thecondor_schedd, and would be given
a higher integer value for tuning purposes when there is a high number of jobs starting and exiting per second.

MAX_REAPS_PER_CYCLE An integer value that defaults to 0. It is a rarely changed performance tuning parameter
that places a limit on the number of child process exits to process per DaemonCore event cycle. A value of zero
or less means no limit.

CORE_FILE_NAME Defines the name of the core file created. Defaults tocore.$(SUBSYSTEM) on Unix plat-
forms, andcore.$(SUBSYSTEM).WIN32 on Windows platforms.

PIPE_BUFFER_MAX The maximum number of bytes read from astdout or stdout pipe. The default value is
10240. A rare example in which the value would need to increase from its default value is when a hook must
output an entire ClassAd, and the ClassAd may be larger than the default.

3.5.5 Network-Related Configuration File Entries

More information about networking in HTCondor can be found in section 3.9 on page 450.

BIND_ALL_INTERFACES For systems with multiple network interfaces, if this configuration setting isFalse ,
HTCondor will only bind network sockets to the IP address specified with NETWORK_INTERFACE(described
below). If set toTrue , the default value, HTCondor will listen on all interfaces.However, currently HTCondor
is still only able to advertise a single IP address, even if itis listening on multiple interfaces. By default, it will
advertise the IP address of the network interface used to contact the collector, since this is the most likely to be
accessible to other processes which query information fromthe same collector. More information about using
this setting can be found in section 3.9.3 on page 456.

CCB_ADDRESS This is the address of acondor_collectorthat will serve as this daemon’s HTCondor Connection
Broker (CCB). Multiple addresses may be listed (separated by commas and/or spaces) for redundancy. The CCB
server must authorize this daemon at DAEMON level for this configuration to succeed. It is highly recommended
to also configurePRIVATE_NETWORK_NAMEif you configureCCB_ADDRESSso communications originating
within the same private network do not need to go through CCB.For more information about CCB, see page 459.

CCB_HEARTBEAT_INTERVAL This is the maximum number of seconds of silence on a daemon’sconnection to
the CCB server after which it will ping the server to verify that the connection still works. The default is
5 minutes. This feature serves to both speed up detection of dead connections and to generate a guaranteed
minimum frequency of activity to attempt to prevent the connection from being dropped. The special value 0
disables the heartbeat. The heartbeat is automatically disabled if the CCB server is older than HTCondor version
7.5.0. Having the heartbeat interval greater than the job ClassAd attributeJobLeaseDuration may cause
unnecessary job disconnects in pools with network issues.

HTCondor Version 8.6.4 Manual

3.5.5. Network-Related Configuration File Entries 247

CCB_POLLING_INTERVAL In seconds, the smallest amount of time that could go by before CCB would begin an-
other round of polling to check on already connected clients. While the value of this variable does not change,
the actual interval used may be exceeded if the measured amount of time previously taken to poll to check on al-
ready connected clients exceeded the amount of time desired, as expressed withCCB_POLLING_TIMESLICE.
The default value is 20 seconds.

CCB_POLLING_MAX_INTERVAL In seconds, the interval of time after which polling to checkon already connected
clients must occur, independent of any other factors. The default value is 600 seconds.

CCB_POLLING_TIMESLICE A floating point fraction representing the fractional amount of the total run time of
CCB to set as a target for the maximum amount of CCB running time used on polling to check on already
connected clients. The default value is 0.05.

CCB_READ_BUFFER The size of the kernel TCP read buffer in bytes for all socketsused by CCB. The default value
is 2 KiB.

CCB_WRITE_BUFFER The size of the kernel TCP write buffer in bytes for all sockets used by CCB. The default
value is 2 KiB.

CCB_SWEEP_INTERVAL The interval, in seconds, between times when the CCB server writes its information about
open TCP connections to a file. Crash recovery is accomplished using the information. The default value is
1200 seconds (20 minutes).

CCB_RECONNECT_FILE The full path and file name of the file that the CCB server writesits information about
open TCP connections to a file. Crash recovery is accomplished using the information. The default value is
$(SPOOL)/.ccb_reconnect .

COLLECTOR_USES_SHARED_PORT A boolean value that specifies whether thecondor_collectoruses thecon-
dor_shared_portdaemon. When true, thecondor_shared_portwill transparently proxy queries to thecon-
dor_collectorso users do not need to be aware of the presence of thecondor_shared_portwhen querying the
collector and configuring other daemons. The default isTrue

SHARED_PORT_DEFAULT_ID WhenCOLLECTOR_USES_SHARED_PORTis set toTrue , this is the shared port
ID used by thecondor_collector. This defaults tocollector and will not need to be changed by most sites.

AUTO_INCLUDE_SHARED_PORT_IN_DAEMON_LIST A boolean value that specifies whetherSHARED_PORT
should be automatically inserted intocondor_master’s DAEMON_LISTwhenUSE_SHARED_PORTis True .
The default for this setting isTrue .

<SUBSYS>_MAX_FILE_DESCRIPTORS This setting is identical toMAX_FILE_DESCRIPTORS, but it only ap-
plies to a specific subsystem. If the subsystem-specific setting is unspecified,MAX_FILE_DESCRIPTORSis
used. For thecondor_collectordaemon, the value defaults to 10240, and for thecondor_schedddaemon, the
value defaults to 4096. If thecondor_shared_portdaemon is in use, its value for this parameter should match
the largest value set for the other daemons.

MAX_FILE_DESCRIPTORS Under Unix, this specifies the maximum number of file descriptors to allow the HT-
Condor daemon to use. File descriptors are a system resourceused for open files and for network connections.
HTCondor daemons that make many simultaneous network connections may require an increased number of file
descriptors. For example, see page 459 for information on file descriptor requirements of CCB. Changes to this
configuration variable require a restart of HTCondor in order to take effect. Also note that only if HTCondor is
running as root will it be able to increase the limit above thehard limit (on maximum open files) that it inherits.

HTCondor Version 8.6.4 Manual

3.5.5. Network-Related Configuration File Entries 248

NETWORK_HOSTNAME The host name to use, overriding the value returned bygethostname() , which will be
invoked by default to query the operating system to obtain the host name of the local machine. Among other
things, the host name is used to identify daemons in an HTCondor pool, via theMachine andNameattributes
of daemon ClassAds. This variable can be used when a machine has multiple network interfaces with different
host names, to use a host name that is not the primary one.

NETWORK_INTERFACE An IP address of the form123.123.123.123 or the name of a network device, as in
the exampleeth0 . The wild card character (*) may be used within either. For example,123.123. * would
match a network interface with an IP address of123.123.123.123 or 123.123.100.100 . The default
value is* , which matches all network interfaces.

The effect of this variable depends on the value ofBIND_ALL_INTERFACES. There are two cases:

If BIND_ALL_INTERFACES is True (the default),NETWORK_INTERFACEcontrols what IP address will
be advertised as the public address of the daemon. If multiple network interfaces match the value and
ENABLE_ADDRESS_REWRITINGis True (the default), the IP address that is chosen to be advertisedwill
be the one that is used to communicate with thecondor_collector. If ENABLE_ADDRESS_REWRITINGis
False , the IP address that is chosen to be advertised will be the oneassociated with the first device (in system-
defined order) that is in a public address space, or a private address space, or a loopback address, in that order
of preference. If it is desired to advertise an IP address that is not associated with any local network interface,
for example, when TCP forwarding is being used, thenTCP_FORWARDING_HOSTshould be used instead of
NETWORK_INTERFACE.

If BIND_ALL_INTERFACESis False , thenNETWORK_INTERFACEspecifies which IP address HTCondor
should use for all incoming and outgoing communication. If more than one IP address matches the value, then
the IP address that is chosen will be the one associated with the first device (in system-defined order) that is in
a public address space, or a private address space, or a loopback address, in that order of preference.

More information about configuring HTCondor on machines with multiple network interfaces can be found in
section 3.9.3 on page 455.

PRIVATE_NETWORK_NAME If two HTCondor daemons are trying to communicate with each other, and they both
belong to the same private network, this setting will allow them to communicate directly using the private net-
work interface, instead of having to use CCB or to go through apublic IP address. Each private network should
be assigned a unique network name. This string can have any form, but it must be unique for a particular private
network. If another HTCondor daemon or tool is configured with the samePRIVATE_NETWORK_NAME, it will
attempt to contact this daemon using its private network address. Even for sites using CCB, this is an important
optimization, since it means that two daemons on the same network can communicate directly, without having to
go through the broker. If CCB is enabled, and thePRIVATE_NETWORK_NAMEis defined, the daemon’s private
address will be defined automatically. Otherwise, you can specify a particular private IP address to use by defin-
ing thePRIVATE_NETWORK_INTERFACEsetting (described below). The default is$(FULL_HOSTNAME).
After changing this setting and runningcondor_reconfig, it may take up to onecondor_collectorupdate interval
before the change becomes visible.

PRIVATE_NETWORK_INTERFACE For systems with multiple network interfaces, if this configuration setting and
PRIVATE_NETWORK_NAMEare both defined, HTCondor daemons will advertise some additional attributes in
their ClassAds to help other HTCondor daemons and tools in the same private network to communicate directly.

PRIVATE_NETWORK_INTERFACEdefines what IP address of the form123.123.123.123 or name of a
network device (as in the exampleeth0) a given multi-homed machine should use for the private network.

HTCondor Version 8.6.4 Manual

3.5.5. Network-Related Configuration File Entries 249

The asterisk (*) may be used as a wild card character within either the IP address or the device name. If an-
other HTCondor daemon or tool is configured with the samePRIVATE_NETWORK_NAME, it will attempt to
contact this daemon using the IP address specified here. The syntax for specifying an IP address is identical
to NETWORK_INTERFACE. Sites using CCB only need to define thePRIVATE_NETWORK_NAME, and the
PRIVATE_NETWORK_INTERFACEwill be defined automatically. Unless CCB is enabled, there is no de-
fault value for this variable. After changing this variableand runningcondor_reconfig, it may take up to one
condor_collectorupdate interval before the change becomes visible.

TCP_FORWARDING_HOST This specifies the host or IP address that should be used as thepublic address of this
daemon. If a host name is specified, be aware that it will be resolved to an IP address by this daemon, not by the
clients wishing to connect to it. It is the IP address that is advertised, not the host name. This setting is useful if
HTCondor on this host may be reached through a NAT or firewall by connecting to an IP address that forwards
connections to this host. It is assumed that the port number on theTCP_FORWARDING_HOSTthat forwards to
this host is the same port number assigned to HTCondor on thishost. This option could also be used when ssh
port forwarding is being used. In this case, the incoming addresses of connections to this daemon will appear
as though they are coming from the forwarding host rather than from the real remote host, so any authorization
settings that rely on host addresses should be considered accordingly.

ENABLE_ADDRESS_REWRITING A boolean value that defaults toTrue . WhenNETWORK_INTERFACEmatches
only one IP address orTCP_FORWARDING_HOSTis defined orNET_REMAP_ENABLEis True , this setting
has no effect and the behavior is as though it had been set toFalse . WhenTrue , IP addresses published
by HTCondor daemons are automatically rewritten to match the IP address of the network interface used to
make the publication. For example, if thecondor_scheddadvertises itself to two pools via flocking, and the
condor_collectorfor one pool is reached by thecondor_scheddthrough a private network interface, while the
condor_collectorfor the other pool is reached through a different network interface, the IP address published
by thecondor_schedddaemon will match the address of the respective network interfaces used in the two cases.
The intention is to make it easier for HTCondor daemons to operate in a multi-homed environment.

HIGHPORT Specifies an upper limit of given port numbers for HTCondor touse, such that HTCondor is restricted to a
range of port numbers. If this macro is not explicitly specified, then HTCondor will not restrict the port numbers
that it uses. HTCondor will use system-assigned port numbers. For this macro to work, bothHIGHPORTand
LOWPORT(given below) must be defined.

LOWPORT Specifies a lower limit of given port numbers for HTCondor to use, such that HTCondor is restricted to a
range of port numbers. If this macro is not explicitly specified, then HTCondor will not restrict the port numbers
that it uses. HTCondor will use system-assigned port numbers. For this macro to work, bothHIGHPORT(given
above) andLOWPORTmust be defined.

IN_LOWPORT An integer value that specifies a lower limit of given port numbers for HTCondor to use on incoming
connections (ports for listening), such that HTCondor is restricted to a range of port numbers. This range implies
the use of bothIN_LOWPORTandIN_HIGHPORT. A range of port numbers less than 1024 may be used for
daemons running as root. Do not specifyIN_LOWPORTin combination withIN_HIGHPORTsuch that the
range crosses the port 1024 boundary. Applies only to Unix machine configuration. Use ofIN_LOWPORTand
IN_HIGHPORToverrides any definition ofLOWPORTandHIGHPORT.

IN_HIGHPORT An integer value that specifies an upper limit of given port numbers for HTCondor to use on incoming
connections (ports for listening), such that HTCondor is restricted to a range of port numbers. This range implies
the use of bothIN_LOWPORTandIN_HIGHPORT. A range of port numbers less than 1024 may be used for

HTCondor Version 8.6.4 Manual

3.5.5. Network-Related Configuration File Entries 250

daemons running as root. Do not specifyIN_LOWPORTin combination withIN_HIGHPORTsuch that the
range crosses the port 1024 boundary. Applies only to Unix machine configuration. Use ofIN_LOWPORTand
IN_HIGHPORToverrides any definition ofLOWPORTandHIGHPORT.

OUT_LOWPORT An integer value that specifies a lower limit of given port numbers for HTCondor to use on outgoing
connections, such that HTCondor is restricted to a range of port numbers. This range implies the use of both
OUT_LOWPORTand OUT_HIGHPORT. A range of port numbers less than 1024 is inappropriate, as not all
daemons and tools will be run as root. Applies only to Unix machine configuration. Use ofOUT_LOWPORT
andOUT_HIGHPORToverrides any definition ofLOWPORTandHIGHPORT.

OUT_HIGHPORT An integer value that specifies an upper limit of given port numbers for HTCondor to use on out-
going connections, such that HTCondor is restricted to a range of port numbers. This range implies the use of
bothOUT_LOWPORTandOUT_HIGHPORT. A range of port numbers less than 1024 is inappropriate, as not all
daemons and tools will be run as root. Applies only to Unix machine configuration. Use ofOUT_LOWPORT
andOUT_HIGHPORToverrides any definition ofLOWPORTandHIGHPORT.

UPDATE_COLLECTOR_WITH_TCP This boolean value controls whether TCP or UDP is used by daemons to send
ClassAd updates to thecondor_collector. Please read section 3.9.5 for more details and a discussionof when this
functionality is needed. When using TCP in large pools, it isalso necessary to ensure that thecondor_collector
has a large enough file descriptor limit usingCOLLECTOR_MAX_FILE_DESCRIPTORS. The default value is
True .

UPDATE_VIEW_COLLECTOR_WITH_TCP This boolean value controls whether TCP or UDP is used by
the condor_collector to forward ClassAd updates to thecondor_collector daemons specified by
CONDOR_VIEW_HOST. Please read section 3.9.5 for more details and a discussionof when this functional-
ity is needed. The default value isFalse .

TCP_UPDATE_COLLECTORS The list of condor_collectordaemons which will be updated with TCP instead of
UDP whenUPDATE_COLLECTOR_WITH_TCPor UPDATE_VIEW_COLLECTOR_WITH_TCPis False .
Please read section 3.9.5 for more details and a discussion of when a site needs this functionality.

<SUBSYS>_TIMEOUT_MULTIPLIER An integer value that defaults to 1. This value multiplies configured timeout
values for all targeted subsystem communications, therebyincreasing the time until a timeout occurs. This
configuration variable is intended for use by developers fordebugging purposes, where communication timeouts
interfere.

NONBLOCKING_COLLECTOR_UPDATE A boolean value that defaults toTrue . WhenTrue , the establishment of
TCP connections to thecondor_collectordaemon for a security-enabled pool are done in a nonblockingmanner.

NEGOTIATOR_USE_NONBLOCKING_STARTD_CONTACT A boolean value that defaults toTrue . WhenTrue ,
the establishment of TCP connections from thecondor_negotiatordaemon to thecondor_startddaemon for a
security-enabled pool are done in a nonblocking manner.

UDP_NETWORK_FRAGMENT_SIZE An integer value that defaults to 1000 and represents the maxi-
mum size in bytes of an outgoing UDP packet. If the outgoing message is larger than
$(UDP_NETWORK_FRAGMENT_SIZE), then the message will be split (fragmented) into multiple packets
no larger than$(UDP_NETWORK_FRAGMENT_SIZE). If the destination of the message is the loopback net-
work interface, seeUDP_LOOPBACK_FRAGMENT_SIZEbelow. For instance, the maximum payload size of a
UDP packet over Ethernet is typically 1472 bytes, and thus ifa UDP payload exceeds 1472 bytes the IP network

HTCondor Version 8.6.4 Manual

3.5.6. Shared File System Configuration File Macros 251

stack on either hosts or forwarding devices (such as networkrouters) will have to perform message fragmenta-
tion on transmission and reassembly on receipt. Experimentation has shown that such devices are more likely to
simply drop a UDP message under high-traffic scenarios if themessage requires reassembly. HTCondor avoids
this situation via the capability to perform UDP fragmentation and reassembly on its own.

UDP_LOOPBACK_FRAGMENT_SIZE An integer value that defaults to 60000 and represents the maximum size in
bytes of an outgoing UDP packet that is being sent to the loopback network interface (e.g. 127.0.0.1). If
the outgoing message is larger than$(UDP_LOOPBACK_FRAGMENT_SIZE), then the message will be split
(fragmented) into multiple packets no larger than$(UDP_LOOPBACK_FRAGMENT_SIZE). If the destination
of the message is not the loopback interface, seeUDP_NETWORK_FRAGMENT_SIZEabove.

ALWAYS_REUSEADDR A boolean value that, whenTrue , tells HTCondor to setSO_REUSEADDRsocket option, so
that the schedd can run large numbers of very short jobs without exhausting the number of local ports needed
for shadows. The default value isTrue . (Note that this represents a change in behavior compared toversions
of HTCondor older than 8.6.0, which did not include this configuration macro. To restore the previous behavior,
set this value toFalse .)

3.5.6 Shared File System Configuration File Macros

These macros control how HTCondor interacts with various shared and network file systems. If you are using AFS as
your shared file system, be sure to read section 3.14.1 on Using HTCondor with AFS. For information on submitting
jobs under shared file systems, see section 2.5.8.

UID_DOMAIN TheUID_DOMAINmacro is used to decide under which user to run jobs. If the$(UID_DOMAIN)
on the submitting machine is different than the$(UID_DOMAIN) on the machine that runs a job, then HT-
Condor runs the job as the usernobody . For example, if the submit machine has a$(UID_DOMAIN) of
flippy.cs.wisc.edu, and the machine where the job will execute has a$(UID_DOMAIN) of cs.wisc.edu, the job
will run as usernobody , because the two$(UID_DOMAIN) s are not the same. If the$(UID_DOMAIN) is
the same on both the submit and execute machines, then HTCondor will run the job as the user that submitted
the job.

A further check attempts to assure that the submitting machine can not lie about itsUID_DOMAIN. HTCondor
compares the submit machine’s claimed value forUID_DOMAINto its fully qualified name. If the two do not
end the same, then the submit machine is presumed to be lying about itsUID_DOMAIN. In this case, HTCondor
will run the job as usernobody . For example, a job submission to the HTCondor pool at the UW Madison
from flippy.example.com, claiming aUID_DOMAINof of cs.wisc.edu, will run the job as the usernobody .

Because of this verification,$(UID_DOMAIN) must be a real domain name. At the Computer Sciences depart-
ment at the UW Madison, we set the$(UID_DOMAIN) to be cs.wisc.edu to indicate that whenever someone
submits from a department machine, we will run the job as the user who submits it.

Also seeSOFT_UID_DOMAINbelow for information about one more check that HTCondor performs before
running a job as a given user.

A few details:

An administrator could setUID_DOMAINto *. This will match all domains, but it is a gaping security hole. It
is not recommended.

HTCondor Version 8.6.4 Manual

3.5.6. Shared File System Configuration File Macros 252

An administrator can also leaveUID_DOMAINundefined. This will force HTCondor to always run jobs as user
nobody . Running standard universe jobs as usernobody enhances security and should cause no problems,
because the jobs use remote I/O to access all of their files. However, if vanilla jobs are run as usernobody , then
files that need to be accessed by the job will need to be marked as world readable/writable so the usernobody
can access them.

When HTCondor sends e-mail about a job, HTCondor sends the e-mail to user@$(UID_DOMAIN) . If
UID_DOMAINis undefined, the e-mail is sent touser@submitmachinename .

TRUST_UID_DOMAIN As an added security precaution when HTCondor is about to spawn a job, it ensures that the
UID_DOMAINof a given submit machine is a substring of that machine’s fully-qualified host name. However,
at some sites, there may be multiple UID spaces that do not clearly correspond to Internet domain names.
In these cases, administrators may wish to use names to describe the UID domains which are not substrings
of the host names of the machines. For this to work, HTCondor must not do this regular security check. If
the TRUST_UID_DOMAINsetting is defined toTrue , HTCondor will not perform this test, and will trust
whateverUID_DOMAINis presented by the submit machine when trying to spawn a job,instead of making sure
the submit machine’s host name matches theUID_DOMAIN. When not defined, the default isFalse , since it
is more secure to perform this test.

SOFT_UID_DOMAIN A boolean variable that defaults toFalse when not defined. When HTCondor is about to
run a job as a particular user (instead of as usernobody), it verifies that the UID given for the user is in the
password file and actually matches the given user name. However, under installations that do not have every
user in every machine’s password file, this check will fail and the execution attempt will be aborted. To cause
HTCondor not to do this check, set this configuration variable toTrue . HTCondor will then run the job under
the user’s UID.

SLOT<N>_USER The name of a user for HTCondor to use instead of user nobody, as part of a solution that plugs a
security hole whereby a lurker process can prey on a subsequent job run as user name nobody.<N> is an integer
associated with slots. On Windows,SLOT<N>_USERwill only work if the credential of the specified user is
stored on the execute machine usingcondor_store_cred. See Section 3.8.13 for more information.

STARTER_ALLOW_RUNAS_OWNER A boolean expression evaluated with the job ad as the target,that determines
whether the job may run under the job owner’s account (True) or whether it will run asSLOT<N>_USER
or nobody (False). On Unix, this defaults toTrue . On Windows, it defaults toFalse . The job ClassAd
may also contain the attributeRunAsOwner which is logically ANDed with thecondor_starterdaemon’s
boolean value. Under Unix, if the job does not specify it, this attribute defaults toTrue . Under Windows, the
attribute defaults toFalse . In Unix, if theUidDomain of the machine and job do not match, then there is no
possibility to run the job as the owner anyway, so, in that case, this setting has no effect. See Section 3.8.13 for
more information.

DEDICATED_EXECUTE_ACCOUNT_REGEXP This is a regular expression (i.e. a string matching pattern) that
matches the account name(s) that are dedicated to running condor jobs on the execute machine and which
will never be used for more than one job at a time. The default matches no account name. If you have config-
uredSLOT<N>_USERto be adifferentaccount for each HTCondor slot, and no non-condor processeswill ever
be run by these accounts, then this pattern should match the names of allSLOT<N>_USERaccounts. Jobs run
under a dedicated execute account are reliably tracked by HTCondor, whereas other jobs, may spawn processes
that HTCondor fails to detect. Therefore, a dedicated execution account provides more reliable tracking of CPU
usage by the job and it also guarantees that when the job exits, no “lurker” processes are left behind. When the
job exits, condor will attempt to kill all processes owned bythe dedicated execution account. Example:

HTCondor Version 8.6.4 Manual

3.5.6. Shared File System Configuration File Macros 253

SLOT1_USER = cndrusr1
SLOT2_USER = cndrusr2
STARTER_ALLOW_RUNAS_OWNER = False
DEDICATED_EXECUTE_ACCOUNT_REGEXP = cndrusr[0-9]+

You can tell if the starter is in fact treating the account as adedicated account, because it will print a line such
as the following in its log file:

Tracking process family by login "cndrusr1"

EXECUTE_LOGIN_IS_DEDICATED This configuration setting is deprecated because it can-
not handle the case where some jobs run as dedicated accountsand some do not. Use
DEDICATED_EXECUTE_ACCOUNT_REGEXPinstead.

A boolean value that defaults toFalse . WhenTrue , HTCondor knows that all jobs are being run by dedicated
execution accounts (whether they are running as the job owner or as nobody or asSLOT<N>_USER). Therefore,
when the job exits, all processes running under the same account will be killed.

FILESYSTEM_DOMAIN An arbitrary string that is used to decide if the two machines, a submit machine and an
execute machine, share a file system. Although this configuration variable name contains the word “DOMAIN”,
its value is not required to be a domain name. It often is a domain name.

Note that this implementation is not ideal: machines may share some file systems but not others. HTCondor
currently has no way to express this automatically. A job canexpress the need to use a particular file system
where machines advertise an additional ClassAd attribute and the job requires machines with the attribute, as
described on the question within the https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToAdminRecipes
page for how to run jobs on a subset of machines that have required software installed.

Note that if you do not set$(FILESYSTEM_DOMAIN), the value defaults to the fully qualified host name
of the local machine. Since each machine will have a different $(FILESYSTEM_DOMAIN), they will not be
considered to have shared file systems.

RESERVE_AFS_CACHE If your machine is running AFS and the AFS cache lives on the same partition as the other
HTCondor directories, and you want HTCondor to reserve the space that your AFS cache is configured to use,
set this macro toTrue . It defaults toFalse .

USE_NFS This macro influences how HTCondor jobs running in the standard universe access their files. By default,
HTCondor will redirect the file I/O requests of standard universe jobs from the executing machine to the sub-
mitting machine. So, as an HTCondor job migrates around the network, the file system always appears to be
identical to the file system where the job was submitted. However, consider the case where a user’s data files
are sitting on an NFS server. The machine running the user’s program will send all I/O over the network to the
submitting machine, which in turn sends all the I/O back overthe network to the NFS file server. Thus, all of
the program’s I/O is being sent over the network twice.

If this configuration variable isTrue , then HTCondor will attempt to read/write files directly on the ex-
ecuting machine without redirecting I/O back to the submitting machine, if both the submitting machine
and the machine running the job are both accessing the same NFS servers (if they are both in the same
$(FILESYSTEM_DOMAIN) and in the same$(UID_DOMAIN) , as described above). The result is I/O per-
formed by HTCondor standard universe jobs is only sent over the network once. While sending all file operations

HTCondor Version 8.6.4 Manual

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToAdminRecipes

3.5.6. Shared File System Configuration File Macros 254

over the network twice might sound really bad, unless you areoperating over networks where bandwidth as at a
very high premium, practical experience reveals that this scheme offers very little real performance gain. There
are also some (fairly rare) situations where this scheme canbreak down.

Setting$(USE_NFS) to False is always safe. It may result in slightly more network traffic, but HTCondor
jobs are most often heavy on CPU and light on I/O. It also ensures that a remote standard universe HTCondor
job will always use HTCondor’s remote system calls mechanism to reroute I/O and therefore see the exact same
file system that the user sees on the machine where she/he submitted the job.

Some gritty details for folks who want to know: If the you set$(USE_NFS) to True , and the
$(FILESYSTEM_DOMAIN) of both the submitting machine and the remote machine about to execute the
job match, and the$(FILESYSTEM_DOMAIN) claimed by the submit machine is indeed found to be a subset
of what an inverse look up to a DNS (domain name server) reports as the fully qualified domain name for the
submit machine’s IP address (this security measure safeguards against the submit machine from lying),thenthe
job will access files using a local system call, without redirecting them to the submitting machine (with NFS).
Otherwise, the system call will get routed back to the submitting machine using HTCondor’s remote system call
mechanism. NOTE: When submitting a vanilla job,condor_submitwill, by default, append requirements to the
Job ClassAd that specify the machine to run the job must be in the same$(FILESYSTEM_DOMAIN) and the
same$(UID_DOMAIN) .

This configuration variable similarly changes the semantics of Chirp file I/O when running in the vanilla, java
or parallel universe. If this variable is set in those universes, Chirp will not send I/O requests over the network
as requested, but perform them directly to the locally mounted file system. Other than Chirp file access, this
variable is unused outside of the standard universe.

IGNORE_NFS_LOCK_ERRORS When set toTrue , all errors related to file locking errors from NFS are ignored.
Defaults toFalse , not ignoring errors.

USE_AFS If your machines have AFS, this macro determines whether HTCondor will use remote system calls for
standard universe jobs to send I/O requests to the submit machine, or if it should use local file access on the exe-
cute machine (which will then use AFS to get to the submitter’s files). Read the setting above on$(USE_NFS)
for a discussion of why you might want to use AFS access instead of remote system calls.

One important difference between$(USE_NFS) and$(USE_AFS) is the AFS cache. With$(USE_AFS)
set toTrue , the remote HTCondor job executing on some machine will start modifying the AFS cache, possibly
evicting the machine owner’s files from the cache to make roomfor its own. Generally speaking, since we try
to minimize the impact of having an HTCondor job run on a givenmachine, we do not recommend using this
setting.

While sending all file operations over the network twice might sound really bad, unless you are operating over
networks where bandwidth as at a very high premium, practical experience reveals that this scheme offers very
little real performance gain. There are also some (fairly rare) situations where this scheme can break down.

Setting$(USE_AFS) to False is always safe. It may result in slightly more network traffic, but HTCondor
jobs are usually heavy on CPU and light on I/O.False ensures that a remote standard universe HTCondor job
will always see the exact same file system that the user on seeson the machine where he/she submitted the job.
Plus, it will ensure that the machine where the job executes does not have its AFS cache modified as a result of
the HTCondor job being there.

However, things may be different at your site, which is why the setting is there.

HTCondor Version 8.6.4 Manual

3.5.7. Checkpoint Server Configuration File Macros 255

3.5.7 Checkpoint Server Configuration File Macros

These macros control whether or not HTCondor uses a checkpoint server. This section describes the settings that the
checkpoint server itself needs defined. See section 3.10 on Installing a Checkpoint Server for details on installing and
running a checkpoint server.

CKPT_SERVER_HOST The host name of a checkpoint server.

STARTER_CHOOSES_CKPT_SERVER If this parameter isTrue or undefined on the submit machine, the check-
point server specified by$(CKPT_SERVER_HOST)on the execute machine is used. If it isFalse on the
submit machine, the checkpoint server specified by$(CKPT_SERVER_HOST)on the submit machine is used.

CKPT_SERVER_DIR The full path of the directory the checkpoint server should use to store checkpoint files. De-
pending on the size of the pool and the size of the jobs submitted, this directory and its subdirectories might
need to store many MiB of data.

USE_CKPT_SERVER A boolean which determines if a given submit machine is to usea checkpoint server if one
is available. If a checkpoint server is not available or the variableUSE_CKPT_SERVERis set toFalse ,
checkpoints will be written to the local$(SPOOL) directory on the submission machine.

MAX_DISCARDED_RUN_TIME If the condor_shadowdaemon is unable to read a checkpoint file from the check-
point server, it keeps trying only if the job has accumulatedmore than this many seconds of CPU us-
age. Otherwise, the job is started from scratch. Defaults to3600 (1 hour). This variable is only used if
$(USE_CKPT_SERVER)is True .

CKPT_SERVER_CHECK_PARENT_INTERVAL This is the number of seconds between checks to see whether the
parent of the checkpoint server (usually thecondor_master) has died. If the parent has died, the checkpoint
server shuts itself down. The default is 120 seconds. A setting of 0 disables this check.

CKPT_SERVER_INTERVAL The maximum number of seconds the checkpoint server waits for activity on network
sockets before performing other tasks. The default value is300 seconds.

CKPT_SERVER_CLASSAD_FILE A string that represents a file in the file system to which ClassAds will be written.
The ClassAds denote information about stored checkpoint files, such as owner, shadow IP address, name of the
file, and size of the file. This information is also independently recorded in theTransferLog . The default
setting is undefined, which means a checkpoint server ClassAd file will not be kept.

CKPT_SERVER_CLEAN_INTERVAL The number of seconds that must pass until the ClassAd log fileas described
by theCKPT_SERVER_CLASSAD_FILEvariable gets truncated. The default is 86400 seconds, which is one
day.

CKPT_SERVER_REMOVE_STALE_CKPT_INTERVAL The number of seconds between attempts to discover and
remove stale checkpoint files. It defaults to 86400 seconds,which is one day.

CKPT_SERVER_SOCKET_BUFSIZE The number of bytes representing the size of the TCP send/recv buffer on the
socket file descriptor related to moving the checkpoint file to and from the checkpoint server. The default value
is 0, which allows the operating system to decide the size.

CKPT_SERVER_MAX_PROCESSES The maximum number of child processes that could be working on behalf of
the checkpoint server. This includes store processes and restore processes. The default value is 50.

HTCondor Version 8.6.4 Manual

3.5.8. condor_master Configuration File Macros 256

CKPT_SERVER_MAX_STORE_PROCESSES The maximum number of child process strictly devoted to the storage
of checkpoints. The default is the value ofCKPT_SERVER_MAX_PROCESSES.

CKPT_SERVER_MAX_RESTORE_PROCESSES The maximum number of child process strictly devoted to the
restoring of checkpoints. The default is the value ofCKPT_SERVER_MAX_PROCESSES.

CKPT_SERVER_STALE_CKPT_AGE_CUTOFF The number of seconds after which if a checkpoint file has not been
accessed, it is considered stale. The default value is 5184000 seconds, which is sixty days.

ALWAYS_USE_LOCAL_CKPT_SERVER A boolean value that defaults toFalse . WhenTrue , it forces all check-
points to be read from a checkpoint server running on the samemachine where the job is running. This is
intended to be used when all checkpoint servers access a shared file system.

3.5.8 condor_master Configuration File Macros

These macros control thecondor_master.

DAEMON_LIST This macro determines what daemons thecondor_masterwill start and keep its watchful eyes on.
The list is a comma or space separated list of subsystem names(listed in section 3.5.1). For example,

DAEMON_LIST = MASTER, STARTD, SCHEDD

NOTE: This configuration variable cannot be changed by usingcondor_reconfigor by sending a SIGHUP. To
change this configuration variable, restart thecondor_masterdaemon by usingcondor_restart. Only then will
the change take effect.

NOTE: On your central manager, your$(DAEMON_LIST) will be different from your regular pool, since it
will include entries for thecondor_collectorandcondor_negotiator.

DC_DAEMON_LIST A list delimited by commas and/or spaces that lists the daemons inDAEMON_LISTwhich use
the HTCondor DaemonCore library. Thecondor_mastermust differentiate between daemons that use Dae-
monCore and those that do not, so it uses the appropriate inter-process communication mechanisms. This list
currently includes all HTCondor daemons except the checkpoint server by default.

As of HTCondor version 7.2.1, a daemon may be appended to the defaultDC_DAEMON_LISTvalue by placing
the plus character (+) before the first entry in theDC_DAEMON_LISTdefinition. For example:

DC_DAEMON_LIST = +NEW_DAEMON

<SUBSYS> Once you have defined which subsystems you want thecondor_masterto start, you must provide it with
the full path to each of these binaries. For example:

MASTER = $(SBIN)/condor_master
STARTD = $(SBIN)/condor_startd
SCHEDD = $(SBIN)/condor_schedd

HTCondor Version 8.6.4 Manual

3.5.8. condor_master Configuration File Macros 257

These are most often defined relative to the$(SBIN) macro.

The macro is named by substituting<SUBSYS>with the appropriate subsystem string as defined in sec-
tion 3.5.1.

<DaemonName>_ENVIRONMENT <DaemonName>is the name of a daemon listed inDAEMON_LIST. Defines
changes to the environment that the daemon is invoked with. It should use the same syntax for specifying the
environment as the environment specification in a submit description file. For example, to redefine theTMPand
CONDOR_CONFIGenvironment variables seen by thecondor_schedd, place the following in the configuration:

SCHEDD_ENVIRONMENT = "TMP=/new/value CONDOR_CONFIG=/special/config"

When thecondor_schedddaemon is started by thecondor_master, it would see the specified values ofTMPand
CONDOR_CONFIG.

<SUBSYS>_ARGS This macro allows the specification of additional command line arguments for any process
spawned by thecondor_master. List the desired arguments using the same syntax as the arguments specifi-
cation in acondor_submitsubmit file (see page 914), with one exception: do not escape double-quotes when
using the old-style syntax (this is for backward compatibility). Set the arguments for a specific daemon with
this macro, and the macro will affect only that daemon. Defineone of these for each daemon thecondor_master
is controlling. For example, set$(STARTD_ARGS)to specify any extra command line arguments to thecon-
dor_startd.

The macro is named by substituting<SUBSYS>with the appropriate subsystem string as defined in sec-
tion 3.5.1.

<SUBSYS>_USERID The account name that should be used to run theSUBSYSprocess spawned by thecon-
dor_master. When not defined, the process is spawned as the same user thatis runningcondor_master. When
defined, the real user id of the spawned process will be set to the specified account, so if this account is not
root , the process will not haveroot privileges. Thecondor_mastermust be running as root in order to start
processes as other users. Example configuration:

COLLECTOR_USERID = condor
NEGOTIATOR_USERID = condor

The above example runs thecondor_collectorandcondor_negotiatoras thecondor user with noroot priv-
ileges. If we specified some account other than thecondor user, as set by the (CONDOR_IDS) configuration
variable, then we would need to configure the log files for these daemons to be in a directory that they can write
to. When using GSI security or any other security method in which the daemon credential is owned byroot , it
is also necessary to make a copy of the credential, make it be owned by the account the daemons are using, and
configure the daemons to use that copy.

PREEN In addition to the daemons defined in$(DAEMON_LIST) , thecondor_masteralso starts up a special process,
condor_preento clean out junk files that have been left laying around by HTCondor. This macro determines
where thecondor_masterfinds thecondor_preenbinary. If this macro is set to nothing,condor_preenwill not
run.

PREEN_ARGS Controls howcondor_preenbehaves by allowing the specification of command-line arguments. This
macro works as$(<SUBSYS>_ARGS)does. The difference is that you must specify this macro forcon-
dor_preenif you want it to do anything.condor_preentakes action only because of command line arguments.
-m means you want e-mail about filescondor_preenfinds that it thinks it should remove.-r means you want
condor_preento actually remove these files.

HTCondor Version 8.6.4 Manual

3.5.8. condor_master Configuration File Macros 258

PREEN_INTERVAL This macro determines how oftencondor_preenshould be started. It is defined in terms of
seconds and defaults to 86400 (once a day).

PUBLISH_OBITUARIES When a daemon crashes, thecondor_mastercan send e-mail to the address specified by
$(CONDOR_ADMIN)with an obituary letting the administrator know that the daemon died, the cause of death
(which signal or exit status it exited with), and (optionally) the last few entries from that daemon’s log file. If
you want obituaries, set this macro toTrue .

OBITUARY_LOG_LENGTH This macro controls how many lines of the log file are part of obituaries. This macro has
a default value of 20 lines.

START_MASTER If this setting is defined and set toFalse thecondor_masterwill immediately exit upon startup.
This appears strange, but perhaps you do not want HTCondor torun on certain machines in your pool, yet the
boot scripts for your entire pool are handled by a centralized set of files – settingSTART_MASTERto False
for those machines would allow this. Note thatSTART_MASTERis an entry you would most likely find in a
local configuration file, not a global configuration file. If not defined,START_MASTERdefaults toTrue .

START_DAEMONS This macro is similar to the$(START_MASTER)macro described above. However, thecon-
dor_masterdoes not exit; it does not start any of the daemons listed in the $(DAEMON_LIST) . The daemons
may be started at a later time with acondor_oncommand.

MASTER_UPDATE_INTERVAL This macro determines how often thecondor_mastersends a ClassAd update to the
condor_collector. It is defined in seconds and defaults to 300 (every 5 minutes).

MASTER_CHECK_NEW_EXEC_INTERVAL This macro controls how often thecondor_masterchecks the times-
tamps of the running daemons. If any daemons have been modified, the master restarts them. It is defined in
seconds and defaults to 300 (every 5 minutes).

MASTER_NEW_BINARY_RESTART Defines a mode of operation for the restart of thecondor_master, when it no-
tices that thecondor_masterbinary has changed. Valid values areGRACEFUL, PEACEFUL, andNEVER, with
a default value ofGRACEFUL. On aGRACEFULrestart of the master, child processes are told to exit, but if they
do not before a timer expires, then they are killed. On aPEACEFULrestart, child processes are told to exit, after
which thecondor_masterwaits until they do so.

MASTER_NEW_BINARY_DELAY Once thecondor_masterhas discovered a new binary, this macro controls how
long it waits before attempting to execute the new binary. This delay exists because thecondor_mastermight
notice a new binary while it is in the process of being copied,in which case trying to execute it yields unpre-
dictable results. The entry is defined in seconds and defaults to 120 (2 minutes).

SHUTDOWN_FAST_TIMEOUT This macro determines the maximum amount of time daemons aregiven to perform
their fast shutdown procedure before thecondor_masterkills them outright. It is defined in seconds and defaults
to 300 (5 minutes).

DEFAULT_MASTER_SHUTDOWN_SCRIPT A full path and file name of a program that thecondor_masteris to ex-
ecute via the Unixexecl() call, or the similar Win32_execl() call, instead of the normal call toexit() .
This allows the admin to specify a program to execute as root when thecondor_masterexits. Note that a suc-
cessful call to thecondor_set_shutdownprogram will override this setting; see the documentation for config
knobMASTER_SHUTDOWN_<Name>below.

HTCondor Version 8.6.4 Manual

3.5.8. condor_master Configuration File Macros 259

MASTER_SHUTDOWN_<Name> A full path and file name of a program that thecondor_masteris to execute via
the Unixexecl() call, or the similar Win32_execl() call, instead of the normal call toexit() . Multi-
ple programs to execute may be defined with multiple entries,each with a uniqueName. These macros have
no effect on acondor_masterunlesscondor_set_shutdownis run. TheNamespecified as an argument to the
condor_set_shutdownprogram must match theNameportion of one of theseMASTER_SHUTDOWN_<Name>
macros; if not, thecondor_masterwill log an error and ignore the command. If a match is found, the con-
dor_masterwill attempt to verify the program, and it will store the pathand program name. When thecon-
dor_mastershuts down (that is, just before it exits), the program is then executed as described above. The
manual page forcondor_set_shutdownon page 890 contains details on the use of this program.

NOTE: This program will be run with root privileges under Unix or administrator privileges under Windows.
The administrator must ensure that this cannot be used in such a way as to violate system integrity.

MASTER_BACKOFF_CONSTANT and MASTER_<name>_BACKOFF_CONSTANT When a daemon crashes,con-
dor_masteruses an exponential back off delay before restarting it; seethe discussion at the end of this section
for a detailed discussion on how these parameters work together. These settings define the constant value of the
expression used to determine how long to wait before starting the daemon again (and, effectively becomes the
initial backoff time). It is an integer in units of seconds, and defaults to 9 seconds.

$(MASTER_<name>_BACKOFF_CONSTANT) is the daemon-specific form of
MASTER_BACKOFF_CONSTANT; if this daemon-specific macro is not defined for a specific daemon,
the non-daemon-specific value will used.

MASTER_BACKOFF_FACTOR and MASTER_<name>_BACKOFF_FACTOR When a daemon crashes,con-
dor_masteruses an exponential back off delay before restarting it; seethe discussion at the end of this section
for a detailed discussion on how these parameters work together. This setting is the base of the exponent used
to determine how long to wait before starting the daemon again. It defaults to 2 seconds.

$(MASTER_<name>_BACKOFF_FACTOR)is the daemon-specific form ofMASTER_BACKOFF_FACTOR;
if this daemon-specific macro is not defined for a specific daemon, the non-daemon-specific value will used.

MASTER_BACKOFF_CEILING and MASTER_<name>_BACKOFF_CEILING When a daemon crashes,con-
dor_masteruses an exponential back off delay before restarting it; seethe discussion at the end of this sec-
tion for a detailed discussion on how these parameters work together. This entry determines the maximum
amount of time you want the master to wait between attempts tostart a given daemon. (With 2.0 as the
$(MASTER_BACKOFF_FACTOR), 1 hour is obtained in 12 restarts). It is defined in terms of seconds and
defaults to 3600 (1 hour).

$(MASTER_<name>_BACKOFF_CEILING) is the daemon-specific form of
MASTER_BACKOFF_CEILING; if this daemon-specific macro is not defined for a specific daemon, the
non-daemon-specific value will used.

MASTER_RECOVER_FACTOR and MASTER_<name>_RECOVER_FACTOR A macro to set how long a daemon
needs to run without crashing before it is consideredrecovered. Once a daemon has recovered, the number of
restarts is reset, so the exponential back off returns to itsinitial state. The macro is defined in terms of seconds
and defaults to 300 (5 minutes).

$(MASTER_<name>_RECOVER_FACTOR)is the daemon-specific form ofMASTER_RECOVER_FACTOR;
if this daemon-specific macro is not defined for a specific daemon, the non-daemon-specific value will used.

HTCondor Version 8.6.4 Manual

3.5.8. condor_master Configuration File Macros 260

When a daemon crashes,condor_masterwill restart the daemon after a delay (a back off). The lengthof this delay
is based on how many times it has been restarted, and gets larger after each crashes. The equation for calculating this
backoff time is given by:

t = c+ kn

wheret is the calculated time,c is the constant defined by$(MASTER_BACKOFF_CONSTANT), k is the “factor”
defined by$(MASTER_BACKOFF_FACTOR), andn is the number of restarts already attempted (0 for the first restart,
1 for the next, etc.).

With default values, after the first crash, the delay would bet = 9 + 2.00, giving 10 seconds (remember,n = 0).
If the daemon keeps crashing, the delay increases.

For example, take the$(MASTER_BACKOFF_FACTOR)(which defaults to 2.0) to the power the number of times
the daemon has restarted, and add$(MASTER_BACKOFF_CONSTANT)(which defaults to 9). Thus:

1st crash:n = 0, so: t = 9 + 20 = 9 + 1 = 10 seconds

2nd crash:n = 1, so: t = 9 + 21 = 9 + 2 = 11 seconds

3rd crash:n = 2, so:t = 9 + 22 = 9 + 4 = 13 seconds

...

6th crash:n = 5, so: t = 9 + 25 = 9 + 32 = 41 seconds

...

9th crash:n = 8, so: t = 9 + 28 = 9 + 256 = 265 seconds

And, after the 13 crashes, it would be:

13th crash:n = 12, so: t = 9 + 212 = 9 + 4096 = 4105 seconds

This is bigger than the$(MASTER_BACKOFF_CEILING), which defaults to 3600, so the daemon would really
be restarted after only 3600 seconds, not 4105. Thecondor_mastertries again every hour (since the numbers would
get larger and would always be capped by the ceiling). Eventually, imagine that daemon finally started and did not
crash. This might happen if, for example, an administrator reinstalled an accidentally deleted binary after receiving
e-mail about the daemon crashing. If it stayed alive for$(MASTER_RECOVER_FACTOR)seconds (defaults to 5
minutes), the count of how many restarts this daemon has performed is reset to 0.

The moral of the example is that the defaults work quite well,and you probably will not want to change them for
any reason.

MASTER_NAME Defines a unique name given for acondor_masterdaemon on a machine. For acondor_master
running asroot , it defaults to the fully qualified host name. Whennot running asroot , it defaults to the user
that instantiates thecondor_master, concatenated with an at symbol (@), concatenated with the fully qualified
host name. If more than onecondor_masteris running on the same host, then theMASTER_NAMEfor each
condor_mastermust be defined to uniquely identify the separate daemons.

A definedMASTER_NAMEis presumed to be of the formidentifying-string@full.host.name . If
the string does not include an@sign, HTCondor appends one, followed by the fully qualified host name of

HTCondor Version 8.6.4 Manual

3.5.8. condor_master Configuration File Macros 261

the local machine. Theidentifying-string portion may contain any alphanumeric ASCII characters or
punctuation marks, except the@sign. We recommend that the string does not contain the: (colon) character,
since that might cause problems with certain tools. Previous to HTCondor 7.1.1, when the string included an@
sign, HTCondor replaced whatever followed the@sign with the fully qualified host name of the local machine.
HTCondor does not modify any portion of the string, if it contains an@sign. This is useful for remote job
submissions under the high availability of the job queue.

If the MASTER_NAMEsetting is used, and thecondor_masteris configured to spawn acondor_schedd, the
name defined withMASTER_NAMEtakes precedence over theSCHEDD_NAMEsetting (see section 3.5.10 on
page 287). Since HTCondor makes the assumption that there isonly one instance of thecondor_startdrunning
on a machine, theMASTER_NAMEis not automatically propagated to thecondor_startd. However, in situations
where multiplecondor_startddaemons are running on the same host, theSTARTD_NAMEshould be set to
uniquely identify thecondor_startddaemons.

If an HTCondor daemon (master, schedd or startd) has been given a unique name, all HTCondor tools that need
to contact that daemon can be told what name to use via the-namecommand-line option.

MASTER_ATTRS This macro is described in section 3.5.4 as<SUBSYS>_ATTRS.

MASTER_DEBUG This macro is described in section 3.5.3 as<SUBSYS>_DEBUG.

MASTER_ADDRESS_FILE This macro is described in section 3.5.4 as<SUBSYS>_ADDRESS_FILE.

ALLOW_ADMIN_COMMANDS If set to NO for a given host, this macro disables administrative commands, such as
condor_restart, condor_on, andcondor_off, to that host.

MASTER_INSTANCE_LOCK Defines the name of a file for thecondor_masterdaemon to lock in order to prevent
multiple condor_masters from starting. This is useful when using shared file systemslike NFS which do not
technically support locking in the case where the lock files reside on a local disk. If this macro is not defined, the
default file name will be$(LOCK)/InstanceLock . $(LOCK) can instead be defined to specify the location
of all lock files, not just thecondor_master’s InstanceLock . If $(LOCK) is undefined, then the master log
itself is locked.

ADD_WINDOWS_FIREWALL_EXCEPTION When set toFalse , thecondor_masterwill not automatically add HT-
Condor to the Windows Firewall list of trusted applications. Such trusted applications can accept incoming
connections without interference from the firewall. This only affects machines running Windows XP SP2 or
higher. The default isTrue .

WINDOWS_FIREWALL_FAILURE_RETRY An integer value (default value is 2) that represents the number of times
thecondor_masterwill retry to add firewall exceptions. When a Windows machineboots up, HTCondor starts
up by default as well. Under certain conditions, thecondor_mastermay have difficulty adding exceptions to the
Windows Firewall because of a delay in other services starting up. Examples of services that may possibly be
slow are the SharedAccess service, the Netman service, or the Workstation service. This configuration variable
allows administrators to set the number of times (once every5 seconds) that thecondor_masterwill retry to add
firewall exceptions. A value of 0 means that HTCondor will retry indefinitely.

USE_PROCESS_GROUPS A boolean value that defaults toTrue . WhenFalse , HTCondor daemons on Unix
machines willnot create new sessions or process groups. HTCondor uses processes groups to help it track the
descendants of processes it creates. This can cause problems when HTCondor is run under another job execution
system.

HTCondor Version 8.6.4 Manual

3.5.9. condor_startd Configuration File Macros 262

DISCARD_SESSION_KEYRING_ON_STARTUP A boolean value that defaults toTrue . WhenTrue , the con-
dor_masterdaemon will replace the kernel session keyring it was invoked with with a new keyring named
htcondor . Various Linux system services, such as OpenAFS and eCryptFS, use the kernel session keyring
to hold passwords and authentication tokens. By replacing the keyring on start up, thecondor_masterensures
these keys cannot be unintentionally obtained by user jobs.

ENABLE_KERNEL_TUNING Relevant only to Linux platforms, a boolean value that defaults to True . When
True , the condor_masterdaemon invokes the kernel tuning script specified by configuration variable
LINUX_KERNEL_TUNING_SCRIPTonce as root when thecondor_masterdaemon starts up.

KERNEL_TUNING_LOG A string value that defaults to$(LOG)/KernelTuningLog . If the kernel tuning script
runs, its output will be logged to this file.

LINUX_KERNEL_TUNING_SCRIPT A string value that defaults to$(LIBEXEC)/linux_kernel_tuning .
This is the script that thecondor_masterruns to tune the kernel whenENABLE_KERNEL_TUNINGis True .

3.5.9 condor_startd Configuration File Macros

NOTE: If you are running HTCondor on a multi-CPU machine, be sure to also read section 3.7.1 on page 396 which
describes how to set up and configure HTCondor on multi-core machines.

These settings control general operation of thecondor_startd. Examples using these configuration macros, as well
as further explanation is found in section 3.7 on ConfiguringThe Startd Policy.

START A boolean expression that, whenTrue , indicates that the machine is willing to start running an HTCondor
job. STARTis considered when thecondor_negotiatordaemon is considering evicting the job to replace it with
one that will generate a better rank for thecondor_startddaemon, or a user with a higher priority.

SUSPEND A boolean expression that, whenTrue , causes HTCondor to suspend running an HTCondor job. The
machine may still be claimed, but the job makes no further progress, and HTCondor does not generate a load on
the machine.

PREEMPT A boolean expression that, whenTrue , causes HTCondor to stop a currently running job once
MAXJOBRETIREMENTTIMEhas expired. This expression is not evaluated ifWANT_SUSPENDis True . The
default value isFalse , such that preemption is disabled.

WANT_HOLD A boolean expression that defaults toFalse . WhenTrue and the value ofPREEMPTbecomesTrue
andWANT_SUSPENDis False andMAXJOBRETIREMENTTIMEhas expired, the job is put on hold for the
reason (optionally) specified by the variablesWANT_HOLD_REASONandWANT_HOLD_SUBCODE. As usual,
the job owner may specifyperiodic_releaseand/orperiodic_removeexpressions to react to specific hold states
automatically. The attributeHoldReasonCode in the job ClassAd is set to the value 21 whenWANT_HOLD
is responsible for putting the job on hold.

Here is an example policy that puts jobs on hold that use too much virtual memory:

VIRTUAL_MEMORY_AVAILABLE_MB = (VirtualMemory * 0.9)
MEMORY_EXCEEDED = ImageSize/1024 > $(VIRTUAL_MEMORY_AVAILABLE_MB)
PREEMPT = ($(PREEMPT)) || ($(MEMORY_EXCEEDED))

HTCondor Version 8.6.4 Manual

3.5.9. condor_startd Configuration File Macros 263

WANT_SUSPEND = ($(WANT_SUSPEND)) && ($(MEMORY_EXCEEDED)) =!= TRUE
WANT_HOLD = ($(MEMORY_EXCEEDED))
WANT_HOLD_REASON = \

ifThenElse($(MEMORY_EXCEEDED), \
"Your job used too much virtual memory.", \
undefined)

WANT_HOLD_REASON An expression that defines a string utilized to set the job ClassAd attributeHoldReason
when a job is put on hold due toWANT_HOLD. If not defined or if the expression evaluates toUndefined , a
default hold reason is provided.

WANT_HOLD_SUBCODE An expression that defines an integer value utilized to set the job ClassAd attribute
HoldReasonSubCode when a job is put on hold due toWANT_HOLD. If not defined or if the expression
evaluates toUndefined , the value is set to 0. Note thatHoldReasonCode is always set to 21.

CONTINUE A boolean expression that, whenTrue , causes HTCondor to continue the execution of a suspended job.

KILL A boolean expression that, whenTrue , causes HTCondor to immediately stop the execution of a vacating job,
without delay. The job is hard-killed, so any attempt by the job to checkpoint or clean up will be aborted. This
expression should normally beFalse . When desired, it may be used to abort the graceful shutdown of a job
earlier than the limit imposed byMachineMaxVacateTime .

PERIODIC_CHECKPOINT A boolean expression that, whenTrue , causes HTCondor to initiate a checkpoint of the
currently running job. This setting applies to all standarduniverse jobs and to vm universe jobs that have set
vm_checkpointto True in the submit description file.

RANK A floating point value that HTCondor uses to compare potential jobs. A larger value for a specific job ranks
that job above others with lower values forRANK.

ADVERTISE_PSLOT_ROLLUP_INFORMATION A boolean value that defaults toTrue , causing thecondor_startd
to advertise ClassAd attributes that may be used in partitionable slot preemption. The attributes are

• ChildAccountingGroup

• ChildActivity

• ChildCPUs

• ChildCurrentRank

• ChildEnteredCurrentState

• ChildMemory

• ChildName

• ChildRemoteOwner

• ChildRemoteUser

• ChildRetirementTimeRemaining

• ChildState

• PslotRollupInformation

HTCondor Version 8.6.4 Manual

3.5.9. condor_startd Configuration File Macros 264

STARTD_PARTITIONABLE_SLOT_ATTRS A list of additional from the above default attributes from dynamic
slots that will be rolled up into a list attribute in their parent partitionable slot, prefixed with the name Child.

IS_VALID_CHECKPOINT_PLATFORM A boolean expression that is logically ANDed with the with the START
expression to limit which machines a standard universe job may continue execution on once they have produced
a checkpoint. The default expression is

IS_VALID_CHECKPOINT_PLATFORM =
(

((TARGET.JobUniverse == 1) == FALSE) ||

(
(MY.CheckpointPlatform =!= UNDEFINED) &&
(

(TARGET.LastCheckpointPlatform =?= MY.CheckpointPlatf orm) ||
(TARGET.NumCkpts == 0)

)
)

)

CHECKPOINT_PLATFORM A string used to override the automatically-generated machine ClassAd attribute
CheckpointPlatform (see section 12), which is used to identify the platform uponwhich a job previously
generated a checkpoint under the standard universe. This restricts the machine matches that may be considered
for a job and where the job may resume. Overriding the value may be necessary for architectures that are the
same in name, but actually have differences in instruction sets, such as the AVX extensions to the Intel processor.

WANT_SUSPEND A boolean expression that, whenTrue , tells HTCondor to evaluate theSUSPENDexpression to
decide whether to suspend a running job. WhenTrue , thePREEMPTexpression is not evaluated. When not
explicitly set, thecondor_startdexits with an error. When explicitly set, but the evaluated value is anything
other thanTrue , the value is utilized as if it wereFalse .

WANT_VACATE A boolean expression that, whenTrue , defines that a preempted HTCondor job is to be vacated,
instead of killed. This means the job will be soft-killed andgiven time to checkpoint or clean up. The amount
of time given depends onMachineMaxVacateTime andKILL . The default value isTrue .

ENABLE_VERSIONED_OPSYS A boolean expression that determines whether pre-7.7.2 strings used for the ma-
chine ClassAd attributeOpSys are used or not. Defaults toFalse on Windows platforms, meaning
that the newer behavior of settingOpSys = "WINDOWS"and OpSysVer = 601 (for example), while
OpSysAndVer = "WINNT61" . On platformsother than Windows, the default value isTrue , meaning
that the values forOpSys andOpSysAndVer are the same, implementing the pre-7.7.2 behavior.

IS_OWNER A boolean expression that defaults to being defined as

IS_OWNER = (START =?= FALSE)

Used to describe the state of the machine with respect to its use by its owner. Job ClassAd attributes are not
used in definingIS_OWNER, as they would beUndefined .

HTCondor Version 8.6.4 Manual

3.5.9. condor_startd Configuration File Macros 265

STARTD_HISTORY A file name where thecondor_startddaemon will maintain a job history file in an analogous
way to that of the history file defined by the configuration variableHISTORY. It will be rotated in the same way,
and the same parameters that apply to theHISTORYfile rotation apply to thecondor_startddaemon history as
well. This can be read with thecondor_historycommand by passing the name of the file to the -file option of
condor_history.

condor_history -file `condor_config_val LOG`/startd_hi story

STARTER This macro holds the full path to thecondor_starterbinary that thecondor_startdshould spawn. It is
normally defined relative to$(SBIN) .

KILLING_TIMEOUT The amount of time in seconds that thecondor_startdshould wait after sending a fast shutdown
request tocondor_starterbefore forcibly killing the job andcondor_starter. The default value is 30 seconds.

POLLING_INTERVAL When acondor_startdenters the claimed state, this macro determines how often the state
of the machine is polled to check the need to suspend, resume,vacate or kill the job. It is defined in terms of
seconds and defaults to 5.

UPDATE_INTERVAL Determines how often thecondor_startd should send a ClassAd update to thecon-
dor_collector. Thecondor_startdalso sends update on any state or activity change, or if the value of itsSTART
expression changes. See section 3.7.1 oncondor_startdstates, section 3.7.1 oncondor_startdActivities, and
section 3.7.1 oncondor_startdSTARTexpression for details on states, activities, and theSTARTexpression.
This macro is defined in terms of seconds and defaults to 300 (5minutes).

UPDATE_OFFSET An integer value representing the number of seconds of delaythat thecondor_startdshould
wait before sending its initial update, and the first update after a condor_reconfigcommand is sent
to the condor_collector. The time of all other updates sent after this initial updateis determined by
$(UPDATE_INTERVAL). Thus, the first update will be sent after$(UPDATE_OFFSET)seconds, and the
second update will be sent after$(UPDATE_OFFSET)+ $(UPDATE_INTERVAL). This is useful when used
in conjunction with the$RANDOM_INTEGER()macro for large pools, to spread out the updates sent by a large
number ofcondor_startddaemons. Defaults to zero. The example configuration

startd.UPDATE_INTERVAL = 300
startd.UPDATE_OFFSET = $RANDOM_INTEGER(0,300)

causes the initial update to occur at a random number of seconds falling between 0 and 300, with all further
updates occurring at fixed 300 second intervals following the initial update.

MachineMaxVacateTime An integer expression representing the number of seconds the machine is willing to
wait for a job that has been soft-killed to gracefully shut down. The default value is 600 seconds (10 min-
utes). This expression is evaluated when the job starts running. The job may adjust the wait time by setting
JobMaxVacateTime . If the job’s setting is less than the machine’s, the job’s specification is used. If the job’s
setting is larger than the machine’s, the result depends on whether the job has any excess retirement time. If the
job has more retirement time left than the machine’s maximumvacate time setting, then retirement time will be
converted into vacating time, up to the amount ofJobMaxVacateTime . TheKILL expression may be used to
abort the graceful shutdown of the job at any time. At the timewhen the job is preempted, theWANT_VACATE
expression may be used to skip the graceful shutdown of the job.

HTCondor Version 8.6.4 Manual

3.5.9. condor_startd Configuration File Macros 266

MAXJOBRETIREMENTTIME When thecondor_startdwants to evict a job, a job which has run for less than the
number of seconds specified by this expression will not be hard-killed. Thecondor_startdwill wait for the job
to finish or to exceed this amount of time, whichever comes sooner. Time spent in suspension does not count
against the job. The default value of 0 (when the configuration variable is not present) means that the job gets
no retirement time. If the job vacating policy grants the jobX seconds of vacating time, a preempted job will be
soft-killed X seconds before the end of its retirement time,so that hard-killing of the job will not happen until the
end of the retirement time if the job does not finish shutting down before then. Note that in peaceful shutdown
mode of thecondor_startd, retirement time is treated as though infinite. In graceful shutdown mode, the job will
not be preempted until the configured retirement time expires orSHUTDOWN_GRACEFUL_TIMEOUTexpires.
In fast shutdown mode, retirement time is ignored. SeeMAXJOBRETIREMENTTIMEin section 3.7.1 for further
explanation.

By default thecondor_negotiatorwill not match jobs to a slot with retirement time remaining.This behavior is
controlled byNEGOTIATOR_CONSIDER_EARLY_PREEMPTION.

There is no default value for this configuration variable.

CLAIM_WORKLIFE This expression specifies the number of seconds after which aclaim will stop accepting addi-
tional jobs. The default is 1200, which is 20 minutes. Once the condor_negotiatorgives acondor_schedda
claim to a slot, thecondor_scheddwill keep running jobs on that slot as long as it has more jobs with matching
requirements, andCLAIM_WORKLIFEhas not expired, and it is not preempted. OnceCLAIM_WORKLIFE
expires, any existing job may continue to run as usual, but once it finishes or is preempted, the claim is closed.
WhenCLAIM_WORKLIFEis -1, this is treated as an infinite claim worklife, so claimsmay be held indefinitely
(as long as they are not preempted and the user does not run outof jobs, of course). A value of 0 has the effect
of not allowing more than one job to run per claim, since it immediately expires after the first job starts running.

MAX_CLAIM_ALIVES_MISSED Thecondor_scheddsends periodic updates to eachcondor_startdas a keep alive
(see the description ofALIVE_INTERVAL on page 285). If thecondor_startddoes not receive any keep alive
messages, it assumes that something has gone wrong with thecondor_scheddand that the resource is not being
effectively used. Once this happens, thecondor_startdconsiders the claim to have timed out, it releases the
claim, and starts advertising itself as available for otherjobs. Because these keep alive messages are sent via
UDP, they are sometimes dropped by the network. Therefore, thecondor_startdhas some tolerance for missed
keep alive messages, so that in case a few keep alives are lost, thecondor_startdwill not immediately release the
claim. This setting controls how many keep alive messages can be missed before thecondor_startdconsiders
the claim no longer valid. The default is 6.

STARTD_HAS_BAD_UTMP When thecondor_startdis computing the idle time of all the users of the machine (both
local and remote), it checks theutmp file to find all the currently active ttys, and only checks access time
of the devices associated with active logins. Unfortunately, on some systems,utmp is unreliable, and the
condor_startdmight miss keyboard activity by doing this. So, if yourutmp is unreliable, set this macro to
True and thecondor_startdwill check the access time on all tty and pty devices.

CONSOLE_DEVICES This macro allows thecondor_startdto monitor console (keyboard and mouse) activity by
checking the access times on special files in/dev . Activity on these files shows up asConsoleIdle time
in thecondor_startd’s ClassAd. Give a comma-separated list of the names of devices considered the console,
without the/dev/ portion of the path name. The defaults vary from platform to platform, and are usually
correct.

One possible exception to this is on Linux, where we use “mouse” as one of the entries. Most Linux installations
put in a soft link from/dev/mouse that points to the appropriate device (for example,/dev/psaux for a

HTCondor Version 8.6.4 Manual

3.5.9. condor_startd Configuration File Macros 267

PS/2 bus mouse, or/dev/tty00 for a serial mouse connected to com1). However, if your installation does
not have this soft link, you will either need to put it in (you will be glad you did), or change this macro to point
to the right device.

Unfortunately, modern versions of Linux do not update the access time of device files for USB devices. Thus,
these files cannot be be used to determine when the console is in use. Instead, use thecondor_kbdddaemon,
which gets this information by connecting to the X server.

KBDD_BUMP_CHECK_SIZE The number of pixels that the mouse can move in the X and/or Y direction, while still
being considered a bump, and not keyboard activity. If the movement is greater than this bump size then the
move is not a transient one, and it will register as activity.The default is 16, and units are pixels. Setting the
value to 0 effectively disables bump testing.

KBDD_BUMP_CHECK_AFTER_IDLE_TIME The number of seconds of keyboard idle time that will pass before
bump testing begins. The default is 15 minutes.

STARTD_JOB_ATTRS When the machine is claimed by a remote user, thecondor_startdcan also advertise arbitrary
attributes from the job ClassAd in the machine ClassAd. Listthe attribute names to be advertised. NOTE: Since
these are already ClassAd expressions, do not do anything unusual with strings. By default, the job ClassAd
attributes JobUniverse, NiceUser, ExecutableSize and ImageSize are advertised into the machine ClassAd. This
setting was formerly calledSTARTD_JOB_EXPRS. The older name is still supported, but support for the older
name may be removed in a future version of HTCondor.

STARTD_ATTRS This macro is described in section 3.5.4 as<SUBSYS>_ATTRS.

STARTD_DEBUG This macro (and other settings related to debug logging in the condor_startd) is described in sec-
tion 3.5.3 as<SUBSYS>_DEBUG.

STARTD_ADDRESS_FILE This macro is described in section 3.5.4 as<SUBSYS>_ADDRESS_FILE

STARTD_SHOULD_WRITE_CLAIM_ID_FILE Thecondor_startdcan be configured to write out theClaimId for
the next available claim on all slots to separate files. This boolean attribute controls whether thecondor_startd
should write these files. The default value isTrue .

STARTD_CLAIM_ID_FILE This macro controls what file names are used if the above
STARTD_SHOULD_WRITE_CLAIM_ID_FILEis true. By default, HTCondor will write the ClaimId
into a file in the$(LOG) directory called.startd_claim_id.slotX , whereX is the value ofSlotID ,
the integer that identifies a given slot on the system, or1 on a single-slot machine. If you define your own value
for this setting, you should provide a full path, and HTCondor will automatically append the.slotX portion
of the file name.

SlotWeight This may be used to give a slot greater weight when calculating usage, computing fair shares, and
enforcing group quotas. For example, claiming a slot withSlotWeight = 2 is equivalent to claiming two
SlotWeight = 1 slots. The default value isCpus, the number of CPUs associated with the slot, which is
1 unless specially configured. Any expression referring to attributes of the slot ClassAd and evaluating to a
positive floating point number is valid.

NUM_CPUS An integer value, which can be used to lie to thecondor_startddaemon about how many CPUs a machine
has. When set, it overrides the value determined with HTCondor’s automatic computation of the number of
CPUs in the machine. Lying in this way can allow multiple HTCondor jobs to run on a single-CPU machine,

HTCondor Version 8.6.4 Manual

3.5.9. condor_startd Configuration File Macros 268

by having that machine treated like a multi-core machine with multiple CPUs, which could have different
HTCondor jobs running on each one. Or, a multi-core machine may advertise more slots than it has CPUs.
However, lying in this manner will hurt the performance of the jobs, since now multiple jobs will run on the
same CPU, and the jobs will compete with each other. The option is only meant for people who specifically
want this behavior and know what they are doing. It is disabled by default.

The default value is$(DETECTED_CPUS).

Thecondor_startdonly takes note of the value of this configuration variable onstart up, therefore it cannot be
changed with a simple reconfigure. To change this, restart the condor_startddaemon for the change to take
effect. The command will be

condor_restart -startd

MAX_NUM_CPUS An integer value used as a ceiling for the number of CPUs detected by HTCondor on a machine.
This value is ignored ifNUM_CPUSis set. If set to zero, there is no ceiling. If not defined, the default value is
zero, and thus there is no ceiling.

Note that this setting cannot be changed with a simple reconfigure, either by sending a SIGHUP or by using the
condor_reconfigcommand. To change this, restart thecondor_startddaemon for the change to take effect. The
command will be

condor_restart -startd

COUNT_HYPERTHREAD_CPUS This configuration variable controls how HTCondor sees hyper-threaded processors.
When set to the default value ofTrue , it includes virtual CPUs in the default value ofDETECTED_CPUS.
On dedicated cluster nodes, counting virtual CPUs can sometimes improve total throughput at the expense
of individual job speed. However, counting them on desktop workstations can interfere with interactive job
performance.

MEMORY Normally, HTCondor will automatically detect the amount ofphysical memory available on your machine.
DefineMEMORYto tell HTCondor how much physical memory (in MB) your machine has, overriding the value
HTCondor computes automatically. The actual amount of memory detected by HTCondor is always available
in the pre-defined configuration macroDETECTED_MEMORY.

RESERVED_MEMORY How much memory would you like reserved from HTCondor? By default, HTCondor consid-
ers all the physical memory of your machine as available to beused by HTCondor jobs. IfRESERVED_MEMORY
is defined, HTCondor subtracts it from the amount of memory itadvertises as available.

STARTD_NAME Used to give an alternative value to theNameattribute in thecondor_startd’s ClassAd. This esoteric
configuration macro might be used in the situation where there are twocondor_startddaemons running on one
machine, and each reports to the samecondor_collector. Different names will distinguish the two daemons. See
the description ofMASTER_NAMEin section 3.5.8 on page 260 for defaults and composition of valid HTCondor
daemon names.

RUNBENCHMARKS A boolean expression that specifies whether to run benchmarks. When the machine is in the
Unclaimed state and this expression evaluates toTrue , benchmarks will be run. IfRUNBENCHMARKSis
specified and set to anything other thanFalse , additional benchmarks will be run once, when thecondor_startd
starts. To disable start up benchmarks, setRunBenchmarks to False .

HTCondor Version 8.6.4 Manual

3.5.9. condor_startd Configuration File Macros 269

DedicatedScheduler A string that identifies the dedicated scheduler this machine is managed by. Section 3.14.8
on page 495 details the use of a dedicated scheduler.

STARTD_NOCLAIM_SHUTDOWN The number of seconds to run without receiving a claim beforeshutting HTCondor
down on this machine. Defaults to unset, which means to nevershut down. This is primarily intended to facilitate
glidein; use in other situations is not recommended.

STARTD_PUBLISH_WINREG A string containing a semicolon-separated list of Windows registry key names. For
each registry key, the contents of the registry key are published in the machine ClassAd. All attribute names
are prefixed withWINREG_. The remainder of the attribute name is formed in one of two ways. The first way
explicitly specifies the name within the list with the syntax

STARTD_PUBLISH_WINREG = AttrName1 = KeyName1; AttrName2 = KeyName2

The second way of forming the attribute name derives the attribute names from the key names in the list. The
derivation uses the last three path elements in the key name and changes each illegal character to an underscore
character. Illegal characters are essentially any non-alphanumeric character. In addition, the percent character
(%) is replaced by the stringPercent , and the string/sec is replaced by the string_Per_Sec .

HTCondor expects that the hive identifier, which is the first element in the full path given by a key name, will
be the valid abbreviation. Here is a list of abbreviations:

HKLMis the abbreviation forHKEY_LOCAL_MACHINE

HKCRis the abbreviation forHKEY_CLASSES_ROOT

HKCUis the abbreviation forHKEY_CURRENT_USER

HKPDis the abbreviation forHKEY_PERFORMANCE_DATA

HKCCis the abbreviation forHKEY_CURRENT_CONFIG

HKUis the abbreviation forHKEY_USERS

TheHKPDkey names are unusual, as they are not shown inregedit. Their values are periodically updated at the
interval defined byUPDATE_INTERVAL. The others are not updated untilcondor_reconfigis issued.

Here is a complete example of the configuration variable definition,

STARTD_PUBLISH_WINREG = HKLM\Software\Perl\BinDir; \
BATFile_RunAs_Command = HKCR\batFile\shell\RunAs\comm and; \
HKPD\Memory\Available MBytes; \
BytesAvail = HKPD\Memory\Available Bytes; \
HKPD\Terminal Services\Total Sessions; \
HKPD\Processor\% Idle Time; \
HKPD\System\Processes

which generates the following portion of a machine ClassAd:

WINREG_Software_Perl_BinDir = "C:\Perl\bin\perl.exe"
WINREG_BATFile_RunAs_Command = "%SystemRoot%\System32 \cmd.exe /C \"%1\" % * "
WINREG_Memory_Available_MBytes = 5331

HTCondor Version 8.6.4 Manual

3.5.9. condor_startd Configuration File Macros 270

WINREG_BytesAvail = 5590536192.000000
WINREG_Terminal_Services_Total_Sessions = 2
WINREG_Processor_Percent_Idle_Time = 72.350384
WINREG_System_Processes = 166

MOUNT_UNDER_SCRATCH A ClassAd expression, which when evaluated in the context ofthe job ClassAd evaluates
to a comma separated list of directories. For each directoryin the list, HTCondor creates a directory in the job’s
temporary scratch directory with that name, and makes it available at the given name using bind mounts. This
is available on Linux systems which provide bind mounts and per-process tree mount tables, such as Red Hat
Enterprise Linux 5. A bind mount is like a symbolic link, but is not globally visible to all processes. It is only
visible to the job and the job’s child processes. As an example:

MOUNT_UNDER_SCRATCH = ifThenElse(TARGET.UtsnameSysname ? "Linux", "/tmp,/var/tmp",

If the job is running on a Linux system, it will see the usual/tmp and /var/tmp directories, but when
accessing files via these paths, the system will redirect theaccess. The resultant files will actually end up in
directories namedtmp or var/tmp under the the job’s temporary scratch directory. This is useful, because the
job’s scratch directory will be cleaned up after the job completes, two concurrent jobs will not interfere with
each other, and because jobs will not be able to fill up the real/tmp directory. Another use case might be for
home directories, which some jobs might want to write to, butthat should be cleaned up after each job run. The
default value if not defined will be that no directories are mounted in the job’s temporary scratch directory.

If the job’s execute directory is encrypted,/tmp and /var/tmp are automatically added to
MOUNT_UNDER_SCRATCHwhen the job is run (they will not show up ifMOUNT_UNDER_SCRATCHis exam-
ined withcondor_config_val).

Note that the MOUNT_UNDER_SCRATCH mounts do not take place until the PreCmd of the job, if any,
completes.(See 11 for information on PreCmd.)

Also note that, ifMOUNT_UNDER_SCRATCHis defined, it must either be a string or an expression that evaluates
to a string.

For Docker Universe jobs, any directories that are mounted under scratch are also volume mounted on the same
paths inside the container. That is, any reads or writes to files in those directories goes to the host filesytem
under the scratch directory. This is useful if a container has limited space to grow a filesytem.

The following macros control if thecondor_startddaemon should perform backfill computations whenever re-
sources would otherwise be idle. See section 3.14.9 on page 498 on Configuring HTCondor for Running Backfill Jobs
for details.

ENABLE_BACKFILL A boolean value that, whenTrue , indicates that the machine is willing to perform backfill
computations when it would otherwise be idle. This is not a policy expression that is evaluated, it is a simple
True or False . This setting controls if any of the other backfill-related expressions should be evaluated. The
default isFalse .

BACKFILL_SYSTEM A string that defines what backfill system to use for spawning and managing backfill compu-
tations. Currently, the only supported value for this is"BOINC" , which stands for theBerkeley Open Infras-
tructure for Network Computing. See http://boinc.berkeley.edu for more information about BOINC. There is no
default value, administrators must define this.

HTCondor Version 8.6.4 Manual

http://boinc.berkeley.edu

3.5.9. condor_startd Configuration File Macros 271

START_BACKFILL A boolean expression that is evaluated whenever an HTCondorresource is in the Unclaimed/Idle
state and theENABLE_BACKFILLexpression isTrue . If START_BACKFILL evaluates toTrue , the ma-
chine will enter the Backfill state and attempt to spawn a backfill computation. This expression is analogous
to the STARTexpression that controls when an HTCondor resource is available to run normal HTCondor
jobs. The default value isFalse (which means do not spawn a backfill job even if the machine is idle and
ENABLE_BACKFILLexpression isTrue). For more information about policy expressions and the Backfill
state, see section 3.7 beginning on page 370, especially sections 3.7.1, 3.7.1, and 3.7.1.

EVICT_BACKFILL A boolean expression that is evaluated whenever an HTCondorresource is in the Backfill state
which, whenTrue , indicates the machine should immediately kill the currently running backfill computation
and return to the Owner state. This expression is a way for administrators to define a policy where interactive
users on a machine will cause backfill jobs to be removed. The default value isFalse . For more information
about policy expressions and the Backfill state, see section3.7 beginning on page 370, especially sections 3.7.1,
3.7.1, and 3.7.1.

The following macros only apply to thecondor_startddaemon when it is running on a multi-core machine. See
section 3.7.1 on page 396 for details.

STARTD_RESOURCE_PREFIX A string which specifies what prefix to give the unique HTCondor resources that
are advertised on multi-core machines. Previously, HTCondor used the termvirtual machineto describe these
resources, so the default value for this setting wasvm. However, to avoid confusion with other kinds of virtual
machines, such as the ones created using tools like VMware orXen, the oldvirtual machineterminology has
been changed, and has become the termslot. Therefore, the default value of this prefix is nowslot . If sites
want to continue usingvm, or prefer something otherslot , this setting enables sites to define what string the
condor_startdwill use to name the individual resources on a multi-core machine.

SLOTS_CONNECTED_TO_CONSOLE An integer which indicates how many of the machine slots thecondor_startd
is representing should be "connected" to the console. This allows thecondor_startdto notice console activity.
Defaults to the number of slots in the machine, which is$(NUM_CPUS).

SLOTS_CONNECTED_TO_KEYBOARD An integer which indicates how many of the machine slots thecondor_startd
is representing should be "connected" to the keyboard (for remote tty activity, as well as console activity). This
defaults to all slots (N in a machine with N CPUs).

DISCONNECTED_KEYBOARD_IDLE_BOOST If there are slots not connected to either the keyboard or theconsole,
the corresponding idle time reported will be the time since thecondor_startdwas spawned, plus the value of this
macro. It defaults to 1200 seconds (20 minutes). We do this because if the slot is configured not to care about
keyboard activity, we want it to be available to HTCondor jobs as soon as thecondor_startdstarts up, instead of
having to wait for 15 minutes or more (which is the default time a machine must be idle before HTCondor will
start a job). If you do not want this boost, set the value to 0. If you change your START expression to require
more than 15 minutes before a job starts, but you still want jobs to start right away on some of your multi-core
nodes, increase this macro’s value.

STARTD_SLOT_ATTRS The list of ClassAd attribute names that should be shared across all slots on the same
machine. This setting was formerly know asSTARTD_VM_ATTRSor STARTD_VM_EXPRS(before version
6.9.3). For each attribute in the list, the attribute’s value is taken from each slot’s machine ClassAd and placed
into the machine ClassAd of all the other slots within the machine. For example, if the configuration file for a
2-slot machine contains

HTCondor Version 8.6.4 Manual

3.5.9. condor_startd Configuration File Macros 272

STARTD_SLOT_ATTRS = State, Activity, EnteredCurrentActi vity

then the machine ClassAd for both slots will contain attributes that will be of the form:

slot1_State = "Claimed"
slot1_Activity = "Busy"
slot1_EnteredCurrentActivity = 1075249233
slot2_State = "Unclaimed"
slot2_Activity = "Idle"
slot2_EnteredCurrentActivity = 1075240035

The following settings control the number of slots reportedfor a given multi-core host, and what attributes each
one has. They are only needed if you do not want to have a multi-core machine report to HTCondor with a separate
slot for each CPU, with all shared system resources evenly divided among them. Please read section 3.7.1 on page 397
for details on how to properly configure these settings to suit your needs.

NOTE: You can only change the number of each type of slot thecondor_startdis reporting with a simple reconfig
(such as sending a SIGHUP signal, or using thecondor_reconfigcommand). You cannot change the definition of the
different slot types with a reconfig. If you change them, you must restart thecondor_startdfor the change to take
effect (for example, usingcondor_restart -startd).

NOTE: Prior to version 6.9.3, any settings that included the termslot used to use virtual machine orvm. If
searching for information about one of these older settings, search for the corresponding attribute names usingslot ,
instead.

MAX_SLOT_TYPES The maximum number of different slot types. Note: this is themaximum number of different
types, not of actual slots. Defaults to 10. (You should only need tochange this setting if you define more than
10 separate slot types, which would be pretty rare.)

SLOT_TYPE_<N> This setting defines a given slot type, by specifying what part of each shared system re-
source (like RAM, swap space, etc) this kind of slot gets. This setting hasno effect unless you also define
NUM_SLOTS_TYPE_<N>. N can be any integer from 1 to the value of$(MAX_SLOT_TYPES), such as
SLOT_TYPE_1. The format of this entry can be somewhat complex, so please refer to section 3.7.1 on page 397
for details on the different possibilities.

SLOT_TYPE_<N>_PARTITIONABLE A boolean variable that defaults toFalse . WhenTrue , this slot permits
dynamic provisioning, as specified in section 3.7.1.

CLAIM_PARTITIONABLE_LEFTOVERS A boolean variable that defaults toTrue . WhenTrue within the config-
uration for both thecondor_scheddand thecondor_startd, and thecondor_scheddclaims a partitionable slot, the
condor_startdreturns the slot’s ClassAd and a claim id for leftover resources. In doing so, thecondor_schedd
can claim multiple dynamic slots without waiting for a negotiation cycle.

MACHINE_RESOURCE_NAMES A comma and/or space separated list of resource names that represent custom re-
sources specific to a machine. These resources are further intended to be statically divided or partitioned, and
these resource names identify the configuration variables that define the partitioning. If used, custom resources
without names in the list are ignored.

HTCondor Version 8.6.4 Manual

3.5.9. condor_startd Configuration File Macros 273

MACHINE_RESOURCE_<name> An integer that specifies the quantity of or list of identifiers for the customized lo-
cal machine resource available for an SMP machine. The portion of this configuration variable’s name identified
with <name> will be used to label quantities of the resource allocated toa slot. If a quantity is specified, the
resource is presumed to be fungible and slots will be allocated a quantity of the resource but specific instances
will not be identified. If a list of identifiers is specified thequantity is the number of identifiers and slots will be
allocated both a quantity of the resource and assigned specific resource identifiers.

OFFLINE_MACHINE_RESOURCE_<name> A comma and/or space separated list of resource identifiers for
any customized local machine resources that are currently offline, and therefore should not be allocated
to a slot. The identifiers specified here must match those specified by value of configuration variables
MACHINE_RESOURCE_<name>or MACHINE_RESOURCE_INVENTORY_<name>, or the identifiers will
be ignored. The<name> identifies the type of resource, as specified by the value of configuration variable
MACHINE_RESOURCE_NAMES. This configuration variable is used to have resources that are detected and
reported to exist by HTCondor, but not assigned to slots. A restart of thecondor_startdis required for changes
to this configuration variable to take effect.

MACHINE_RESOURCE_INVENTORY_<name> Specifies a command line that is executed upon start up of thecon-
dor_startddaemon. The script is expected to output an attribute definition of the form

Detected<xxx>=y

or of the form

Detected<xxx>="y, z, a, ..."

where<xxx> is the name of a resource that exists on the machine, andy is the quantity of the resource or
"y, z, a, ..." is a comma and/or space separated list of identifiers of the resource that exist on the
machine. This attribute is added to the machine ClassAd, such that these resources may be statically di-
vided or partitioned. A script may be a convenient way to specify a calculated or detected quantity of the
resource, instead of specifying a fixed quantity or list of the resource in the the configuration when set by
MACHINE_RESOURCE_<name>.

ENVIRONMENT_FOR_Assigned<name> A space separated list of environment variables to set for the job.
Each environment variable will be set to the list of assignedresources defined by the slot ClassAd attribute
Assigned<name> . Each environment variable name may be followed by an equalssign and a Perl style
regular expression that defines how to modify each resource ID before using it as the value of the environment
variable. As a special case for CUDA GPUs, if the environmentvariable name isCUDA_VISIBLE_DEVICES,
then the correct Perl style regular expression is applied automatically.

For example, with the configuration

ENVIRONMENT_FOR_AssignedGPUs = VISIBLE_GPUS=/^/gpuid: /

and with the machine ClassAd attributeAssignedGPUs = "CUDA1, CUDA2" , the job’s environment will
contain

VISIBLE_GPUS = gpuid:CUDA1, gpuid:CUDA2

HTCondor Version 8.6.4 Manual

3.5.9. condor_startd Configuration File Macros 274

ENVIRONMENT_VALUE_FOR_UnAssigned<name> Defines the value to set for environment variables specified
in by configuration variableENVIRONMENT_FOR_Assigned<name>when there is no machine ClassAd
attributeAssigned<name> for the slot. This configuration variable exists to deal withthe situation where
jobs will use a resource that they have not been assigned because there is no explicit assignment. The CUDA
runtime library (for GPUs) has this problem.

For example, where configuration is

ENVIRONMENT_FOR_AssignedGPUs = VISIBLE_GPUS
ENVIRONMENT_VALUE_FOR_UnAssignedGPUs = none

and there isnomachine ClassAd attributeAssignedGPUs , the job’s environment will contain

VISIBLE_GPUS = none

MUST_MODIFY_REQUEST_EXPRS A boolean value that defaults toFalse . WhenFalse , configuration variables
whose names begin withMODIFY_REQUEST_EXPRare only applied if the job claim still matches the parti-
tionable slot after modification. IfTrue , the modifications always take place, and if the modifications cause the
claim to no longer match, then thecondor_startdwill simply refuse the claim.

MODIFY_REQUEST_EXPR_REQUESTMEMORY An integer expression used by thecondor_startddaemon to modify
the evaluated value of theRequestMemory job ClassAd attribute, before it used to provision a dynamicslot.
The default value is given by

quantize(RequestMemory,{128})

MODIFY_REQUEST_EXPR_REQUESTDISK An integer expression used by thecondor_startddaemon to modify
the evaluated value of theRequestDisk job ClassAd attribute, before it used to provision a dynamicslot.
The default value is given by

quantize(RequestDisk,{1024})

MODIFY_REQUEST_EXPR_REQUESTCPUS An integer expression used by thecondor_startddaemon to modify
the evaluated value of theRequestCpus job ClassAd attribute, before it used to provision a dynamicslot.
The default value is given by

quantize(RequestCpus,{1})

NUM_SLOTS_TYPE_<N> This macro controls how many of a given slot type are actuallyreported to HTCondor.
There is no default.

NUM_SLOTS An integer value representing the number of slots reported when the multi-core machine is being evenly
divided, and the slot type settings described above are not being used. The default is one slot for each CPU.
This setting can be used to reserve some CPUs on a multi-core machine, which would not be reported to the
HTCondor pool. This value cannot be used to make HTCondor advertise more slots than there are CPUs on the
machine. To do that, useNUM_CPUS.

HTCondor Version 8.6.4 Manual

3.5.9. condor_startd Configuration File Macros 275

ALLOW_VM_CRUFT A boolean value that HTCondor sets and uses internally, currently defaulting toTrue . When
True , HTCondor looks for configuration variables named with the previously used stringVMafter searching
unsuccessfully for variables named with the currently usedstring SLOT. WhenFalse , HTCondor doesnot
look for variables named with the previously used stringVMafter searching unsuccessfully for the stringSLOT.

The following variables set consumption policies for partitionable slots. Section 3.7.1 details consumption policies.

CONSUMPTION_POLICY A boolean value that defaults toFalse . When True , consumption policies
are enabled for partitionable slots within thecondor_startd daemon. Any definition of the form
SLOT_TYPE_<N>_CONSUMPTION_POLICYoverrides this global definition for the given slot type.

CONSUMPTION_<Resource> An expression that specifies a consumption policy for a particular resource within
a partitionable slot. To support a consumption policy, eachresource advertised by the slot must have such a
policy configured. Custom resources may be specified, substituting the resource name for<Resource> . Any
definition of the formSLOT_TYPE_<N>_CONSUMPTION_<Resource>overrides this global definition for
the given slot type. CPUs, memory, and disk resources are always advertised bycondor_startd, and have the
default values:

CONSUMPTION_CPUS = quantize(target.RequestCpus,{1})
CONSUMPTION_MEMORY = quantize(target.RequestMemory,{1 28})
CONSUMPTION_DISK = quantize(target.RequestDisk,{1024})

Custom resources have no default consumption policy.

SLOT_WEIGHT An expression that specifies a slot’s weight, used as a multiplier the condor_negotiatordaemon
during matchmaking to assess user usage of a slot, which affects user priority. Defaults toCpus. In the case
of slots with consumption policies, the cost of each match isis assessed as the difference in the slot weight
expression before and after the resources consumed by the match are deducted from the slot. Only Memory,
Cpus and Disk are valid attributes for this parameter.

NUM_CLAIMS Specifies the number of claims a partitionable slot will advertise for use by thecondor_negotiator
daemon. In the case of slots with a defined consumption policy, thecondor_negotiatormay match more than
one job to the slot in a single negotiation cycle. For partitionable slots with a consumption policy,NUM_CLAIMS
defaults to the number of CPUs owned by the slot. Otherwise, it defaults to 1.

The following configuration variables support java universe jobs.

JAVA The full path to the Java interpreter (the Java Virtual Machine).

JAVA_CLASSPATH_ARGUMENT The command line argument to the Java interpreter (the Java Virtual Machine) that
specifies the Java Classpath. Classpath is a Java-specific term that denotes the list of locations (.jar files and/or
directories) where the Java interpreter can look for the Java class files that a Java program requires.

JAVA_CLASSPATH_SEPARATOR The single character used to delimit constructed entries inthe Classpath for the
given operating system and Java Virtual Machine. If not defined, the operating system is queried for its default
Classpath separator.

HTCondor Version 8.6.4 Manual

3.5.9. condor_startd Configuration File Macros 276

JAVA_CLASSPATH_DEFAULT A list of path names to.jar files to be added to the Java Classpath by default. The
comma and/or space character delimits list entries.

JAVA_EXTRA_ARGUMENTS A list of additional arguments to be passed to the Java executable.

The following configuration variables control .NET versionadvertisement.

STARTD_PUBLISH_DOTNET A boolean value that controls the advertising of the .NET framework on Windows
platforms. WhenTrue , thecondor_startdwill advertise all installed versions of the .NET frameworkwithin
theDotNetVersions attribute in thecondor_startdmachine ClassAd. The default value isTrue . Set the
value tofalse to turn off .NET version advertising.

DOT_NET_VERSIONS A string expression that administrators can use to overridethe way that .NET versions are
advertised. If the administrator wishes to advertise .NET installations, but wishes to do so in a format different
than what thecondor_startdpublishes in its ClassAds, setting a string in this expression will result in the
condor_startdpublishing the string whenSTARTD_PUBLISH_DOTNETis True . No value is set by default.

These macros control the power management capabilities of thecondor_startdto optionally put the machine in to
a low power state and wake it up later. See section 3.18 on page519 on Power Management for more details.

HIBERNATE_CHECK_INTERVAL An integer number of seconds that determines how often thecondor_startd
checks to see if the machine is ready to enter a low power state. The default value is 0, which disables the
check. If not 0, theHIBERNATEexpression is evaluated within the context of each slot at the given interval. If
used, a value 300 (5 minutes) is recommended.

As a special case, the interval is ignored when the machine has just returned from a low power state, excluding
"SHUTDOWN". In order to avoid machines from volleying between a runningstate and a low power state, an
hour of uptime is enforced after a machine has been woken. After the hour has passed, regular checks resume.

HIBERNATE A string expression that represents lower power state. Whenthis state name evaluates to a valid state
other than"NONE", causes HTCondor to put the machine into the specified low power state. The following
names are supported (and are not case sensitive):

"NONE", "0" : No-op; do not enter a low power state

"S1" , "1" , "STANDBY", "SLEEP" : On Windows, this is Sleep (standby)

"S2" , "2" : On Windows, this is Sleep (standby)

"S3" , "3" , "RAM", "MEM", "SUSPEND": On Windows, this is Sleep (standby)

"S4" , "4" , "DISK" , "HIBERNATE" : Hibernate

"S5" , "5" , "SHUTDOWN", "OFF" : Shutdown (soft-off)

TheHIBERNATEexpression is written in terms of the S-states as defined in the Advanced Configuration and
Power Interface (ACPI) specification. The S-states take theform S<n>, where <n> is an integer in the range 0
to 5, inclusive. The number that results from evaluating theexpression determines which S-state to enter. The
notation was adopted because it appears to be the standard naming scheme for power states on several popular

HTCondor Version 8.6.4 Manual

3.5.9. condor_startd Configuration File Macros 277

operating systems, including various flavors of Windows andLinux distributions. The other strings, such as
"RAM" and"DISK" , are provided for ease of configuration.

Since this expression is evaluated in the context of each slot on the machine, any one slot has veto power over
the other slots. If the evaluation ofHIBERNATEin one slot evaluates to"NONE" or "0" , then the machine will
not be placed into a low power state. On the other hand, if all slots evaluate to a non-zero value, but differ in
value, then the largest value is used as the representative power state.

Strings that do not match any in the table above are treated as"NONE".

UNHIBERNATE A boolean expression that specifies when an offline machine should be woken up. The default value
is MachineLastMatchTime =!= UNDEFINED . This expression does not do anything, unless there is an
instance ofcondor_roosterrunning, or another program that evaluates theUnhibernate expression of offline
machine ClassAds. In addition, the collecting of offline machine ClassAds must be enabled for this expression
to work. The variableCOLLECTOR_PERSISTENT_AD_LOGon page?? detailed on page 278 explains this.
The special attributeMachineLastMatchTime is updated in the ClassAds of offline machines when a job
would have been matched to the machine if it had been online. For multi-slot machines, the offline ClassAd
for slot1 will also contain the attributesslot<X>_MachineLastMatchTime , whereX is replaced by the
slot id of the other slots that would have been matched while offline. This allows the slot1UNHIBERNATE
expression to refer to all of the slots on the machine, in casethat is necessary. By default,condor_roosterwill
wake up a machine if any slot on the machine has itsUNHIBERNATEexpression evaluate toTrue .

HIBERNATION_PLUGIN A string which specifies the path and executable name of the hibernation plug-in that the
condor_startdshould use in the detection of low power states and switchingto the low power states. The default
value is$(LIBEXEC)/power_state . A default executable in that location which meets these specifications
is shipped with HTCondor.

The condor_startd initially invokes this plug-in with both the value defined for
HIBERNATION_PLUGIN_ARGSand the argumentad, and expects the plug-in to output a ClassAd to
its standard output stream. Thecondor_startdwill use this ClassAd to determine what low power set-
ting to use on further invocations of the plug-in. To that end, the ClassAd must contain the attribute
HibernationSupportedStates , a comma separated list of low power modes that are available. The
recognized mode strings are the same as those in the table forthe configuration variableHIBERNATE. The
optional attributeHibernationMethod specifies a string which describes the mechanism used by the
plug-in. The default Linux plug-in shipped with HTCondor will produce one of the stringsNONE, /sys ,
/proc , or pm-utils . The optional attributeHibernationRawMask is an integer which represents the bit
mask of the modes detected.

Subsequentcondor_startd invocations of the plug-in have command line arguments defined by
HIBERNATION_PLUGIN_ARGSplus the argumentset<power-mode>, where<power-mode>is one of the
supported states as given in the attributeHibernationSupportedStates .

HIBERNATION_PLUGIN_ARGS Command line arguments appended to the command that invokesthe plug-in. The
additional argumentad is appended when thecondor_startdinitially invokes the plug-in.

HIBERNATION_OVERRIDE_WOL A boolean value that defaults toFalse . When True , it causes thecon-
dor_startddaemon’s detection of the whether or not the network interface handles WOL packets to be ignored.
WhenFalse , hibernation is disabled if the network interface does not use WOL packets to wake from hiberna-
tion. Therefore, whenTrue hibernation can be enabled despite the fact that WOL packetsare not used to wake
machines.

HTCondor Version 8.6.4 Manual

3.5.9. condor_startd Configuration File Macros 278

LINUX_HIBERNATION_METHOD A string that can be used to override the default search used by HTCondor on
Linux platforms to detect the hibernation method to use. This is used by the default hibernation plug-in exe-
cutable that is shipped with HTCondor. The default behaviororders its search with:

1. Detect and use thepm-utilscommand line tools. The corresponding string is defined with"pm-utils" .

2. Detect and use the directory in the virtual file system/sys/power . The corresponding string is defined
with "/sys" .

3. Detect and use the directory in the virtual file system/proc/ACPI . The corresponding string is defined
with "/proc" .

To override this ordered search behavior, and force the use of one particular method, set
LINUX_HIBERNATION_METHODto one of the defined strings.

OFFLINE_LOG This configuration variable is no longer used. It has been replaced by
COLLECTOR_PERSISTENT_AD_LOG.

OFFLINE_EXPIRE_ADS_AFTER An integer number of seconds specifying the lifetime of the persistent machine
ClassAd representing a hibernating machine. Defaults to the largest 32-bit integer.

The following macros control the optional computation of resource availability statistics in thecondor_startd.

STARTD_COMPUTE_AVAIL_STATS A boolean value that determines if thecondor_startdcomputes resource avail-
ability statistics. The default isFalse .

If STARTD_COMPUTE_AVAIL_STATSis True , the condor_startdwill define the following ClassAd at-
tributes for resources:

AvailTime The proportion of the time (between 0.0 and 1.0) that this resource has been in a state other than
Owner.

LastAvailInterval The duration in seconds of the last period between Owner states.

The following attributes will also be included if the resource is not in the Owner state:

AvailSince The time at which the resource last left the Owner state. Measured in the number of seconds
since the epoch (00:00:00 UTC, Jan 1, 1970).

AvailTimeEstimate Based on past history, an estimate of how long the current period between Owner
states will last.

STARTD_AVAIL_CONFIDENCE A floating point number representing the confidence level of the condor_startd
daemon’sAvailTime estimate. By default, the estimate is based on the 80th percentile of past values, so the
value is initially set to 0.8.

STARTD_MAX_AVAIL_PERIOD_SAMPLES An integer that limits the number of samples of past available intervals
stored by thecondor_startdto limit memory and disk consumption. Each sample requires 4bytes of memory
and approximately 10 bytes of disk space.

HTCondor Version 8.6.4 Manual

3.5.10. condor_schedd Configuration File Entries 279

DOCKER Defines the path and executable name of the Docker CLI. The default value is /usr/bin/docker. Remember
that the condor user must also be in the docker group for Docker Universe to work.

An example of the configuration for running the Docker CLI:

DOCKER = /usr/bin/docker

DOCKER_IMAGE_CACHE_SIZE The number of most recently used Docker images that will be kept on the local
machine. The default value is 20.

OPENMPI_INSTALL_PATH The location of the Open MPI installation on the local machine. Referenced by
examples/openmpiscript , which is used for running Open MPI jobs in the parallel universe. The Open
MPI bin and lib directories should exist under this path. Thedefault value is/usr/lib64/openmpi .

OPENMPI_EXCLUDE_NETWORK_INTERFACES A comma-delimited list of network interfaces that Open MPI
should not use for MPI communications. Referenced byexamples/openmpiscript , which is used for
running Open MPI jobs in the parallel universe.

The list should contain any interfaces that your job could potentially see from any execute machine. The list
may contain undefined interfaces without generating errors. Open MPI should exclusively use low latency/high
speed networks it finds (e.g. InfiniBand) regardless of this setting. The default value isdocker0 ,virbr0 .

3.5.10 condor_schedd Configuration File Entries

These macros control thecondor_schedd.

SHADOW This macro determines the full path of thecondor_shadowbinary that thecondor_scheddspawns. It is
normally defined in terms of$(SBIN) .

START_LOCAL_UNIVERSE A boolean value that defaults toTotalLocalJobsRunning < 200 . The con-
dor_schedduses this macro to determine whether to start alocal universe job. At intervals determined by
SCHEDD_INTERVAL, thecondor_schedddaemon evaluates this macro for each idlelocal universe job that it
has. For each job, if theSTART_LOCAL_UNIVERSEmacro isTrue , then the job’sRequirements expres-
sion is evaluated. If both conditions are met, then the job isallowed to begin execution.

The following example only allows 10local universe jobs to execute concurrently. The attribute
TotalLocalJobsRunning is supplied bycondor_schedd’s ClassAd:

START_LOCAL_UNIVERSE = TotalLocalJobsRunning < 10

STARTER_LOCAL The complete path and executable name of thecondor_starterto run forlocal universe jobs. This
variable’s value is defined in the initial configuration provided with HTCondor as

STARTER_LOCAL = $(SBIN)/condor_starter

HTCondor Version 8.6.4 Manual

3.5.10. condor_schedd Configuration File Entries 280

This variable would only be modified or hand added into the configuration for a pool to be upgraded from one
running a version of HTCondor that existed before thelocal universe to one that includes thelocal universe, but
without utilizing the newer, provided configuration files.

LOCAL_UNIV_EXECUTE A string value specifying the execute location for local universe jobs. Each running local
universe job will receive a uniquely named subdirectory within this directory. If not specified, it defaults to
$(SPOOL)/local_univ_execute .

START_SCHEDULER_UNIVERSE A boolean value that defaults toTotalSchedulerJobsRunning < 200 .
The condor_schedduses this macro to determine whether to start ascheduleruniverse job. At intervals de-
termined bySCHEDD_INTERVAL, thecondor_schedddaemon evaluates this macro for each idlescheduler
universe job that it has. For each job, if theSTART_SCHEDULER_UNIVERSEmacro isTrue , then the job’s
Requirements expression is evaluated. If both conditions are met, then the job is allowed to begin execution.

The following example only allows 10scheduler universe jobs to execute concurrently. The attribute
TotalSchedulerJobsRunning is supplied bycondor_schedd’s ClassAd:

START_SCHEDULER_UNIVERSE = TotalSchedulerJobsRunning < 10

SCHEDD_USES_STARTD_FOR_LOCAL_UNIVERSE A boolean value that defaults to false. When true, thecon-
dor_scheddwill spawn a special startd process to run local universe jobs. This allows local universe jobs to run
with both a condor_shadow and a condor_starter, which meansthat file transfer will work with local universe
jobs.

MAX_JOBS_RUNNING An integer representing a limit on the number ofcondor_shadowprocesses spawned by a
given condor_schedddaemon, for all job universes except grid, scheduler, and local universe. Limiting the
number of running scheduler and local universe jobs can be done usingSTART_LOCAL_UNIVERSEand
START_SCHEDULER_UNIVERSE. The actual number of allowedcondor_shadowdaemons may be reduced,
if the amount of memory defined byRESERVED_SWAPlimits the number ofcondor_shadowdaemons. A
value forMAX_JOBS_RUNNINGthat is less than or equal to 0 prevents any new job from starting. Changing
this setting to be below the current number of jobs that are running will cause running jobs to be aborted until
the number running is within the limit.

Like all integer configuration variables,MAX_JOBS_RUNNINGmay be a ClassAd expression that evaluates
to an integer, and which refers to constants either directlyor via macro substitution. The default value is an
expression that depends on the total amount of memory and theoperating system. The default expression
requires 1MByte of RAM per running job on the submit machine.In some environments and configurations,
this is overly generous and can be cut by as much as 50%. On Windows platforms, the number of running jobs
is capped at 2000. A 64-bit version of Windows is recommendedin order to raise the value above the default.
Under Unix, the maximum default is now 10,000. To scale higher, we recommend that the system ephemeral
port range is extended such that there are at least 2.1 ports per running job.

Here are example configurations:

Example 1:
MAX_JOBS_RUNNING = 10000

Example 2:
This is more complicated, but it produces the same limit as the default.

HTCondor Version 8.6.4 Manual

3.5.10. condor_schedd Configuration File Entries 281

First define some expressions to use in our calculation.
Assume we can use up to 80% of memory and estimate shadow pri vate data
size of 800k.
MAX_SHADOWS_MEM = ceiling($(DETECTED_MEMORY)* 0.8 * 1024/800)
Assume we can use ~21,000 ephemeral ports (avg ~2.1 per sha dow).
Under Linux, the range is set in /proc/sys/net/ipv4/ip_l ocal_port_range.
MAX_SHADOWS_PORTS = 10000
Under windows, things are much less scalable, currently.
Note that this can probably be safely increased a bit under 64-bit windows.
MAX_SHADOWS_OPSYS = ifThenElse(regexp("WIN. * ","$(OPSYS)"),2000,100000)
Now build up the expression for MAX_JOBS_RUNNING. This is complicated
due to lack of a min() function.
MAX_JOBS_RUNNING = $(MAX_SHADOWS_MEM)
MAX_JOBS_RUNNING = \

ifThenElse($(MAX_SHADOWS_PORTS) < $(MAX_JOBS_RUNNING), \
$(MAX_SHADOWS_PORTS), \
$(MAX_JOBS_RUNNING))

MAX_JOBS_RUNNING = \
ifThenElse($(MAX_SHADOWS_OPSYS) < $(MAX_JOBS_RUNNING), \

$(MAX_SHADOWS_OPSYS), \
$(MAX_JOBS_RUNNING))

MAX_JOBS_SUBMITTED This integer value limits the number of jobs permitted in acondor_schedddaemon’s
queue. Submission of a new cluster of jobs fails, if the totalnumber of jobs would exceed this limit. The
default value for this variable is the largest positive integer value.

MAX_JOBS_PER_OWNER This integer value limits the number of jobs any given owner (user) is permitted to have
within a condor_schedddaemon’s queue. A job submission fails if it would cause thislimit on the number of
jobs to be exceeded. The default value is 100000.

This configuration variable may be most useful in conjunction with MAX_JOBS_SUBMITTED, to ensure that
no one user can dominate the queue.

MAX_RUNNING_SCHEDULER_JOBS_PER_OWNER This integer value limits the number of scheduler universe jobs
that any given owner (user) can have running at one time. Thislimit will affect the number of running Dagman
jobs, but not the number of nodes within a DAG. The default is no limit

MAX_JOBS_PER_SUBMISSION This integer value limits the number of jobs any single submission is permitted to
add to acondor_schedddaemon’s queue. The whole submission fails if the number of jobs would exceed this
limit. The default value is 20000.

This configuration variable may be useful for catching user error, and for protecting a busycondor_schedd
daemon from the excessively lengthy interruption requiredto accept a very large number of jobs at one time.

MAX_SHADOW_EXCEPTIONS This macro controls the maximum number of times thatcondor_shadowprocesses
can have a fatal error (exception) before thecondor_scheddwill relinquish the match associated with the dying
shadow. Defaults to 5.

MAX_PENDING_STARTD_CONTACTS An integer value that limits the number of simultaneous connection attempts
by thecondor_scheddwhen it is requesting claims from one or morecondor_startddaemons. The intention is
to protect thecondor_scheddfrom being overloaded by authentication operations. The default value is 0. The
special value 0 indicates no limit.

HTCondor Version 8.6.4 Manual

3.5.10. condor_schedd Configuration File Entries 282

CURB_MATCHMAKING A ClassAd expression evaluated by thecondor_scheddin the context of thecondor_schedd
daemon’s own ClassAd. While this expression evaluates toTrue , thecondor_scheddwill refrain from request-
ing more resources from acondor_negotiator. Defaults toFalse .

MAX_CONCURRENT_DOWNLOADS This specifies the maximum number of simultaneous transfersof output files
from execute machines to the submit machine. The limit applies to all jobs submitted from the samecon-
dor_schedd. The default is 10. A setting of 0 means unlimited transfers.This limit currently does not apply to
grid universe jobs or standard universe jobs, and it also does not apply to streaming output files. When the limit
is reached, additional transfers will queue up and wait before proceeding.

MAX_CONCURRENT_UPLOADS This specifies the maximum number of simultaneous transfersof input files from
the submit machine to execute machines. The limit applies toall jobs submitted from the samecondor_schedd.
The default is 10. A setting of 0 means unlimited transfers. This limit currently does not apply to grid universe
jobs or standard universe jobs. When the limit is reached, additional transfers will queue up and wait before
proceeding.

FILE_TRANSFER_DISK_LOAD_THROTTLE This configures throttling of file transfers based on the disk
load generated by file transfers. The maximum number of concurrent file transfers is specified by
MAX_CONCURRENT_UPLOADSandMAX_CONCURRENT_DOWNLOADS. Throttling will dynamically reduce
the level of concurrency further to attempt to prevent disk load from exceeding the specified level. Disk load
is computed as the average number of file transfer processes conducting read/write operations at the same time.
The throttle may be specified as a single floating point numberor as a range. Syntax for the range is the smaller
number followed by 1 or more spaces or tabs, the string"to" , 1 or more spaces or tabs, and then the larger
number. Example:

FILE_TRANSFER_DISK_LOAD_THROTTLE = 5 to 6.5

If only a single number is provided, this serves as the upper limit, and the lower limit is set to 90% of the upper
limit. When the disk load is above the upper limit, no new transfers will be started. When between the lower
and upper limits, new transfers will only be started to replace ones that finish. There is no default value if this
variable is not defined.

FILE_TRANSFER_DISK_LOAD_THROTTLE_WAIT_BETWEEN_INCREMENTS This rarely config-
ured variable sets the waiting period between increments tothe concurrency level set by
FILE_TRANSFER_DISK_LOAD_THROTTLE. The default is 1 minute. A value that is too short risks
starting too many transfers before their effect on the disk load becomes apparent.

FILE_TRANSFER_DISK_LOAD_THROTTLE_SHORT_HORIZON This rarely configured variable specifies the
string name of the short monitoring time span to use for throttling. The named time span must exist in
TRANSFER_IO_REPORT_TIMESPANS. The default is1m, which is 1 minute.

FILE_TRANSFER_DISK_LOAD_THROTTLE_LONG_HORIZON This rarely configured variable specifies the
string name of the long monitoring time span to use for throttling. The named time span must exist in
TRANSFER_IO_REPORT_TIMESPANS. The default is5m, which is 5 minutes.

TRANSFER_QUEUE_USER_EXPR This rarely configured expression specifies the user name to be used for schedul-
ing purposes in the file transfer queue. The scheduler attempts to give equal weight to each user when there
are multiple jobs waiting to transfer files within the limitsset by MAX_CONCURRENT_UPLOADSand/or
MAX_CONCURRENT_DOWNLOADS. When choosing a new job to allow to transfer, the first job belonging

HTCondor Version 8.6.4 Manual

3.5.10. condor_schedd Configuration File Entries 283

to the transfer queue user who has least number of active transfers will be selected. In case of a tie, the
user who has least recently been given an opportunity to start a transfer will be selected. By default, a
transfer queue user is identified as the job owner. A different user name may be specified by configuring
TRANSFER_QUEUE_USER_EXPRto a string expression that is evaluated in the context of thejob ad. For
example, if this expression were set to a name that is the samefor all jobs, file transfers would be scheduled in
first-in-first-out order rather than equal share order. Notethat the string produced by this expression is used as
a prefix in the ClassAd attributes for per-user file transfer I/O statistics that are published in thecondor_schedd
ClassAd.

MAX_TRANSFER_INPUT_MB This integer expression specifies the maximum allowed totalsize in MiB of the input
files that are transferred for a job. This expression doesnot apply to grid universe, standard universe, or files
transferred via file transfer plug-ins. The expression may refer to attributes of the job. The special value-1
indicates no limit. The default value is -1. The job may override the system setting by specifying its own limit
using theMaxTransferInputMB attribute. If the observed size of all input files at submit time is larger than
the limit, the job will be immediately placed on hold with aHoldReasonCode value of 32. If the job passes
this initial test, but the size of the input files increases orthe limit decreases so that the limit is violated, the job
will be placed on hold at the time when the file transfer is attempted.

MAX_TRANSFER_OUTPUT_MB This integer expression specifies the maximum allowed totalsize in MiB of the
output files that are transferred for a job. This expression doesnot apply to grid universe, standard universe, or
files transferred via file transfer plug-ins. The expressionmay refer to attributes of the job. The special value
-1 indicates no limit. The default value is -1. The job may override the system setting by specifying its own
limit using theMaxTransferOutputMB attribute. If the total size of the job’s output files to be transferred is
larger than the limit, the job will be placed on hold with aHoldReasonCode value of 33. The output will be
transferred up to the point when the limit is hit, so some filesmay be fully transferred, some partially, and some
not at all.

MAX_TRANSFER_QUEUE_AGE The number of seconds after which an aged and queued transfermay be dequeued
from the transfer queue, as it is presumably hung. Defaults to 7200 seconds, which is 120 minutes.

TRANSFER_IO_REPORT_INTERVAL The sampling interval in seconds for collecting I/O statistics for file transfer.
The default is 10 seconds. To provide sufficient resolution,the sampling interval should be small compared to
the smallest time span that is configured inTRANSFER_IO_REPORT_TIMESPANS. The shorter the sampling
interval, the more overhead of data collection, which may slow down thecondor_schedd. See page 1046 for a
description of the published attributes.

TRANSFER_IO_REPORT_TIMESPANS A string that specifies a list of time spans over which I/O statistics are
reported, using exponential moving averages (like the 1m, 5m, and 15m load averages in Unix). Each entry in
the list consists of a label followed by a colon followed by the number of seconds over which the named time
span should extend. The default is1m:60 5m:300 1h:3600 1d:86400 . To provide sufficient resolution,
the smallest reported time span should be large compared to the sampling interval, which is configured by
TRANSFER_IO_REPORT_INTERVAL. See page 1046 for a description of the published attributes.

SCHEDD_QUERY_WORKERS This specifies the maximum number of concurrent sub-processes that thecon-
dor_scheddwill spawn to handle queries. The setting is ignored in Windows. In Unix, the default is 8. If
the limit is reached, the next query will be handled in thecondor_schedd’s main process.

HTCondor Version 8.6.4 Manual

3.5.10. condor_schedd Configuration File Entries 284

CONDOR_Q_USE_V3_PROTOCOL A boolean value that, whenTrue , causes thecondor_scheddto use an algorithm
that responds tocondor_qrequests bynot forking itself to handle each request. It instead handles the requests
in a non-blocking way. The default value isTrue .

CONDOR_Q_DASH_BATCH_IS_DEFAULT A boolean value that, whenTrue , causescondor_qto print the-batch
output unless the-nobatchoption is used or the other arguments tocondor_qare incompatible with batch mode.
For instance-long is incompatible with-batch. The default value isTrue .

CONDOR_Q_ONLY_MY_JOBS A boolean value that, whenTrue , causescondor_qto request that only the current
user’s jobs be queried unless the current user is a queue superuser. It also causes thecondor_scheddto honor
that request. The default value isTrue . A value ofFalse in eithercondor_qor thecondor_scheddwill result
in the old behavior of querying all jobs.

SCHEDD_INTERVAL This macro determines the maximum interval for both how often thecondor_scheddsends a
ClassAd update to thecondor_collectorand how often thecondor_schedddaemon evaluates jobs. It is defined
in terms of seconds and defaults to 300 (every 5 minutes).

ABSENT_SUBMITTER_LIFETIME This macro determines the maximum time that thecondor_scheddwill remem-
ber a submitter after the last job for that submitter leaves the queue. It is defined in terms of seconds and defaults
to 1 week.

ABSENT_SUBMITTER_UPDATE_RATE This macro can be used to set the maximum rate at which thecon-
dor_scheddsends updates to thecondor_collectorfor submitters that have no jobs in the queue. It is defined in
terms of seconds and defaults to 300 (every 5 minutes).

WINDOWED_STAT_WIDTH The number of seconds that forms a time window within which performance statistics
of thecondor_schedddaemon are calculated. Defaults to 300 seconds.

SCHEDD_INTERVAL_TIMESLICE The bookkeeping done by thecondor_scheddtakes more time when there are
large numbers of jobs in the job queue. However, when it is nottoo expensive to do this bookkeeping, it is best
to keep the collector up to date with the latest state of the job queue. Therefore, this macro is used to adjust
the bookkeeping interval so that it is done more frequently when the cost of doing so is relatively small, and
less frequently when the cost is high. The default is 0.05, which means the schedd will adapt its bookkeeping
interval to consume no more than 5% of the total time available to the schedd. The lower bound is configured by
SCHEDD_MIN_INTERVAL(default 5 seconds), and the upper bound is configured bySCHEDD_INTERVAL
(default 300 seconds).

JOB_START_COUNT This macro works together with theJOB_START_DELAYmacro to throttle job starts. The
default and minimum values for this integer configuration variable are both 1.

JOB_START_DELAY This integer-valued macro works together with theJOB_START_COUNTmacro to throt-
tle job starts. Thecondor_schedddaemon starts$(JOB_START_COUNT)jobs at a time, then delays for
$(JOB_START_DELAY) seconds before starting the next set of jobs. This delay prevents a sudden, large
load on resources required by the jobs during their start up phase. The resulting job start rate averages as fast
as ($(JOB_START_COUNT)/$(JOB_START_DELAY)) jobs/second. This setting is defined in terms of sec-
onds and defaults to 0, which means jobs will be started as fast as possible. If you wish to throttle the rate of
specific types of jobs, you can use the job attributeNextJobStartDelay .

MAX_NEXT_JOB_START_DELAY An integer number of seconds representing the maximum allowed value of the
job ClassAd attributeNextJobStartDelay . It defaults to 600, which is 10 minutes.

HTCondor Version 8.6.4 Manual

3.5.10. condor_schedd Configuration File Entries 285

JOB_STOP_COUNT An integer value representing the number of jobs operated onat one time by thecondor_schedd
daemon, when throttling the rate at which jobs are stopped viacondor_rm, condor_hold, orcondor_vacate_job.
The default and minimum values are both 1. This variable is ignored for grid and scheduler universe jobs.

JOB_STOP_DELAY An integer value representing the number of seconds delay utilized by the condor_schedd
daemon, when throttling the rate at which jobs are stopped via condor_rm, condor_hold, or con-
dor_vacate_job. The condor_schedddaemon stops$(JOB_STOP_COUNT)jobs at a time, then delays for
$(JOB_STOP_DELAY)seconds before stopping the next set of jobs. This delay prevents a sudden, large load
on resources required by the jobs when they are terminating.The resulting job stop rate averages as fast as
JOB_STOP_COUNT/JOB_STOP_DELAYjobs per second. This configuration variable is also used during the
graceful shutdown of thecondor_schedddaemon. During graceful shutdown, this macro determines the wait
time in between requesting eachcondor_shadowdaemon to gracefully shut down. The default value is 0, which
means jobs will be stopped as fast as possible. This variableis ignored for grid and scheduler universe jobs.

JOB_IS_FINISHED_COUNT An integer value representing the number of jobs that thecondor_scheddwill let
permanently leave the job queue each time that it examines the jobs that are ready to do so. The default value is
1.

JOB_IS_FINISHED_INTERVAL Thecondor_scheddmaintains a list of jobs that are ready to permanently leave
the job queue, for example, when they have completed or been removed. This integer-valued macro specifies a
delay in seconds between instances of taking jobs permanently out of the queue. The default value is 0, which
tells thecondor_scheddto not impose any delay.

ALIVE_INTERVAL An initial value for an integer number of seconds defining howoften thecondor_scheddsends a
UDP keep alive message to anycondor_startdit has claimed. When thecondor_scheddclaims acondor_startd,
the condor_scheddtells thecondor_startdhow often it is going to send these messages. The utilized inter-
val for sending keep alive messages is the smallest of the twovaluesALIVE_INTERVAL and the expression
JobLeaseDuration/3 , formed with the job ClassAd attributeJobLeaseDuration . The value of the in-
terval is further constrained by the floor value of 10 seconds. If the condor_startddoes not receive any of these
keep alive messages during a certain period of time (defined via MAX_CLAIM_ALIVES_MISSED, described
on page 266) thecondor_startdreleases the claim, and thecondor_scheddno longer pays for the resource (in
terms of user priority in the system). The macro is defined in terms of seconds and defaults to 300, which is 5
minutes.

STARTD_SENDS_ALIVES Note: This setting is deprecated, and may go away in a future version of HTCondor.
This setting is mainly useful when running mixing very oldcondor_schedddaemons with newer pools. A
boolean value that defaults toTrue , causing keep alive messages to be sent from thecondor_startdto the
condor_scheddby TCP during a claim. WhenFalse , thecondor_schedddaemon sends keep alive signals to
thecondor_startd, reversing the direction. If bothcondor_startdandcondor_schedddaemons are HTCondor
version 7.5.4 or more recent, this variable is only used by the condor_schedddaemon. For earlier HTCondor
versions, the variable must be set to the same value, and it must be set for both daemons.

REQUEST_CLAIM_TIMEOUT This macro sets the time (in seconds) that thecondor_scheddwill wait for a
claim to be granted by thecondor_startd. The default is 30 minutes. This is only likely to matter if
NEGOTIATOR_CONSIDER_EARLY_PREEMPTIONis True , and thecondor_startdhas an existing claim,
and it takes a long time for the existing claim to be preempteddue toMaxJobRetirementTime . Once a
request times out, thecondor_scheddwill simply begin the process of finding a machine for the job all over
again.

HTCondor Version 8.6.4 Manual

3.5.10. condor_schedd Configuration File Entries 286

Normally, it is not a good idea to set this to be very small, where a small value is a few minutes. Doing so can
lead to failure to preempt, because the preempting job will spend a significant fraction of its time waiting to be
re-matched. During that time, it would miss out on any opportunity to run if the job it is trying to preempt gets
out of the way.

SHADOW_SIZE_ESTIMATE The estimated private virtual memory size of eachcondor_shadowprocess in KiB.
This value is only used ifRESERVED_SWAPis non-zero. The default value is 800.

SHADOW_RENICE_INCREMENT When thecondor_scheddspawns a newcondor_shadow, it can do so with anice-
level. A nice-level is a Unix mechanism that allows users to assigntheir own processes a lower priority so that
the processes run with less priority than other tasks on the machine. The value can be any integer between 0 and
19, with a value of 19 being the lowest priority. It defaults to 0.

SCHED_UNIV_RENICE_INCREMENT Analogous to JOB_RENICE_INCREMENT and
SHADOW_RENICE_INCREMENT, scheduler universe jobs can be given a nice-level. The value can be
any integer between 0 and 19, with a value of 19 being the lowest priority. It defaults to 0.

QUEUE_CLEAN_INTERVAL Thecondor_scheddmaintains the job queue on a given machine. It does so in a persis-
tent way such that if thecondor_scheddcrashes, it can recover a valid state of the job queue. The mechanism
it uses is a transaction-based log file (thejob_queue.log file, not theSchedLog file). This file contains
an initial state of the job queue, and a series of transactions that were performed on the queue (such as new
jobs submitted, jobs completing, and checkpointing). Periodically, thecondor_scheddwill go through this log,
truncate all the transactions and create a new file with containing only the new initial state of the log. This is
a somewhat expensive operation, but it speeds up when thecondor_scheddrestarts since there are fewer trans-
actions it has to play to figure out what state the job queue is really in. This macro determines how often the
condor_scheddshould rework this queue to cleaning it up. It is defined in terms of seconds and defaults to
86400 (once a day).

WALL_CLOCK_CKPT_INTERVAL The job queue contains a counter for each job’s “wall clock” run time, i.e., how
long each job has executed so far. This counter is displayed by condor_q. The counter is updated when the
job is evicted or when the job completes. When thecondor_scheddcrashes, the run time for jobs that are
currently running will not be added to the counter (and so, the run time counter may become smaller than the
CPU time counter). Thecondor_scheddsaves run time “checkpoints” periodically for running jobsso if the
condor_scheddcrashes, only run time since the last checkpoint is lost. This macro controls how often the
condor_scheddsaves run time checkpoints. It is defined in terms of seconds and defaults to 3600 (one hour). A
value of 0 will disable wall clock checkpoints.

QUEUE_ALL_USERS_TRUSTED Defaults to False. If set to True, then unauthenticated users are allowed to write to
the queue, and also we always trust whatever theOwner value is set to be by the client in the job ad. This was
added so users can continue to use the SOAP web-services interface over HTTP (w/o authenticating) to submit
jobs in a secure, controlled environment – for instance, in aportal setting.

QUEUE_SUPER_USERS A comma and/or space separated list of user names on a given machine that are givensuper-
user accessto the job queue, meaning that they can modify or delete the job ClassAds of other users. When
not on this list, users can only modify or delete their own ClassAds from the job queue. Whatever user name
corresponds with the UID that HTCondor is running as – usually usercondor – will automatically be included
in this list, because that is needed for HTCondor’s proper functioning. See section 3.8.13 on UIDs in HTCondor
for more details on this. By default, the Unix userroot and the Windows useradministrator are given the

HTCondor Version 8.6.4 Manual

3.5.10. condor_schedd Configuration File Entries 287

ability to remove other user’s jobs, in addition to usercondor . In addition to a single user, Unix user groups
may be specified by using a special syntax defined for this configuration variable; the syntax is the percent
character (%) followed by the user group name. All members of the user group are given super-user access.

QUEUE_SUPER_USER_MAY_IMPERSONATE A regular expression that matches the user names (that is, job owner
names) that the queue super user may impersonate when managing jobs. When not set, the default behavior is to
allow impersonation of any user who has had a job in the queue during the life of thecondor_schedd. For proper
functioning of thecondor_shadow, thecondor_gridmanager, and thecondor_job_router, this expression, if set,
must match the owner names of all jobs that these daemons willmanage. Note that a regular expression that
matches only part of the user name is still considered a match. If acceptance of partial matches is not desired,
the regular expression should begin with^ and end with$.

SYSTEM_JOB_MACHINE_ATTRS This macro specifies a space and/or comma separated list of machine at-
tributes that should be recorded in the job ClassAd. The default attributes areCpus and SlotWeight .
When there are multiple run attempts, history of machine attributes from previous run attempts
may be kept. The number of run attempts to store is specified bythe configuration variable
SYSTEM_JOB_MACHINE_ATTRS_HISTORY_LENGTH. A machine attribute namedX will be inserted into
the job ClassAd as an attribute namedMachineAttrX0 . The previous value of this attribute will be named
MachineAttrX1 , the previous to that will be namedMachineAttrX2 , and so on, up to the specified his-
tory length. A history of length 1 means that onlyMachineAttrX0 will be recorded. Additional attributes
to record may be specified on a per-job basis by using thejob_machine_attrssubmit file command. The value
recorded in the job ClassAd is the evaluation of the machine attribute in the context of the job ClassAd when the
condor_schedddaemon initiates the start up of the job. If the evaluation results in anUndefined or Error
result, the value recorded in the job ClassAd will beUndefined or Error respectively.

SYSTEM_JOB_MACHINE_ATTRS_HISTORY_LENGTH The integer number of run attempts to store in the job
ClassAd when recording the values of machine attributes listed in SYSTEM_JOB_MACHINE_ATTRS. The
default is 1. The history length may also be extended on a per-job basis by using the submit file command
job_machine_attrs_history_length. The larger of the system and per-job history lengths will beused. A
history length of 0 disables recording of machine attributes.

SCHEDD_LOCK This macro specifies what lock file should be used for access tothe SchedLog file. It must be
a separate file from theSchedLog , since theSchedLog may be rotated and synchronization across log file
rotations is desired. This macro is defined relative to the$(LOCK) macro.

SCHEDD_NAME Used to give an alternative value to theNameattribute in thecondor_schedd’s ClassAd.

See the description ofMASTER_NAMEin section 3.5.8 on page 260 for defaults and composition of valid HT-
Condor daemon names. Also, note that if theMASTER_NAMEsetting is defined for thecondor_masterthat
spawned a givencondor_schedd, that name will take precedence over whatever is defined inSCHEDD_NAME.

SCHEDD_ATTRS This macro is described in section 3.5.4 as<SUBSYS>_ATTRS.

SCHEDD_DEBUG This macro (and other settings related to debug logging in the condor_schedd) is described in
section 3.5.3 as<SUBSYS>_DEBUG.

SCHEDD_ADDRESS_FILE This macro is described in section 3.5.4 as<SUBSYS>_ADDRESS_FILE.

SCHEDD_EXECUTE A directory to use as a temporary sandbox for local universe jobs. Defaults to
$(SPOOL)/execute .

HTCondor Version 8.6.4 Manual

3.5.10. condor_schedd Configuration File Entries 288

FLOCK_NEGOTIATOR_HOSTS Defines a comma and/or space separated list ofcondor_negotiatorhost names for
pools in which thecondor_scheddshould attempt to run jobs. If not set, thecondor_scheddwill query thecon-
dor_collectordaemons for the addresses of thecondor_negotiatordaemons. If set, then thecondor_negotiator
daemons must be specified in order, corresponding to the listset byFLOCK_COLLECTOR_HOSTS. In the
typical case, where each pool has thecondor_collectorandcondor_negotiatorrunning on the same machine,
$(FLOCK_NEGOTIATOR_HOSTS)should have the same definition as$(FLOCK_COLLECTOR_HOSTS).
This configuration value is also typically used as a macro foradding thecondor_negotiatorto the relevant
authorization lists.

FLOCK_COLLECTOR_HOSTS This macro defines a list of collector host names (not including the local
$(COLLECTOR_HOST)machine) for pools in which thecondor_scheddshould attempt to run jobs. Hosts
in the list should be in order of preference. Thecondor_scheddwill only send a request to a central
manager in the list if the local pool and pools earlier in the list are not satisfying all the job requests.
$(HOSTALLOW_NEGOTIATOR_SCHEDD)(see section 3.5.4) must also be configured to allow negotiators
from all of the pools to contact thecondor_scheddat theNEGOTIATORauthorization level. Similarly, the cen-
tral managers of the remote pools must be configured to allow thiscondor_scheddto join the pool (this requires
ADVERTISE_SCHEDDauthorization level, which defaults toWRITE).

FLOCK_INCREMENT This integer value controls how quickly flocking to various pools will occur. It defaults to
1, meaning that pools will be considered for flocking slowly.The first condor_collectordaemon listed in
FLOCK_COLLECTOR_HOSTSwill be considered for flocking, and then the second, and so on. A larger value
increases the number ofcondor_collectordaemons to be considered for flocking. For example, a value of2
will partition theFLOCK_COLLECTOR_HOSTSinto sets of 2condor_collectordaemons, and each set will be
considered for flocking.

NEGOTIATE_ALL_JOBS_IN_CLUSTER If this macro is set to False (the default), when thecondor_scheddfails
to start an idle job, it will not try to start any other idle jobs in the same cluster during that negotiation cycle.
This makes negotiation much more efficient for large job clusters. However, in some cases other jobs in the
cluster can be started even though an earlier job can’t. For example, the jobs’ requirements may differ, because
of different disk space, memory, or operating system requirements. Or, machines may be willing to run only
some jobs in the cluster, because their requirements reference the jobs’ virtual memory size or other attribute.
Setting this macro to True will force thecondor_scheddto try to start all idle jobs in each negotiation cycle.
This will make negotiation cycles last longer, but it will ensure that all jobs that can be started will be started.

PERIODIC_EXPR_INTERVAL This macro determines the minimum period, in seconds, between evaluation of pe-
riodic job control expressions, such as periodic_hold, periodic_release, and periodic_remove, given by the user
in an HTCondor submit file. By default, this value is 60 seconds. A value of 0 prevents thecondor_scheddfrom
performing the periodic evaluations.

MAX_PERIODIC_EXPR_INTERVAL This macro determines the maximum period, in seconds, between evaluation
of periodic job control expressions, such as periodic_hold, periodic_release, and periodic_remove, given by the
user in an HTCondor submit file. By default, this value is 1200seconds. If HTCondor is behind on processing
events, the actual period between evaluations may be higherthan specified.

PERIODIC_EXPR_TIMESLICE This macro is used to adapt the frequency with which thecondor_scheddeval-
uates periodic job control expressions. When the job queue is very large, the cost of evaluating all of the
ClassAds is high, so in order for thecondor_scheddto continue to perform well, it makes sense to evaluate
these expressions less frequently. The default time slice is 0.01, so thecondor_scheddwill set the interval

HTCondor Version 8.6.4 Manual

3.5.10. condor_schedd Configuration File Entries 289

between evaluations so that it spends only 1% of its time in this activity. The lower bound for the interval is
configured byPERIODIC_EXPR_INTERVAL(default 60 seconds) and the upper bound is configured with
MAX_PERIODIC_EXPR_INTERVAL(default 1200 seconds).

SYSTEM_PERIODIC_HOLD This expression behaves identically to the job expressionperiodic_hold , but it is
evaluated for every job in the queue. It defaults toFalse . WhenTrue , it causes the job to stop running
and go on hold. Here is an example that puts jobs on hold if theyhave been restarted too many times, have
an unreasonably large virtual memoryImageSize , or have unreasonably large disk usage for an invented
environment.

SYSTEM_PERIODIC_HOLD = \
(JobStatus == 1 || JobStatus == 2) && \
(JobRunCount > 10 || ImageSize > 3000000 || DiskUsage > 10000 000)

SYSTEM_PERIODIC_HOLD_REASON This string expression is evaluated when the job is placed onhold due to
SYSTEM_PERIODIC_HOLDevaluating toTrue . If it evaluates to a non-empty string, this value is used to set
the job attributeHoldReason . Otherwise, a default description is used.

SYSTEM_PERIODIC_HOLD_SUBCODE This integer expression is evaluated when the job is placed on hold due to
SYSTEM_PERIODIC_HOLDevaluating toTrue . If it evaluates to a valid integer, this value is used to set the
job attributeHoldReasonSubCode . Otherwise, a default of 0 is used. The attributeHoldReasonCode is
set to 26, which indicates that the job went on hold due to a system job policy expression.

SYSTEM_PERIODIC_RELEASE This expression behaves identically to a job’s definition ofaperiodic_releaseex-
pression in a submit description file, but it is evaluated forevery job in the queue. It defaults toFalse . When
True , it causes a Held job to return to the Idle state. Here is an example that releases jobs from hold if they
have tried to run less than 20 times, have most recently been on hold for over 20 minutes, and have gone on
hold due toConnection timed out when trying to execute the job, because the file system containing the
job’s executable is temporarily unavailable.

SYSTEM_PERIODIC_RELEASE = \
(JobRunCount < 20 && (time() - EnteredCurrentStatus) > 1200) && \

(HoldReasonCode == 6 && HoldReasonSubCode == 110)

SYSTEM_PERIODIC_REMOVE This expression behaves identically to the job expressionperiodic_remove ,
but it is evaluated for every job in the queue. As it is in the configuration file, it is easy for an administrator to
set a remove policy that applies to all jobs. It defaults toFalse . WhenTrue , it causes the job to be removed
from the queue. Here is an example that removes jobs which have been on hold for 30 days:

SYSTEM_PERIODIC_REMOVE = \
(JobStatus == 5 && time() - EnteredCurrentStatus > 3600 * 24* 30)

SCHEDD_ASSUME_NEGOTIATOR_GONE This macro determines the period, in seconds, that thecondor_schedd
will wait for the condor_negotiatorto initiate a negotiation cycle before the schedd will simply try to claim
any localcondor_startd. This allows for a machine that is acting as both a submit and execute node to run
jobs locally if it cannot communicate with the central manager. The default value, if not specified, is 1200 (20
minutes).

HTCondor Version 8.6.4 Manual

3.5.10. condor_schedd Configuration File Entries 290

GRACEFULLY_REMOVE_JOBS A boolean value that causes jobs to be gracefully removed when the default value
of True . A submit description file commandwant_graceful_removaloverrides the value set for this configu-
ration variable.

SCHEDD_ROUND_ATTR_<xxxx> This is used to round off attributes in the job ClassAd so thatsimilar jobs may
be grouped together for negotiation purposes. There are twocases. One is that a percentage such as 25% is
specified. In this case, the value of the attribute named<xxxx>\ in the job ClassAd will be rounded up to the
next multiple of the specified percentage of the values orderof magnitude. For example, a setting of 25% will
cause a value near 100 to be rounded up to the next multiple of 25 and a value near 1000 will be rounded up to
the next multiple of 250. The other case is that an integer, such as 4, is specified instead of a percentage. In this
case, the job attribute is rounded up to the specified number of decimal places. Replace<xxxx> with the name
of the attribute to round, and set this macro equal to the number of decimal places to round up. For example, to
round the value of job ClassAd attributefoo up to the nearest 100, set

SCHEDD_ROUND_ATTR_foo = 2

When the schedd rounds up an attribute value, it will save theraw (un-rounded) actual value in an attribute
with the same name appended with “_RAW". So in the above example, the raw value will be stored in attribute
foo_RAW in the job ClassAd. The following are set by default:

SCHEDD_ROUND_ATTR_ResidentSetSize = 25%
SCHEDD_ROUND_ATTR_ProportionalSetSizeKb = 25%
SCHEDD_ROUND_ATTR_ImageSize = 25%
SCHEDD_ROUND_ATTR_ExecutableSize = 25%
SCHEDD_ROUND_ATTR_DiskUsage = 25%
SCHEDD_ROUND_ATTR_NumCkpts = 4

Thus, an ImageSize near 100MB will be rounded up to the next multiple of 25MB. If your batch slots have less
memory or disk than the rounded values, it may be necessary toreduce the amount of rounding, because the job
requirements will not be met.

SCHEDD_BACKUP_SPOOL A boolean value that, whenTrue , causes thecondor_scheddto make a backup of the
job queue as it starts. WhenTrue , thecondor_scheddcreates a host-specific backup of the current spool file to
the spool directory. This backup file will be overwritten each time thecondor_scheddstarts. Defaults toFalse .

SCHEDD_PREEMPTION_REQUIREMENTS This boolean expression is utilized only for machines allocated by a
dedicated scheduler. WhenTrue , a machine becomes a candidate for job preemption. This configuration
variable has no default; when not defined, preemption will never be considered.

SCHEDD_PREEMPTION_RANK This floating point value is utilized only for machines allocated by a dedicated
scheduler. It is evaluated in context of a job ClassAd, and itrepresents a machine’s preference for running
a job. This configuration variable has no default; when not defined, preemption will never be considered.

ParallelSchedulingGroup For parallel jobs which must be assigned within a group of machines (and not
cross group boundaries), this configuration variable is a string which identifies a group of which this machine is
a member. Each machine within a group sets this configurationvariable with a string that identifies the group.

HTCondor Version 8.6.4 Manual

3.5.10. condor_schedd Configuration File Entries 291

PER_JOB_HISTORY_DIR If set to a directory writable by the HTCondor user, when a jobleaves thecon-
dor_schedd’s queue, a copy of the job’s ClassAd will be written in that directory. The files are named
history , with the job’s cluster and process number appended. For example, job 35.2 will result in a file
namedhistory.35.2 . HTCondor does not rotate or delete the files, so without an external entity to clean
the directory, it can grow very large. This option defaults to being unset. When not set, no files are written.

DEDICATED_SCHEDULER_USE_FIFO When this parameter is set to true (the default), parallel universe jobs will
be scheduled in a first-in, first-out manner. When set to false, parallel jobs are scheduled using a best-fit algo-
rithm. Using the best-fit algorithm is not recommended, as itcan cause starvation.

DEDICATED_SCHEDULER_WAIT_FOR_SPOOLER A boolean value that whenTrue , causes the dedicated sched-
uler to schedule parallel universe jobs in a very strict first-in, first-out manner. When the default value ofFalse ,
parallel jobs that are being remotely submitted to a scheduler and are on hold, waiting for spooled input files to
arrive at the scheduler, will not block jobs that arrived later, but whose input files have finished spooling. When
True , jobs with larger cluster IDs, but that are in the Idle state will not be scheduled to run until all earlier jobs
have finished spooling in their input files and have been scheduled.

DEDICATED_SCHEDULER_DELAY_FACTOR Limits the cpu usage of the dedicated scheduler within thecon-
dor_schedd. The default value of 5 is the ratio of time spent not in the dedicated scheduler to the time scheduling
parallel jobs. Therefore, the default caps the time spent inthe dedicated scheduler to 20%.

SCHEDD_SEND_VACATE_VIA_TCP A boolean value that defaults toTrue . WhenTrue , thecondor_schedddae-
mon sends vacate signals via TCP, instead of the default UDP.

SCHEDD_CLUSTER_INITIAL_VALUE An integer that specifies the initial cluster number value touse
within a job id when a job is first submitted. If the job clusternumber reaches the value set by
SCHEDD_CLUSTER_MAXIMUM_VALUEand wraps, it will be re-set to the value given by this variable. The
default value is 1.

SCHEDD_CLUSTER_INCREMENT_VALUE A positive integer that defaults to 1, representing a strideused for the
assignment of cluster numbers within a job id. When a job is submitted, the job will be assigned a job id. The
cluster number of the job id will be equal to the previous cluster number used plus the value of this variable.

SCHEDD_CLUSTER_MAXIMUM_VALUE An integer that specifies an upper bound on assigned job cluster id values.
For valueM , the maximum job cluster id assigned to any job will beM − 1. When the maximum id is reached,
cluster ids will continue assignment usingSCHEDD_CLUSTER_INITIAL_VALUE. The default value of this
variable is zero, which represents the behavior of having nomaximum cluster id value.

Note that HTCondor does not check for nor take responsibility for duplicate cluster ids for queued jobs. If
SCHEDD_CLUSTER_MAXIMUM_VALUEis set to a non-zero value, the system administrator is responsible for
ensuring that older jobs do not stay in the queue long enough for cluster ids of new jobs to wrap around and
reuse the same id. With a low enough value, it is possible for jobs to be erroneously assigned duplicate cluster
ids, which will result in a corrupt job queue.

GRIDMANAGER_SELECTION_EXPR By default, thecondor_schedddaemon will start a newcondor_gridmanager
process for each discrete user that submits a grid universe job, that is, for each discrete value of job attribute
Owner across all grid universe job ClassAds. For additional isolation and/or scalability of grid job management,
additionalcondor_gridmanagerprocesses can be spawned to share the load; to do so, set this variable to be a
ClassAd expression. The result of the evaluation of this expression in the context of a grid universe job ClassAd

HTCondor Version 8.6.4 Manual

3.5.10. condor_schedd Configuration File Entries 292

will be treated as a hash value. All jobs that hash to the same value via this expression will go to the same
condor_gridmanager. For instance, to spawn a separatecondor_gridmanagerprocess to manage each unique
remote site, the following expression works:

GRIDMANAGER_SELECTION_EXPR = GridResource

CKPT_SERVER_CLIENT_TIMEOUT An integer which specifies how long in seconds thecondor_scheddis willing
to wait for a response from a checkpoint server before declaring the checkpoint server down. The value of 0
makes the schedd block for the operating system configured time (which could be a very long time) before the
connect() returns on its own with a connection timeout. The default value is 20.

CKPT_SERVER_CLIENT_TIMEOUT_RETRY An integer which specifies how long in seconds thecondor_schedd
will ignore a checkpoint server that is deemed to be down. After this time elapses, thecondor_scheddwill try
again in talking to the checkpoint server. The default is 1200.

SCHEDD_JOB_QUEUE_LOG_FLUSH_DELAY An integer which specifies an upper bound in seconds on how long
it takes for changes to the job ClassAd to be visible to the HTCondor Job Router. The default is 5 seconds.

ROTATE_HISTORY_DAILY A boolean value that defaults toFalse . WhenTrue , the history file will be rotated
daily, in addition to the rotations that occur due to the definition of MAX_HISTORY_LOGthat rotate due to size.

ROTATE_HISTORY_MONTHLY A boolean value that defaults toFalse . WhenTrue , the history file will be rotated
monthly, in addition to the rotations that occur due to the definition of MAX_HISTORY_LOGthat rotate due to
size.

SCHEDD_COLLECT_STATS_FOR_<Name> A boolean expression that whenTrue creates a set ofcondor_schedd
ClassAd attributes of statistics collected for a particular set. These attributes are named using the prefix of
<Name>. The set includes each entity for which this expression isTrue . As an example, assume thatcon-
dor_scheddstatistics attributes are to be created for only user Einstein’s jobs. Defining

SCHEDD_COLLECT_STATS_FOR_Einstein = (Owner=="einstein ")

causes the creation of the set of statistics attributes withnames such asEinsteinJobsCompleted and
EinsteinJobsCoredumped .

SCHEDD_COLLECT_STATS_BY_<Name> Defines a string expression. The evaluated string is used in the nam-
ing of a set ofcondor_scheddstatistics ClassAd attributes. The naming begins with<Name>, an underscore
character, and the evaluated string. Each character not permitted in an attribute name will be converted to the
underscore character. For example,

SCHEDD_COLLECT_STATS_BY_Host = splitSlotName(RemoteHo st)[1]

a set of statistics attributes will be created and kept. If the string expres-
sion were to evaluate to "storm.04.cs.wisc.edu" , the names of two of
these attributes will be Host_storm_04_cs_wisc_edu_JobsCompleted and
Host_storm_04_cs_wisc_edu_JobsCoredumped .

SCHEDD_EXPIRE_STATS_BY_<Name> The number of seconds after which thecondor_schedddaemon will stop
collecting and discard the statistics for a subset identified by <Name>, if no event has occurred to cause any
counter or statistic for the subset to be updated. If this variable is not defined for a particular<Name>, then the
default value will be60* 60* 24* 7, which is one week’s time.

HTCondor Version 8.6.4 Manual

3.5.10. condor_schedd Configuration File Entries 293

SIGNIFICANT_ATTRIBUTES A comma and/or space separated list of job ClassAd attributes that are to be added
to the list of attributes for determining the sets of jobs considered as a unit (an auto cluster) in negotiation, when
auto clustering is enabled. When defined, this list replacesthe list that thecondor_negotiatorwould define
based upon machine ClassAds.

ADD_SIGNIFICANT_ATTRIBUTES A comma and/or space separated list of job ClassAd attributes that will always
be added to the list of attributes that thecondor_negotiatordefines based upon machine ClassAds, for determin-
ing the sets of jobs considered as a unit (an auto cluster) in negotiation, when auto clustering is enabled.

REMOVE_SIGNIFICANT_ATTRIBUTES A comma and/or space separated list of job ClassAd attributes that are
removed from the list of attributes that thecondor_negotiatordefines based upon machine ClassAds, for deter-
mining the sets of jobs considered as a unit (an auto cluster)in negotiation, when auto clustering is enabled.

SCHEDD_AUDIT_LOG The path and file name of thecondor_scheddlog that records user-initiated commands that
modify the job queue. If not defined, there will be nocondor_scheddaudit log.

MAX_SCHEDD_AUDIT_LOG Controls the maximum amount of time that a log will be allowedto grow. When it is
time to rotate a log file, it will be saved to a file with an ISO timestamp suffix. The oldest rotated file receives
the file name suffix.old . The .old files are overwritten each time the maximum number of rotatedfiles
(determined by the value ofMAX_NUM_SCHEDD_AUDIT_LOG) is exceeded. A value of 0 specifies that the file
may grow without bounds. The following suffixes may be used toqualify the integer:

Sec for seconds

Min for minutes

Hr for hours

Day for days

Wkfor weeks

MAX_NUM_SCHEDD_AUDIT_LOG The integer that controls the maximum number of rotations that the con-
dor_scheddaudit log is allowed to perform, before the oldest one will berotated away. The default value is
1.

SCHEDD_USE_SLOT_WEIGHT A boolean that defaults toFalse . WhenTrue , thecondor_schedddoes use con-
figuration variableSLOT_WEIGHTto weight running and idle job counts in the submitter ClassAd.

JOB_TRANSFORM_NAMES A comma and/or space separated list of unique names, where each is used in the
formation of a configuration variable name that will containa set of rules governing the transformation
of jobs during submission. Each name in the list will be used in the name of configuration variable
JOB_TRANSFORM_<Name>. Transforms are applied in the order in which names appear inthis list. Names
are not case-sensitive. There is no default value.

JOB_TRANSFORM_<Name> A single job transform specified as a set of transform rules innew classad syntax. The
transform rules are applied to jobs that match the transform’s Requirements expression as they are submitted.
<Name>corresponds to a name listed inJOB_TRANSFORM_NAMES. Names are not case-sensitive. There is
no default value.

HTCondor Version 8.6.4 Manual

3.5.11. condor_shadow Configuration File Entries 294

SUBMIT_REQUIREMENT_NAMES A comma and/or space separated list of unique names, where each is used in
the formation of a configuration variable name that will represent an expression evaluated to decide whether
or not to reject a job submission. Each name in the list will beused in the name of configuration variable
SUBMIT_REQUIREMENT_<Name>. There is no default value.

SUBMIT_REQUIREMENT_<Name> A boolean expression evaluated in the context of thecondor_schedddaemon
ClassAd, which is theMY. name space and the job ClassAd, which is theTARGET. name space. When
False , it causes thecondor_scheddto reject the submission of the job or cluster of jobs.<Name>corresponds
to a name listed inSUBMIT_REQUIREMENT_NAMES. There is no default value.

SUBMIT_REQUIREMENT_<Name>_REASON An expression that evaluates to a string, to be printed for the job
submitter whenSUBMIT_REQUIREMENT_<Name>evaluates toFalse and thecondor_scheddrejects the
job. There is no default value.

SCHEDD_RESTART_REPORT The complete path to a file that will be written with report information. The report
is written when thecondor_scheddstarts. It contains statistics about its attempts to reconnect to thecon-
dor_startddaemons for all jobs that were previously running. The file isupdated periodically as reconnect
attempts succeed or fail. Once all attempts have completed,a copy of the report is emailed to address specified
by CONDOR_ADMIN. The default value is$(LOG)/ScheddRestartReport . If a blank value is set, then
no report is written or emailed.

JOB_SPOOL_PERMISSIONS Control the permissions on the job’s spool directory. Defaults to user which sets
permissions to0700. Possible values areuser , group , andworld . If set togroup , then the directory is
group-accessible, with permissions set to0750. If set toworld , then the directory is created with permissions
set to0755.

CHOWN_JOB_SPOOL_FILES Prior to HTCondor 8.5.0 on unix, the condor_schedd would chown job files in the
SPOOL directory between the condor account and the account of the job submitter. Now, these job files are
always owned by the job submitter by default. To restore the older behavior, set this parameter toTrue . The
default value isFalse .

IMMUTABLE_JOB_ATTRS A comma and/or space separated list of attributes provided by the administrator that
cannot be changed, once they have committed values. No attributes are in this list by default.

SYSTEM_IMMUTABLE_JOB_ATTRS A predefined comma and/or space separated list of attributesthat cannot be
changed, once they have committed values. The hard-coded value is: Owner ClusterId ProcId MyType
TargetType .

PROTECTED_JOB_ATTRS A comma and/or space separated list of attributes provided by the administrator that can
only be altered by the queue super-user, once they have committed values. No attributes are in this list by default.

SYSTEM_PROTECTED_JOB_ATTRS A predefined comma and/or space separated list of attributesthat can only be
altered by the queue super-user, once they have committed values. The hard-code value is empty.

3.5.11 condor_shadow Configuration File Entries

These settings affect thecondor_shadow.

HTCondor Version 8.6.4 Manual

3.5.11. condor_shadow Configuration File Entries 295

SHADOW_LOCK This macro specifies the lock file to be used for access to theShadowLog file. It must be a separate
file from theShadowLog , since theShadowLog may be rotated and you want to synchronize access across
log file rotations. This macro is defined relative to the$(LOCK) macro.

SHADOW_DEBUG This macro (and other settings related to debug logging in the shadow) is described in section 3.5.3
as<SUBSYS>_DEBUG.

SHADOW_QUEUE_UPDATE_INTERVAL The amount of time (in seconds) between ClassAd updates thatthe con-
dor_shadowdaemon sends to thecondor_schedddaemon. Defaults to 900 (15 minutes).

SHADOW_LAZY_QUEUE_UPDATE This boolean macro specifies if thecondor_shadowshould immediately update
the job queue for certain attributes (at this time, it only effects theNumJobStarts andNumJobReconnects
counters) or if it should wait and only update the job queue onthe next periodic update. There is a trade-
off between performance and the semantics of these attributes, which is why the behavior is controlled by a
configuration macro. If thecondor_shadowdo not use a lazy update, and immediately ensures the changesto
the job attributes are written to the job queue on disk, the semantics for the attributes are very solid (there’s
only a tiny chance that the counters will be out of sync with reality), but this introduces a potentially large
performance and scalability problem for a busycondor_schedd. If the condor_shadowuses a lazy update, there
is no additional cost to thecondor_schedd, but it means thatcondor_qwill not immediately see the changes to
the job attributes, and if thecondor_shadowhappens to crash or be killed during that time, the attributes are
never incremented. Given that the most obvious usage of these counter attributes is for the periodic user policy
expressions (which are evaluated directly by thecondor_shadowusing its own copy of the job’s ClassAd,
which is immediately updated in either case), and since the additional cost for aggressive updates to a busy
condor_scheddcould potentially cause major problems, the default isTrue to do lazy, periodic updates.

SHADOW_WORKLIFE The integer number of seconds after which thecondor_shadowwill exit when the current job
finishes, instead of fetching a new job to manage. Having thecondor_shadowcontinue managing jobs helps
reduce overhead and can allow thecondor_scheddto achieve higher job completion rates. The default is 3600,
one hour. The value 0 causescondor_shadowto exit after running a single job.

COMPRESS_PERIODIC_CKPT A boolean value that whenTrue , directs thecondor_shadowto instruct applica-
tions to compress periodic checkpoints when possible. The default isFalse .

COMPRESS_VACATE_CKPT A boolean value that whenTrue , directs thecondor_shadowto instruct applications
to compress vacate checkpoints when possible. The default isFalse .

PERIODIC_MEMORY_SYNC This boolean value specifies whether thecondor_shadowshould instruct applications
to commit dirty memory pages to swap space during a periodic checkpoint. The default isFalse . This
potentially reduces the number of dirty memory pages at vacate time, thereby reducing swapping activity on the
remote machine.

SLOW_CKPT_SPEED This macro specifies the speed at which vacate checkpoints should be written, in kilobytes per
second. If zero (the default), vacate checkpoints are written as fast as possible. Writing vacate checkpoints
slowly can avoid overwhelming the remote machine with swapping activity.

SHADOW_JOB_CLEANUP_RETRY_DELAY This integer specifies the number of seconds to wait between tries to
commit the final update to the job ClassAd in thecondor_schedd’s job queue. The default is 30.

SHADOW_MAX_JOB_CLEANUP_RETRIES This integer specifies the number of times to try committing the final
update to the job ClassAd in thecondor_schedd’s job queue. The default is 5.

HTCondor Version 8.6.4 Manual

3.5.12. condor_starter Configuration File Entries 296

SHADOW_CHECKPROXY_INTERVAL The number of seconds between tests to see if the job proxy
has been updated or should be refreshed. The default is 600 seconds (10 minutes). This
variable’s value should be small in comparison to the refresh interval required to keep dele-
gated credentials from expiring (configured viaDELEGATE_JOB_GSI_CREDENTIALS_REFRESHand
DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME). If this variable’s value is too small, proxy updates
could happen very frequently, potentially creating a lot ofload on the submit machine.

SHADOW_RUN_UNKNOWN_USER_JOBS A boolean that defaults toFalse . When True , it allows the con-
dor_shadowdaemon to run jobs as usernobody when remotely submitted and from users not in the local
password file.

SHADOW_STATS_LOG The full path and file name of a file that stores TCP statistics for shadow file transfers.
(Note that the shadow logs TCP statistics to this file by default. Adding D_STATSto theSHADOW_DEBUG
value will cause TCP statistics to be logged to the normal shadow log file ($(SHADOW_LOG)).) If not
defined,SHADOW_STATS_LOGdefaults to$(LOG)/XferStatsLog . SettingSHADOW_STATS_LOGto
/dev/null disables logging of shadow TCP file transfer statistics.

MAX_SHADOW_STATS_LOG Controls the maximum size in bytes or amount of time that the shadow TCP statistics
log will be allowed to grow. If not defined,MAX_SHADOW_STATS_LOGdefaults to$(MAX_DEFAULT_LOG),
which currently defaults to 10 MiB in size. Values are specified with the same syntax asMAX_DEFAULT_LOG.

3.5.12 condor_starter Configuration File Entries

These settings affect thecondor_starter.

EXEC_TRANSFER_ATTEMPTS Sometimes due to a router misconfiguration, kernel bug, or other network problem,
the transfer of the initial checkpoint from the submit machine to the execute machine will fail midway through.
This parameter allows a retry of the transfer a certain number of times that must be equal to or greater than 1. If
this parameter is not specified, or specified incorrectly, then it will default to three. If the transfer of the initial
executable fails every attempt, then the job goes back into the idle state until the next renegotiation cycle.

NOTE: : This parameter does not exist in the NT starter.

JOB_RENICE_INCREMENT When thecondor_starterspawns an HTCondor job, it can do so with anice-level. A
nice-level is a Unix mechanism that allows users to assign their own processes a lower priority, such that these
processes do not interfere with interactive use of the machine. For machines with lots of real memory and swap
space, such that the only scarce resource is CPU time, use this macro in conjunction with a policy that allows
HTCondor to always start jobs on the machines. HTCondor jobswould always run, but interactive response on
the machines would never suffer. A user most likely will not notice HTCondor is running jobs. See section 3.7
on Startd Policy Configuration for more details on setting upa policy for starting and stopping jobs on a given
machine.

The ClassAd expression is evaluated in the context of the jobad to an integer value, which is set by thecon-
dor_starterdaemon for each job just before the job runs. The range of allowable values are integers in the range
of 0 to 19 (inclusive), with a value of 19 being the lowest priority. If the integer value is outside this range, then
on a Unix machine, a value greater than 19 is auto-decreased to 19; a value less than 0 is treated as 0. For values
outside this range, a Windows machine ignores the value and uses the default instead. The default value is 0, on
Unix, and the idle priority class on a Windows machine.

HTCondor Version 8.6.4 Manual

3.5.12. condor_starter Configuration File Entries 297

STARTER_LOCAL_LOGGING This macro determines whether the starter should do local logging to its own log file,
or send debug information back to thecondor_shadowwhere it will end up in the ShadowLog. It defaults to
True .

STARTER_LOG_NAME_APPEND A fixed value that sets the file name extension of the local log file used by the
condor_starterdaemon. Permitted values aretrue , false , slot , cluster andjobid . A value offalse
will suppress the use of a file extension. A value oftrue gives the default behavior of using the slot name,
unless there is only a single slot. A value ofslot uses the slot name. A value ofcluster uses the job’s
ClusterId ClassAd attribute. A value ofjobid uses the job’sProcId ClassAd attribute. Ifcluster or
jobid are specified, the resulting log files will persist until deleted by the user, so these two options should
only be used to assist in debugging, not as permanent options.

STARTER_DEBUG This setting (and other settings related to debug logging inthe starter) is described above in
section 3.5.3 as$(<SUBSYS>_DEBUG).

STARTER_UPDATE_INTERVAL An integer value representing the number of seconds betweenClassAd updates
that thecondor_starterdaemon sends to thecondor_shadowandcondor_startddaemons. Defaults to 300 (5
minutes).

STARTER_UPDATE_INTERVAL_TIMESLICE A floating point value, specifying the highest fraction of time that
thecondor_starterdaemon should spend collecting monitoring information about the job, such as disk usage.
The default value is 0.1. If monitoring, such as checking disk usage takes a long time, thecondor_starterwill
monitor less frequently than specified bySTARTER_UPDATE_INTERVAL.

USER_JOB_WRAPPER The full path and file name of an executable or script. If specified, HTCondor never directly
executes a job, but instead invokes this executable, allowing an administrator to specify the executable (wrapper
script) that will handle the execution of all user jobs. The command-line arguments passed to this program
will include the full path to the actual user job which shouldbe executed, followed by all the command-line
parameters to pass to the user job. This wrapper script must ultimately replace its image with the user job; thus,
it mustexec() the user job, notfork() it.

For Bourne type shells (sh, bash, ksh), the last line should be:

exec "$@"

For the C type shells (csh, tcsh), the last line should be:

exec $ * :q

On Windows, the end should look like:

REM set some environment variables
set LICENSE_SERVER=192.168.1.202:5012
set MY_PARAMS=2

REM Run the actual job now
%*

HTCondor Version 8.6.4 Manual

3.5.12. condor_starter Configuration File Entries 298

This syntax is precise, to correctly handle program arguments which contain white space characters.

For Windows machines, the wrapper will either be a batch script with a file extension of.bat or .cmd , or an
executable with a file extension of.exe or .com .

If the wrapper script encounters an error as it runs, and it isunable to run the user job, it is important that the
wrapper script indicate this to the HTCondor system so that HTCondor does not assign the exit code of the
wrapper script to the job. To do this, the wrapper script should write a useful error message to the file named in
the environment variable_CONDOR_WRAPPER_ERROR_FILE, and then the wrapper script should exit with
a non-zero value. If this file is created by the wrapper script, HTCondor assumes that the wrapper script has
failed, and HTCondor will place the job back in the queue marking it as Idle, such that the job will again be run.
Thecondor_starterwill also copy the contents of this error file to thecondor_starterlog, so the administrator
can debug the problem.

When a wrapper script is in use, the executable of a job submission may be specified by a relative path, as long
as the submit description file also contains:

+PreserveRelativeExecutable = True

For example,

Let this executable be resolved by user's path in the wrappe r
cmd = sleep
+PreserveRelativeExecutable = True

Without this extra attribute:

A typical fully-qualified executable path
cmd = /bin/sleep

CGROUP_MEMORY_LIMIT_POLICY A string with possible values ofhard , soft andnone . The default value
is none . If set tohard , the cgroup-based limit on the total amount of physical memory used by the sum of
all processes in the job will not be allowed to exceed the limit given by the cgroup memory controller attribute
memory.limit_in_bytes. If the processes try to allocate more memory, the allocation will succeed, and virtual
memory will be allocated, but no additional physical memorywill be allocated. If set to the default valuesoft ,
the cgroup-based limit on the total amount of physical memory used by the sum of all processes in the job will
be allowed to go over the limit, if there is free memory available on the system. If set tonone , no limit will be
enforced, but the memory usage of the job will be accurately measured by a cgroup.

USE_VISIBLE_DESKTOP This boolean variable is only meaningful on Windows machines. If True , HTCondor
will allow the job to create windows on the desktop of the execute machine and interact with the job. This is
particularly useful for debugging why an application will not run under HTCondor. IfFalse , HTCondor uses
the default behavior of creating a new, non-visible desktopto run the job on. See section 7.2 for details on how
HTCondor interacts with the desktop.

STARTER_JOB_ENVIRONMENT This macro sets the default environment inherited by jobs. The syntax is the same
as the syntax for environment settings in the job submit file (see page 916). If the same environment variable is
assigned by this macro and by the user in the submit file, the user’s setting takes precedence.

HTCondor Version 8.6.4 Manual

3.5.12. condor_starter Configuration File Entries 299

JOB_INHERITS_STARTER_ENVIRONMENT A boolean value that defaults toFalse . When True , it
causes jobs to inherit all environment variables from thecondor_starter. When the user job and/or
STARTER_JOB_ENVIRONMENTdefine an environment variable that is in thecondor_starter’s environment,
the setting from thecondor_starter’s environment is overridden. This variable does not apply to standard uni-
verse jobs.

NAMED_CHROOT A comma and/or space separated list of full paths to one or more directories, under which the
condor_startermay run a chroot-ed job. This allows HTCondor to invokechroot() before launching a job, if
the job requests such by defining the job ClassAd attributeRequestedChroot with a directory that matches
one in this list. There is no default value for this variable.

STARTER_UPLOAD_TIMEOUT An integer value that specifies the network communication timeout to use when
transferring files back to the submit machine. The default value is set by thecondor_shadowdaemon to 300.
Increase this value if the disk on the submit machine cannot keep up with large bursts of activity, such as many
jobs all completing at the same time.

ASSIGN_CPU_AFFINITY A boolean expression that defaults toFalse . When it evaluates toTrue , each job
under thiscondor_startdis confined to using only as many cores as the configured numberof slots. When using
partitionable slots, each job will be bound to as many cores as requested by specifyingrequest_cpus. When
True , this configuration variable overrides any specification ofENFORCE_CPU_AFFINITY. The expression
is evaluated in the context of the Job ClassAd.

ENFORCE_CPU_AFFINITY This configuration variable is replaced byASSIGN_CPU_AFFINITY. Do not enable
this configuration variable unless using glidein or anotherunusual setup.

A boolean value that defaults toFalse . WhenFalse , the CPU affinity of processes in a job is not enforced.
WhenTrue , the processes in an HTCondor job maintain their affinity to aCPU. This means that this job will
only run on that particular CPU, even if other CPU cores are idle.

If True and SLOT<N>_CPU_AFFINITY is not set, the CPU that the job is locked to is the same as
SlotID - 1 . Note that slots are numbered beginning with the value 1, while CPU cores are numbered
beginning with the value 0.

WhenTrue , more fine grained affinities may be specified withSLOT<N>_CPU_AFFINITY.

SLOT<N>_CPU_AFFINITY This configuration variable is replaced byASSIGN_CPU_AFFINITY. Do not enable
this configuration variable unless using glidein or anotherunusual setup.

A comma separated list of cores to which an HTCondor job running on a specific slot given by the value of
<N> show affinity. Note that slots are numbered beginning with the value 1, while CPU cores are numbered
beginning with the value 0. This affinity list only takes effect whenENFORCE_CPU_AFFINITY = True.

ENABLE_URL_TRANSFERS A boolean value that whenTrue causes thecondor_starterfor a job to invoke all
plug-ins defined byFILETRANSFER_PLUGINSto determine their capabilities for handling protocols to be
used in file transfer specified with a URL. WhenFalse , a URL transfer specified in a job’s submit description
file will cause an error issued bycondor_submit. The default value isTrue .

FILETRANSFER_PLUGINS A comma separated list of full and absolute path and executable names for plug-ins
that will accomplish the task of doing file transfer when a jobrequests the transfer of an input file by specifying
a URL. See section 3.14.2 for a description of the functionality required of a plug-in.

HTCondor Version 8.6.4 Manual

3.5.12. condor_starter Configuration File Entries 300

RUN_FILETRANSFER_PLUGINS_WITH_ROOT A boolean value that affects only Unix platforms and defaults to
False , causing file transfer plug-ins invoked for a job to run with both the real and the effective UID set to user
that the job runs as. The user that the job runs as may be the jobowner,nobody , or the slot user. The group
is set to primary group of the user that the job runs as, and allsupplemental groups are dropped. The default
gives the behavior exhibited prior to the existence of this configuration variable. When set toTrue , file transfer
plug-ins are invoked with a real UID of 0 (root), provided the HTCondor daemons also run asroot . The
effective UID is set to the user that the job runs as.

This configuration variable can permit plug-ins to do privileged operations, such as access a credential protected
by file system permissions. The default value is recommendedunless privileged operations are required.

ENABLE_CHIRP A boolean value that defaults toTrue . An administrator would set the value toFalse to disable
Chirp remote file access from execute machines.

ENABLE_CHIRP_UPDATES A boolean value that defaults toTrue . If ENABLE_CHIRP is True , and
ENABLE_CHIRP_UPDATESis False , then the user job can only read job attributes from the submit side;
it cannot change them or write to the job event log. IfENABLE_CHIRPis False , the setting of this variable
does not matter, as no Chirp updates are allowed in that case.

ENABLE_CHIRP_IO A boolean value that defaults toTrue . If False , the file I/Ocondor_chirpcommands are
prohibited.

ENABLE_CHIRP_DELAYED A boolean value that defaults toTrue . If False , the condor_chirpcommands
get_job_attr_delayedandset_job_attr_delayedare prohibited.

CHIRP_DELAYED_UPDATE_PREFIX This string-valued parameter, which defaults to"Chirp * " , defines
the allowed prefixes for attribute names which can be used with the condor_chirp commands
set_job_attribute_delayedandget_job_attribute_delayed. Because it must be set to the same value on both
the submit and execute nodes, it is advised that this parameter not be changed from its built-in default.

CHIRP_DELAYED_UPDATE_MAX_ATTRS This integer-valued parameter, which defaults to 100, represents the
maximum number of pending delayed chirp updates buffered bythecondor_starter. If the number of unique
attributes updated by thecondor_chirpcommandset_job_attr_delayedexceeds this parameter, it is possible
for these updates to be ignored.

USE_PSS A boolean value, that whenTrue causes thecondor_starterto measure the PSS (Proportional Set Size)
of each HTCondor job. The default value isTrue . When running many short lived jobs, performance problems
in thecondor_procdhave been observed, and a setting ofFalse may relieve these problems.

MEMORY_USAGE_METRIC A ClassAd expression that produces an initial value for the job ClassAd attribute
MemoryUsage in jobs that arenot standard universe andnot vm universe.

MEMORY_USAGE_METRIC_VM A ClassAd expression that produces an initial value for the job ClassAd attribute
MemoryUsage in vm universe jobs.

STARTER_RLIMIT_AS An integer ClassAd expression, expressed in MiB, evaluatedby thecondor_starterto set
the RLIMIT_AS parameter of thesetrlimit() system call. This limits the virtual memory size of each
process in the user job. The expression is evaluated in the context of both the machine and job ClassAds, where
the machine ClassAd is theMY. ClassAd, and the job ClassAd is theTARGET.ClassAd. There is no default
value for this variable. Since values larger than 2047 have no real meaning on 32-bit platforms, values larger
than 2047 result in no limit set on 32-bit platforms.

HTCondor Version 8.6.4 Manual

3.5.13. condor_submit Configuration File Entries 301

USE_PID_NAMESPACES A boolean value that, whenTrue , enables the use of per job PID namespaces for HT-
Condor jobs run on Linux kernels. Defaults toFalse .

PER_JOB_NAMESPACES A boolean value that defaults toFalse . Relevant only for Linux platforms using file
system namespaces. The default value ofFalse ensures that there will be no private mount points, because
auto mounts done byautofswould use the wrong name for private file system mounts. ATrue value is useful
when private file system mounts are permitted andautofs(for NFS) is not used.

DYNAMIC_RUN_ACCOUNT_LOCAL_GROUP For Windows platforms, a value that sets the local group to a group
other than the defaultUsers for the condor-slot<X> run account. Donot place the local group name
within quotation marks.

JOB_EXECDIR_PERMISSIONS Control the permissions on the job’s scratch directory. Defaults touser which
sets permissions to0700. Possible values areuser , group , andworld . If set togroup , then the directory is
group-accessible, with permissions set to0750. If set toworld , then the directory is created with permissions
set to0755.

STARTER_STATS_LOG The full path and file name of a file that stores TCP statistics for starter file transfers.
(Note that the starter logs TCP statistics to this file by default. Adding D_STATSto theSTARTER_DEBUG
value will cause TCP statistics to be logged to the normal starter log file ($(STARTER_LOG)).) If not de-
fined, STARTER_STATS_LOGdefaults to$(LOG)/XferStatsLog . SettingSTARTER_STATS_LOGto
/dev/null disables logging of starter TCP file transfer statistics.

MAX_STARTER_STATS_LOG Controls the maximum size in bytes or amount of time that the starter TCP
statistics log will be allowed to grow. If not defined,MAX_STARTER_STATS_LOGdefaults to
$(MAX_DEFAULT_LOG), which currently defaults to 10 MiB in size. Values are specified with the same
syntax asMAX_DEFAULT_LOG.

SINGULARITY The path to the Singularity binary. The default value is/usr/bin/singularity .

SINGULARITY_JOB A boolean value specifying whether this startd should run jobs under Singularity. The default
value isFalse .

SINGULARITY_IMAGE_EXPR The path to the Singularity container image file. The defaultvalue is
"SingularityImage" .

SINGULARITY_TARGET_DIR A directory within the Singularity image to which$_CONDOR_SCRATCH_DIRon
the host should be mapped. The default value is"" .

SINGULARITY_BIND_EXPR A string value containing a list of bind mount specificationsto be passed to Singular-
ity. The default value is"SingularityBind" .

3.5.13 condor_submit Configuration File Entries

DEFAULT_UNIVERSE The universe under which a job is executed may be specified in the submit description file.
If it is not specified in the submit description file, then thisvariable specifies the universe (when defined). If
the universe is not specified in the submit description file, and if this variable is not defined, then the default
universe for a job will be the vanilla universe.

HTCondor Version 8.6.4 Manual

3.5.13. condor_submit Configuration File Entries 302

JOB_DEFAULT_NOTIFICATION The default that sets email notification for jobs. This variable defaults toNEVER,
such that HTCondor will not send email about events for jobs.Possible values areNEVER, ERROR, ALWAYS,
or COMPLETE. If ALWAYS, the owner will be notified whenever the job produces a checkpoint, as well as when
the job completes. IfCOMPLETE, the owner will be notified when the job terminates. IfERROR, the owner will
only be notified if the job terminates abnormally, or if the job is placed on hold because of a failure, and not by
user request. IfNEVER, the owner will not receive email.

JOB_DEFAULT_REQUESTMEMORY The amount of memory in MiB to acquire for a job, if the job doesnot specify
how much it needs using therequest_memorysubmit command. If this variable is not defined, then the default
is defined by the expression

ifThenElse(MemoryUsage =!= UNDEFINED,MemoryUsage,(Ima geSize+1023)/1024)

JOB_DEFAULT_REQUESTDISK The amount of disk in KiB to acquire for a job, if the job does not specify how
much it needs using therequest_disk submit command. If the job defines the value, then that value takes
precedence. If not set, then then the default is defined asDiskUsage .

JOB_DEFAULT_REQUESTCPUS The number of CPUs to acquire for a job, if the job does not specify how many it
needs using therequest_cpussubmit command. If the job defines the value, then that value takes precedence.
If not set, then then the default is 1.

DEFAULT_JOB_MAX_RETRIES The default value for the maximum number of job retries, if the condor_submit
retry feature is used. (Note that this value is only relevantif either retry_until or success_exit_codeis defined
in the submit file, andmax_retries is not.) (See section 11 for more information.) The default value if not
defined is 10.

If you wantcondor_submitto automatically append an expression to theRequirements expression orRank
expression of jobs at your site use the following macros:

APPEND_REQ_VANILLA Expression to be appended to vanilla job requirements.

APPEND_REQ_STANDARD Expression to be appended to standard job requirements.

APPEND_REQUIREMENTS Expression to be appended to any type of universe jobs. How-
ever, if APPEND_REQ_VANILLA or APPEND_REQ_STANDARDis defined, then ignore the
APPEND_REQUIREMENTSfor those universes.

APPEND_RANK Expression to be appended to job rank. APPEND_RANK_STANDARDor
APPEND_RANK_VANILLAwill override this setting if defined.

APPEND_RANK_STANDARD Expression to be appended to standard job rank.

APPEND_RANK_VANILLA Expression to append to vanilla job rank.

NOTE: The APPEND_RANK_STANDARDand APPEND_RANK_VANILLA macros were called
APPEND_PREF_STANDARDandAPPEND_PREF_VANILLAin previous versions of HTCondor.

In addition, you may provide defaultRank expressions if your users do not specify their own with:

HTCondor Version 8.6.4 Manual

3.5.13. condor_submit Configuration File Entries 303

DEFAULT_RANK Default rank expression for any job that does not specify itsown rank expression in the submit
description file. There is no default value, such that when undefined, the value used will be 0.0.

DEFAULT_RANK_VANILLA Default rank for vanilla universe jobs. There is no default value, such that when unde-
fined, the value used will be 0.0. When bothDEFAULT_RANKandDEFAULT_RANK_VANILLAare defined,
the value forDEFAULT_RANK_VANILLAis used for vanilla universe jobs.

DEFAULT_RANK_STANDARD Default rank for standard universe jobs. There is no defaultvalue, such that when
undefined, the value used will be 0.0. When bothDEFAULT_RANKandDEFAULT_RANK_STANDARDare
defined, the value forDEFAULT_RANK_STANDARDis used for standard universe jobs.

DEFAULT_IO_BUFFER_SIZE HTCondor keeps a buffer of recently-used data for each file anapplication opens.
This macro specifies the default maximum number of bytes to bebuffered for each open file at the executing
machine. Thecondor_statusbuffer_size command will override this default. If this macro is undefined, a
default size of 512 KB will be used.

DEFAULT_IO_BUFFER_BLOCK_SIZE When buffering is enabled, HTCondor will attempt to consolidate small
read and write operations into large blocks. This macro specifies the default block size HTCondor will use.
Thecondor_statusbuffer_block_size command will override this default. If this macro is undefined, a
default size of 32 KB will be used.

SUBMIT_SKIP_FILECHECKS If True , condor_submitbehaves as if the-disable command-line option is used.
This tellscondor_submitto disable file permission checks when submitting a job for read permissions on all
input files, such as those defined by commandsinput andtransfer_input_files, as well as write permission to
output files, such as a log file defined bylog and output files defined withoutput or transfer_output_files.
This can significantly decrease the amount of time required to submit a large group of jobs. The default value is
False .

WARN_ON_UNUSED_SUBMIT_FILE_MACROS A boolean variable that defaults toTrue . When True , con-
dor_submitperforms checks on the job’s submit description file contents for commands that define a macro,
but do not use the macro within the file. A warning is issued, but job submission continues. A definition of
a new macro occurs when the lhs of a command is not a known submit command. This check may help spot
spelling errors of known submit commands.

SUBMIT_SEND_RESCHEDULE A boolean expression that when False, preventscondor_submitfrom automatically
sending acondor_reschedulecommand as it completes. Thecondor_reschedulecommand causes thecon-
dor_schedddaemon to start searching for machines with which to match the submitted jobs. When True, this
step always occurs. In the case that the machine where the job(s) are submitted is managing a huge number of
jobs (thousands or tens of thousands), this step would hurt performance in such a way that it became an obstacle
to scalability. The default value is True.

SUBMIT_ATTRS A comma-separated and/or space-separated list of ClassAd attribute names for which the attribute
and value will be inserted into all the job ClassAds thatcondor_submitcreates. In this way, it is like the"+" syn-
tax in a submit description file. Attributes defined in the submit description file with"+" will override attributes
defined in the configuration file withSUBMIT_ATTRS. Note that adding an attribute to a job’s ClassAd will
not function as a method for specifying default values of submitdescription file commands forgotten in a job’s
submit description file. The command in the submit description file results in actions bycondor_submit, while
the use ofSUBMIT_ATTRSadds a job ClassAd attribute at a later point in time.SUBMIT_EXPRSis a historic
setting that functions identically toSUBMIT_ATTRS. It may be removed in the future, so useSUBMIT_ATTRS.

HTCondor Version 8.6.4 Manual

3.5.14. condor_preen Configuration File Entries 304

LOG_ON_NFS_IS_ERROR A boolean value that controls whethercondor_submitprohibits job submit descrip-
tion files with job event log files on NFS. IfLOG_ON_NFS_IS_ERRORis set toTrue , such submit files
will be rejected. IfLOG_ON_NFS_IS_ERRORis set toFalse , the job will be submitted. If not defined,
LOG_ON_NFS_IS_ERRORdefaults toFalse .

SUBMIT_MAX_PROCS_IN_CLUSTER An integer value that limits the maximum number of jobs that would be
assigned within a single cluster. Job submissions that would exceed the defined value fail, issuing an error
message, and with no jobs submitted. The default value is 0, which does not limit the number of jobs assigned
a single cluster number.

ENABLE_DEPRECATION_WARNINGS A boolean value that defaults toFalse . WhenTrue , condor_submitissues
warnings when a job requests features that are no longer supported.

INTERACTIVE_SUBMIT_FILE The path and file name of a submit description file thatcondor_submitwill use in
the specification of an interactive job. The default is$(RELEASE_DIR)/libexec/interactive.sub
when not defined.

3.5.14 condor_preen Configuration File Entries

These macros affectcondor_preen.

PREEN_ADMIN This macro sets the e-mail address wherecondor_preenwill send e-mail (if it is configured to send
email at all; see the entry forPREEN). Defaults to$(CONDOR_ADMIN).

VALID_SPOOL_FILES A comma or space separated list of files thatcondor_preenconsiders valid files to find
in the $(SPOOL) directory, such thatcondor_preenwill not remove these files. There is no default value.
condor_preenwill add to the list files and directories that are normally present in the$(SPOOL) directory. A
single asterisk (*) wild card character is permitted in each file item within thelist.

SYSTEM_VALID_SPOOL_FILES A comma or space separated list of files thatcondor_preenconsiders valid files
to find in the$(SPOOL) directory. The default value is all files known by HTCondor tobe valid. This variable
exists such that it can be queried; it should not be changed.condor_preenuse it to initialize the the list files and
directories that are normally present in the$(SPOOL) directory. A single asterisk (*) wild card character is
permitted in each file item within the list.

INVALID_LOG_FILES This macro contains a (comma or space separated) list of filesthatcondor_preenconsiders
invalid files to find in the$(LOG) directory. There is no default value.

3.5.15 condor_collector Configuration File Entries

These macros affect thecondor_collector.

CLASSAD_LIFETIME The default maximum age in seconds for ClassAds collected bythecondor_collector. Class-
Ads older than the maximum age are discarded by thecondor_collectoras stale.

HTCondor Version 8.6.4 Manual

3.5.15. condor_collector Configuration File Entries 305

If present, the ClassAd attributeClassAdLifetime specifies the ClassAd’s lifetime in seconds.
If ClassAdLifetime is not present in the ClassAd, thecondor_collector will use the value of
$(CLASSAD_LIFETIME) . This variable is defined in terms of seconds, and it defaultsto 900 seconds (15
minutes).

To ensure that thecondor_collectordoes not miss any ClassAds, the frequency at which all other subsystems
that report using an update interval must be tuned. The configuration variables that set these subsystems are

• UPDATE_INTERVAL(for thecondor_startddaemon)

• NEGOTIATOR_UPDATE_INTERVAL

• SCHEDD_INTERVAL

• MASTER_UPDATE_INTERVAL

• CKPT_SERVER_INTERVAL

• DEFRAG_UPDATE_INTERVAL

• HAD_UPDATE_INTERVAL

MASTER_CHECK_INTERVAL This macro defines how often the collector should check for machines that have Class-
Ads from some daemons, but not from thecondor_master(orphaned daemons) and send e-mail about it. It is
defined in seconds and defaults to 10800 (3 hours).

COLLECTOR_REQUIREMENTS A boolean expression that filters out unwanted ClassAd updates. The expression
is evaluated for ClassAd updates that have passed through enabled security authorization checks. The default
behavior when this expression is not defined is to allow all ClassAd updates to take place. IfFalse , a ClassAd
update will be rejected.

Stronger security mechanisms are the better way to authorize or deny updates to thecondor_collector. This
configuration variable exists to help those that use host-based security, and do not trust all processes that run on
the hosts in the pool. This configuration variable may be usedto throw out ClassAds that should not be allowed.
For example, forcondor_startddaemons that run on a fixed port, configure this expression to ensure that only
machine ClassAds advertising the expected fixed port are accepted. As a convenience, before evaluating the
expression, some basic sanity checks are performed on the ClassAd to ensure that all of the ClassAd attributes
used by HTCondor to contain IP:port information are consistent. To validate this information, the attribute to
check isTARGET.MyAddress .

CLIENT_TIMEOUT Network timeout that thecondor_collectoruses when talking to any daemons or tools that are
sending it a ClassAd update. It is defined in seconds and defaults to 30.

QUERY_TIMEOUT Network timeout when talking to anyone doing a query. It is defined in seconds and defaults to
60.

CONDOR_DEVELOPERS By default, HTCondor will send e-mail once per week to this address with the output of the
condor_statuscommand, which lists how many machines are in the pool and howmany are running jobs. The
default value of condor-admin@cs.wisc.edu will send this report to the Center for High Throughput Computing
at the University of Wisconsin-Madison. The Center for HighThroughput Computing uses these weekly status
messages in order to have some idea as to how many HTCondor pools exist in the world. We appreciate getting
the reports, as this is one way we can convince funding agencies that HTCondor is being used in the real world.
If you do not wish this information to be sent to the Center forHigh Throughput Computing, explicitly set the
value toNONEto disable this feature, or replace the address with a desired location. If undefined (commented
out) in the configuration file, HTCondor follows its default behavior.

HTCondor Version 8.6.4 Manual

mailto:condor-admin@cs.wisc.edu

3.5.15. condor_collector Configuration File Entries 306

COLLECTOR_NAME This macro is used to specify a short description of your pool. It should be about 20 characters
long. For example, the name of the UW-Madison Computer Science HTCondor Pool is"UW-Madison CS" .
While this macro might seem similar toMASTER_NAMEor SCHEDD_NAME, it is unrelated. Those settings are
used to uniquely identify (and locate) a specific set of HTCondor daemons, if there are more than one running
on the same machine. TheCOLLECTOR_NAMEsetting is just used as a human-readable string to describe the
pool, which is included in the updates sent to theCONDOR_DEVELOPERS_COLLECTOR.

CONDOR_DEVELOPERS_COLLECTOR By default, every pool sends periodic updates to a centralcondor_collector
at UW-Madison with basic information about the status of thepool. Updates include only the number of total
machines, the number of jobs submitted, the number of machines running jobs, the host name of the central
manager, and the$(COLLECTOR_NAME). These updates help the Center for High Throughput Computing see
how HTCondor is being used around the world. By default, theywill be sent tocondor.cs.wisc.edu .
To discontinue sending updates, explicitly set this macro to NONE. If undefined or commented out in the
configuration file, HTCondor follows its default behavior.

COLLECTOR_UPDATE_INTERVAL This variable is defined in seconds and defaults to 900 (every15 minutes). It
controls the frequency of the periodic updates sent to a central condor_collectorat UW-Madison as defined by
CONDOR_DEVELOPERS_COLLECTOR.

COLLECTOR_SOCKET_BUFSIZE This specifies the buffer size, in bytes, reserved forcondor_collectornetwork
UDP sockets. The default is 10240000, or a ten megabyte buffer. This is a healthy size, even for a large pool.
The larger this value, the less likely thecondor_collectorwill have stale information about the pool due to
dropping update packets. If your pool is small or your central manager has very little RAM, considering setting
this parameter to a lower value (perhaps 256000 or 128000).

NOTE: For some Linux distributions, it may be necessary to raise the OS’s system-wide limit for network buffer
sizes. The parameter that controls this limit is /proc/sys/net/core/rmem_max. You can see the values that the
condor_collectoractually uses by enabling D_FULLDEBUG for the collector andlooking at the log line that
looks like this:

Reset OS socket buffer size to 2048k (UDP), 255k (TCP).

For changes to this parameter to take effect,condor_collectormust be restarted.

COLLECTOR_TCP_SOCKET_BUFSIZE This specifies the TCP buffer size, in bytes, reserved forcondor_collector
network sockets. The default is 131072, or a 128 kilobyte buffer. This is a healthy size, even for a large pool.
The larger this value, the less likely thecondor_collectorwill have stale information about the pool due to
dropping update packets. If your pool is small or your central manager has very little RAM, considering setting
this parameter to a lower value (perhaps 65536 or 32768).

NOTE: See the note forCOLLECTOR_SOCKET_BUFSIZE.

KEEP_POOL_HISTORY This boolean macro is used to decide if the collector will write out statistical information
about the pool to history files. The default isFalse . The location, size, and frequency of history logging is
controlled by the other macros.

POOL_HISTORY_DIR This macro sets the name of the directory where the history files reside (if history logging is
enabled). The default is theSPOOLdirectory.

POOL_HISTORY_MAX_STORAGE This macro sets the maximum combined size of the history files. When the size
of the history files is close to this limit, the oldest information will be discarded. Thus, the larger this parameter’s
value is, the larger the time range for which history will be available. The default value is 10000000 (10 MB).

HTCondor Version 8.6.4 Manual

3.5.15. condor_collector Configuration File Entries 307

POOL_HISTORY_SAMPLING_INTERVAL This macro sets the interval, in seconds, between samples for history
logging purposes. When a sample is taken, the collector goesthrough the information it holds, and summarizes
it. The information is written to the history file once for each 4 samples. The default (and recommended) value
is 60 seconds. Setting this macro’s value too low will increase the load on the collector, while setting it to high
will produce less precise statistical information.

COLLECTOR_DAEMON_STATS A boolean value that controls whether or not thecondor_collectordaemon keeps
update statistics on incoming updates. The default value isTrue . If enabled, thecondor_collectorwill insert
several attributes into the ClassAds that it stores and sends. ClassAds without theUpdateSequenceNumber
andDaemonStartTime attributes will not be counted, and will not have attributesinserted (all modern HT-
Condor daemons which publish ClassAds publish these attributes).

The attributes inserted areUpdatesTotal , UpdatesSequenced , andUpdatesLost . UpdatesTotal
is the total number of updates (of this ClassAd type) thecondor_collectorhas received from this host.
UpdatesSequenced is the number of updates that thecondor_collectorcould have as lost. In particular, for
the first update from a daemon, it is impossible to tell if any previous ones have been lost or not.UpdatesLost
is the number of updates that thecondor_collectorhas detected as being lost. See page 1056 for more informa-
tion on the added attributes.

COLLECTOR_STATS_SWEEP This value specifies the number of seconds between sweeps of thecondor_collector’s
per-daemon update statistics. Records for daemons which have not reported in this amount of time are purged
in order to save memory. The default is two days. It is unlikely that you would ever need to adjust this.

COLLECTOR_DAEMON_HISTORY_SIZE This variable controls the size of the published update history that
the condor_collector inserts into the ClassAds it stores and sends. The default value is 128, which
means that history is stored and published for the latest 128updates. This variable’s value is ignored, if
COLLECTOR_DAEMON_STATSis not enabled.

If the value is a non-zero one, thecondor_collectorwill insert attributeUpdatesHistory into the ClassAd
(similar toUpdatesTotal). AttrUpdatesHistory is a hexadecimal string which represents a bitmap of the last
COLLECTOR_DAEMON_HISTORY_SIZEupdates. The most significant bit (MSB) of the bitmap represents
the most recent update, and the least significant bit (LSB) represents the least recent. A value of zero means that
the update was not lost, and a value of 1 indicates that the update was detected as lost.

For example, if the last update was not lost, the previous waslost, and the previous two not, the bitmap would
be 0100, and the matching hex digit would be"4" . Note that the MSB can never be marked as lost be-
cause its loss can only be detected by a non-lost update (a gapis found in the sequence numbers). Thus,
UpdatesHistory = "0x40" would be the history for the last 8 updates. If the next updates are all suc-
cessful, the values published, after each update, would be:0x20, 0x10, 0x08, 0x04, 0x02, 0x01, 0x00.

See page 1056 for more information on the added attribute.

COLLECTOR_CLASS_HISTORY_SIZE This variable controls the size of the published update history that thecon-
dor_collectorinserts into thecondor_collectorClassAds it produces. The default value is zero.

If this variable has a non-zero value, thecondor_collectorwill insert UpdatesClassHistory into thecon-
dor_collectorClassAd (similar toUpdatesHistory). These are added per class of ClassAd, however. The
classes refer to the type of ClassAds. Additionally, there is a Total class created, which represents the history of
all ClassAds that thiscondor_collectorreceives.

Note that thecondor_collectoralways publishes Lost, Total and Sequenced counts for all ClassAd classes. This
is similar to the statistics gathered ifCOLLECTOR_DAEMON_STATSis enabled.

HTCondor Version 8.6.4 Manual

3.5.15. condor_collector Configuration File Entries 308

COLLECTOR_QUERY_WORKERS This variable sets the maximum number of worker processes that the con-
dor_collectorcan have. When receiving a query request, the Unixcondor_collectorwill fork() a new process
to handle the query, freeing the main process to handle otherrequests. When the number of outstanding worker
processes reaches this maximum, the request is handled by the main process. This variable is ignored on Win-
dows, and its default value is zero. The default configuration, however, has a value of 2.

COLLECTOR_DEBUG This macro (and other macros related to debug logging in thecondor_collectoris described in
section 3.5.3 as<SUBSYS>_DEBUG.

CONDOR_VIEW_CLASSAD_TYPES Provides the ClassAd types that will be forwarded to the
CONDOR_VIEW_HOST. The ClassAd types can be found withcondor_status-any. The default forwarding
behavior of thecondor_collectoris equivalent to

CONDOR_VIEW_CLASSAD_TYPES=Machine,Submitter

There is no default value for this variable.

COLLECTOR_FORWARD_FILTERING When this boolean variable is set toTrue , Machine and Submitter ad up-
dates are not forwarded to theCONDOR_VIEW_HOSTif certain attributes are unchanged from the previous
update of the ad. The default isFalse , meaning all updates are forwarded.

COLLECTOR_FORWARD_WATCH_LIST When COLLECTOR_FORWARD_FILTERINGis set toTrue , this vari-
able provides the list of attributes that controls whether aMachine or Submitter ad update is forwarded to the
CONDOR_VIEW_HOST. If all attributes in this list are unchanged from the previous update, then the new update
is not forwarded. The default value isState,Cpus,Memory,IdleJobs .

COLLECTOR_FORWARD_INTERVAL WhenCOLLECTOR_FORWARD_FILTERINGis set toTrue , this variable
limits how long forwarding of updates for a given ad can be filtered before an update must be forwarded. The
default is one third ofCLASSAD_LIFETIME.

The following macros control where, when, and for how long HTCondor persistently stores absent ClassAds. See
section 3.12.2 on page 474 for more details.

ABSENT_REQUIREMENTS A boolean expression evaluated by thecondor_collectorwhen a machine ClassAd would
otherwise expire. IfTrue , the ClassAd instead becomes absent. If not defined, the implementation will behave
as if False , and no absent ClassAds will be stored.

ABSENT_EXPIRE_ADS_AFTER The integer number of seconds after which thecondor_collectorforgets about an
absent ClassAd. If 0, the ClassAds persist forever. Defaults to 30 days.

COLLECTOR_PERSISTENT_AD_LOG The full path and file name of a file that stores machine ClassAds for every
hibernating or absent machine. This forms a persistent storage of these ClassAds, in case thecondor_collector
daemon crashes.

To avoidcondor_preenremoving this log, place it in a directory other than the directory defined by$(SPOOL) .
Alternatively, if this log file is to go in the directory defined by $(SPOOL) , add the file to the list given by
VALID_SPOOL_FILES.

This configuration variable replacesOFFLINE_LOG, which is no longer used.

HTCondor Version 8.6.4 Manual

3.5.16. condor_negotiator Configuration File Entries 309

EXPIRE_INVALIDATED_ADS A boolean value that defaults toFalse . WhenTrue , causes all invalidated Class-
Ads to be treated as if they expired. This permits invalidated ClassAds to be marked absent, as defined in
section 3.12.2.

3.5.16 condor_negotiator Configuration File Entries

These macros affect thecondor_negotiator.

NEGOTIATOR_INTERVAL Sets how often thecondor_negotiatorstarts a negotiation cycle. It is defined in seconds
and defaults to 60 (1 minute).

NEGOTIATOR_UPDATE_INTERVAL This macro determines how often thecondor_negotiatordaemon sends a
ClassAd update to thecondor_collector. It is defined in seconds and defaults to 300 (every 5 minutes).

NEGOTIATOR_CYCLE_DELAY An integer value that represents the minimum number of seconds that must pass
before a new negotiation cycle may start. The default value is 20.NEGOTIATOR_CYCLE_DELAYis intended
only for use by HTCondor experts.

NEGOTIATOR_TIMEOUT Sets the timeout that the negotiator uses on its network connections to thecondor_schedd
andcondor_startds. It is defined in seconds and defaults to 30.

NEGOTIATION_CYCLE_STATS_LENGTH Specifies how many recent negotiation cycles should be included in the
history that is published in thecondor_negotiator’s ad. The default is 3 and the maximum allowed value is
100. Setting this value to 0 disables publication of negotiation cycle statistics. The statistics about recent
cycles are stored in several attributes per cycle. Each of these attribute names will have a number appended
to it to indicate how long ago the cycle happened, for example: LastNegotiationCycleDuration0 ,
LastNegotiationCycleDuration1 , LastNegotiationCycleDuration2 , The attribute
numbered 0 applies to the most recent negotiation cycle. Theattribute numbered 1 applies to the next most
recent negotiation cycle, and so on. See page 1049 for a list of attributes that are published.

PRIORITY_HALFLIFE This macro defines the half-life of the user priorities. See section 2.7.2 on User Priorities
for details. It is defined in seconds and defaults to 86400 (1 day).

DEFAULT_PRIO_FACTOR Sets the priority factor for local users as they first submit jobs, as described in section 3.6.
Defaults to 1000.

NICE_USER_PRIO_FACTOR Sets the priority factor for nice users, as described in section 3.6. Defaults to
10000000000.

REMOTE_PRIO_FACTOR Defines the priority factor for remote users, which are thoseusers who who do not belong
to the local domain. See section 3.6 for details. Defaults to10000000.

ACCOUNTANT_LOCAL_DOMAIN Describes the local UID domain. This variable is used to decide if a user is local
or remote. A user is considered to be in the local domain if their UID domain matches the value of this variable.
Usually, this variable is set to the local UID domain. If not defined, all users are considered local.

HTCondor Version 8.6.4 Manual

3.5.16. condor_negotiator Configuration File Entries 310

MAX_ACCOUNTANT_DATABASE_SIZE This macro defines the maximum size (in bytes) that the accountant
database log file can reach before it is truncated (which re-writes the file in a more compact format). If, af-
ter truncating, the file is larger than one half the maximum size specified with this macro, the maximum size
will be automatically expanded. The default is 1 megabyte (1000000).

NEGOTIATOR_DISCOUNT_SUSPENDED_RESOURCES This macro tells the negotiator to not count resources that
are suspended when calculating the number of resources a user is using. Defaults to false, that is, a user is still
charged for a resource even when that resource has suspendedthe job.

NEGOTIATOR_SOCKET_CACHE_SIZE This macro defines the maximum number of sockets that thecon-
dor_negotiatorkeeps in its open socket cache. Caching open sockets makes the negotiation protocol more
efficient by eliminating the need for socket connection establishment for each negotiation cycle. The default is
currently 16. To be effective, this parameter should be set to a value greater than the number ofcondor_schedds
submitting jobs to the negotiator at any time. If you lower this number, you must runcondor_restartand not
justcondor_reconfigfor the change to take effect.

NEGOTIATOR_INFORM_STARTD Boolean setting that controls if thecondor_negotiatorshould inform thecon-
dor_startdwhen it has been matched with a job. The default isFalse . When this is set to the default value of
False , thecondor_startdwill never enter the Matched state, and will go directly fromUnclaimed to Claimed.
Because this notification is done via UDP, if a pool is configured so that the execute hosts do not create UDP
command sockets (see theWANT_UDP_COMMAND_SOCKETsetting described in section 3.5.2 on page 232 for
details), thecondor_negotiatorshould be configured not to attempt to contact thesecondor_startddaemons by
using the default value.

NEGOTIATOR_PRE_JOB_RANK Resources that match a request are first sorted by this expression. If there are any
ties in the rank of the top choice, the top resources are sorted by the user-supplied rank in the job ClassAd, then
by NEGOTIATOR_POST_JOB_RANK, then byPREEMPTION_RANK(if the match would cause preemption
and there are still any ties in the top choice).MYrefers to attributes of the machine ClassAd andTARGETrefers
to the job ClassAd. The purpose of the pre job rank is to allow the pool administrator to override any other
rankings, in order to optimize overall throughput. For example, it is commonly used to minimize preemption,
even if the job rank prefers a machine that is busy. If explicitly set to be undefined, this expression has no effect
on the ranking of matches. The default value prefers to matchmulti-core jobs to dynamic slots in a best fit
manner:

NEGOTIATOR_PRE_JOB_RANK = (10000000* My.Rank) + \
(1000000 * (RemoteOwner =?= UNDEFINED)) - (100000 * Cpus) - Memory

NEGOTIATOR_POST_JOB_RANK Resources that match a request are first sorted by
NEGOTIATOR_PRE_JOB_RANK. If there are any ties in the rank of the top choice, the top resources
are sorted by the user-supplied rank in the job ClassAd, thenby NEGOTIATOR_POST_JOB_RANK, then by
PREEMPTION_RANK(if the match would cause preemption and there are still any ties in the top choice).MY.
refers to attributes of the machine ClassAd andTARGET. refers to the job ClassAd. The purpose of the post
job rank is to allow the pool administrator to choose betweenmachines that the job ranks equally. The default
value is

NEGOTIATOR_POST_JOB_RANK = \
(RemoteOwner =?= UNDEFINED) * \
(ifThenElse(isUndefined(KFlops), 1000, Kflops) - \
SlotID - 1.0e10 * (Offline=?=True))

HTCondor Version 8.6.4 Manual

3.5.16. condor_negotiator Configuration File Entries 311

PREEMPTION_REQUIREMENTS When considering user priorities, the negotiator will not preempt a job running on
a given machine unless this expression evaluates toTrue , and the owner of the idle job has a better priority
than the owner of the running job. ThePREEMPTION_REQUIREMENTSexpression is evaluated within the
context of the candidate machine ClassAd and the candidate idle job ClassAd; thus theMYscope prefix refers to
the machine ClassAd, and theTARGETscope prefix refers to the ClassAd of the idle (candidate) job. There is
no direct access to the currently running job, but attributes of the currently running job that need to be accessed
in PREEMPTION_REQUIREMENTScan be placed in the machine ClassAd usingSTARTD_JOB_EXPRS.
If not explicitly set in the HTCondor configuration file, the default value for this expression isFalse .
PREEMPTION_REQUIREMENTSshould include the term(SubmitterGroup =?= RemoteGroup) , if a
preemption policy that respectsgroup quotasis desired. Note that this variable does not influence other potential
causes of preemption, such as theRANKof thecondor_startd, or PREEMPTexpressions. See section 3.7.1 for a
general discussion of limiting preemption.

PREEMPTION_REQUIREMENTS_STABLE A boolean value that defaults toTrue , implying that all attributes uti-
lized to define thePREEMPTION_REQUIREMENTSvariable will not change within a negotiation period time
interval. If utilized attributes will change during the negotiation period time interval, then set this variable to
False .

PREEMPTION_RANK Resources that match a request are first sorted byNEGOTIATOR_PRE_JOB_RANK. If there
are any ties in the rank of the top choice, the top resources are sorted by the user-supplied rank in the job ClassAd,
then byNEGOTIATOR_POST_JOB_RANK, then byPREEMPTION_RANK(if the match would cause preemp-
tion and there are still any ties in the top choice).MYrefers to attributes of the machine ClassAd andTARGET
refers to the job ClassAd. This expression is used to rank machines that the job and the other negotiation ex-
pressions rank the same. For example, if the job has no preference, it is usually preferable to preempt a job with
a smallImageSize instead of a job with a largeImageSize . The default value first considers the user’s
priority and chooses the user with the worst priority. Then,among the running jobs of that user, it chooses the
job with the least accumulated run time:

PREEMPTION_RANK = (RemoteUserPrio * 1000000) - \
ifThenElse(isUndefined(TotalJobRunTime), 0, TotalJobR unTime)

PREEMPTION_RANK_STABLE A boolean value that defaults toTrue , implying that all attributes utilized to define
thePREEMPTION_RANKvariable will not change within a negotiation period time interval. If utilized attributes
will change during the negotiation period time interval, then set this variable toFalse .

NEGOTIATOR_SLOT_CONSTRAINT An expression which constrains which machine ClassAds are fetched from
thecondor_collectorby thecondor_negotiatorduring a negotiation cycle.

NEGOTIATOR_TRIM_SHUTDOWN_THRESHOLD This setting is not likely to be customized, except perhaps within
a glidein setting. An integer expression that evaluates to avalue within the context of thecondor_negotiator
ClassAd, with a default value of 0. When this expression evaluates to an integer X greater than 0, thecon-
dor_negotiatorwill not make matches to machines that contain the ClassAd attribute DaemonShutdown
which evaluates toTrue , when that shut down time is X seconds into the future. The idea here is a mech-
anism to prevent matching with machines that are quite closeto shutting down, since the match would likely be
a waste of time.

NEGOTIATOR_SLOT_POOLSIZE_CONSTRAINT or GROUP_DYNAMIC_MACH_CONSTRAINT This optional
expression specifies which machine ClassAds should be counted when computing the size of the pool. It
applies both for group quota allocation and when there are nogroups. The default is to count all machine
ClassAds. When extra slots exist for special purposes, as, for example, suspension slots or file transfer slots,

HTCondor Version 8.6.4 Manual

3.5.16. condor_negotiator Configuration File Entries 312

this expression can be used to inform thecondor_negotiatorthat only normal slots should be counted when
computing how big each group’s share of the pool should be.

The nameNEGOTIATOR_SLOT_POOLSIZE_CONSTRAINTreplacesGROUP_DYNAMIC_MACH_CONSTRAINT
as of HTCondor version 7.7.3. Using the older name causes a warning to be logged, although the behavior is
unchanged.

NEGOTIATOR_DEBUG This macro (and other settings related to debug logging in the negotiator) is described in
section 3.5.3 as<SUBSYS>_DEBUG.

NEGOTIATOR_MAX_TIME_PER_SUBMITTER The maximum number of seconds thecondor_negotiatorwill
spend with each individual submitter during one negotiation cycle. Once this time limit has been reached,
thecondor_negotiatorwill skip over requests from this submitter until the next negotiation cycle. It defaults to
the number of seconds in one year.

NEGOTIATOR_MAX_TIME_PER_SCHEDD The maximum number of seconds thecondor_negotiatorwill spend
with each individualcondor_scheddduring one negotiation cycle. Once this time limit has been reached, the
condor_negotiatorwill skip over requests from thiscondor_schedduntil the next negotiation cycle. It defaults
to the number of seconds in one year.

NEGOTIATOR_MAX_TIME_PER_CYCLE The maximum number of seconds thecondor_negotiatorwill spend in
total across all submitters during one negotiation cycle. Once this time limit has been reached, thecon-
dor_negotiatorwill skip over requests from all submitters until the next negotiation cycle. It defaults to the
number of seconds in one year.

NEGOTIATOR_MAX_TIME_PER_PIESPIN The maximum number of seconds thecondor_negotiatorwill spend
with a submitter in one pie spin. A negotiation cycle is composed of at least one pie spin, possibly more,
depending on whether there are still machines left over after computing fair shares and negotiating with each
submitter. By limiting the maximum length of a pie spin or themaximum time per submitter per negotiation
cycle, thecondor_negotiatoris protected against spending a long time talking to one submitter, for example
someone with a very slowcondor_schedddaemon. But, this can result in unfair allocation of machines or some
machines not being allocated at all. See section 3.6.6 on page 365 for a description of a pie slice. It defaults to
the number of seconds in one year.

USE_RESOURCE_REQUEST_COUNTS A boolean value that defaults toTrue . WhenTrue , the latency of negoti-
ation will be reduced when there are many jobs next to each other in the queue with the same auto cluster, and
many matches are being made. WhenTrue , thecondor_scheddtells thecondor_negotiatorto send X matches
at a time, where X equals number of consecutive jobs in the queue within the same auto cluster.

NEGOTIATOR_RESOURCE_REQUEST_LIST_SIZE An integer tuning parameter used by thecondor_negotiator
to control the number of resource requests fetched from acondor_scheddper network round-trip. With higher
values, the latency of negotiation can be significantly be reduced when negotiating with acondor_scheddrun-
ning HTCondor version 8.3.0 or more recent, especially overa wide-area network. Setting this value too high,
however, could cause thecondor_scheddto unnecessarily block on network I/O. The default value is 20. If
USE_RESOURCE_REQUEST_COUNTSis set toFalse , then this variable will be unconditionally set to a
value of 1.

NEGOTIATOR_MATCH_EXPRS A comma-separated list of macro names that are inserted as ClassAd attributes into
matched job ClassAds. The attribute name in the ClassAd willbe given the prefixNegotiatorMatchExpr ,
if the macro name does not already begin with that. Example:

HTCondor Version 8.6.4 Manual

3.5.16. condor_negotiator Configuration File Entries 313

NegotiatorName = "My Negotiator"
NEGOTIATOR_MATCH_EXPRS = NegotiatorName

As a result of the above configuration, jobs that are matched by thiscondor_negotiatorwill contain the following
attribute when they are sent to thecondor_startd:

NegotiatorMatchExprNegotiatorName = "My Negotiator"

The expressions inserted by thecondor_negotiatormay be useful incondor_startdpolicy expressions, when
thecondor_startdbelongs to multiple HTCondor pools.

NEGOTIATOR_MATCHLIST_CACHING A boolean value that defaults toTrue . When True , it enables
an optimization in thecondor_negotiatorthat works with auto clustering. In determining the sorted
list of machines that a job might use, the job goes to the first machine off the top of the list. If
NEGOTIATOR_MATCHLIST_CACHINGis True , and if the next job is part of the same auto cluster, meaning
that it is a very similar job, thecondor_negotiatorwill reuse the previous list of machines, instead of recreating
the list from scratch.

If matching grid resources, and the desire is for a given resource to potentially match multiple times per
condor_negotiatorpass,NEGOTIATOR_MATCHLIST_CACHINGshould beFalse . See section 5.3.10 on
page 599 in the subsection on Advertising Grid Resources to HTCondor for an example.

NEGOTIATOR_CONSIDER_PREEMPTION For expert users only. A boolean value that defaults toTrue . When
False , it can cause thecondor_negotiatorto run faster and also have better spinning pie accuracy.Only set
this toFalse if PREEMPTION_REQUIREMENTS is False, and if all condor_startd rank expressions are
False.

NEGOTIATOR_CONSIDER_EARLY_PREEMPTION A boolean value that whenFalse (the default), prevents
the condor_negotiatorfrom matching jobs to claimed slots that cannot immediatelybe preempted due to
MAXJOBRETIREMENTTIME.

ALLOW_PSLOT_PREEMPTION A boolean value that defaults toFalse . When set toTrue for the con-
dor_negotiator, it enables a new matchmaking mode in which one or more dynamic slots can be preempted
in order to make enough resources available in their parent partitionable slot for a job to successfully match to
the partitionable slot.

STARTD_AD_REEVAL_EXPR A boolean value evaluated in the context of each machine ClassAd within a negoti-
ation cycle that determines whether the ClassAd from thecondor_collectoris to replace the stashed ClassAd
utilized during the previous negotiation cycle. WhenTrue , the ClassAd from thecondor_collectordoes replace
the stashed one. When not defined, the default value is to replace the stashed ClassAd if the stashed ClassAd’s
sequence number is older than its potential replacement.

NEGOTIATOR_UPDATE_AFTER_CYCLE A boolean value that defaults toFalse . WhenTrue , it will force the
condor_negotiatordaemon to publish an update to thecondor_collectorat the end of every negotiation cycle.
This is useful if monitoring statistics for the previous negotiation cycle.

NEGOTIATOR_READ_CONFIG_BEFORE_CYCLE A boolean value that defaults toFalse . WhenTrue , thecon-
dor_negotiatorwill re-read the configuration prior to beginning each negotiation cycle. Note that this operation
will update configured behaviors such as concurrency limits, but not data structures constructed during a full

HTCondor Version 8.6.4 Manual

3.5.16. condor_negotiator Configuration File Entries 314

reconfiguration, such as the group quota hierarchy. A full reconfiguration, for example as accomplished with
condor_reconfig, remains the best way to guarantee that allcondor_negotiatorconfiguration is completely up-
dated.

<NAME>_LIMIT An integer value that defines the amount of resources available for jobs which declare that they use
some consumable resource as described in section 3.14.15.<Name>is a string invented to uniquely describe
the resource.

CONCURRENCY_LIMIT_DEFAULT An integer value that describes the number of resources available for any re-
sources that are not explicitly named defined with the configuration variable<NAME>_LIMIT. If not defined,
no limits are set for resources not explicitly identified using<NAME>_LIMIT.

CONCURRENCY_LIMIT_DEFAULT_<NAME> If set, this defines a default concurrency limit for all resources that
start with<NAME>.

The following configuration macros affect negotiation for group users.

GROUP_NAMES A comma-separated list of the recognized group names, case insensitive. If undefined (the default),
group support is disabled. Group names must not conflict withany user names. That is, if there is aphysics
group, there may not be aphysics user. Any group that is defined here must also have a quota, or the group
will be ignored. Example:

GROUP_NAMES = group_physics, group_chemistry

GROUP_QUOTA_<groupname> A floating point value to represent a static quota specifyingan integral number of
machines for the hierarchical group identified by<groupname> . It is meaningless to specify a non integer
value, since only integral numbers of machines can be allocated. Example:

GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_chemistry = 10

When both static and dynamic quotas are defined for a specific group, the static quota is used and the dynamic
quota is ignored.

GROUP_QUOTA_DYNAMIC_<groupname> A floating point value in the range 0.0 to 1.0, inclusive, represent-
ing a fraction of a pool’s machines (slots) set as a dynamic quota for the hierarchical group identified by
<groupname> . For example, the following specifies that a quota of 25% of the total machines are reserved
for members of the group_biology group.

GROUP_QUOTA_DYNAMIC_group_biology = 0.25

The group name must be specified in theGROUP_NAMESlist.

This section has not yet been completed

HTCondor Version 8.6.4 Manual

3.5.16. condor_negotiator Configuration File Entries 315

GROUP_PRIO_FACTOR_<groupname> A floating point value greater than or equal to 1.0 to specify the default
user priority factor for<groupname> . The group name must also be specified in theGROUP_NAMESlist.
GROUP_PRIO_FACTOR_<groupname>is evaluated when the negotiator first negotiates for the user as a
member of the group. All members of the group inherit the default priority factor when no other value is
present. For example, the following setting specifies that all members of the group namedgroup_physics
inherit a default user priority factor of 2.0:

GROUP_PRIO_FACTOR_group_physics = 2.0

GROUP_AUTOREGROUP A boolean value (defaults toFalse) that whenTrue , causes users who submitted to a
specific group to also negotiate a second time with the<none> group, to be considered with the independent
job submitters. This allows group submitted jobs to be matched with idle machines even if the group is over its
quota. The user name that is used for accounting and prioritization purposes is still the group user as specified
by AccountingGroup in the job ClassAd.

GROUP_AUTOREGROUP_<groupname> This is the same asGROUP_AUTOREGROUP, but it is settable on
a per-group basis. If no value is specified for a given group, the default behavior is determined by
GROUP_AUTOREGROUP, which in turn defaults toFalse .

GROUP_ACCEPT_SURPLUS A boolean value that, whenTrue , specifies that groups should be allowed to use more
than their configured quota when there is not enough demand from other groups to use all of the available
machines. The default value isFalse .

GROUP_ACCEPT_SURPLUS_<groupname> A boolean value applied as a group-specific version of
GROUP_ACCEPT_SURPLUS. When not specified, the value ofGROUP_ACCEPT_SURPLUSapplies to
the named group.

GROUP_QUOTA_ROUND_ROBIN_RATE The maximum sum of weighted slots that should be handed out toan in-
dividual submitter in each iteration within a negotiation cycle. If slot weights are not being used by thecon-
dor_negotiator, as specified byNEGOTIATOR_USE_SLOT_WEIGHTS = False, then this value is just the
(unweighted) number of slots. The default value is a very bignumber, effectively infinite. Setting the value to
a number smaller than the size of the pool can help avoid starvation. An example of the starvation problem is
when there are a subset of machines in a pool with large memory, and there are multiple job submitters who
desire all of these machines. Normally, HTCondor will decide how much of the full pool each person should
get, and then attempt to hand out that number of resources to each person. Since the big memory machines
are only a subset of pool, it may happen that they are all givento the first person contacted, and the remainder
requiring large memory machines get nothing. SettingGROUP_QUOTA_ROUND_ROBIN_RATEto a value that
is small compared to the size of subsets of machines will reduce starvation at the cost of possibly slowing down
the rate at which resources are allocated.

GROUP_QUOTA_MAX_ALLOCATION_ROUNDS An integer that specifies the maximum number of times within one
negotiation cycle thecondor_negotiatorwill calculate how many slots each group deserves and attempt to
allocate them. The default value is 3. The reason it may take more than one round is that some groups may not
have jobs that match some of the available machines, so some of the slots that were withheld for those groups
may not get allocated in any given round.

HTCondor Version 8.6.4 Manual

3.5.17. condor_procd Configuration File Macros 316

NEGOTIATOR_USE_SLOT_WEIGHTS A boolean value with a default ofTrue . When True , the con-
dor_negotiatorpays attention to the machine ClassAd attributeSlotWeight . WhenFalse , each slot ef-
fectively has a weight of 1.

NEGOTIATOR_USE_WEIGHTED_DEMAND A boolean value that defaults toTrue . WhenFalse , the behavior is
the same as for HTCondor versions prior to 7.9.6. IfTrue , when thecondor_scheddadvertisesIdleJobs
in the submitter ClassAd, which represents the number of idle jobs in the queue for that submitter, it will also
advertise the total number of requested cores across all idle jobs from that submitter,WeightedIdleJobs . If
partitionable slots are being used, and if hierarchical group quotas are used, and if any hierarchical group quotas
setGROUP_ACCEPT_SURPLUSto True , and if configuration variableSlotWeight is set to the number of
cores, then setting this configuration variable toTrue allows the amount of surplus allocated to each group to
be calculated correctly.

GROUP_SORT_EXPR A floating point ClassAd expression that controls the order in which thecondor_negotiator
considers groups when allocating resources. The smallest magnitude positive value goes first. The default value
is set such that group<none> always goes last when considering group quotas, and groups are considered in
starvation order (the group using the smallest fraction of its resource quota is considered first).

NEGOTIATOR_ALLOW_QUOTA_OVERSUBSCRIPTION A boolean value that defaults toTrue . WhenTrue , the
behavior of resource allocation when considering groups ismore like it was in the 7.4 stable series of HTCondor.
In implementation, whenTrue , the static quotas of subgroups willnot be scaled when the sum of these static
quotas of subgroups sums to more than the group’s static quota. This behavior is desirable when using static
quotas, unless the sum of subgroup quotas is considerably less than the group’s quota, as scaling is currently
based on the number of machines available, not assigned quotas (for static quotas).

3.5.17 condor_procd Configuration File Macros

USE_PROCD This boolean variable determines whether thecondor_procdwill be used for managing process families.
If the condor_procdis not used, each daemon will run the process family trackinglogic on its own. Use
of the condor_procdresults in improved scalability because only one instance of this logic is required. The
condor_procdis required when using group ID-based process tracking (seeSection 3.14.11). In this case, the
USE_PROCDsetting will be ignored and acondor_procdwill always be used. By default, thecondor_master
will start acondor_procdthat all other daemons that need process family tracking will use. A daemon that uses
thecondor_procdwill start acondor_procdfor use by itself and all of its child daemons.

PROCD_MAX_SNAPSHOT_INTERVAL This setting determines the maximum time that thecondor_procdwill wait
between probes of the system for information about the process families it is tracking.

PROCD_LOG Specifies a log file for thecondor_procdto use. Note that by design, thecondor_procddoes not
include most of the other logic that is shared amongst the various HTCondor daemons. This means that the
condor_procddoes not include the normal HTCondor logging subsystem, andthus multiple debug levels are
not supported.PROCD_LOGdefaults to$(LOG)/ProcLog . Note that enablingD_PROCFAMILYin the
debug level for any other daemon will cause it to log all interactions with thecondor_procd.

MAX_PROCD_LOG Controls the maximum length in bytes to which thecondor_procdlog will be allowed to grow.
The log file will grow to the specified length, then be saved to afile with the suffix.old . The .old file is

HTCondor Version 8.6.4 Manual

3.5.18. condor_credd Configuration File Macros 317

overwritten each time the log is saved, thus the maximum space devoted to logging will be twice the maximum
length of this log file. A value of 0 specifies that the file may grow without bounds. The default is 10 MiB.

PROCD_ADDRESS This specifies the address that thecondor_procdwill use to receive requests from other HTCon-
dor daemons. On Unix, this should point to a file system location that can be used for a named pipe. On
Windows, named pipes are also used but they do not exist in thefile system. The default setting therefore de-
pends on the platform and distribution:$(LOCK)/procd_pipe or $(RUN)/procd_pipe on Unix and
\\.\pipe\procd_pipe on Windows.

USE_GID_PROCESS_TRACKING A boolean value that defaults toFalse . WhenTrue , a job’s initial process is
assigned a dedicated GID which is further used by thecondor_procdto reliably track all processes associated
with a job. WhenTrue , values forMIN_TRACKING_GIDandMAX_TRACKING_GIDmust also be set, or
HTCondor will abort, logging an error message. See section 3.14.11 on page 504 for a detailed description.

MIN_TRACKING_GID An integer value, that together withMAX_TRACKING_GIDspecify a range of GIDs to be
assigned on a per slot basis for use by thecondor_procdin tracking processes associated with a job. See
section 3.14.11 on page 504 for a detailed description.

MAX_TRACKING_GID An integer value, that together withMIN_TRACKING_GIDspecify a range of GIDs to be
assigned on a per slot basis for use by thecondor_procdin tracking processes associated with a job. See
section 3.14.11 on page 504 for a detailed description.

BASE_CGROUP The path to the directory used as the virtual file system for the implementation of Linux kernel
cgroups. This variable defaults to the stringhtcondor , and is only used on Linux systems. To disable cgroup
tracking, define this to an empty string. See section 3.14.12on page 505 for a description of cgroup-based
process tracking.

3.5.18 condor_credd Configuration File Macros

These macros affect thecondor_credd.

CREDD_HOST The host name of the machine running thecondor_credddaemon.

CREDD_POLLING_TIMEOUT An integer value that determines how long thecondor_credddaemon will poll for
credentials in seconds. The default value is 20.

CREDD_CACHE_LOCALLY A boolean value that defaults toFalse . WhenTrue , the first successful password
fetch operation to thecondor_credddaemon causes the password to be stashed in a local, secure password
store. Subsequent uses of that password do not require communication with thecondor_credddaemon.

SKIP_WINDOWS_LOGON_NETWORK A boolean value that defaults toFalse . WhenTrue , Windows authenti-
cation skips trying authentication with theLOGON_NETWORKmethod first, and attempts authentication with
LOGON_INTERACTIVEmethod. This can be useful if many authentication failures are noticed, potentially
leading to users getting locked out.

HTCondor Version 8.6.4 Manual

3.5.19. condor_gridmanager Configuration File Entries 318

3.5.19 condor_gridmanager Configuration File Entries

These macros affect thecondor_gridmanager.

GRIDMANAGER_LOG Defines the path and file name for the log of thecondor_gridmanager. The owner of the file
is thecondor user.

GRIDMANAGER_CHECKPROXY_INTERVAL The number of seconds between checks for an updated X509 proxy
credential. The default is 10 minutes (600 seconds).

GRIDMANAGER_PROXY_REFRESH_TIME For GRAM jobs, thecondor_gridmanagerwill not forward a refreshed
proxy until the lifetime left for the proxy on the remote machine falls below this value. The value is in seconds
and the default is 21600 (6 hours).

GRIDMANAGER_MINIMUM_PROXY_TIME The minimum number of seconds before expiration of the X509 proxy
credential for the gridmanager to continue operation. If seconds until expiration is less than this number, the
gridmanager will shutdown and wait for a refreshed proxy credential. The default is 3 minutes (180 seconds).

HOLD_JOB_IF_CREDENTIAL_EXPIRES True or False. Defaults to True. If True, and for grid universe jobs only,
HTCondor-G will place a job on holdGRIDMANAGER_MINIMUM_PROXY_TIMEseconds before the proxy
expires. If False, the job will stay in the last known state, and HTCondor-G will periodically check to see if the
job’s proxy has been refreshed, at which point management ofthe job will resume.

GRIDMANAGER_CONTACT_SCHEDD_DELAY The minimum number of seconds between connections to thecon-
dor_schedd. The default is 5 seconds.

GRIDMANAGER_JOB_PROBE_INTERVAL The number of seconds between active probes for the status ofa sub-
mitted job. The default is 1 minute (60 seconds). Intervals specific to grid types can be set by appending the
name of the grid type to the configuration variable name, as the example

GRIDMANAGER_JOB_PROBE_INTERVAL_GT5 = 300

GRIDMANAGER_JOB_PROBE_RATE The maximum number of job status probes per second that will be issued
to a given remote resource. The time between status probes for individual jobs may be lengthened beyond
GRIDMANAGER_JOB_PROBE_INTERVALto enforce this rate. The default is 5 probes per second. Rates
specific to grid types can be set by appending the name of the grid type to the configuration variable name, as
the example

GRIDMANAGER_JOB_PROBE_RATE_GT5 = 15

GRIDMANAGER_RESOURCE_PROBE_INTERVAL When a resource appears to be down, how often (in seconds) the
condor_gridmanagershould ping it to test if it is up again.

GRIDMANAGER_RESOURCE_PROBE_DELAY The number of seconds between pings of a remote resource thatis
currently down. The default is 5 minutes (300 seconds).

HTCondor Version 8.6.4 Manual

3.5.19. condor_gridmanager Configuration File Entries 319

GRIDMANAGER_EMPTY_RESOURCE_DELAY The number of seconds that thecondor_gridmanagerretains infor-
mation about a grid resource, once thecondor_gridmanagerhas no active jobs on that resource. An active job
is a grid universe job that is in the queue, for whichJobStatus is anything other than Held. Defaults to 300
seconds.

GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE An integer value that limits the number of jobs that
a condor_gridmanagerdaemon will submit to a resource. A comma-separated list of pairs that follows this
integer limit will specify limits for specific remote resources. Each pair is a host name and the job limit for that
host. Consider the example:

GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE = 200, foo.edu, 50, bar.com, 100

In this example, all resources have a job limit of 200, exceptfoo.edu, which has a limit of 50, and bar.com,
which has a limit of 100.

Limits specific to grid types can be set by appending the name of the grid type to the configuration variable
name, as the example

GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE_CREAM = 300

In this example, the job limit for all CREAM resources is 300.Defaults to 1000.

GRIDMANAGER_MAX_JOBMANAGERS_PER_RESOURCE For grid jobs of typegt2, limits the number of globus-
job-manager processes that thecondor_gridmanagerlets run at a time on the remote head node. Allowing too
many globus-job-managers to run causes severe load on the head note, possibly making it non-functional. This
number may be exceeded if it is reduced through the use ofcondor_reconfigwhile thecondor_gridmanageris
running, or if some globus-job-managers take a few extra seconds to exit. The value 0 means there is no limit.
The default value is 10.

GAHP The full path to the binary of the GAHP server. This configuration variable is no longer used. UseGT2_GAHP
at section 3.5.19 instead.

GAHP_ARGS Arguments to be passed to the GAHP server. This configurationvariable is no longer used.

GAHP_DEBUG_HIDE_SENSITIVE_DATA A boolean value that determines when sensitive data such as security
keys and passwords are hidden, when communication to or froma GAHP server is written to a daemon log. The
default isTrue , hiding sensitive data.

GRIDMANAGER_GAHP_CALL_TIMEOUT The number of seconds after which a pending GAHP command should
time out. The default is 5 minutes (300 seconds).

GRIDMANAGER_GAHP_RESPONSE_TIMEOUT Thecondor_gridmanagerwill assume a GAHP is hung if this many
seconds pass without a response. The default is 20.

GRIDMANAGER_MAX_PENDING_REQUESTS The maximum number of GAHP commands that can be pending at
any time. The default is 50.

GRIDMANAGER_CONNECT_FAILURE_RETRY_COUNT The number of times to retry a command that failed due
to a timeout or a failed connection. The default is 3.

HTCondor Version 8.6.4 Manual

3.5.19. condor_gridmanager Configuration File Entries 320

GRIDMANAGER_GLOBUS_COMMIT_TIMEOUT The duration, in seconds, of the two phase commit timeout to
Globus for gt2 jobs only. This maps directly to thetwo_phase setting in the Globus RSL.

GLOBUS_GATEKEEPER_TIMEOUT The number of seconds after which if a gt2 grid universe job fails to ping the
gatekeeper, the job will be put on hold. Defaults to 5 days (inseconds).

EC2_RESOURCE_TIMEOUT The number of seconds after which if an EC2 grid universe job fails to ping the EC2
service, the job will be put on hold. Defaults to -1, which implements an infinite length, such that a failure to
ping the service will never put the job on hold.

EC2_GAHP_RATE_LIMIT The minimum interval, in whole milliseconds, between requests to the same EC2 service
with the same credentials. Defaults to 100.

GRAM_VERSION_DETECTION A boolean value that defaults toTrue . When True , the condor_gridmanager
treats grid typesgt2 and gt5 identically, and queries each server to determine which protocol it is using.
WhenFalse , the condor_gridmanagertrusts the grid type provided in job attributeGridResource , and
treats the server accordingly. Beware that identifying agt2 server asgt5 can result in overloading the server,
if a large number of jobs are submitted.

BATCH_GAHP_CHECK_STATUS_ATTEMPTS The number of times a failed status command issued to the
batch_gahpshould be retried. These retries allow thecondor_gridmanagerto tolerate short-lived failures of
the underlying batch system. The default value is 5.

C_GAHP_LOG The complete path and file name of the HTCondor GAHP server’s log. The default value is
/tmp/CGAHPLog.$(USERNAME) .

MAX_C_GAHP_LOG The maximum size of theC_GAHP_LOG.

C_GAHP_WORKER_THREAD_LOG The complete path and file name of the HTCondor GAHP worker process’ log.
The default value is/temp/CGAHPWorkerLog.$(USERNAME) .

C_GAHP_CONTACT_SCHEDD_DELAY The number of seconds that thecondor_C-gahpdaemon waits between con-
secutive connections to the remotecondor_scheddin order to send batched sets of commands to be executed on
that remotecondor_schedddaemon. The default value is 5.

GLITE_LOCATION The complete path to the directory containing the Glite software. The default value is
$(LIBEXEC)/glite . The necessary Glite software is included with HTCondor, and is required for grid-
type batch jobs.

CONDOR_GAHP The complete path and file name of the HTCondor GAHP executable. The default value is
$(SBIN)/condor_c-gahp .

EC2_GAHP The complete path and file name of the EC2 GAHP executable. Thedefault value is
$(SBIN)/ec2_gahp .

GT2_GAHP The complete path and file name of the GT2 GAHP executable. Thedefault value is
$(SBIN)/gahp_server .

BATCH_GAHP The complete path and file name of the batch GAHP executable, to be used for PBS, LSF, SGE, and
similar batch systems. The default location is$(GLITE_LOCATION)/bin/batch_gahp .

HTCondor Version 8.6.4 Manual

3.5.20. condor_job_router Configuration File Entries 321

PBS_GAHP The complete path and file name of the PBS GAHP executable. Theuse of the configuration variable
BATCH_GAHPis preferred and encouraged, as this variable may no longer be supported in a future version of
HTCondor. A value given with this configuration variable will override a value specified byBATCH_GAHP, and
the value specified byBATCH_GAHPis the default if this variable is not defined.

LSF_GAHP The complete path and file name of the LSF GAHP executable. Theuse of the configuration variable
BATCH_GAHPis preferred and encouraged, as this variable may no longer be supported in a future version of
HTCondor. A value given with this configuration variable will override a value specified byBATCH_GAHP, and
the value specified byBATCH_GAHPis the default if this variable is not defined.

UNICORE_GAHP The complete path and file name of the wrapper script that invokes the Unicore GAHP executable.
The default value is$(SBIN)/unicore_gahp .

NORDUGRID_GAHP The complete path and file name of the wrapper script that invokes the NorduGrid GAHP exe-
cutable. The default value is$(SBIN)/nordugrid_gahp .

CREAM_GAHP The complete path and file name of the CREAM GAHP executable. The default value is
$(SBIN)/cream_gahp .

SGE_GAHP The complete path and file name of the SGE GAHP executable. Theuse of the configuration variable
BATCH_GAHPis preferred and encouraged, as this variable may no longer be supported in a future version of
HTCondor. A value given with this configuration variable will override a value specified byBATCH_GAHP, and
the value specified byBATCH_GAHPis the default if this variable is not defined.

GCE_GAHP The complete path and file name of the GCE GAHP executable. Thedefault value is
$(SBIN)/gce_gahp .

BOINC_GAHP The complete path and file name of the BOINC GAHP executable. The default value is
$(SBIN)/boinc_gahp .

3.5.20 condor_job_router Configuration File Entries

These macros affect thecondor_job_routerdaemon.

JOB_ROUTER_DEFAULTS Defined by a single ClassAd in New ClassAd syntax, used to provide default values for
all routes in thecondor_job_routerdaemon’s routing table. Where an attribute is set outside ofthese defaults,
that attribute value takes precedence. The enclosing square brackets are optional.

JOB_ROUTER_ENTRIES Specification of the job routing table. It is a list of ClassAds, in New ClassAd syntax,
where each individual ClassAd is surrounded by square brackets, and the ClassAds are separated from each
other by spaces. Each ClassAd describes one entry in the routing table, and each describes a site that jobs may
be routed to.

A condor_reconfigcommand causes thecondor_job_routerdaemon to rebuild the routing table. Routes are
distinguished by a routing table entry’s ClassAd attributeName. Therefore, aNamechange in an existing route
has the potential to cause the inaccurate reporting of routes.

Instead of setting job routes using this configuration variable, they may be read from an external source
using theJOB_ROUTER_ENTRIES_FILEor be dynamically generated by an external program via the
JOB_ROUTER_ENTRIES_CMDconfiguration variable.

HTCondor Version 8.6.4 Manual

3.5.20. condor_job_router Configuration File Entries 322

JOB_ROUTER_ENTRIES_FILE A path and file name of a file that contains the ClassAds, in New ClassAd syntax,
describing the routing table. The specified file is periodically reread to check for new information. This occurs
every$(JOB_ROUTER_ENTRIES_REFRESH)seconds.

JOB_ROUTER_ENTRIES_CMD Specifies the command line of an external program to run. The output of the
program defines or updates the routing table, and the output must be given in New ClassAd syntax. The
specified command is periodically rerun to regenerate or update the routing table. This occurs every
$(JOB_ROUTER_ENTRIES_REFRESH)seconds. Specify the full path and file name of the executablewithin
this command line, as no assumptions may be made about the current working directory upon command invo-
cation. To enter spaces in any command-line arguments or in the command name itself, surround the right hand
side of this definition with double quotes, and use single quotes around individual arguments that contain spaces.
This is the same as when dealing with spaces within job arguments in an HTCondor submit description file.

JOB_ROUTER_ENTRIES_REFRESH The number of seconds between updates to the routing table described by
JOB_ROUTER_ENTRIES_FILEor JOB_ROUTER_ENTRIES_CMD. The default value is 0, meaning no pe-
riodic updates occur. With the default value of 0, the routing table can be modified when acondor_reconfig
command is invoked or when thecondor_job_routerdaemon restarts.

JOB_ROUTER_LOCK This specifies the name of a lock file that is used to ensure thatmultiple instances of con-
dor_job_router never run with the sameJOB_ROUTER_NAME. Multiple instances running with the same name
could lead to mismanagement of routed jobs. The default value is$(LOCK)/$(JOB_ROUTER_NAME)Lock .

JOB_ROUTER_SOURCE_JOB_CONSTRAINT Specifies a globalRequirements expression that must be true for
all newly routed jobs, in addition to anyRequirements specified within a routing table entry. In addition to
the configurable constraints, thecondor_job_routeralso has some hard-coded constraints. It avoids recursively
routing jobs by requiring that the job’s attributeRoutedBy does not matchJOB_ROUTER_NAME. When not
running as root, it also avoids routing jobs belonging to other users.

JOB_ROUTER_MAX_JOBS An integer value representing the maximum number of jobs that may be routed, summed
over all routes. The default value is -1, which means an unlimited number of jobs may be routed.

MAX_JOB_MIRROR_UPDATE_LAG An integer value that administrators will rarely consider changing, representing
the maximum number of seconds thecondor_job_routerdaemon waits, before it decides that routed copies have
gone awry, due to the failure of events to appear in thecondor_schedd’s job queue log file. The default value is
600. As thecondor_job_routerdaemon uses thecondor_schedd’s job queue log file entries for synchronization
of routed copies, when an expected log file event fails to appear after this wait period, thecondor_job_router
daemon acts presuming the expected event will never occur.

JOB_ROUTER_POLLING_PERIOD An integer value representing the number of seconds betweencycles in the
condor_job_routerdaemon’s task loop. The default is 10 seconds. A small value makes thecondor_job_router
daemon quick to see new candidate jobs for routing. A large value makes thecondor_job_routerdaemon
generate less overhead at the cost of being slower to see new candidates for routing. For very large job queues
where a few minutes of routing latency is no problem, increasing this value to a few hundred seconds would be
reasonable.

JOB_ROUTER_NAME A unique identifier utilized to name multiple instances of the condor_job_routerdaemon on
the same machine. Each instance must have a different name, or all but the first to start up will refuse to run.
The default is"jobrouter" .

HTCondor Version 8.6.4 Manual

3.5.20. condor_job_router Configuration File Entries 323

Changing this value when routed jobs already exist is not currently gracefully handled. However, it can be done
if one also usescondor_qeditto change the value ofManagedManager andRoutedBy from the old name
to the new name. The following commands may be helpful:

condor_qedit -constraint 'RoutedToJobId =!= undefined && \
ManagedManager == "insert_old_name"' \
ManagedManager '"insert_new_name"'

condor_qedit -constraint 'RoutedBy == "insert_old_name" ' \
RoutedBy '"insert_new_name"'

JOB_ROUTER_RELEASE_ON_HOLD A boolean value that defaults toTrue . It controls how thecondor_job_router
handles the routed copy when it goes on hold. WhenTrue , the condor_job_routerleaves the original job
ClassAd in the same state as when claimed. WhenFalse , thecondor_job_routerdoes not attempt to reset the
original job ClassAd to a pre-claimed state upon yielding control of the job.

JOB_ROUTER_SCHEDD1_SPOOL The path to the spool directory for thecondor_scheddserving as the source of
jobs for routing. If not specified, this defaults to$(SPOOL) . If specified, this parameter must point to the spool
directory of thecondor_scheddidentified byJOB_ROUTER_SCHEDD1_NAME.

JOB_ROUTER_SCHEDD2_SPOOL The path to the spool directory for thecondor_scheddto which the routed copy
of the jobs are submitted. If not specified, this defaults to$(SPOOL) . If specified, this parameter must point
to the spool directory of thecondor_scheddidentified byJOB_ROUTER_SCHEDD2_NAME. Note that when
condor_job_routeris running asroot and is submitting routed jobs to a differentcondor_scheddthan the
sourcecondor_schedd, it is required thatcondor_job_routerhave permission to impersonate the job owners of
the routed jobs. It is therefore usually necessary to configureQUEUE_SUPER_USER_MAY_IMPERSONATEin
the configuration of the targetcondor_schedd.

JOB_ROUTER_SCHEDD1_NAME The advertised daemon name of thecondor_scheddserving as the source of jobs
for routing. If not specified, this defaults to the localcondor_schedd. If specified, this parameter must name
the samecondor_scheddwhose spool is configured inJOB_ROUTER_SCHEDD1_SPOOL. If the namedcon-
dor_scheddis not advertised in the local pool,JOB_ROUTER_SCHEDD1_POOLwill also need to be set.

JOB_ROUTER_SCHEDD2_NAME The advertised daemon name of thecondor_scheddto which the routed copy of
the jobs are submitted. If not specified, this defaults to thelocal condor_schedd. If specified, this param-
eter must name the samecondor_scheddwhose spool is configured inJOB_ROUTER_SCHEDD2_SPOOL.
If the namedcondor_scheddis not advertised in the local pool,JOB_ROUTER_SCHEDD2_POOLwill also
need to be set. Note that whencondor_job_routeris running asroot and is submitting routed jobs to
a differentcondor_scheddthan the sourcecondor_schedd, it is required thatcondor_job_routerhave per-
mission to impersonate the job owners of the routed jobs. It is therefore usually necessary to configure
QUEUE_SUPER_USER_MAY_IMPERSONATEin the configuration of the targetcondor_schedd.

JOB_ROUTER_SCHEDD1_POOL The Condor pool (condor_collectoraddress) of thecondor_scheddserving as the
source of jobs for routing. If not specified, defaults to the local pool.

JOB_ROUTER_SCHEDD2_POOL The Condor pool (condor_collectoraddress) of thecondor_scheddto which the
routed copy of the jobs are submitted. If not specified, defaults to the local pool.

HTCondor Version 8.6.4 Manual

3.5.21. condor_lease_manager Configuration File Entries 324

3.5.21 condor_lease_manager Configuration File Entries

These macros affect thecondor_lease_manager.

Thecondor_lease_managerexpects to use the syntax

<subsystem name>.<parameter name>

in configuration. This allows multiple instances of thecondor_lease_managerto be easily configured using the syntax

<subsystem name>.<local name>.<parameter name>

LeaseManager.GETADS_INTERVAL An integer value, given in seconds, that controls the frequency with which
thecondor_lease_managerpulls relevant resource ClassAds from thecondor_collector. The default value is 60
seconds, with a minimum value of 2 seconds.

LeaseManager.UPDATE_INTERVAL An integer value, given in seconds, that controls the frequency with which
thecondor_lease_managersends its ClassAds to thecondor_collector. The default value is 60 seconds, with a
minimum value of 5 seconds.

LeaseManager.PRUNE_INTERVAL An integer value, given in seconds, that controls the frequency with which
thecondor_lease_manager prunesits leases. This involves checking all leases to see if they have expired. The
default value is 60 seconds, with no minimum value.

LeaseManager.DEBUG_ADS A boolean value that defaults toFalse . WhenTrue , it enables extra debugging
information about the resource ClassAds that it retrieves from thecondor_collectorand about the search Class-
Ads that it sends to thecondor_collector.

LeaseManager.MAX_LEASE_DURATION An integer value representing seconds which determines themaxi-
mum duration of a lease. This can be used to provide a hard limit on lease durations. Normally, thecon-
dor_lease_managerhonors theMaxLeaseDuration attribute from the resource ClassAd. If this configura-
tion variable is defined, it limits the effective maximum duration for all resources to this value. The default value
is 1800 seconds.

Note that leases can be renewed, and thus can be extended beyond this limit. To provide a limit on the total
duration of a lease, useLeaseManager.MAX_TOTAL_LEASE_DURATION.

LeaseManager.MAX_TOTAL_LEASE_DURATION An integer value representing seconds used to limit thetotal
duration of leases, over all its renewals. The default valueis 3600 seconds.

LeaseManager.DEFAULT_MAX_LEASE_DURATION The condor_lease_manager uses the
MaxLeaseDuration attribute from the resource ClassAd to limit the lease duration. If this attribute
is not present in a resource ClassAd, then this configurationvariable is used instead. This integer value is given
in units of seconds, with a default value of 60 seconds.

LeaseManager.CLASSAD_LOG This variable defines a full path and file name to the location where thecon-
dor_lease_managerkeeps persistent state information. This variable has no default value.

HTCondor Version 8.6.4 Manual

3.5.22. Grid Monitor Configuration File Entries 325

LeaseManager.QUERY_ADTYPE This parameter controls the type of the query in the ClassAd sent to thecon-
dor_collector, which will control the types of ClassAds returned by thecondor_collector. This parameter must
be a valid ClassAd type name, with a default value of"Any" .

LeaseManager.QUERY_CONSTRAINTS A ClassAd expression that controls the constraint in the query sent to
thecondor_collector. It is used to further constrain the types of ClassAds from the condor_collector. There is
no default value, resulting in no constraints being placed on query.

3.5.22 Grid Monitor Configuration File Entries

These macros affect the Grid Monitor.

ENABLE_GRID_MONITOR A boolean value that whenTrue enables the Grid Monitor. The Grid Monitor is
used to reduce load on Globus gatekeepers. This parameter only affects grid jobs of typegt2. The variable
GRID_MONITORmust also be correctly configured. Defaults toTrue . See section 5.3.2 on page 588 for more
information.

GRID_MONITOR The complete path name of thegrid_monitor.shtool used to reduce the load on Globus gate-
keepers. This parameter only affects grid jobs of typegt2. This parameter is not referenced unless
ENABLE_GRID_MONITORis set toTrue (the default value).

GRID_MONITOR_HEARTBEAT_TIMEOUT The integer number of seconds that may pass without hearing from a
working Grid Monitor before it is assumed to be dead. Defaults to 300 (5 minutes). Increasing this number will
improve the ability of the Grid Monitor to survive in the faceof transient problems, but will also increase the
time before HTCondor notices a problem.

GRID_MONITOR_RETRY_DURATION When HTCondor-G attempts to start the Grid Monitor at a particular site, it
will wait this many seconds to start hearing from the Grid Monitor. Defaults to 900 (15 minutes). If this duration
passes without success, the Grid Monitor will be disabled for the site in question for the period of time set by
GRID_MONITOR_DISABLE_TIME.

GRID_MONITOR_NO_STATUS_TIMEOUT Jobs can disappear from the Grid Monitor’s status reports for short peri-
ods of time under normal circumstances, but a prolonged absence is often a sign of problems on the remote ma-
chine. This variable sets the amount of time (in seconds) that a job can be absent before thecondor_gridmanager
reacts by restarting the GRAMjobmanager. The default is 900, which is 15 minutes.

GRID_MONITOR_DISABLE_TIME When an error occurs with a Grid Monitor job, this parameter controls how long
thecondor_gridmanagerwill wait before attempting to start a new Grid Monitor job. The value is in seconds
and the default is 3600 (1 hour).

3.5.23 Configuration File Entries Relating to Grid Usage

These macros affect the HTCondor’s usage of grid resources.

GLEXEC_JOB A boolean value that defaults toFalse . WhenTrue , it enables the use ofglexecon the machine.

HTCondor Version 8.6.4 Manual

3.5.24. Configuration File Entries for DAGMan 326

GLEXEC The full path and file name of theglexecexecutable.

GLEXEC_RETRIES An integer value that specifies the maximum number of times toretry a call toglexecwhen
glexecexits with status 202 or 203, error codes that indicate a possible transient error condition. The default
number of retries is 3.

GLEXEC_RETRY_DELAY An integer value that specifies the minimum number of secondsto wait between retries
of a failed call toglexec. The default is 5 seconds. The actual delay to be used is determined by a random
exponential backoff algorithm that chooses a delay with a minimum of the value ofGLEXEC_RETRY_DELAY
and a maximum of 100 times that value.

GLEXEC_HOLD_ON_INITIAL_FAILURE A boolean value that whenFalse prevents a job from being put on
hold when a failure is encountered during the glexec setup phase of managing a job. The default isTrue .
glexecis invoked multiple times during each attempt to run a job. This configuration setting only disables
putting the job on hold for the initial invocation. Subsequent failures during that run attempt always put the job
on hold.

3.5.24 Configuration File Entries for DAGMan

These macros affect the operation of DAGMan and DAGMan jobs within HTCondor.

Note: Many, if not all, of these configuration variables will be most appropriately set on a per DAG basis, rather
than in the global HTCondor configuration files. Per DAG configuration is explained in section 2.10.9. Also note that
configuration settings of a runningcondor_dagmanjob are not changed by doing acondor_reconfig.

General

DAGMAN_CONFIG_FILE The path and name of the configuration file to be used bycondor_dagman. This con-
figuration variable is set automatically bycondor_submit_dag, and it should not be explicitly set by the user.
Defaults to the empty string.

DAGMAN_USE_STRICT An integer defining the level of strictnesscondor_dagmanwill apply when turning warnings
into fatal errors, as follows:

• 0: no warnings become errors

• 1: severe warnings become errors

• 2: medium-severity warnings become errors

• 3: almost all warnings become errors

Using a strictness value greater than 0 may help find problemswith a DAG that may otherwise escape notice.
The default value if not defined is 1.

DAGMAN_STARTUP_CYCLE_DETECT A boolean value that defaults toFalse . When True , causescon-
dor_dagmanto check for cycles in the DAG before submitting DAG node jobs, in addition to its run time
cycle detection. Note that setting this value toTrue will impose significant startup delays for large DAGs.

HTCondor Version 8.6.4 Manual

3.5.24. Configuration File Entries for DAGMan 327

DAGMAN_ABORT_DUPLICATES A boolean value that controls whether to attempt to abort duplicate instances of
condor_dagmanrunning the same DAG on the same machine. Whencondor_dagmanstarts up, if no DAG
lock file exists,condor_dagmancreates the lock file and writes its PID into it. If the lock filedoes exist, and
DAGMAN_ABORT_DUPLICATESis set toTrue , condor_dagmanchecks whether a process with the given PID
exists, and if so, it assumes that there is already another instance ofcondor_dagmanrunning the same DAG.
Note that this test is not foolproof: it is possible that, ifcondor_dagmancrashes, the same PID gets reused
by another process beforecondor_dagmangets rerun on that DAG. This should be quite rare, however. Ifnot
defined,DAGMAN_ABORT_DUPLICATESdefaults toTrue . Note: users should rarely change this setting.

DAGMAN_USE_OLD_DAG_READER As of HTCondor version 8.3.3, this variable is no longer supported. Its value
will always beFalse . A setting ofTrue will result in a warning, and the setting will have no effect on how
a DAG input file is read. The variable was previously used to change the reading of DAG input files to that of
HTCondor versions prior to 8.0.6.Note: users should never change this setting.

DAGMAN_USE_SHARED_PORT A boolean value that controls whethercondor_dagmanwill attempt to connect to the
shared port daemon. If not defined,DAGMAN_USE_SHARED_PORTdefaults toFalse . There is no reason to
ever change this value; it was introduced to prevent spurious shared port-related error messages from appearing
in dagman.out files. (Introduced in version 8.6.1.)

Throttling

DAGMAN_MAX_JOBS_IDLE An integer value that controls the maximum number of idle procs allowed within the
DAG beforecondor_dagmantemporarily stops submitting jobs.condor_dagmanwill resume submitting jobs
once the number of idle procs falls below the specified limit.DAGMAN_MAX_JOBS_IDLEcurrently counts
each individual proc within a cluster as a job, which is inconsistent withDAGMAN_MAX_JOBS_SUBMITTED.
Note that submit description files that queue multiple procscan cause theDAGMAN_MAX_JOBS_IDLElimit to
be exceeded. If a submit description file containsqueue 5000 andDAGMAN_MAX_JOBS_IDLEis set to 250,
this will result in 5000 procs being submitted to thecondor_schedd, not 250; in this case, no further jobs will
then be submitted bycondor_dagmanuntil the number of idle procs falls below 250. The default value is 1000.
To disable this limit, set the value to 0. This configuration option can be overridden by thecondor_submit_dag
-maxidle command-line argument (see 11).

DAGMAN_MAX_JOBS_SUBMITTED An integer value that controls the maximum number of node jobs (clusters)
within the DAG that will be submitted to HTCondor at one time.A single invocation ofcondor_submitby
condor_dagmancounts as one job, even if the submit file produces a multi-proc cluster. The default value is 0
(unlimited). This configuration option can be overridden bythecondor_submit_dag-maxjobscommand-line
argument (see 11).

DAGMAN_MAX_PRE_SCRIPTS An integer defining the maximum number of PRE scripts that anygiven con-
dor_dagmanwill run at the same time. The value 0 allows any number of PRE scripts to run. The default
value if not defined is 20. Note that theDAGMAN_MAX_PRE_SCRIPTSvalue can be overridden by thecon-
dor_submit_dag-maxpre command line option.

DAGMAN_MAX_POST_SCRIPTS An integer defining the maximum number of POST scripts that any given con-
dor_dagmanwill run at the same time. The value 0 allows any number of POSTscripts to run. The default
value if not defined is 20. Note that theDAGMAN_MAX_POST_SCRIPTSvalue can be overridden by the
condor_submit_dag-maxpostcommand line option.

HTCondor Version 8.6.4 Manual

3.5.24. Configuration File Entries for DAGMan 328

Priority, node semantics

DAGMAN_DEFAULT_PRIORITY An integer value defining the minimum priority of node jobs running under this
condor_dagmanjob. Defaults to 0.

DAGMAN_SUBMIT_DEPTH_FIRST A boolean value that controls whether to submit ready DAG node jobs in (more-
or-less) depth first order, as opposed to breadth-first order. SettingDAGMAN_SUBMIT_DEPTH_FIRSTto
True doesnot override dependencies defined in the DAG. Rather, it causes newly ready nodes to be added to
the head, rather than the tail, of the ready node list. If there are no PRE scripts in the DAG, this will cause the
ready nodes to be submitted depth-first. If there are PRE scripts, the order will not be strictly depth-first, but it
will tend to favor depth rather than breadth in executing theDAG. If DAGMAN_SUBMIT_DEPTH_FIRSTis set
to True , consider also settingDAGMAN_RETRY_SUBMIT_FIRSTandDAGMAN_RETRY_NODE_FIRSTto
True . If not defined,DAGMAN_SUBMIT_DEPTH_FIRSTdefaults toFalse .

DAGMAN_ALWAYS_RUN_POST A boolean value defining whethercondor_dagmanwill ignore the return value of a
PRE script when deciding whether to run a POST script. The default isFalse , which means that the failure
of a PRE script causes the POST script to not be executed. Changing this toTrue will restore the previous
behavior ofcondor_dagman, which is that a POST script is always executed, even if the PRE script fails. (The
default for this value had originally beenFalse , was changed toTrue in version 7.7.2, and then was changed
back toFalse in version 8.5.4.)

Node job submission/removal

DAGMAN_USER_LOG_SCAN_INTERVAL An integer value representing the number of seconds thatcon-
dor_dagmanwaits between checking the workflow log file for status updates. Setting this value lower than the
default increases the CPU timecondor_dagmanspends checking files, perhaps fruitlessly, but increases respon-
siveness to nodes completing or failing. The legal range of values is 1 to INT_MAX. If not defined, it defaults
to 5 seconds. (As of version 8.4.2, the default may be automatically decreased ifDAGMAN_MAX_JOBS_IDLE
is set to a small value. If so, this will be noted in thedagman.out file.)

DAGMAN_MAX_SUBMITS_PER_INTERVAL An integer that controls how many individual jobscondor_dagman
will submit in a row before servicing other requests (such asa condor_rm). The legal range of values is 1 to
1000. If defined with a value less than 1, the value 1 will be used. If defined with a value greater than 1000, the
value 1000 will be used. If not defined, it defaults to 5. (As ofversion 8.4.2, the default may be automatically
decreased ifDAGMAN_MAX_JOBS_IDLEis set to a small value. If so, this will be noted in thedagman.out
file.)

Note: The maximum rate at which DAGMan can submit jobs is
DAGMAN_MAX_SUBMITS_PER_INTERVAL / DAGMAN_USER_LOG_SCAN_INTERVAL.

DAGMAN_MAX_SUBMIT_ATTEMPTS An integer that controls how many times in a rowcondor_dagmanwill at-
tempt to executecondor_submitfor a given job before giving up. Note that consecutive attempts use an expo-
nential backoff, starting with 1 second. The legal range of values is 1 to 16. If defined with a value less than 1,
the value 1 will be used. If defined with a value greater than 16, the value 16 will be used. Note that a value
of 16 would result incondor_dagmantrying for approximately 36 hours before giving up. If not defined, it
defaults to 6 (approximately two minutes before giving up).

HTCondor Version 8.6.4 Manual

3.5.24. Configuration File Entries for DAGMan 329

DAGMAN_MAX_JOB_HOLDS An integer value defining the maximum number of times a node job is allowed to go on
hold. As a job goes on hold this number of times, it is removed from the queue. For example, if the value is 2,
as the job goes on hold for the second time, it will be removed.At this time, this feature is not fully compatible
with node jobs that have more than oneProcID . The number of holds of each process in the cluster count
towards the total, rather than counting individually. So, this setting should take that possibility into account,
possibly using a larger value. A value of 0 allows a job to go onhold any number of times. The default value if
not defined is 100.

DAGMAN_HOLD_CLAIM_TIME An integer defining the number of seconds thatcondor_dagmanwill cause a hold
on a claim after a job is finished, using the job ClassAd attributeKeepClaimIdle . The default value is 20. A
value of 0 causescondor_dagmannot to set the job ClassAd attribute.

DAGMAN_SUBMIT_DELAY An integer that controls the number of seconds thatcondor_dagmanwill sleep before
submitting consecutive jobs. It can be increased to help reduce the load on thecondor_schedddaemon. The
legal range of values is any non negative integer. If defined with a value less than 0, the value 0 will be used.

DAGMAN_PROHIBIT_MULTI_JOBS A boolean value that controls whethercondor_dagmanprohibits node
job submit description files that queue multiple job procs other than parallel universe. If a DAG
references such a submit file, the DAG will abort during the initialization process. If not defined,
DAGMAN_PROHIBIT_MULTI_JOBSdefaults toFalse .

DAGMAN_GENERATE_SUBDAG_SUBMITS A boolean value specifying whethercondor_dagmanitself should
create the.condor.sub files for nested DAGs. If set toFalse , nested DAGs will fail unless the
.condor.sub files are generated manually by runningcondor_submit_dag -no_submiton each nested DAG,
or the-do_recurseflag is passed tocondor_submit_dagfor the top-level DAG. DAG nodes specified with the
SUBDAG EXTERNALkeyword or with submit description file names ending in.condor.sub are considered
nested DAGs. The default value if not defined isTrue .

DAGMAN_REMOVE_NODE_JOBS A boolean value that controls whethercondor_dagmanremoves its node
jobs itself when it is removed (in addition to thecondor_scheddremoving them). Note that setting
DAGMAN_REMOVE_NODE_JOBSto True is the safer option (setting it toFalse means that there is some
chance of endig up with "orphan" node jobs). SettingDAGMAN_REMOVE_NODE_JOBSto False is a perfor-
mance optimization (decreasing the load on thecondor_scheddwhen acondor_dagmanjob is removed). Note
that even ifDAGMAN_REMOVE_NODE_JOBSis set toFalse , condor_dagmanwill remove its node jobs in
some cases, such as a DAG abort triggered by anABORT-DAG-ONcommand. Defaults toTrue .

DAGMAN_MUNGE_NODE_NAMES A boolean value that controls whethercondor_dagmanautomatically renames
nodes when running multiple DAGs. The renaming is done to avoid possible name conflicts. If this value
is set toTrue , all node names have the DAG number followed by the period character (.) prepended to them.
For example, the first DAG specified on thecondor_submit_dagcommand line is considered DAG number 0,
the second is DAG number 1, etc. So if DAG number 2 has a node named B, that node will internally be renamed
to 2.B. If not defined,DAGMAN_MUNGE_NODE_NAMESdefaults toTrue . Note: users should rarely change
this setting.

DAGMAN_SUPPRESS_JOB_LOGS A boolean value specifying whether events should be writtento a log file speci-
fied in a node job’s submit description file. The default valueis False , such that events are written to a log file
specified by a node job.

HTCondor Version 8.6.4 Manual

3.5.24. Configuration File Entries for DAGMan 330

DAGMAN_SUPPRESS_NOTIFICATION A boolean value defining whether jobs submitted bycondor_dagmanwill
use email notification when certain events occur. IfTrue , all jobs submitted bycondor_dagmanwill have the
equivalent of the submit commandnotification = never set. This does not affect the notification for
events relating to thecondor_dagmanjob itself. Defaults toTrue .

DAGMAN_CONDOR_SUBMIT_EXE The executable thatcondor_dagmanwill use to submit HTCondor jobs. If not
defined,condor_dagmanlooks forcondor_submitin the path.Note: users should rarely change this setting.

DAGMAN_CONDOR_RM_EXE The executable thatcondor_dagmanwill use to remove HTCondor jobs. If not defined,
condor_dagmanlooks forcondor_rmin the path.Note: users should rarely change this setting.

DAGMAN_ABORT_ON_SCARY_SUBMIT A boolean value that controls whether to abort a DAG upon detection of a
scary submit event. An example of a scary submit event is one in which the HTCondor ID does not match the
expected value. Note that in all HTCondor versions prior to 6.9.3,condor_dagmandid notabort a DAG upon de-
tection of a scary submit event. This behavior is what now happens ifDAGMAN_ABORT_ON_SCARY_SUBMIT
is set toFalse . If not defined,DAGMAN_ABORT_ON_SCARY_SUBMITdefaults toTrue . Note: users
should rarely change this setting.

DAGMAN_STORK_SUBMIT_EXE This configuration variable is no longer used; as of HTCondorversion 8.3.4,con-
dor_dagmanno longer supports Stork jobs. Setting this configuration variable will result in a warning from
condor_dagman(which will be turned into a fatal error ifDAGMAN_USE_STRICTis set to 1 or above).Note:
users should never change this setting.

For completeness, here is the definition for historical purposes: The executable thatcondor_dagmanwill use to
submit Stork jobs. If not defined,condor_dagmanlooks forstork_submitin the path.

DAGMAN_STORK_RM_EXE This configuration variable is no longer used; as of HTCondorversion 8.3.4,con-
dor_dagmanno longer supports Stork jobs. Setting this configuration variable will result in a warning from
condor_dagman(which will be turned into a fatal error ifDAGMAN_USE_STRICTis set to 1 or above).Note:
users should never change this setting.

For completeness, here is the definition for historical purposes: The executable thatcondor_dagmanwill use to
remove Stork jobs. If not defined,condor_dagmanlooks forstork_rmin the path.

Rescue/retry

DAGMAN_AUTO_RESCUE A boolean value that controls whethercondor_dagmanautomatically runs Rescue DAGs.
If DAGMAN_AUTO_RESCUEis True and the DAG input filemy.dag is submitted, and if a Rescue DAG such
as the examplesmy.dag.rescue001 or my.dag.rescue002 exists, then the largest magnitude Rescue
DAG will be run. If not defined,DAGMAN_AUTO_RESCUEdefaults toTrue .

DAGMAN_MAX_RESCUE_NUM An integer value that controls the maximum Rescue DAG numberthat will be writ-
ten, in the case thatDAGMAN_OLD_RESCUEis False , or run if DAGMAN_AUTO_RESCUEis True . The
maximum legal value is 999; the minimum value is 0, which prevents a Rescue DAG from being written at all,
or automatically run. If not defined,DAGMAN_MAX_RESCUE_NUMdefaults to 100.

DAGMAN_RESET_RETRIES_UPON_RESCUE A boolean value that controls whether node retries are resetin a Res-
cue DAG. If this value isFalse , the number of node retries written in a Rescue DAG is decreased, if any retries

HTCondor Version 8.6.4 Manual

3.5.24. Configuration File Entries for DAGMan 331

were used in the original run of the DAG; otherwise, the original number of retries is allowed when running the
Rescue DAG. If not defined,DAGMAN_RESET_RETRIES_UPON_RESCUEdefaults toTrue .

DAGMAN_WRITE_PARTIAL_RESCUE A boolean value that controls whethercondor_dagmanwrites a partial or
a full DAG file as a Rescue DAG. As of HTCondor version 7.2.2, writing a partial DAG is preferred. If not
defined,DAGMAN_WRITE_PARTIAL_RESCUEdefaults toTrue . Note: users should rarely change this
setting.

DAGMAN_RETRY_SUBMIT_FIRST A boolean value that controls whether a failed submit is retried first (before any
other submits) or last (after all other ready jobs are submitted). If this value is set toTrue , when a job submit
fails, the job is placed at the head of the queue of ready jobs,so that it will be submitted again before any other
jobs are submitted. This had been the behavior ofcondor_dagman. If this value is set toFalse , when a job
submit fails, the job is placed at the tail of the queue of ready jobs. If not defined, it defaults toTrue .

DAGMAN_RETRY_NODE_FIRST A boolean value that controls whether a failed node with retries is retried first
(before any other ready nodes) or last (after all other readynodes). If this value is set toTrue , when a node
with retries fails after the submit succeeded, the node is placed at the head of the queue of ready nodes, so that
it will be tried again before any other jobs are submitted. Ifthis value is set toFalse , when a node with retries
fails, the node is placed at the tail of the queue of ready nodes. This had been the behavior ofcondor_dagman.
If not defined, it defaults toFalse .

DAGMAN_OLD_RESCUE This configuration variable is no longer used.Note: users should never change this
setting.

Log files

DAGMAN_DEFAULT_NODE_LOG The default name of a file to be used as a job event log by all nodejobs of a DAG.

This configuration variable uses a special syntax in which@ instead of$ indicates an evaluation of special
variables. Normal HTCondor configuration macros may be usedwith the normal$ syntax.

Special variables to be used only in defining this configuration variable:

• @(DAG_DIR): The directory in which the primary DAG input file resides. Ifmore than one DAG input
file is specified tocondor_submit_dag, the primary DAG input file is the leftmost one on the command
line.

• @(DAG_FILE): The name of the primary DAG input file. It does not include thepath.

• @(CLUSTER): TheClusterId attribute of thecondor_dagmanjob.

• @(OWNER): The user name of the user who submitted the DAG.

• @(NODE_NAME): For SUBDAGs, this is the node name of the SUBDAG in the upper level DAG; for a
top-level DAG, it is the string"undef" .

If not defined,@(DAG_DIR)/@(DAG_FILE).nodes.log is the default value.

Notes:

• Using$(LOG) in defining a value forDAGMAN_DEFAULT_NODE_LOGwill not have the expected effect,
because$(LOG) is defined as"." for condor_dagman. To place the default log file into the log directory,
write the expression relative to a known directory, such as$(LOCAL_DIR)/log (see examples below).

HTCondor Version 8.6.4 Manual

3.5.24. Configuration File Entries for DAGMan 332

• A default log file placed in the spool directory will need extra configuration to preventcondor_preenfrom
removing it; modifyVALID_SPOOL_FILES. Removal of the default log file during a run will cause
severe problems.

• The value defined forDAGMAN_DEFAULT_NODE_LOG must ensure that the file is unique for each
DAG. Therefore, the value should always include@(DAG_FILE). For example,

DAGMAN_DEFAULT_NODE_LOG = $(LOCAL_DIR)/log/@(DAG_FILE).nodes.log

is okay, but

DAGMAN_DEFAULT_NODE_LOG = $(LOCAL_DIR)/log/dag.nodes. log

will cause failure when more than one DAG is run at the same time on a given submit machine.

DAGMAN_LOG_ON_NFS_IS_ERROR A boolean value that controls whethercondor_dagmanprohibits a DAG
workflow log from being on an NFS file system. This value is ignored if CREATE_LOCKS_ON_LOCAL_DISK
and ENABLE_USERLOG_LOCKINGare bothTrue . If a DAG uses such a workflow log file file and
DAGMAN_LOG_ON_NFS_IS_ERRORis True (and not ignored), the DAG will abort during the initialization
process. If not defined,DAGMAN_LOG_ON_NFS_IS_ERRORdefaults toFalse .

DAGMAN_ALLOW_LOG_ERROR This configuration variable is no longer used; as of HTCondorversion 8.3.4,con-
dor_dagmanno longer supports Stork jobs.Note: users should never change this setting.

For completeness, here is the definition for historical purposes: A boolean value defining whethercon-
dor_dagmanwill still attempt to run a node job, even if errors are detected in the job event log specification.
This setting has an effect only on nodes that are Stork jobs (not HTCondor jobs). The default value if not defined
is False .

DAGMAN_ALLOW_EVENTS An integer that controls which bad events are considered fatal er-
rors by condor_dagman. This macro replaces and expands upon the functionality of the
DAGMAN_IGNORE_DUPLICATE_JOB_EXECUTIONmacro. If DAGMAN_ALLOW_EVENTSis set, it
overrides the setting ofDAGMAN_IGNORE_DUPLICATE_JOB_EXECUTION. Note: users should rarely
change this setting.

TheDAGMAN_ALLOW_EVENTSvalue is a logical bitwise OR of the following values:

0 = allow no bad events

1 = allow all bad events,exceptthe event"job re-run after terminated event"

2 = allow terminated/aborted event combination

4 = allow a"job re-run after terminated event" bug

8 = allow garbage or orphan events

16 = allow an execute or terminate event before job’s submit event

32 = allow two terminated events per job, as sometimes seen with grid jobs

64 = allow duplicated events in general

HTCondor Version 8.6.4 Manual

3.5.24. Configuration File Entries for DAGMan 333

The default value is 114, which allows terminated/aborted event combination, allows an execute and/or termi-
nated event before job’s submit event, allows double terminated events, and allows general duplicate events.

As examples, a value of 6 instructscondor_dagmanto allow both the terminated/aborted event combination
and the"job re-run after terminated event" bug. A value of 0 means that any bad event will be
considered a fatal error.

A value of 5 will never abort the DAG because of a bad event. Butthis value should almost never be used,
because the"job re-run after terminated event" bug breaks the semantics of the DAG.

DAGMAN_IGNORE_DUPLICATE_JOB_EXECUTION This configuration variable is no longer used. The improved
functionality of theDAGMAN_ALLOW_EVENTSmacro eliminates the need for this variable.Note: users should
never change this setting.

For completeness, here is the definition for historical purposes: A boolean value that controls whether
condor_dagmanaborts or continues with a DAG in the rare case that HTCondor erroneously executes
the job within a DAG node more than once. A bug in HTCondor veryoccasionally causes a job
to run twice. Running a job twice is contrary to the semanticsof a DAG. The configuration macro
DAGMAN_IGNORE_DUPLICATE_JOB_EXECUTIONdetermines whethercondor_dagmanconsiders this a fa-
tal error or not. The default value isFalse ; condor_dagmanconsiders running the job more than once a fatal
error, logs this fact, and aborts the DAG. When set toTrue , condor_dagmanstill logs this fact, but continues
with the DAG.

This configuration macro is to remain at its default value except in the case where a site encounters the HTCon-
dor bug in which DAG job nodes are executed twice, and where itis certain that having a DAG job node run
twice will not corrupt the DAG. The logged messages within* .dagman.out files in the case of that a node
job runs twice contain the string "EVENT ERROR."

DAGMAN_ALWAYS_USE_NODE_LOG As of HTCondor version 8.3.1, the value must always be the default value of
True . Attempting to set it toFalse results in an error. This causes incompatibility with usingacondor_submit
executable that is older than HTCondor version 7.9.0.Note: users should never change this setting.

For completeness, here is the definition for historical purposes: A boolean value that whenTrue causescon-
dor_dagmanto read events from its default node log file, as defined byDAGMAN_DEFAULT_NODE_LOG,
instead of from the log file(s) defined in the node job submit description files. WhenTrue , condor_dagman
will read events only from the default log file, and POST script terminated events will be written only to the
default log file, and not to the log file(s) defined in the node job submit description files. The default value is
True .

Debug output

DAGMAN_DEBUG This variable is described in section 3.5.3 as<SUBSYS>_DEBUG.

DAGMAN_VERBOSITY An integer value defining the verbosity of output to thedagman.out file, as follows (each
level includes all output from lower debug levels):

• level = 0; never produce output, except for usage info

• level = 1; very quiet, output severe errors

• level = 2; output errors and warnings

HTCondor Version 8.6.4 Manual

3.5.24. Configuration File Entries for DAGMan 334

• level = 3; normal output

• level = 4; internal debugging output

• level = 5; internal debugging output; outer loop debugging

• level = 6; internal debugging output; inner loop debugging

• level = 7; internal debugging output; rarely used

The default value if not defined is 3.

DAGMAN_DEBUG_CACHE_ENABLE A boolean value that determines if log line caching for thedagman.out file
should be enabled in thecondor_dagmanprocess to increase performance (potentially by orders of magnitude)
when writing thedagman.out file to an NFS server. Currently, this cache is only utilized in Recovery Mode.
If not defined, it defaults toFalse .

DAGMAN_DEBUG_CACHE_SIZE An integer value representing the number of bytes of log lines to be stored in the
log line cache. When the cache surpasses this number, the entries are written out in one call to the logging
subsystem. A value of zero is not recommended since each log line would surpass the cache size and be emitted
in addition to bracketing log lines explaining that the flushing was happening. The legal range of values is 0 to
INT_MAX. If defined with a value less than 0, the value 0 will beused. If not defined, it defaults to 5 Megabytes.

DAGMAN_PENDING_REPORT_INTERVAL An integer value representing the number of seconds that controls how
often condor_dagmanwill print a report of pending nodes to thedagman.out file. The report will only
be printed ifcondor_dagmanhas been waiting at leastDAGMAN_PENDING_REPORT_INTERVALseconds
without seeing any node job events, in order to avoid cluttering thedagman.out file. This feature is mainly
intended to help diagnosecondor_dagmanprocesses that are stuck waiting indefinitely for a job to finish. If not
defined,DAGMAN_PENDING_REPORT_INTERVALdefaults to 600 seconds (10 minutes).

MAX_DAGMAN_LOG This variable is described in section 3.5.3 asMAX_<SUBSYS>_LOG. If not defined,
MAX_DAGMAN_LOGdefaults to 0 (unlimited size).

HTCondor attributes

DAGMAN_COPY_TO_SPOOL A boolean value that whenTrue copies thecondor_dagmanbinary to the spool direc-
tory when a DAG is submitted. Setting this variable toTrue allows long-running DAGs to survive a DAGMan
version upgrade. For running large numbers of small DAGs, leave this variable unset or set it toFalse . The
default value if not defined isFalse . Note: users should rarely change this setting.

DAGMAN_INSERT_SUB_FILE A file name of a file containing submit description file commands to be inserted into
the .condor.sub file created bycondor_submit_dag. The specified file is inserted into the.condor.sub
file before thequeue command and before any commands specified with the-append condor_submit_dag
command line option. Note that theDAGMAN_INSERT_SUB_FILEvalue can be overridden by thecon-
dor_submit_dag-insert_sub_filecommand line option.

DAGMAN_ON_EXIT_REMOVE Defines theOnExitRemove ClassAd expression placed into thecondor_dagman
submit description file bycondor_submit_dag. The default expression is designed to ensure thatcon-
dor_dagmanis automatically re-queued by thecondor_schedddaemon if it exits abnormally or is killed (for
example, during a reboot). If this results incondor_dagmanstaying in the queue when it should exit, consider
changing to a less restrictive expression, as in the example

HTCondor Version 8.6.4 Manual

3.5.25. Configuration File Entries Relating to Security 335

(ExitBySignal == false || ExitSignal =!= 9)

If not defined,DAGMAN_ON_EXIT_REMOVEdefaults to the expression

(ExitSignal =?= 11 || (ExitCode =!= UNDEFINED && ExitCode >= 0 && ExitCode <= 2))

Metrics

DAGMAN_PEGASUS_REPORT_METRICS The path to thecondor_dagman_metrics_reporterexecutable, which
is optionally used to anonymously report workflow metrics for Pegasus workflows. Defaults to
$(LIBEXEC)/condor_dagman_metrics_reporter . Note: users should rarely change this setting.

DAGMAN_PEGASUS_REPORT_TIMEOUT An integer value specifying the maximum number of seconds that the
condor_dagman_metrics_reporterwill spend attempting to report metrics to the Pegasus metrics server. De-
faults to 100.

3.5.25 Configuration File Entries Relating to Security

These macros affect the secure operation of HTCondor. Many of these macros are described in section 3.8 on Security.

SEC_*_AUTHENTICATION This section has not yet been written

SEC_*_ENCRYPTION This section has not yet been written

SEC_*_INTEGRITY This section has not yet been written

SEC_*_NEGOTIATION This section has not yet been written

SEC_*_AUTHENTICATION_METHODS This section has not yet been written

SEC_*_CRYPTO_METHODS This section has not yet been written

GSI_DAEMON_NAME This configuration variable is retired. Instead useALLOW_CLIENTor DENY_CLIENTas ap-
propriate. When used, this variable defined a comma separated list of the subject name(s) of the certificate(s)
used by Condor daemons to which this configuration of Condor will connect. The* character may be used as a
wild card character. WhenGSI_DAEMON_NAMEis defined, only certificates matchingGSI_DAEMON_NAME
pass the authentication step, and no check is performed to require that the host name of the daemon matches
the host name in the daemon’s certificate. WhenGSI_DAEMON_NAMEis not defined, the host name of
the daemon and certificate must match unless exempted by the use of GSI_SKIP_HOST_CHECKand/or
GSI_SKIP_HOST_CHECK_CERT_REGEX.

GSI_SKIP_HOST_CHECK A boolean variable that controls whether a check is performed during GSI authentication
of a Condor daemon. When the default value ofFalse , the check is not skipped, so the daemon host name must
match the host name in the daemon’s certificate, unless otherwise exempted by the use ofGSI_DAEMON_NAME
or GSI_SKIP_HOST_CHECK_CERT_REGEX. WhenTrue , this check is skipped, and hosts will not be re-
jected due to a mismatch of certificate and host name.

HTCondor Version 8.6.4 Manual

3.5.25. Configuration File Entries Relating to Security 336

GSI_SKIP_HOST_CHECK_CERT_REGEX This may be set to a regular expression. GSI certificates of Condor
daemons with a subject name that are matched in full by this regular expression are not required to have a
matching daemon host name and certificate host name. The default is an empty regular expression, which will
not match any certificates, even if they have an empty subjectname.

HOST_ALIAS Specifies the fully qualified host name that clients authenticating this daemon with GSI should expect
the daemon’s certificate to match. The alias is advertised tothecondor_collectoras part of the address of the
daemon. When this is not set, clients validate the daemon’s certificate host name by matching it against DNS A
records for the host they are connected to. SeeGSI_SKIP_HOST_CHECKfor ways to disable this validation
step.

GSI_DAEMON_DIRECTORY A directory name used in the construction of complete paths for the configuration vari-
ablesGSI_DAEMON_CERT, GSI_DAEMON_KEY, andGSI_DAEMON_TRUSTED_CA_DIR, for any of these
configuration variables are not explicitly set. The value isunset by default.

GSI_DAEMON_CERT A complete path and file name to the X.509 certificate to be usedin GSI authentication. If
this configuration variable is not defined, andGSI_DAEMON_DIRECTORYis defined, then HTCondor uses
GSI_DAEMON_DIRECTORYto construct the path and file name as

GSI_DAEMON_CERT = $(GSI_DAEMON_DIRECTORY)/hostcert.pe m

GSI_DAEMON_KEY A complete path and file name to the X.509 private key to be usedin GSI authentication. If
this configuration variable is not defined, andGSI_DAEMON_DIRECTORYis defined, then HTCondor uses
GSI_DAEMON_DIRECTORYto construct the path and file name as

GSI_DAEMON_KEY = $(GSI_DAEMON_DIRECTORY)/hostkey.pem

GSI_DAEMON_TRUSTED_CA_DIR The directory that contains the list of trusted certification authorities to be used
in GSI authentication. The files in this directory are the public keys and signing policies of the trusted certifica-
tion authorities. If this configuration variable is not defined, andGSI_DAEMON_DIRECTORYis defined, then
HTCondor usesGSI_DAEMON_DIRECTORYto construct the directory path as

GSI_DAEMON_TRUSTED_CA_DIR = $(GSI_DAEMON_DIRECTORY)/certificates

The EC2 GAHP may use this directory in the specification a trusted CA.

GSI_DAEMON_PROXY A complete path and file name to the X.509 proxy to be used in GSIauthentication. When
this configuration variable is defined, use of this proxy takes precedence over use of a certificate and key.

GSI_AUTHZ_CONF A complete path and file name of the Globus mapping library that looks for the mapping call out
configuration. There is no default value; as such, HTCondor uses the environment variableGSI_AUTHZ_CONF
when this variable is not defined. Setting this variable to/dev/null disables callouts.

HTCondor Version 8.6.4 Manual

3.5.25. Configuration File Entries Relating to Security 337

GSS_ASSIST_GRIDMAP_CACHE_EXPIRATION The length of time, in seconds, to cache the result of the Globus
mapping lookup result when using Globus to map certificates to HTCondor user names. The lookup only occurs
when the canonical nameGSS_ASSIST_GRIDMAPis present in the HTCondor map file. The default value is
0 seconds, which is a special value that disables caching. The cache uses the DN and VOMS FQAN as a key;
very rare Globus configurations that utilize other certificate attributes for the mapping may cause the cache to
return a different user than Globus.

DELEGATE_JOB_GSI_CREDENTIALS A boolean value that defaults toTrue for HTCondor version 6.7.19 and
more recent versions. WhenTrue , a job’s GSI X.509 credentials are delegated, instead of being copied. This
results in a more secure communication when not encrypted.

DELEGATE_FULL_JOB_GSI_CREDENTIALS A boolean value that controls whether HTCondor will delegate a
full or limited GSI X.509 proxy. The default value ofFalse indicates the limited GSI X.509 proxy.

DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME An integer value that specifies the maximum number of sec-
onds for which delegated proxies should be valid. The default value is one day. A value of 0 indicates that the
delegated proxy should be valid for as long as allowed by the credential used to create the proxy. The job may
override this configuration setting by using thedelegate_job_GSI_credentials_lifetimesubmit file command.
This configuration variable currently only applies to proxies delegated for non-grid jobs and HTCondor-C jobs.
It does not currently apply to globus grid jobs, which alwaysbehave as though the value is 0. This variable has
no effect ifDELEGATE_JOB_GSI_CREDENTIALSis False .

DELEGATE_JOB_GSI_CREDENTIALS_REFRESH A floating point number between 0 and 1 that indicates the
fraction of a proxy’s lifetime at which point delegated credentials with a limited lifetime should be renewed.
The renewal is attempted periodically at or near the specified fraction of the lifetime of the delegated credential.
The default value is 0.25. This setting has no effect ifDELEGATE_JOB_GSI_CREDENTIALSis False or if
DELEGATE_JOB_GSI_CREDENTIALS_LIFETIMEis 0. For non-grid jobs, the precise timing of the proxy
refresh depends onSHADOW_CHECKPROXY_INTERVAL. To ensure that the delegated proxy remains valid,
the interval for checking the proxy should be, at most, half of the interval for refreshing it.

GSI_DELEGATION_KEYBITS The integer number of bits in the GSI key. If set to 0, the number of bits will be
that preferred by the GSI library. If set to less than 1024, the value will be ignored, and the key size will be the
default size of 1024 bits. Setting the value greater than 4096 is likely to cause long compute times.

GSI_DELEGATION_CLOCK_SKEW_ALLOWABLE The number of seconds of clock skew permitted for delegated
proxies. The default value is 300 (5 minutes). This default value is also used if this variable is set to 0.

GRIDMAP The complete path and file name of the Globus Gridmap file. The Gridmap file is used to map X.509
distinguished names to HTCondor user ids.

SEC_<access-level>_SESSION_DURATION The amount of time in seconds before a communication session
expires. A session is a record of necessary information to docommunication between a client and daemon, and
is protected by a shared secret key. The session expires to reduce the window of opportunity where the key
may be compromised by attack. A short session duration increases the frequency with which daemons have to
reauthenticate with each other, which may impact performance.

If the client and server are configured with different durations, the shorter of the two will be used. The default
for daemons is 86400 seconds (1 day) and the default for command-line tools is 60 seconds. The shorter default
for command-line tools is intended to prevent daemons from accumulating a large number of communication

HTCondor Version 8.6.4 Manual

3.5.25. Configuration File Entries Relating to Security 338

sessions from the short-lived tools that contact them over time. A large number of security sessions consumes
a large amount of memory. It is therefore important when changing this configuration setting to preserve the
small session duration for command-line tools.

One example of how to safely change the session duration is toexplicitly set a short duration for tools and
condor_submitand a longer duration for everything else:

SEC_DEFAULT_SESSION_DURATION = 50000
TOOL.SEC_DEFAULT_SESSION_DURATION = 60
SUBMIT.SEC_DEFAULT_SESSION_DURATION = 60

Another example of how to safely change the session durationis to explicitly set the session duration for a
specific daemon:

COLLECTOR.SEC_DEFAULT_SESSION_DURATION = 50000

SEC_<access-level>_SESSION_LEASE The maximum number of seconds an unused security session will be
kept in a daemon’s session cache before being removed to savememory. The default is 3600. If the server and
client have different configurations, the smaller one will be used.

SEC_INVALIDATE_SESSIONS_VIA_TCP Use TCP (if True) or UDP (if False) for responding to attemptsto use
an invalid security session. This happens, for example, if adaemon restarts and receives incoming commands
from other daemons that are still using a previously established security session. The default is True.

FS_REMOTE_DIR The location of a file visible to both server and client in Remote File System authentication. The
default when not defined is the directory/shared/scratch/tmp .

ENCRYPT_EXECUTE_DIRECTORY A boolean value that, whenTrue , causes the execute directory for jobs on
Linux or Windows platforms to be encrypted. Defaults toFalse . Note that even ifFalse , the user can
require encryption of the execute directory on a per-job basis by settingencrypt_execute_directoryto True in
the job submit description file. Enabling this functionality requires that the HTCondor service is run as user root
on Linux platforms, or as a system service on Windows platforms. On Linux platforms, the encryption method
is ecryptfs, and therefore requires an installation of theecryptfs-utils package. On Windows platforms,
the encryption method is the EFS (Encrypted File System) feature of NTFS.

ENCRYPT_EXECUTE_DIRECTORY_FILENAMES A boolean value relevant on Linux platforms only. Defaults to
False . On Windows platforms, file names are not encrypted, so this variable has no effect. When using an
encrypted execute directory, the contents of the files will always be encrypted. On Linux platforms, file names
may or may not be encrypted. There is some overhead and there are restrictions on encrypting file names (see
theecryptfsdocumentation). As a result, the default does not encrypt file names on Linux platforms, and the
administrator may choose to enable encryption behavior by setting this configuration variable toTrue .

ECRYPTFS_ADD_PASSPHRASE The path to theecryptfs-add-passphrasecommand-line utility. If the path is not
fully-qualified, then safe system path subdirectories suchas/bin and/usr/bin will be searched. The default
value isecryptfs-add-passphrase , causing the search to be within the safe system path subdirectories.
This configuration variable is used on Linux platforms when ajob setsencrypt_execute_directoryto True in
the submit description file.

HTCondor Version 8.6.4 Manual

3.5.25. Configuration File Entries Relating to Security 339

SEC_TCP_SESSION_TIMEOUT The length of time in seconds until the timeout on individualnetwork operations
when establishing a UDP security session via TCP. The default value is 20 seconds. Scalability issues with a
large pool would be the only basis for a change from the default value.

SEC_TCP_SESSION_DEADLINE An integer representing the total length of time in seconds until giving up when
establishing a security session. WhereasSEC_TCP_SESSION_TIMEOUTspecifies the timeout for individual
blocking operations (connect, read, write), this setting specifies the total time across all operations, including
non-blocking operations that have little cost other than holding open the socket. The default value is 120
seconds. The intention of this setting is to avoid waiting for hours for a response in the rare event that the other
side freezes up and the socket remains in a connected state. This problem has been observed in some types of
operating system crashes.

SEC_DEFAULT_AUTHENTICATION_TIMEOUT The length of time in seconds that HTCondor should attempt au-
thenticating network connections before giving up. The default imposes no time limit, so the attempt never
gives up. Like other security settings, the portion of the configuration variable name,DEFAULT, may be re-
placed by a different access level to specify the timeout to use for different types of commands, for example
SEC_CLIENT_AUTHENTICATION_TIMEOUT.

SEC_PASSWORD_FILE For Unix machines, the path and file name of the file containingthe pool password for
password authentication.

AUTH_SSL_SERVER_CAFILE The path and file name of a file containing one or more trusted CA’s certificates for
the server side of a communication authenticating with SSL.

AUTH_SSL_CLIENT_CAFILE The path and file name of a file containing one or more trusted CA’s certificates for
the client side of a communication authenticating with SSL.

AUTH_SSL_SERVER_CADIR The path to a directory that may contain the certificates (each in its own file) for
multiple trusted CAs for the server side of a communication authenticating with SSL. When defined, the au-
thenticating entity’s certificate is utilized to identify the trusted CA’s certificate within the directory.

AUTH_SSL_CLIENT_CADIR The path to a directory that may contain the certificates (each in its own file) for multi-
ple trusted CAs for the client side of a communication authenticating with SSL. When defined, the authenticating
entity’s certificate is utilized to identify the trusted CA’s certificate within the directory.

AUTH_SSL_SERVER_CERTFILE The path and file name of the file containing the public certificate for the server
side of a communication authenticating with SSL.

AUTH_SSL_CLIENT_CERTFILE The path and file name of the file containing the public certificate for the client
side of a communication authenticating with SSL.

AUTH_SSL_SERVER_KEYFILE The path and file name of the file containing the private key forthe server side of
a communication authenticating with SSL.

AUTH_SSL_CLIENT_KEYFILE The path and file name of the file containing the private key forthe client side of a
communication authenticating with SSL.

CERTIFICATE_MAPFILE A path and file name of the unified map file.

HTCondor Version 8.6.4 Manual

3.5.25. Configuration File Entries Relating to Security 340

CERTIFICATE_MAPFILE_ASSUME_HASH_KEYS For HTCondor version 8.5.8 and later. When this is true, the
second field of theCERTIFICATE_MAPFILE is not interpreted as a regular expression unless it begins and
ends with the slash / character.

SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION This is a special authentication mechanism designed to
minimize overhead in thecondor_scheddwhen communicating with the execute machine. Essentially,match-
making results in a secret being shared between thecondor_scheddand condor_startd, and this is used to
establish a strong security session between the execute andsubmit daemons without going through the usual
security negotiation protocol. This is especially important when operating at large scale over high latency net-
works (for example, on a pool with onecondor_schedddaemon and thousands ofcondor_startddaemons on a
network with a 0.1 second round trip time).

The default value isTrue . To have any effect, it must beTrue in the configuration of both the execute
side (condor_startd) as well as the submit side (condor_schedd). When True , all other security negoti-
ation between the submit and execute daemons is bypassed. All inter-daemon communication between the
submit and execute side will use thecondor_startddaemon’s settings forSEC_DAEMON_ENCRYPTIONand
SEC_DAEMON_INTEGRITY; the configuration of these values in thecondor_schedd, condor_shadow, and
condor_starterare ignored.

Important: For strong security, at least one of the two, integrity or encryption, should be enabled in the startd
configuration. Also, some form of strong mutual authentication (e.g. GSI) should be enabled between all
daemons and the central manager or the shared secret which isexchanged in matchmaking cannot be safely
encrypted when transmitted over the network.

Thecondor_scheddandcondor_shadowwill be authenticated assubmit-side@matchsession when they
talk to thecondor_startdandcondor_starter. Thecondor_startdandcondor_starterwill be authenticated as
execute-side@matchsession when they talk to thecondor_scheddandcondor_shadow. These identi-
ties is automatically added to the DAEMON, READ, and CLIENT authorization levels in these daemons when
needed.

KERBEROS_SERVER_KEYTAB The path and file name of the keytab file that holds the necessary Kerberos prin-
cipals. If not defined, this variable’s value is set by the installed Kerberos; it is/etc/v5srvtab on most
systems.

KERBEROS_SERVER_PRINCIPAL An exact Kerberos principal to use. The default value
is host/<hostname>@<realm> , as set by the installed Kerberos. Where both
KERBEROS_SERVER_PRINCIPALand KERBEROS_SERVER_SERVICEare defined, this value takes
precedence.

KERBEROS_SERVER_USER The user name that the Kerberos server principal will map to after authentication. The
default value iscondor .

KERBEROS_SERVER_SERVICE A string representing the Kerberos service name. This string is prepended with
a slash character (/) and the host name in order to form the Kerberos server principal. This value de-
faults tohost , resulting in the same default value as specified by usingKERBEROS_SERVER_PRINCIPAL.
Where bothKERBEROS_SERVER_PRINCIPALandKERBEROS_SERVER_SERVICEare defined, the value
of KERBEROS_SERVER_PRINCIPALtakes precedence.

KERBEROS_CLIENT_KEYTAB The path and file name of the keytab file for the client in Kerberos authentication.
This variable has no default value.

HTCondor Version 8.6.4 Manual

3.5.26. Configuration File Entries Relating to Virtual Machines 341

3.5.26 Configuration File Entries Relating to Virtual Machines

These macros affect how HTCondor runsvm universe jobs on a matched machine within the pool. They specify items
related to thecondor_vm-gahp.

VM_GAHP_SERVER The complete path and file name of thecondor_vm-gahp. The default value is
$(SBIN)/condor_vm-gahp .

VM_GAHP_LOG The complete path and file name of thecondor_vm-gahplog. If not specified on a Unix platform,
thecondor_starterlog will be used forcondor_vm-gahplog items. There is no default value for this required
configuration variable on Windows platforms.

MAX_VM_GAHP_LOG Controls the maximum length (in bytes) to which thecondor_vm-gahplog will be allowed to
grow.

VM_TYPE Specifies the type of supported virtual machine software. Itwill be the valuekvm, xen or vmware . There
is no default value for this required configuration variable.

VM_MEMORY An integer specifying the maximum amount of memory in MiB to be shared among the VM universe
jobs run on this machine.

VM_MAX_NUMBER An integer limit on the number of executing virtual machines. When not defined, the default value
is the sameNUM_CPUS. When it evaluates toUndefined , as is the case when not defined with a numeric value,
no meaningful limit is imposed.

VM_STATUS_INTERVAL An integer number of seconds that defaults to 60, representing the interval between job
status checks by thecondor_starterto see if the job has finished. A minimum value of 30 seconds is enforced.

VM_GAHP_REQ_TIMEOUT An integer number of seconds that defaults to 300 (five minutes), representing the
amount of time HTCondor will wait for a command issued from the condor_starterto thecondor_vm-gahp
to be completed. When a command times out, an error is reported to thecondor_startd.

VM_RECHECK_INTERVAL An integer number of seconds that defaults to 600 (ten minutes), representing the amount
of time thecondor_startdwaits after a virtual machine error as reported by thecondor_starter, and before
checking a final time on the status of the virtual machine. If the check fails, HTCondor disables starting any
new vm universe jobs by removing theVM_Type attribute from the machine ClassAd.

VM_SOFT_SUSPEND A boolean value that defaults toFalse , causing HTCondor to free the memory of a vm
universe job when the job is suspended. WhenTrue , the memory is not freed.

VM_UNIV_NOBODY_USER Identifies a login name of a user with a home directory that maybe used for job owner
of a vm universe job. Thenobody user normally utilized when the job arrives from a differentUID domain
will not be allowed to invoke a VMware virtual machine.

ALWAYS_VM_UNIV_USE_NOBODY A boolean value that defaults toFalse . WhenTrue , all vm universe jobs
(independent of their UID domain) will run as the user definedin VM_UNIV_NOBODY_USER.

VM_NETWORKING A boolean variable describing if networking is supported. When not defined, the default value is
False .

HTCondor Version 8.6.4 Manual

3.5.26. Configuration File Entries Relating to Virtual Machines 342

VM_NETWORKING_TYPE A string describing the type of networking, required and relevant only when
VM_NETWORKINGis True . Defined strings are

bridge
nat
nat, bridge

VM_NETWORKING_DEFAULT_TYPE Where multiple networking types are given inVM_NETWORKING_TYPE, this
optional configuration variable identifies which to use. Therefore, for

VM_NETWORKING_TYPE = nat, bridge

this variable may be defined as eithernat or bridge . Where multiple networking types are given in
VM_NETWORKING_TYPE, and this variable isnot defined, a default ofnat is used.

VM_NETWORKING_BRIDGE_INTERFACE For Xen and KVM only, a required string if bridge networking is to be
enabled. It specifies the networking interface that vm universe jobs will use.

LIBVIRT_XML_SCRIPT For Xen and KVM only, a path and executable specifying a program. When the
condor_vm-gahpis ready to start a Xen or KVMvm universe job, it will invoke this program to generate the
XML description of the virtual machine, which it then provides to the virtualization software. The job ClassAd
will be provided to this program via standard input. This program should print the XML to standard output.
If this configuration variable is not set, thecondor_vm-gahpwill generate the XML itself. The provided script
in $(LIBEXEC)/libvirt_simple_script.awk will generate the same XML that thecondor_vm-gahp
would.

LIBVIRT_XML_SCRIPT_ARGS For Xen and KVM only, the command-line arguments to be given to the program
specified byLIBVIRT_XML_SCRIPT .

The following configuration variables are specific to the VMware virtual machine software.

VMWARE_PERL The complete path and file name toPerl. There is no default value for this required variable.

VMWARE_SCRIPT The complete path and file name of the script that controls VMware. There is no default value for
this required variable.

VMWARE_NETWORKING_TYPE An optional string used in networking that thecondor_vm-gahpinserts into the
VMware configuration file to define a networking type. Defined types arenat or bridged . If a default value
is needed, the inserted string will benat .

VMWARE_NAT_NETWORKING_TYPE An optional string used in networking that thecondor_vm-gahpinserts into
the VMware configuration file to define a networking type. If nat networking is used, this variable’s definition
takes precedence over one defined byVMWARE_NETWORKING_TYPE.

VMWARE_BRIDGE_NETWORKING_TYPE An optional string used in networking that thecondor_vm-gahpinserts
into the VMware configuration file to define a networking type.If bridge networking is used, this variable’s
definition takes precedence over one defined byVMWARE_NETWORKING_TYPE.

HTCondor Version 8.6.4 Manual

3.5.27. Configuration File Entries Relating to High Availability 343

VMWARE_LOCAL_SETTINGS_FILE The complete path and file name to a file, whose contents will beinserted into
the VMware description file (i.e., the .vmx file) before HTCondor starts the virtual machine. This parameter is
optional.

The following configuration variables are specific to the Xenvirtual machine software.

XEN_BOOTLOADER A required full path and executable for the Xen bootloader, if the kernel image includes a disk
image.

The following two macros affect the configuration of HTCondor where HTCondor is running on a host machine,
the host machine is running an inner virtual machine, and HTCondor is also running on that inner virtual machine.
These two variables have nothing to do with thevm universe.

VMP_HOST_MACHINE A configuration variable for the inner virtual machine, which specifies the host name.

VMP_VM_LIST For the host, a comma separated list of the host names or IP addresses for machines running inner
virtual machines on a host.

3.5.27 Configuration File Entries Relating to High Availability

These macros affect the high availability operation of HTCondor.

MASTER_HA_LIST Similar toDAEMON_LIST, this macro defines a list of daemons that thecondor_masterstarts
and keeps its watchful eyes on. However, theMASTER_HA_LISTdaemons are run in aHigh Availabilitymode.
The list is a comma or space separated list of subsystem names(as listed in section 3.5.1). For example,

MASTER_HA_LIST = SCHEDD

TheHigh Availability feature allows for severalcondor_masterdaemons (most likely on separate machines) to
work together to insure that a particular service stays available. Thesecondor_masterdaemons ensure that one
and only one of them will have the listed daemons running.

To use this feature, the lock URL must be set withHA_LOCK_URL.

Currently, only file URLs are supported (those withfile: . . .). The default value forMASTER_HA_LISTis
the empty string, which disables the feature.

HA_LOCK_URL This macro specifies the URL that thecondor_masterprocesses use to synchronize for theHigh
Availability service. Currently, only file URLs are supported; for example, file:/share/spool . Note that
this URL must be identical for allcondor_masterprocesses sharing this resource. Forcondor_scheddsharing,
we recommend setting upSPOOLon an NFS share and having allHigh Availability condor_scheddprocesses
sharing it, and setting theHA_LOCK_URLto point at this directory as well. For example:

HTCondor Version 8.6.4 Manual

3.5.27. Configuration File Entries Relating to High Availability 344

MASTER_HA_LIST = SCHEDD
SPOOL = /share/spool
HA_LOCK_URL = file:/share/spool
VALID_SPOOL_FILES = SCHEDD.lock

A separate lock is created for eachHigh Availabilitydaemon.

There is no default value forHA_LOCK_URL.

Lock files are in the form<SUBSYS>.lock. condor_preenis not currently aware of the lock files and will delete
them if they are placed in theSPOOLdirectory, so be sure to add<SUBSYS>.lock toVALID_SPOOL_FILES
for eachHigh Availabilitydaemon.

HA_<SUBSYS>_LOCK_URL This macro controls theHigh Availability lock URL for a specific subsystem as speci-
fied in the configuration variable name, and it overrides the system-wide lock URL specified byHA_LOCK_URL.
If not defined for each subsystem,HA_<SUBSYS>_LOCK_URLis ignored, and the value ofHA_LOCK_URLis
used.

HA_LOCK_HOLD_TIME This macro specifies the number of seconds that thecondor_masterwill hold the lock
for eachHigh Availability daemon. Upon gaining the shared lock, thecondor_masterwill hold the lock for
this number of seconds. Additionally, thecondor_masterwill periodically renew each lock as long as the
condor_masterand the daemon are running. When the daemon dies, or thecondor_masterexists, thecon-
dor_masterwill immediately release the lock(s) it holds.

HA_LOCK_HOLD_TIMEdefaults to 3600 seconds (one hour).

HA_<SUBSYS>_LOCK_HOLD_TIME This macro controls theHigh Availability lock hold time for a specific sub-
system as specified in the configuration variable name, and itoverrides the system wide poll period specified by
HA_LOCK_HOLD_TIME. If not defined for each subsystem,HA_<SUBSYS>_LOCK_HOLD_TIMEis ignored,
and the value ofHA_LOCK_HOLD_TIMEis used.

HA_POLL_PERIOD This macro specifies how often thecondor_masterpolls theHigh Availability locks to see if any
locks are either stale (meaning not updated forHA_LOCK_HOLD_TIMEseconds), or have been released by the
owningcondor_master. Additionally, thecondor_masterrenews any locks that it holds during these polls.

HA_POLL_PERIODdefaults to 300 seconds (five minutes).

HA_<SUBSYS>_POLL_PERIOD This macro controls theHigh Availability poll period for a specific subsystem
as specified in the configuration variable name, and it overrides the system wide poll period specified by
HA_POLL_PERIOD. If not defined for each subsystem,HA_<SUBSYS>_POLL_PERIODis ignored, and the
value ofHA_POLL_PERIODis used.

MASTER_<SUBSYS>_CONTROLLER Used only in HA configurations involving thecondor_had.

The condor_masterhas the concept of a controlling and controlled daemon, typically with the condor_had
daemon serving as the controlling process. In this case, allcondor_onandcondor_offcommands directed at
controlled daemons are given to the controlling daemon, which then handles the command, and, when required,
sends appropriate commands to thecondor_masterto do the actual work. This allows the controlling daemon
to know the state of the controlled daemon.

As of 6.7.14, this configuration variable must be specified for all configurations usingcondor_had. To configure
thecondor_negotiatorcontrolled bycondor_had:

HTCondor Version 8.6.4 Manual

3.5.27. Configuration File Entries Relating to High Availability 345

MASTER_NEGOTIATOR_CONTROLLER = HAD

The macro is named by substituting<SUBSYS>with the appropriate subsystem string as defined in sec-
tion 3.5.1.

HAD_LIST A comma-separated list of allcondor_haddaemons in the formIP:port or hostname:port . Each
central manager machine that runs thecondor_haddaemon should appear in this list. IfHAD_USE_PRIMARY
is set toTrue , then the first machine in this list is the primary central manager, and all others in the list are
backups.

All central manager machines must be configured with an identical HAD_LIST. The machine addresses are
identical to the addresses defined inCOLLECTOR_HOST.

HAD_USE_PRIMARY Boolean value to determine if the first machine in theHAD_LIST configuration variable is a
primary central manager. Defaults toFalse .

HAD_CONTROLLEE This variable is used to specify the name of the daemon which thecondor_haddaemon controls.
This name should match the daemon name in thecondor_masterdaemon’sDAEMON_LISTdefinition. The
default value isNEGOTIATOR.

HAD_CONNECTION_TIMEOUT The time (in seconds) that thecondor_haddaemon waits before giving up on the
establishment of a TCP connection. The failure of the communication connection is the detection mechanism
for the failure of a central manager machine. For a LAN, a recommended value is 2 seconds. The use of
authentication (by HTCondor) increases the connection time. The default value is 5 seconds. If this value is set
too low,condor_haddaemons will incorrectly assume the failure of other machines.

HAD_ARGS Command line arguments passed by thecondor_masterdaemon as it invokes thecondor_haddaemon.
To make high availability work, thecondor_haddaemon requires the port number it is to use. This argument is
of the form

-p $(HAD_PORT_NUMBER)

whereHAD_PORT_NUMBERis a helper configuration variable defined with the desired port number. Note that
this port number must be the same value here as used inHAD_LIST. There is no default value.

HAD The path to thecondor_hadexecutable. Normally it is defined relative to$(SBIN) . This configuration variable
has no default value.

MAX_HAD_LOG Controls the maximum length in bytes to which thecondor_haddaemon log will be allowed to grow.
It will grow to the specified length, then be saved to a file withthe suffix.old . The.old file is overwritten
each time the log is saved, thus the maximum space devoted to logging is twice the maximum length of this log
file. A value of 0 specifies that this file may grow without bounds. The default is 1 MiB.

HAD_DEBUG Logging level for thecondor_haddaemon. See<SUBSYS>_DEBUGfor values.

HAD_LOG Full path and file name of the log file. The default value is$(LOG)/HADLog .

REPLICATION_LIST A comma-separated list of allcondor_replicationdaemons in the formIP:port or
hostname:port . Each central manager machine that runs thecondor_haddaemon should appear in this
list. All potential central manager machines must be configured with an identicalREPLICATION_LIST .

HTCondor Version 8.6.4 Manual

3.5.27. Configuration File Entries Relating to High Availability 346

STATE_FILE A full path and file name of the file protected by the replication mechanism. When not defined, the
default path and file used is

$(SPOOL)/Accountantnew.log

REPLICATION_INTERVAL Sets how often thecondor_replicationdaemon initiates its tasks of replicating the
$(STATE_FILE) . It is defined in seconds and defaults to 300 (5 minutes).

MAX_TRANSFER_LIFETIME A timeout period within which the process that transfers thestate file must complete
its transfer. The recommended value is2 * average size of state file / network rate . It
is defined in seconds and defaults to 300 (5 minutes).

HAD_UPDATE_INTERVAL Like UPDATE_INTERVAL, determines how often thecondor_hadis to send a ClassAd
update to thecondor_collector. Updates are also sent at each and every change in state. It isdefined in seconds
and defaults to 300 (5 minutes).

HAD_USE_REPLICATION A boolean value that defaults toFalse . WhenTrue , the use ofcondor_replication
daemons is enabled.

REPLICATION_ARGS Command line arguments passed by thecondor_masterdaemon as it invokes thecon-
dor_replicationdaemon. To make high availability work, thecondor_replicationdaemon requires the port
number it is to use. This argument is of the form

-p $(REPLICATION_PORT_NUMBER)

whereREPLICATION_PORT_NUMBERis a helper configuration variable defined with the desired port number.
Note that this port number must be the same value as used inREPLICATION_LIST . There is no default value.

REPLICATION The full path and file name of thecondor_replicationexecutable. It is normally defined relative to
$(SBIN) . There is no default value.

MAX_REPLICATION_LOG Controls the maximum length in bytes to which thecondor_replicationdaemon log will
be allowed to grow. It will grow to the specified length, then be saved to a file with the suffix.old . The.old
file is overwritten each time the log is saved, thus the maximum space devoted to logging is twice the maximum
length of this log file. A value of 0 specifies that this file may grow without bounds. The default is 1 MiB.

REPLICATION_DEBUG Logging level for thecondor_replicationdaemon. See<SUBSYS>_DEBUGfor values.

REPLICATION_LOG Full path and file name to the log file. The default value is$(LOG)/ReplicationLog .

TRANSFERER The full path and file name of thecondor_transfererexecutable. The default value is
$(LIBEXEC)/condor_transferer .

TRANSFERER_LOG Full path and file name to the log file. The default value is$(LOG)/TransfererLog .

TRANSFERER_DEBUG Logging level for thecondor_transfererdaemon. See<SUBSYS>_DEBUGfor values.

MAX_TRANSFERER_LOG Controls the maximum length in bytes to which thecondor_transfererdaemon log will
be allowed to grow. A value of 0 specifies that this file may growwithout bounds. The default is 1 MiB.

HTCondor Version 8.6.4 Manual

3.5.28. MyProxy Configuration File Macros 347

3.5.28 MyProxy Configuration File Macros

In some cases, HTCondor can autonomously refresh GSI certificate proxies viaMyProxy, available from
http://myproxy.ncsa.uiuc.edu/.

MYPROXY_GET_DELEGATION The full path name to themyproxy-get-delegationexecutable, installed as part of the
MyProxysoftware. Often, it is necessary to wrap the actual executable with a script that sets the environment,
such as theLD_LIBRARY_PATH, correctly. If this macro is defined, HTCondor-G andcondor_creddwill have
the capability to autonomously refresh proxy certificates.By default, this macro is undefined.

3.5.29 Configuration File Macros Affecting APIs

ENABLE_SOAP A boolean value that defaults toFalse . WhenTrue , HTCondor daemons will respond to HTTP
PUT commands as if they were SOAP calls. WhenFalse , all HTTP PUT commands are denied.

ENABLE_WEB_SERVER A boolean value that defaults toFalse . WhenTrue , HTCondor daemons will respond to
HTTP GET commands, and send the static files sitting in the subdirectory defined by the configuration variable
WEB_ROOT_DIR. In addition, web commands are considered a READ command, sothe client will be checked
by host-based security.

SOAP_LEAVE_IN_QUEUE A boolean expression that whenTrue , causes a job in the completed state to remain in
the queue, instead of being removed based on the completion of file transfer. If provided, this expression will be
logically ANDed with the default behavior of leaving the jobin the queue untilFilesRetrieved becomes
True .

WEB_ROOT_DIR A complete path to the directory containing all the files served by the web server.

<SUBSYS>_ENABLE_SOAP_SSL A boolean value that defaults toFalse . WhenTrue , enables SOAP over SSL
for the specified<SUBSYS>. Any specific<SUBSYS>_ENABLE_SOAP_SSLsetting overrides the value of
ENABLE_SOAP_SSL.

ENABLE_SOAP_SSL A boolean value that defaults toFalse . WhenTrue , enables SOAP over SSL for all dae-
mons.

<SUBSYS>_SOAP_SSL_PORT The port number on which SOAP over SSL messages are accepted,when SOAP
over SSL is enabled. The<SUBSYS>must be specified, because multiple daemons running on a single machine
may not share a port. This parameter is required when SOAP over SSL is enabled. There is no default value.

The macro is named by substituting<SUBSYS>with the appropriate subsystem string as defined in sec-
tion 3.5.1.

SOAP_SSL_SERVER_KEYFILE The complete path and file name to specify the daemon’s identity, as used in au-
thentication when SOAP over SSL is enabled. The file is to be anOpenSSL PEM file containing a certificate
and private key. This parameter is required when SOAP over SSL is enabled. There is no default value.

SOAP_SSL_SERVER_KEYFILE_PASSWORD An optional complete path and file name to specify a password for
unlocking the daemon’s private key. There is no default value.

HTCondor Version 8.6.4 Manual

http://myproxy.ncsa.uiuc.edu/

3.5.30. Configuration File Entries Relating to condor_ssh_to_job 348

SOAP_SSL_CA_FILE The complete path and file name to specify a file containing certificates of trusted Certificate
Authorities (CAs). Only clients who present a certificate signed by a trusted CA will be authenticated. When
SOAP over SSL is enabled, this parameter orSOAP_SSL_CA_DIRmust be set. There is no default value. The
EC2 GAHP may use this file to specify a trusted CA.

SOAP_SSL_CA_DIR The complete path to a directory containing certificates of trusted Certificate Authorities
(CAs). Only clients who present a certificate signed by a trusted CA will be authenticated. When SOAP
over SSL is enabled, this variable or the variableSOAP_SSL_CA_FILEmust be defined. There is no default
value. The EC2 GAHP may use this directory in the specification a trusted CA.

SOAP_SSL_DH_FILE An optional complete path and file name to a DH file containing keys for a DH key exchange.
There is no default value.

SOAP_SSL_SKIP_HOST_CHECK When a SOAP server is authenticated via SSL, the server’s host name is normally
compared with the host name contained in the server’s X.509 credential. If the two do not match, authentication
fails. When this boolean variable is set toTrue , the host name comparison is disabled. The default value is
False .

3.5.30 Configuration File Entries Relating to condor_ssh_to_job

These macros affect how HTCondor deals withcondor_ssh_to_job, a tool that allows users to interactively debug jobs.
With these configuration variables, the administrator can control who can use the tool, and how thesshprograms are
invoked. The manual page forcondor_ssh_to_jobis at section 11.

ENABLE_SSH_TO_JOB A boolean expression read by thecondor_starter, that whenTrue allows the owner of the
job or a queue super user on thecondor_scheddwhere the job was submitted to connect to the job viassh. The
expression may refer to attributes of both the job and the machine ClassAds. The job ClassAd attributes may
be referenced by using the prefixTARGET., and the machine ClassAd attributes may be referenced by using
the prefixMY.. WhenFalse , it preventscondor_ssh_to_jobfrom starting ansshsession. The default value is
True .

SCHEDD_ENABLE_SSH_TO_JOB A boolean expression read by thecondor_schedd, that whenTrue allows the
owner of the job or a queue super user to connect to the job viasshif the execute machine also allowscon-
dor_ssh_to_jobaccess (seeENABLE_SSH_TO_JOB). The expression may refer to attributes of only the job
ClassAd. WhenFalse , it preventscondor_ssh_to_jobfrom starting ansshsession for all jobs managed by the
condor_schedd. The default value isTrue .

SSH_TO_JOB_<SSH-CLIENT>_CMD A string read by thecondor_ssh_to_jobtool. It specifies the command and
arguments to use when invoking the program specified by<SSH-CLIENT> . Values substituted for the place-
holder<SSH-CLIENT> may beSSH, SFTP, SCP, or any othersshclient capable of using a command as
a proxy for the connection tosshd. The entire command plus arguments string is enclosed in double quote
marks. Individual arguments may be quoted with single quotes, using the same syntax as for arguments in a
condor_submitfile. The following substitutions are made within the arguments:

%h: is substituted by the remote host

%i : is substituted by the ssh key

HTCondor Version 8.6.4 Manual

3.5.31. condor_rooster Configuration File Macros 349

%k: is substituted by the known hosts file

%u: is substituted by the remote user

%x: is substituted by a proxy command suitable for use with theOpenSSHProxyCommand option

%%: is substituted by the percent mark character

The default string is:
"ssh -oUser=%u -oIdentityFile=%i -oStrictHostKeyChecki ng=yes -oUserKnownHostsFile=%k

When the<SSH-CLIENT> is scp, %h is omitted.

SSH_TO_JOB_SSHD The path and executable name of thesshdaemon. The value is read by thecondor_starter.
The default value is/usr/sbin/sshd .

SSH_TO_JOB_SSHD_ARGS A string, read by thecondor_starterthat specifies the command-line arguments to be
passed to thesshdto handle an incoming ssh connection on itsstdin or stdout streams in inetd mode.
Enclose the entire arguments string in double quote marks. Individual arguments may be quoted with single
quotes, using the same syntax as for arguments in an HTCondorsubmit description file. Within the arguments,
the characters%f are replaced by the path to thesshdconfiguration file the characters%%are replaced by a
single percent character. The default value is the string"-i -e -f %f" .

SSH_TO_JOB_SSHD_CONFIG_TEMPLATE A string, read by thecondor_starterthat specifies the path and file
name of ansshdconfiguration template file. The template is turned into ansshdconfiguration file by re-
placing macros within the template that specify such thingsas the paths to key files. The macro replace-
ment is done by the script$(LIBEXEC)/condor_ssh_to_job_sshd_setup . The default value is
$(LIB)/condor_ssh_to_job_sshd_config_template .

SSH_TO_JOB_SSH_KEYGEN A string, read by thecondor_starterthat specifies the path tossh_keygen, the program
used to create ssh keys.

SSH_TO_JOB_SSH_KEYGEN_ARGS A string, read by thecondor_starterthat specifies the command-line argu-
ments to be passed to thessh_keygento generate an ssh key. Enclose the entire arguments string in double
quotes. Individual arguments may be quoted with single quotes, using the same syntax as for arguments in an
HTCondor submit description file. Within the arguments, thecharacters%f are replaced by the path to the key
file to be generated, and the characters%%are replaced by a single percent character. The default value is the
string"-N '' -C '' -q -f %f -t rsa" . If the user specifies additional arguments with the command
condor_ssh_to_job -keygen-options , then those arguments are placed after the arguments specified
by the value ofSSH_TO_JOB_SSH_KEYGEN_ARGS.

3.5.31 condor_rooster Configuration File Macros

condor_roosteris an optional daemon that may be added to thecondor_masterdaemon’sDAEMON_LIST. It is re-
sponsible for waking up hibernating machines when theirUNHIBERNATEexpression becomesTrue . In the typical
case, a pool runs a single instance ofcondor_roosteron the central manager. However, if the network topology re-
quires that Wake On LAN packets be sent to specific machines from different locations,condor_roostercan be run on
any machine(s) that can read from the pool’scondor_collectordaemon.

Forcondor_roosterto wake up hibernating machines, the collecting of offline machine ClassAds must be enabled.
See variableCOLLECTOR_PERSISTENT_AD_LOGon page?? for details on how to do this.

HTCondor Version 8.6.4 Manual

3.5.32. condor_shared_port Configuration File Macros 350

ROOSTER_INTERVAL The integer number of seconds between checks for offline machines that should be woken.
The default value is 300.

ROOSTER_MAX_UNHIBERNATE An integer specifying the maximum number of machines to wakeup per cycle.
The default value of 0 means no limit.

ROOSTER_UNHIBERNATE A boolean expression that specifies which machines should bewoken up. The default
expression isOffline && Unhibernate . If network topology or other considerations demand that some
machines in a pool be woken up by one instance ofcondor_rooster, while others be woken up by a differ-
ent instance,ROOSTER_UNHIBERNATEmay be set locally such that it is different for the two instances of
condor_rooster. In this way, the different instances will only try to wake uptheir respective subset of the pool.

ROOSTER_UNHIBERNATE_RANK A ClassAd expression specifying which machines should be woken up first in a
given cycle. Higher ranked machines are woken first. If the number of machines to be woken up is limited
by ROOSTER_MAX_UNHIBERNATE, the rank may be used for determining which machines are woken before
reaching the limit.

ROOSTER_WAKEUP_CMD A string representing the command line invoked bycondor_roosterthat is to wake up a
machine. The command and any arguments should be enclosed indouble quote marks, the same asarguments
syntax in an HTCondor submit description file. The default value is "$(BIN)/condor_power -d -i" .
The command is expected to read from its standard input a ClassAd representing the offline machine.

3.5.32 condor_shared_port Configuration File Macros

These configuration variables affect thecondor_shared_portdaemon. For general discussion of thecon-
dor_shared_portdaemon, see 454.

USE_SHARED_PORT A boolean value that specifies whether HTCondor daemons should rely on the con-
dor_shared_portdaemon for receiving incoming connections. Under Unix, write access to the location defined
by DAEMON_SOCKET_DIRis required for this to take effect. The default isTrue .

SHARED_PORT_PORT The default TCP port used by thecondor_shared_port daemon. If
COLLECTOR_USES_SHARED_PORTis the default value ofTrue , and thecondor_masterlaunches a
condor_collectordaemon, then thecondor_shared_portdaemon will ignore this value and use the TCP port
assigned to thecondor_collectorvia theCOLLECTOR_HOSTconfiguration variable.

The default value is$(COLLECTOR_PORT), which defaults to 9618. Note that this causes all HTCondor
hosts to use TCP port 9618 by default, differing from previous behavior. The previous behavior has only the
condor_collectorhost using a fixed port. To restore this previous behavior, set SHARED_PORT_PORTto 0,
which will cause thecondor_shared_portdaemon to use a randomly selected port in the rangeLOWPORT-
HIGHPORT, as defined in section 3.9.1.

SHARED_PORT_DAEMON_AD_FILE This specifies the full path and name of a file used to publish the address of
condor_shared_port. This file is read by the other daemons that haveUSE_SHARED_PORT=Trueand which
are therefore sharing the same port. The default typically does not need to be changed.

HTCondor Version 8.6.4 Manual

3.5.32. condor_shared_port Configuration File Macros 351

SHARED_PORT_MAX_WORKERS An integer that specifies the maximum number of sub-processes created bycon-
dor_shared_portwhile servicing requests to connect to the daemons that are sharing the port. The default is
50.

DAEMON_SOCKET_DIR This specifies the directory where Unix versions of HTCondordaemons will create named
sockets so that incoming connections can be forwarded to them by condor_shared_port. If this directory does
not exist, it will be created. The maximum length of named socket paths plus names is restricted by the operating
system, so using a path that is longer than 90 characters may cause failures.

Write access to this directory grants permission to receiveconnections through the shared port. By default, the
directory is created to be owned by HTCondor and is made to be only writable by HTCondor. One possible
reason to broaden access to this directory is if execute nodes are accessed via CCB and the submit node is
behind a firewall with only one open port, which is the port assigned tocondor_shared_port. In this case,
commands that interact with the execute node, such ascondor_ssh_to_job, will not be able to operate unless run
by a user with write access toDAEMON_SOCKET_DIR. In this case, one could grant tmp-like permissions to
this directory so that all users can receive CCB connectionsback through the firewall. But, consider the wisdom
of having a firewall in the first place, if it will be circumvented in this way.

On Linux platforms, daemons use abstract named sockets instead of normal named sockets. Abstract sockets
are not not tied to a file in the file system. Thecondor_masterpicks a random prefix for abstract socket names
and shares it privately with the other daemons. When searching for the recipient of an incoming connection,
condor_shared_portwill check for both an abstract socket and a named socket in the directory indicated by this
variable. The named socket allows command-line tools such as condor_ssh_to_jobto usecondor_shared_port
as described.

On Linux platforms, settingSHARED_PORT_AUDIT_LOGcauses HTCondor to log the following information
about each connection made through theDAEMON_SOCKET_DIR: the source address, the socket file name, and
the target process’s PID, UID, GID, executable path, and command line. An administrator may use this logged
information to deter abuse.

The default value isauto , causing the use of the directory$(LOCK)/daemon_sock . On Unix platforms
other than Linux, if that path is longer than the 90 characters maximum, then thecondor_masterwill instead
create a directory under/tmp with a name that looks like/tmp/condor_shared_port_<XXXXXX> ,
where<XXXXXX>is replaced with random characters. Thecondor_masterthen tells the other daemons the
exact name of the directory it created, and they use it.

If a different value is set forDAEMON_SOCKET_DIR, then that directory is used, without regard for the length
of the path name. Ensure that the length is not longer than 90 characters.

SHARED_PORT_ARGS Like all daemons started by thecondor_masterdaemon, the command line arguments to the
invocation of thecondor_shared_portdaemon can be customized. The arguments can be used to specify a
non-default port number for thecondor_shared_portdaemon as in this example, which specifies port 4080:

SHARED_PORT_ARGS = -p 4080

It is recommended to use configuration variableSHARED_PORT_PORTto set a non-default port number, in-
stead of using this configuration variable.

SHARED_PORT_AUDIT_LOG On Linux platforms, the path and file name of thecondor_shared_portlog that
records connections made via theDAEMON_SOCKET_DIR. If not defined, there will be nocondor_shared_port
audit log.

HTCondor Version 8.6.4 Manual

3.5.33. Configuration File Entries Relating to Hooks 352

MAX_SHARED_PORT_AUDIT_LOG On Linux platforms, controls the maximum amount of time thatthe con-
dor_shared_portaudit log will be allowed to grow. When it is time to rotate a log file, the log file will be
saved to a file named with an ISO timestamp suffix. The oldest rotated file receives the file name suffix.old .
The .old files are overwritten each time the maximum number of rotatedfiles (determined by the value of
MAX_NUM_SHARED_PORT_AUDIT_LOG) is exceeded. A value of 0 specifies that the file may grow without
bounds. The following suffixes may be used to qualify the integer:

Sec for seconds

Min for minutes

Hr for hours

Day for days

Wkfor weeks

MAX_NUM_SHARED_PORT_AUDIT_LOG On Linux platforms, the integer that controls the maximum number of
rotations that thecondor_shared_portaudit log is allowed to perform, before the oldest one will berotated
away. The default value is 1.

3.5.33 Configuration File Entries Relating to Hooks

These macros control the various hooks that interact with HTCondor. Currently, there are two independent sets of
hooks. One is a set of fetch work hooks, some of which are invoked by thecondor_startdto optionally fetch work,
and some are invoked by thecondor_starter. See section 4.4.1 on page 558 on Job Hooks for more details. The other
set replace functionality of thecondor_job_routerdaemon. Documentation for thecondor_job_routerdaemon is in
section 5.4 on page 604.

SLOT<N>_JOB_HOOK_KEYWORD For the fetch work hooks, the keyword used to define which set of hooks a par-
ticular compute slot should invoke. The value of<N> is replaced by the slot identification number. For example,
on slot 1, the variable name will be called[SLOT1_JOB_HOOK_KEYWORD. There is no default keyword. Sites
that wish to use these job hooks must explicitly define the keyword and the corresponding hook paths.

STARTD_JOB_HOOK_KEYWORD For the fetch work hooks, the keyword used to define which set of hooks a partic-
ular condor_startdshould invoke. This setting is only used if a slot-specific keyword is not defined for a given
compute slot. There is no default keyword. Sites that wish touse job hooks must explicitly define the keyword
and the corresponding hook paths.

<Keyword>_HOOK_FETCH_WORK For the fetch work hooks, the full path to the program to invoke whenever the
condor_startdwants to fetch work.<Keyword> is the hook keyword defined to distinguish between sets of
hooks. There is no default.

<Keyword>_HOOK_REPLY_FETCH For the fetch work hooks, the full path to the program to invoke when the hook
defined by<Keyword>_HOOK_FETCH_WORKreturns data and the thecondor_startddecides if it is going to
accept the fetched job or not.<Keyword> is the hook keyword defined to distinguish between sets of hooks.

HTCondor Version 8.6.4 Manual

3.5.33. Configuration File Entries Relating to Hooks 353

<Keyword>_HOOK_REPLY_CLAIM For the fetch work hooks, the full path to the program to invoke whenever the
condor_startdfinishes fetching a job and decides what to do with it.<Keyword> is the hook keyword defined
to distinguish

between sets of hooks. There is no default.

<Keyword>_HOOK_PREPARE_JOB For the fetch work hooks, the full path to the program invokedby thecon-
dor_starterbefore it runs the job.<Keyword> is the hook keyword defined to distinguish between sets of
hooks.

<Keyword>_HOOK_UPDATE_JOB_INFO This configuration variable is used by both fetch work hooks and by
condor_job_routerhooks.

For the fetch work hooks, the full path to the program invokedby thecondor_starterperiodically as the job runs,
allowing thecondor_starterto present an updated and augmented job ClassAd to the program. See section 4.4.1
on page 559 for the list of additional attributes included. When the job is first invoked, thecondor_starter
will invoke the program after$(STARTER_INITIAL_UPDATE_INTERVAL) seconds. Thereafter, thecon-
dor_starterwill invoke the program every$(STARTER_UPDATE_INTERVAL)seconds.<Keyword> is the
hook keyword defined to distinguish between sets of hooks.

As a Job Router hook, the full path to the program invoked whenthe Job Router polls the status of routed
jobs at intervals set byJOB_ROUTER_POLLING_PERIOD. <Keyword> is the hook keyword defined by
JOB_ROUTER_HOOK_KEYWORDto identify the hooks.

<Keyword>_HOOK_EVICT_CLAIM For the fetch work hooks, the full path to the program to invoke whenever the
condor_startdneeds to evict a fetched claim.<Keyword> is the hook keyword defined to distinguish between
sets of hooks. There is no default.

<Keyword>_HOOK_JOB_EXIT For the fetch work hooks, the full path to the program invokedby the con-
dor_starterwhenever a job exits, either on its own or when being evicted from an execution slot.<Keyword>
is the hook keyword defined to distinguish between sets of hooks.

<Keyword>_HOOK_JOB_EXIT_TIMEOUT For the fetch work hooks, the number of seconds thecondor_starter
will wait for the hook defined by<Keyword>_HOOK_JOB_EXIT hook to exit, before continuing with job
clean up. Defaults to 30 seconds.<Keyword> is the hook keyword defined to distinguish between sets of
hooks.

FetchWorkDelay An expression that defines the number of seconds that thecondor_startdshould wait after an
invocation of<Keyword>_HOOK_FETCH_WORKcompletes before the hook should be invoked again. The
expression is evaluated in the context of the slot ClassAd, and the ClassAd of the currently running job (if any).
The expression must evaluate to an integer. If not defined, thecondor_startdwill wait 300 seconds (five minutes)
between attempts to fetch work. For more information about this expression, see section 4.4.1 on page 563.

JOB_ROUTER_HOOK_KEYWORD For the Job Router hooks, the keyword used to define the set of hooks thecon-
dor_job_routeris to invoke to replace functionality of routing translation. There is no default keyword. Use of
these hooks requires the explicit definition of the keyword and the corresponding hook paths.

<Keyword>_HOOK_TRANSLATE_JOB A Job Router hook, the full path to the program invoked when the Job
Router has determined that a job meets the definition for a route. This hook is responsible for doing the transfor-
mation of the job.<Keyword> is the hook keyword defined byJOB_ROUTER_HOOK_KEYWORDto identify
the hooks.

HTCondor Version 8.6.4 Manual

3.5.33. Configuration File Entries Relating to Hooks 354

<Keyword>_HOOK_JOB_FINALIZE A Job Router hook, the full path to the program invoked when the
Job Router has determined that the job completed.<Keyword> is the hook keyword defined by
JOB_ROUTER_HOOK_KEYWORDto identify the hooks.

<Keyword>_HOOK_JOB_CLEANUP A Job Router hook, the full path to the program invoked when the Job Router
finishes managing the job.<Keyword> is the hook keyword defined byJOB_ROUTER_HOOK_KEYWORDto
identify the hooks.

The following macros describe theDaemon ClassAd Hookcapabilities of HTCondor. The Daemon ClassAd Hook
mechanism is used to run executables (called jobs) directlyfrom thecondor_startdandcondor_schedddaemons. The
output from the jobs is incorporated into the machine ClassAd generated by the respective daemon. The mechanism
is described in section 4.4.3 on page 567.

STARTD_CRON_NAME and SCHEDD_CRON_NAME These variables will be honored through HTCondor versions
7.6, and support will be removed in HTCondor version 7.7. They are no longer documented as to their usage.

Defines a logical name to be used in the formation of related configuration macro names. This macro made
other Daemon ClassAd Hook macros more readable and maintainable. A common example was

STARTD_CRON_NAME = HAWKEYE

This example allowed the naming of other related macros to contain the stringHAWKEYEin their name, replacing
the stringSTARTD_CRON.

The value of these variables may not beBENCHMARKS. The Daemon ClassAd Hook mechanism is used to
implement a set of provided hooks that provide benchmark attributes.

STARTD_CRON_CONFIG_VAL and SCHEDD_CRON_CONFIG_VAL and BENCHMARKS_CONFIG_VAL This
configuration variable can be used to specify the path and executable name of thecondor_config_valprogram
which the jobs (hooks) should use to get configuration information from the daemon. If defined, an environment
variable by the same name with the same value will be passed toall jobs.

STARTD_CRON_AUTOPUBLISH Optional setting that determines if thecondor_startdshould automatically publish
a new update to thecondor_collectorafter any of the jobs produce output. Beware that enabling this setting can
greatly increase the network traffic in an HTCondor pool, especially when many modules are executed, or if the
period in which they run is short. There are three possible (case insensitive) values for this variable:

Never This default value causes thecondor_startdto not automatically publish updates based on any
jobs. Instead, updates rely on the usual behavior for sending updates, which is periodic, based on the
UPDATE_INTERVALconfiguration variable, or whenever a given slot changes state.

Always Causes thecondor_startdto always send a new update to thecondor_collectorwhenever any job
exits.

If_Changed Causes thecondor_startdto only send a new update to thecondor_collectorif the output pro-
duced by a given job is different than the previous output of the same job. The only exception is the
LastUpdate attribute, which is automatically set for all jobs to be the timestamp when the job last ran.
It is ignored whenSTARTD_CRON_AUTOPUBLISHis set toIf_Changed .

HTCondor Version 8.6.4 Manual

3.5.33. Configuration File Entries Relating to Hooks 355

STARTD_CRON_JOBLIST and SCHEDD_CRON_JOBLIST and BENCHMARKS_JOBLIST These configuration
variables are defined by a comma and/or white space separatedlist of job names to run. Each is the logical
name of a job. This name must be unique; no two jobs may have thesame name.

STARTD_CRON_<JobName>_PREFIX and SCHEDD_CRON_<JobName>_PREFIX and BENCHMARKS_<JobName>_PREFIX
Specifies a string which is prepended by HTCondor to all attribute names that the job generates. The use of
prefixes avoids the conflicts that would be caused by attributes of the same name generated and utilized by
different jobs. For example, if a module prefix isxyz_ , and an individual attribute is namedabc , then the
resulting attribute name will bexyz_abc . Due to restrictions on ClassAd names, a prefix is only permitted to
contain alpha-numeric characters and the underscore character.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLIST, SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_SLOTS and BENCHMARKS_<JobName>_SLOTS A comma separated list of slots.
The output of the job specified by<JobName> is incorporated into ClassAds; this list specifies which slots are
to incorporate the output attributes of the job. If not specified, the default is to incorporate the output attributes
into the ClassAd of all slots.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLISTor BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_EXECUTABLE and SCHEDD_CRON_<JobName>_EXECUTABLE and BENCHMARKS_<JobName>_EXECUTABLE
The full path and executable to run for this job. Note that multiple jobs may specify the same executable,
although the jobs need to have different logical names.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLIST, SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_PERIOD and SCHEDD_CRON_<JobName>_PERIOD and BENCHMARKS_<JobName>_PERIOD
The period specifies time intervals at which the job should berun. For periodic jobs, this is the time interval
that passes between starting the execution of the job. The value may be specified in seconds, minutes, or hours.
Specify this time by appending the characters , m, or h to the value. As an example, 5m starts the execution
of the job every five minutes. If no character is appended to the value, seconds are used as a default. In
WaitForExit mode, the value has a different meaning: the period specifiesthe length of time after the job
ceases execution and before it is restarted. The minimum valid value of the period is 1 second.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLIST, SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_MODE and SCHEDD_CRON_<JobName>_MODE and BENCHMARKS_<JobName>_MODE
A string that specifies a mode within which the job operates. Legal values are

• Periodic , which is the default.

• WaitForExit

• OneShot

• OnDemand

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLIST, SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

HTCondor Version 8.6.4 Manual

3.5.33. Configuration File Entries Relating to Hooks 356

The defaultPeriodic mode is used for most jobs. In this mode, the job is expected tobe started by the
condor_startddaemon, gather and publish its data, and then exit.

In WaitForExit mode the condor_startd daemon interprets the period as defined by
STARTD_CRON_<JobName>_PERIODdifferently. In this case, it refers to the amount of time to wait
after the job exits before restarting it. With a value of 1, the job is kept running nearly continuously. In general,
WaitForExit mode is for jobs that produce a periodic stream of updated data, but it can be used for other
purposes, as well. The output data from the job is accumulated into a temporary ClassAd until the job exits or
until it writes a line starting with dash (-) character. At that point, the temporary ClassAd replaces the active
ClassAd for the job. The active ClassAd for the job is merged into the appropriate slot ClassAds whenever the
slot ClassAds are published.

TheOneShot mode is used for jobs that are run once at the start of the daemon. If the reconfig_rerun
option is specified, the job will be run again after any reconfiguration.

The OnDemandmode is used only by theBENCHMARKSmechanism. All benchmark jobs must be be
OnDemandjobs. Any other jobs specified asOnDemandwill never run. Additional future features may allow
for otherOnDemandjob uses.

STARTD_CRON_<JobName>_RECONFIG and SCHEDD_CRON_<JobName>_RECONFIG A boolean value that
whenTrue , causes the daemon to send an HUP signal to the job when the daemon is reconfigured. The job is
expected to reread its configuration at that time.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLISTor SCHEDD_CRON_JOBLIST.

STARTD_CRON_<JobName>_RECONFIG_RERUN and SCHEDD_CRON_<JobName>_RECONFIG_RERUN A
boolean value that whenTrue , causes the daemon ClassAd hooks mechanism to re-run the specified job when
the daemon is reconfigured viacondor_reconfig. The default value isFalse .

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLISTor SCHEDD_CRON_JOBLIST.

STARTD_CRON_<JobName>_JOB_LOAD and SCHEDD_CRON_<JobName>_JOB_LOAD and BENCHMARKS_<JobName>_JOB_LOAD
A floating point value that represents the assumed and therefore expected CPU load that a job induces on
the system. This job load is then used to limit the total number of jobs that run concurrently, by not starting
new jobs if the assumed total load from all jobs is over a set threshold. The default value for each individual
STARTD_CRONor aSCHEDD_CRONjob is 0.01. The default value for each individualBENCHMARKSjob is
1.0.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLIST, SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_MAX_JOB_LOAD and SCHEDD_CRON_MAX_JOB_LOAD and BENCHMARKS_MAX_JOB_LOAD
A floating point value representing a threshold for CPU load,such that if starting another job would cause the
sum of assumed loads for all running jobs to exceed this value, no further jobs will be started. The default value
for STARTD_CRONor aSCHEDD_CRONhook managers is 0.1. This implies that a maximum of 10 jobs (using
their default, assumed load) could be concurrently running. The default value for theBENCHMARKShook
manager is 1.0. This implies that only 1BENCHMARKSjob (at the default, assumed load) may be running.

STARTD_CRON_<JobName>_KILL and SCHEDD_CRON_<JobName>_KILL and BENCHMARKS_<JobName>_KILL
A boolean value applicable only for jobs with aMODEof anything other thanWaitForExit . The default
value isFalse .

HTCondor Version 8.6.4 Manual

3.5.34. Configuration File Entries Only for Windows Platforms 357

This variable controls the behavior of the daemon hook manager when it detects that an instance of the job’s
executable is still running as it is time to invoke the job again. If True , the daemon hook manager will kill
the currently running job and then invoke an new instance of the job. If False , the existing job invocation is
allowed to continue running.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLIST, SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_ARGS and SCHEDD_CRON_<JobName>_ARGS and BENCHMARKS_<JobName>_ARGS
The command line arguments to pass to the job as it is invoked.The first argument will be<JobName>.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLIST, SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_ENV and SCHEDD_CRON_<JobName>_ENV and BENCHMARKS_<JobName>_ENV
The environment string to pass to the job. The syntax is the same as that of<DaemonName>_ENVIRONMENT
as defined at 3.5.8.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLIST, SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_CWD and SCHEDD_CRON_<JobName>_CWD and BENCHMARKS_<JobName>_CWD
The working directory in which to start the job.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLIST, SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

3.5.34 Configuration File Entries Only for Windows Platforms

These macros are utilized only on Windows platforms.

WINDOWS_RMDIR The complete path and executable name of the HTCondor version of the built-inrmdir program.
The HTCondor version will not fail when the directory contains files that have ACLs that deny the SYSTEM
process delete access. If not defined, the built-in Windowsrmdir program is invoked, and a value defined for
WINDOWS_RMDIR_OPTIONSis ignored.

WINDOWS_RMDIR_OPTIONS Command line options to be specified when configuration variable
WINDOWS_RMDIRis defined. Defaults to/S /C when configuration variableWINDOWS_RMDIRis de-
fined and its definition contains the string"condor_rmdir.exe" .

3.5.35 condor_defrag Configuration File Macros

These configuration variables affect thecondor_defragdaemon. A general discussion ofcondor_defragmay be found
in section 3.7.1.

DEFRAG_NAME Used to give an alternative value to theNameattribute in thecondor_defrag’s ClassAd. This esoteric
configuration macro might be used in the situation where there are twocondor_defragdaemons running on one

HTCondor Version 8.6.4 Manual

3.5.35. condor_defrag Configuration File Macros 358

machine, and each reports to the samecondor_collector. Different names will distinguish the two daemons. See
the description ofMASTER_NAMEin section 3.5.8 on page 260 for defaults and composition of valid HTCondor
daemon names.

DEFRAG_DRAINING_MACHINES_PER_HOUR A floating point number that specifies how many machines should
be drained per hour. The default is 0, so no draining will happen unless this setting is changed. Eachcon-
dor_startd is considered to be one machine. The actual number of machines drained per hour may be less
than this if draining is halted by one of the other defragmentation policy controls. The granularity in timing of
draining initiation is controlled byDEFRAG_INTERVAL. The lowest rate of draining that is supported is one
machine per day or one machine perDEFRAG_INTERVAL, whichever is lower. A fractional number of ma-
chines contributing to the value ofDEFRAG_DRAINING_MACHINES_PER_HOURis rounded to the nearest
whole number of machines on a per day basis.

DEFRAG_REQUIREMENTS An expression that specifies which machines to drain. The default is

PartitionableSlot && Offline=!=True

A machine, meaning acondor_startd, is matched ifanyof its slots match this expression. Machines are auto-
matically excluded if they are already draining, or if they matchDEFRAG_WHOLE_MACHINE_EXPR.

DEFRAG_CANCEL_REQUIREMENTS An expression that specifies which draining machines shouldhave draining be
canceled. This defaults to$(DEFRAG_WHOLE_MACHINE_EXPR). This could be used to drain partial rather
than whole machines.

DEFRAG_RANK An expression that specifies which machines are more desirable to drain. The expression
should evaluate to a number for each candidate machine to be drained. If the number of machines to
be drained is less than the number of candidates, the machines with higher rank will be chosen. The
rank of a machine, meaning acondor_startd, is the rank of its highest ranked slot. The default rank is
-ExpectedMachineGracefulDrainingBadput .

DEFRAG_WHOLE_MACHINE_EXPR An expression that specifies which machines are already operating as whole
machines. The default is

Cpus == TotalCpus && Offline=!=True

A machine is matched ifanyslot on the machine matches this expression. Eachcondor_startdis considered to
be one machine. Whole machines are excluded when selecting machines to drain. They are also counted against
DEFRAG_MAX_WHOLE_MACHINES.

DEFRAG_MAX_WHOLE_MACHINES An integer that specifies the maximum number of whole machines. When the
number of whole machines is greater than or equal to this, no new machines will be selected for draining. Each
condor_startdis counted as one machine. The special value -1 indicates that there is no limit. The default is -1.

DEFRAG_MAX_CONCURRENT_DRAINING An integer that specifies the maximum number of draining machines.
When the number of machines that are draining is greater thanor equal to this, no new machines will be selected
for draining. Each drainingcondor_startdis counted as one machine. The special value -1 indicates that there
is no limit. The default is -1.

HTCondor Version 8.6.4 Manual

3.5.36.condor_gangliadConfiguration File Macros 359

DEFRAG_INTERVAL An integer that specifies the number of seconds between evaluations of the defragmentation
policy. In each cycle, the state of the pool is observed and machines are drained, if specified by the policy. The
default is 600 seconds. Very small intervals could create excessive load on thecondor_collector.

DEFRAG_UPDATE_INTERVAL An integer that specifies the number of seconds between timesthat the con-
dor_defragdaemon sends updates to the collector. (See section 12 for information about the attributes in these
updates.) The default is 300 seconds.

DEFRAG_SCHEDULE A setting that specifies the draining schedule to use when draining machines. Possible values
aregraceful , quick , andfast . The default isgraceful .

graceful Initiate a graceful eviction of the job. This means all promises that have been made to the job are
honored, includingMaxJobRetirementTime . The eviction of jobs is coordinated to reduce idle time.
This means that if one slot has a job with a long retirement time and the other slots have jobs with shorter
retirement times, the effective retirement time for all of the jobs is the longer one.

quick MaxJobRetirementTime is not honored. Eviction of jobs is immediately initiated. Jobs
are given time to shut down and produce a checkpoint according to the usual policy, as given by
MachineMaxVacateTime .

fast Jobs are immediately hard-killed, with no chance to gracefully shut down or produce a checkpoint.

DEFRAG_STATE_FILE The path to a file used to record information used bycondor_defragwhen it is restarted.
This should only need to be modified if there will be multiple instances of thecondor_defragdaemon running
on the same machine. The default is$(LOCK)/defrag_state .

DEFRAG_LOG The path to thecondor_defragdaemon’s log file. The default log location is$(LOG)/DefragLog .

3.5.36 condor_gangliadConfiguration File Macros

condor_gangliadis an optional daemon responsible for publishing information about HTCondor daemons to the
Ganglia™ monitoring system. The Ganglia monitoring system must be installed and configured separately. In the
typical case, a single instance of thecondor_gangliaddaemon is run per pool. A default set of metrics are sent. Ad-
ditional metrics may be defined, in order to publish any information available in ClassAds that thecondor_collector
daemon has.

GANGLIAD_INTERVAL The integer number of seconds between consecutive sending of metrics to Ganglia. Dae-
mons update thecondor_collectorevery 300 seconds, and the Ganglia heartbeat interval is 20 seconds. There-
fore, multiples of 20 between 20 and 300 makes sense for this value. Negative values inhibit sending data to
Ganglia. The default value is 60.

GANGLIAD_VERBOSITY An integer that specifies the maximum verbosity level of metrics to be published to Gan-
glia. Basic metrics have a verbosity level of 0, which is the default. Additional metrics can be enabled
by increasing the verbosity to 1. In the default configuration, there are no metrics with verbosity levels
higher than 1. Some metrics depend on attributes that are notpublished to thecondor_collectorwhen us-
ing the default value ofSTATISTICS_TO_PUBLISH. For example, per-user file transfer statistics will only

HTCondor Version 8.6.4 Manual

3.5.36.condor_gangliadConfiguration File Macros 360

be published to Ganglia ifGANGLIA_VERBOSITYis set to 1 or higher in thecondor_gangliadconfigura-
tion andSTATISTICS_TO_PUBLISH in thecondor_scheddconfiguration containsTRANSFER:2, or if the
STATISTICS_TO_PUBLISH_LIST contains the desired attributes explicitly.

GANGLIAD_REQUIREMENTS An optional boolean ClassAd expression that may restrict the set of daemon ClassAds
to be monitored. This could be used to monitor a subset of a pool’s daemons or machines. The default is an
empty expression, which has the effect of placing no restriction on the monitored ClassAds. Keep in mind that
this expression is applied to all types of monitored ClassAds, not just machine ClassAds.

GANGLIAD_PER_EXECUTE_NODE_METRICS A boolean value that, whenFalse , causes metrics from execute
node daemons to not be published. Aggregate values from these machines will still be published. The default
value isTrue . This option is useful for pools such that use glidein, in which it is not desired to record metrics
for individual execute nodes.

GANGLIA_CONFIG The path and file name of the Ganglia configuration file. The default is
/etc/ganglia/gmond.conf .

GANGLIA_GMETRIC The full path of thegmetricexecutable to use. If none is specified,libganglia will be used
instead when possible, because the library interface is more efficient than invokinggmetric. Some versions of
libganglia are not compatible. When a failure to uselibganglia is detected,gmetricwill be used, if
gmetriccan be found in HTCondor’sPATHenvironment variable.

GANGLIA_GSTAT_COMMAND The full gstatcommand used to determine which hosts are monitored by Ganglia.
For acondor_gangliadrunning on a host whose localgmonddoes not know the list of monitored hosts, change
localhost to be the appropriate host name or IP address within this default string:

gstat --all --mpifile --gmond_ip=localhost --gmond_port =8649

GANGLIA_SEND_DATA_FOR_ALL_HOSTS A boolean value that whenTrue causes data to be sent to Ganglia for
hosts that it is not currently monitoring. The default isFalse .

GANGLIA_LIB The full path and file name of thelibganglia shared library to use. If none is specified, and if
configuration variableGANGLIA_GMETRICis also not specified, then a search forlibganglia will be per-
formed in the directories listed in configuration variableGANGLIA_LIB_PATHor GANGLIA_LIB64_PATH.
The special valueNOOPindicates thatcondor_gangliadshould not publish statistics to Ganglia, but should
otherwise go through all the motions it normally does.

GANGLIA_LIB_PATH A comma-separated list of directories within which to search for the libganglia exe-
cutable, ifGANGLIA_LIB is not configured. This is used in 32-bit versions of HTCondor.

GANGLIA_LIB64_PATH A comma-separated list of directories within which to search for thelibganglia exe-
cutable, ifGANGLIA_LIB is not configured. This is used in 64-bit versions of HTCondor.

GANGLIAD_DEFAULT_CLUSTER An expression specifying the default name of the Ganglia cluster for all metrics.
The expression may refer to attributes of the machine.

GANGLIAD_DEFAULT_MACHINE An expression specifying the default machine name of Ganglia metrics. The
expression may refer to attributes of the machine.

GANGLIAD_DEFAULT_IP An expression specifying the default IP address of Ganglia metrics. The expression may
refer to attributes of the machine.

HTCondor Version 8.6.4 Manual

3.6. User Priorities and Negotiation 361

GANGLIAD_LOG The path and file name of thecondor_gangliaddaemon’s log file. The default log is
$(LOG)/GangliadLog .

GANGLIAD_METRICS_CONFIG_DIR Path to the directory containing files which define Ganglia metrics in terms
of HTCondor ClassAd attributes to be published. All files in this directory are read, to define the metrics. The
default directory/etc/condor/ganglia.d/ is used when not specified.

3.6 User Priorities and Negotiation

HTCondor uses priorities to determine machine allocation for jobs. This section details the priorities and the allocation
of machines (negotiation).

For accounting purposes, each user is identified by username@uid_domain. Each user is assigned a priority value
even if submitting jobs from different machines in the same domain, or even if submitting from multiple machines in
the different domains.

The numerical priority value assigned to a user is inverselyrelated to thegoodnessof the priority. A user with a
numerical priority of 5 gets more resources than a user with anumerical priority of 50. There are two priority values
assigned to HTCondor users:

• Real User Priority (RUP), which measures resource usage ofthe user.

• Effective User Priority (EUP), which determines the number of resources the user can get.

This section describes these two priorities and how they affect resource allocations in HTCondor. Documentation on
configuring and controlling priorities may be found in section 3.5.16.

3.6.1 Real User Priority (RUP)

A user’s RUP measures the resource usage of the user through time. Every user begins with a RUP of one half (0.5),
and at steady state, the RUP of a user equilibrates to the number of resources used by that user. Therefore, if a specific
user continuously uses exactly ten resources for a long period of time, the RUP of that user stabilizes at ten.

However, if the user decreases the number of resources used,the RUP gets better. The rate at which the priority
value decays can be set by the macroPRIORITY_HALFLIFE , a time period defined in seconds. Intuitively, if the
PRIORITY_HALFLIFE in a pool is set to 86400 (one day), and if a user whose RUP was 10has no running jobs,
that user’s RUP would be 5 one day later, 2.5 two days later, and so on.

3.6.2 Effective User Priority (EUP)

The effective user priority (EUP) of a user is used to determine how many resources that user may receive. The
EUP is linearly related to the RUP by apriority factor which may be defined on a per-user basis. Unless other-
wise configured, an initial priority factor for all users as they first submit jobs is set by the configuration variable

HTCondor Version 8.6.4 Manual

3.6.3. Priorities in Negotiation and Preemption 362

DEFAULT_PRIO_FACTOR, and defaults to the value 1000.0. If desired, the priority factors of specific users can be
increased usingcondor_userprio, so that some are served preferentially.

The number of resources that a user may receive is inversely related to the ratio between the EUPs of submitting
users. Therefore userA with EUP=5 will receive twice as many resources as userB with EUP=10 and four times as
many resources as userC with EUP=20. However, ifA does not use the full number of resources thatA may be given,
the available resources are repartitioned and distributedamong remaining users according to the inverse ratio rule.

HTCondor supplies mechanisms to directly support two policies in which EUP may be useful:

Nice users A job may be submitted with the submit commandnice_userset toTrue . This nice user job will have
its RUP boosted by theNICE_USER_PRIO_FACTORpriority factor specified in the configuration, leading to
a very large EUP. This corresponds to a low priority for resources, therefore using resources not used by other
HTCondor users.

Remote UsersHTCondor’s flocking feature (see section 5.2) allows jobs torun in a pool other than the local one.
In addition, the submit-only feature allows a user to submitjobs to another pool. In such situations, sub-
mitters from other domains can submit to the local pool. It may be desirable to have HTCondor treat local
users preferentially over these remote users. If configured, HTCondor will boost the RUPs of remote users by
REMOTE_PRIO_FACTORspecified in the configuration, thereby lowering their priority for resources.

The priority boost factors for individual users can be set with thesetfactor option of condor_userprio. Details
may be found in thecondor_userpriomanual page on page 979.

3.6.3 Priorities in Negotiation and Preemption

Priorities are used to ensure that users get their fair shareof resources. The priority values are used at allocation time,
meaning during negotiation and matchmaking. Therefore, there are ClassAd attributes that take on defined values only
during negotiation, making them ephemeral. In addition to allocation, HTCondor may preempt a machine claim and
reallocate it when conditions change.

Too many preemptions lead to thrashing, a condition in whichnegotiation for a machine identifies a new job with
a better priority most every cycle. Each job is, in turn, preempted, and no job finishes. To avoid this situation, the
PREEMPTION_REQUIREMENTSconfiguration variable is defined for and used only by thecondor_negotiatordae-
mon to specify the conditions that must be met for a preemption to occur. When preemption is enabled, it is usually
defined to deny preemption if a current running job has been running for a relatively short period of time. This effec-
tively limits the number of preemptions per resource per time interval. Note thatPREEMPTION_REQUIREMENTS
only applies to preemptions due to user priority. It does nothave any effect if the machine’sRANKexpression prefers
a different job, or if the machine’s policy causes the job to vacate due to other activity on the machine. See section
3.7.1 for the current default policy on preemption.

The following ephemeral attributes may be used within policy definitions. Care should be taken when using these
attributes, due to their ephemeral nature; they are not always defined, so the usage of an expression to check if defined
such as

(RemoteUserPrio =?= UNDEFINED)

HTCondor Version 8.6.4 Manual

3.6.3. Priorities in Negotiation and Preemption 363

is likely necessary.

Within these attributes, those with names that contain the string Submitter refer to characteristics about the
candidate job’s user; those with names that contain the string Remote refer to characteristics about the user cur-
rently using the resource. Further, those with names that end with the stringResourcesInUse have values that
may change within the time period associated with a single negotiation cycle. Therefore, the configuration vari-
ablesPREEMPTION_REQUIREMENTS_STABLEand andPREEMPTION_RANK_STABLEexist to inform thecon-
dor_negotiatordaemon that values may change. See section 3.5.16 on page 311for definitions of these configuration
variables.

SubmitterUserPrio: A floating point value representing the user priority of the candidate job.

SubmitterUserResourcesInUse: The integer number of slots currently utilized by the user submitting the
candidate job.

RemoteUserPrio: A floating point value representing the user priority of the job currently running on the machine.
This version of the attribute, with no slot represented in the attribute name, refers to the current slot being
evaluated.

Slot<N>_RemoteUserPrio: A floating point value representing the user priority of the job currently running on
the particular slot represented by<N> on the machine.

RemoteUserResourcesInUse: The integer number of slots currently utilized by the user ofthe job currently
running on the machine.

SubmitterGroupResourcesInUse: If the owner of the candidate job is a member of a valid accounting group,
with a defined group quota, then this attribute is the integernumber of slots currently utilized by the group.

SubmitterGroup: The accounting group name of the requesting submitter.

SubmitterGroupQuota: If the owner of the candidate job is a member of a valid accounting group, with a defined
group quota, then this attribute is the integer number of slots defined as the group’s quota.

RemoteGroupResourcesInUse: If the owner of the currently running job is a member of a validaccounting
group, with a defined group quota, then this attribute is the integer number of slots currently utilized by the
group.

RemoteGroup: The accounting group name of the owner of the currently running job.

RemoteGroupQuota: If the owner of the currently running job is a member of a validaccounting group, with a
defined group quota, then this attribute is the integer number of slots defined as the group’s quota.

SubmitterNegotiatingGroup: The accounting group name that the candidate job is negotiating under.

RemoteNegotiatingGroup: The accounting group name that the currently running job negotiated under.

SubmitterAutoregroup: Boolean attribute isTrue if candidate job is negotiated via autoregoup.

RemoteAutoregroup: Boolean attribute isTrue if currently running job negotiated via autoregoup.

HTCondor Version 8.6.4 Manual

3.6.4. Priority Calculation 364

3.6.4 Priority Calculation

This section may be skipped if the reader so feels, but for thecurious, here is HTCondor’s priority calculation algo-
rithm.

The RUP of a useru at timet, πr(u, t), is calculated every time intervalδt using the formula

πr(u, t) = β × πr(u, t− δt) + (1− β) × ρ(u, t)

whereρ(u, t) is the number of resources used by useru at timet, andβ = 0.5δt/h. h is the half life period set by
PRIORITY_HALFLIFE .

The EUP of useru at timet, πe(u, t) is calculated by

πe(u, t) = πr(u, t)× f(u, t)

wheref(u, t) is the priority boost factor for useru at timet.

As mentioned previously, the RUP calculation is designed sothat at steady state, each user’s RUP stabilizes at the
number of resources used by that user. The definition ofβ ensures that the calculation ofπr(u, t) can be calculated over
non-uniform time intervalsδt without affecting the calculation. The time intervalδt varies due to events internal to the
system, but HTCondor guarantees that unless the central manager machine is down, no matches will be unaccounted
for due to this variance.

3.6.5 Negotiation

Negotiation is the method HTCondor undergoes periodicallyto match queued jobs with resources capable of running
jobs. Thecondor_negotiatordaemon is responsible for negotiation.

During a negotiation cycle, thecondor_negotiatordaemon accomplishes the following ordered list of items.

1. Build a list of all possible resources, regardless of the state of those resources.

2. Obtain a list of all job submitters (for the entire pool).

3. Sort the list of all job submitters based on EUP (see section 3.6.2 for an explanation of EUP). The submitter
with the best priority is first within the sorted list.

4. Iterate until there are either no more resources to match,or no more jobs to match.

For each submitter (in EUP order):

For each submitter, get each job. Since jobs may be submittedfrom more than one machine (hence to
more than onecondor_schedddaemon), here is a further definition of the ordering of thesejobs. With
jobs from a singlecondor_schedddaemon, jobs are typically returned in job priority order. When
more than onecondor_schedddaemon is involved, they are contacted in an undefined order.All jobs
from a singlecondor_schedddaemon are considered before moving on to the next. For each job:

• For each machine in the pool that can execute jobs:

HTCondor Version 8.6.4 Manual

3.6.6. The Layperson’s Description of the Pie Spin and Pie Slice 365

(a) If machine.requirements evaluates toFalse or job.requirements evaluates to
False , skip this machine

(b) If the machine is in the Claimed state, but not running a job, skip this machine.

(c) If this machine is not running a job, add it to the potential match list by reason of No Preemp-
tion.

(d) If the machine is running a job

– If the machine.RANK on this job is better than the running job, add this machine tothe
potential match list by reason of Rank.

– If the EUP of this job is better than the EUP of the currently running job, and
PREEMPTION_REQUIREMENTSis True , and themachine.RANK on this job is not
worse than the currently running job, add this machine to thepotential match list by rea-
son of Priority.

• Of machines in the potential match list, sort byNEGOTIATOR_PRE_JOB_RANK, job.RANK ,
NEGOTIATOR_POST_JOB_RANK, Reason for claim (No Preemption, then Rank, then Priority),
PREEMPTION_RANK

• The job is assigned to the top machine on the potential matchlist. The machine is removed from
the list of resources to match (on this negotiation cycle).

The condor_negotiatorasks thecondor_scheddfor the "next job" from a given submitter/user. Typically, the
condor_scheddreturns jobs in the order of job priority. If priorities are the same, job submission time is used; older
jobs go first. If a cluster has multiple procs in it and one of the jobs cannot be matched, thecondor_scheddwill not
return any more jobs in that cluster on that negotiation pass. This is an optimization based on the theory that the cluster
jobs are similar. The configuration variableNEGOTIATE_ALL_JOBS_IN_CLUSTERdisables the cluster-skipping
optimization. Use of the configuration variableSIGNIFICANT_ATTRIBUTES will change the definition of what
thecondor_scheddconsiders a cluster from the default definition of all jobs that share the sameClusterId .

3.6.6 The Layperson’s Description of the Pie Spin and Pie Slice

HTCondor schedules in a variety of ways. First, it takes all users who have submitted jobs and calculates their priority.
Then, it totals the number of resources available at the moment, and using the ratios of the user priorities, it calculates
the number of machines each user could get. This is theirpie slice.

The HTCondor matchmaker goes in user priority order, contacts each user, and asks for job information. The
condor_schedddaemon (on behalf of a user) tells the matchmaker about a job,and the matchmaker looks at available
resources to create a list of resources that match the requirements expression. With the list of resources that match, it
sorts them according to the rank expressions within ClassAds. If a machine prefers a job, the job is assigned to that
machine, potentially preempting a job that might already berunning on that machine. Otherwise, give the machine to
the job that the job ranks highest. If the machine ranked highest is already running a job, we may preempt running job
for the new job. When preemption is enabled, a reasonable policy states that the user must have a 20% better priority
in order for preemption to succeed. If the job has no preferences as to what sort of machine it gets, matchmaking gives
it the first idle resource to meet its requirements.

This matchmaking cycle continues until the user has received all of the machines in their pie slice. The matchmaker
then contacts the next highest priority user and offers thatuser their pie slice worth of machines. After contacting all

HTCondor Version 8.6.4 Manual

3.6.7. Group Accounting 366

users, the cycle is repeated with any still available resources and recomputed pie slices. The matchmaker continues
spinning the pieuntil it runs out of machines or all thecondor_schedddaemons say they have no more jobs.

3.6.7 Group Accounting

By default, HTCondor does all accounting on a per-user basis, and this accounting is primarily used to compute
priorities for HTCondor’s fair-share scheduling algorithms. However, accounting can also be done on a per-group
basis. Multiple users can all submit jobs into the same accounting group, and all jobs with the same accounting group
will be treated with the same priority. Jobs that donot specify an accounting group have all accounting and priority
based on the user, which may be identified by the job ClassAd attributeOwner. Jobs that do specify an accounting
group have all accounting and priority based on the specifiedaccounting group. Therefore, accounting based on groups
only works when the jobs correctly identify their group membership.

The preferred method for having a job associate itself with an accounting group adds a command to the submit
description file that specifies the group name:

accounting_group = group_physics

This command causes the job ClassAd attributeAcctGroup to be set with this group name.

If the user name of the job submitter should be other than theOwner job ClassAd attribute, an additional command
specifies the user name:

accounting_group_user = albert

This command causes the job ClassAd attributeAcctGroupUser to be set with this user name.

The previous method for defining accounting groups is no longer recommended. It inserted the job ClassAd
attributeAccountingGroup by setting it in the submit description file using the syntax in this example:

+AccountingGroup = "group_physics.albert"

In this previous method for defining accounting groups, theAccountingGroup attribute is a string, and it
therefore must be enclosed in double quote marks.

Much of the reason that the previous method for defining accounting groups is no longer recommended is that
the name of an accounting is that it used the period (.) character to separate the group name from the user name.
Therefore, the syntax did not work if a user name contained a period.

The name shouldnot be qualified with a domain. Certain parts of the HTCondor system do append the value
$(UID_DOMAIN) (as specified in the configuration file on the submit machine) to this string for internal use. For
example, if the value ofUID_DOMAIN is example.com , and the accounting group name is as specified,con-
dor_userpriowill show statistics for this accounting group using the appended domain, for example

Effective
User Name Priority

HTCondor Version 8.6.4 Manual

3.6.8. Accounting Groups with Hierarchical Group Quotas 367

------------------------------ ---------
group_physics@example.com 0.50
user@example.com 23.11
heavyuser@example.com 111.13
...

Additionally, thecondor_userpriocommand allows administrators to remove an entity from the accounting system
in HTCondor. The-deleteoption tocondor_userprioaccomplishes this if all the jobs from a given accounting group
are completed, and the administrator wishes to remove that group from the system. The-deleteoption identifies the
accounting group with the fully-qualified name of the accounting group. For example

condor_userprio -delete group_physics@example.com

HTCondor removes entities itself as they are no longer relevant. Intervention by an administrator to delete entities
can be beneficial when the use of thousands of short term accounting groups leads to scalability issues.

3.6.8 Accounting Groups with Hierarchical Group Quotas

An upper limit on the number of slots allocated to a group of users can be specified with group quotas. This policy
may be desired when different groups provide their computers to create one large HTCondor pool, and want to restrict
the number of jobs running from one group to the number of machines the group has provided.

Consider an example pool with thirty slots: twenty slots areowned by the physics group and ten are owned by the
chemistry group. The desired policy is that no more than twenty concurrent jobs are ever running from the physicists,
and only ten from the chemists. These machines are otherwiseidentical, so it does not matter which machines run
which group’s jobs. It only matters that the proportions of allocated slots are correct.

Instead of quotas, this could be implemented by configuring theRANKexpression such that the twenty machines
owned by the physics group prefer jobs submitted by the physics users. Likewise, the ten machines owned by the
chemistry group are configured to prefer jobs submitted by the chemistry group. However, this steers jobs to execute
on specific machines, instead of the desired policy which allocates numbers of machines, where these machines can
be any of the pool’s machines that are available.

Group quotas may implement this policy. Define the groups andset their quotas in the configuration of the central
manager:

GROUP_NAMES = group_physics, group_chemistry
GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_chemistry = 10

The implementation of quotas is hierarchical, such that quotas may be described for the tree of groups, subgroups,
sub subgroups, etc. Group names identify the groups, such that the configuration can define the quotas in terms of
limiting the number of cores allocated for a group or subgroup. Group names do not need to begin with"group_" ,
but that is the convention, which helps to avoid naming conflicts between groups and subgroups. The hierarchy is
identified by using the period (’.’) character to separate a group name from a subgroup name from a sub subgroup
name, etc. Group names are case-insensitive for negotiation.

HTCondor Version 8.6.4 Manual

3.6.8. Accounting Groups with Hierarchical Group Quotas 368

At the root of the tree that defines the hierarchical groups isthe invented "<none>" group. The implied quota of
the "<none>" group will be all available slots. This string will appear in the output ofcondor_status.

If the sum of the child quotas exceeds the parent, then the child quotas are scaled down in proportion to
their relative sizes. For the given example, there were 30 original slots at the root of the tree. If a power
failure removed half of the original 30, leaving fifteen slots, physics would be scaled back to a quota of ten,
and chemistry to five. This scaling can be disabled by settingthe condor_negotiatorconfiguration variable
NEGOTIATOR_ALLOW_QUOTA_OVERSUBSCRIPTIONto True . If the sum of the child quotas is less than that
of the parent, the child quotas remain intact; they are not scaled up. That is, if somehow the number of slots doubled
from thirty to sixty, physics would still be limited to 20 slots, and chemistry would be limited to 10. This example in
which the quota is defined by absolute values is called a static quota.

Each job must state which group it belongs to. Currently thisis opt-in, and the system trusts each user to put the
correct group in the submit description file. Jobs that do notidentify themselves as a group member are negotiated for
as part of the "<none>" group. Note that this requirement is per job, not per user. A given user may be a member of
many groups. Jobs identify which group they are in by settingtheaccounting_groupandaccounting_group_user
commands within the submit description file, as specified in section 3.6.7. For example:

accounting_group = group_physics
accounting_group_user = einstein

The size of the quotas may instead be expressed as a proportion. This is then referred to as a dynamic group
quota, because the size of the quota is dynamically recalculated every negotiation cycle, based on the total available
size of the pool. Instead of using static quotas, this example can be recast using dynamic quotas, with one-third of
the pool allocated to chemistry and two-thirds to physics. The quotas maintain this ratio even as the size of the pool
changes, perhaps because of machine failures, because of the arrival of new machines within the pool, or because of
other reasons. The job submit description files remain the same. Configuration on the central manager becomes:

GROUP_NAMES = group_physics, group_chemistry
GROUP_QUOTA_DYNAMIC_group_chemistry = 0.33
GROUP_QUOTA_DYNAMIC_group_physics = 0.66

The values of the quotas must be less than 1.0, indicating fractions of the pool’s machines. As with static quota
specification, if the sum of the children exceeds one, they are scaled down proportionally so that their sum does equal
1.0. If their sum is less than one, they are not changed.

Extending this example to incorporate subgroups, assume that the physics group consists of high-energy (hep) and
low-energy (lep) subgroups. The high-energy sub-group owns fifteen of the twenty physics slots, and the low-energy
group owns the remainder. Groups are distinguished from subgroups by an intervening period character (.) in the
group’s name. Static quotas for these subgroups extend the example configuration:

GROUP_NAMES = group_physics, group_physics.hep, group_p hysics.lep, group_chemistry
GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_physics.hep = 15
GROUP_QUOTA_group_physics.lep = 5
GROUP_QUOTA_group_chemistry = 10

HTCondor Version 8.6.4 Manual

3.6.8. Accounting Groups with Hierarchical Group Quotas 369

This hierarchy may be more useful when dynamic quotas are used. Here is the example, using dynamic quotas:

GROUP_NAMES = group_physics, group_physics.hep, group_p hysics.lep, group_chemistry
GROUP_QUOTA_DYNAMIC_group_chemistry = 0.33334
GROUP_QUOTA_DYNAMIC_group_physics = 0.66667
GROUP_QUOTA_DYNAMIC_group_physics.hep = 0.75
GROUP_QUOTA_DYNAMIC_group_physics.lep = 0.25

The fraction of a subgroup’s quota is expressed with respectto its parent group’s quota. That is, the high-energy
physics subgroup is allocated 75% of the 66% that physics gets of the entire pool, however many that might be. If
there are 30 machines in the pool, that would be the same 15 machines as specified in the static quota example.

High-energy physics users indicate which group their jobs should go in with the submit description file identifica-
tion:

accounting_group = group_physics.hep
accounting_group_user = higgs

In all these examples so far, the hierarchy is merely a notational convenience. Each of the examples could be
implemented with a flat structure, although it might be more confusing for the administrator. Surplus is the concept
that creates a true hierarchy.

If a given group or sub-group accepts surplus, then that given group is allowed to exceed its configured quota, by
using the leftover, unused quota of other groups. Surplus isdisabled for all groups by default. Accepting surplus may
be enabled for all groups by settingGROUP_ACCEPT_SURPLUSto True . Surplus may be enabled for individual
groups by settingGROUP_ACCEPT_SURPLUS_<groupname>to True . Consider the following example:

GROUP_NAMES = group_physics, group_physics.hep, group_p hysics.lep, group_chemistry
GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_physics.hep = 15
GROUP_QUOTA_group_physics.lep = 5
GROUP_QUOTA_group_chemistry = 10
GROUP_ACCEPT_SURPLUS = false
GROUP_ACCEPT_SURPLUS_group_physics = false
GROUP_ACCEPT_SURPLUS_group_physics.lep = true
GROUP_ACCEPT_SURPLUS_group_physics.hep = true

This configuration is the same as above for the chemistry users. However,GROUP_ACCEPT_SURPLUSis
set to False globally, False for the physics parent group, andTrue for the subgroups group_physics.lep
and group_physics.lep. This means that group_physics.lepand group_physics.hep are allowed to exceed their
quota of 15 and 5, but their sum cannot exceed 20, for that is their parent’s quota. If the group_physics had
GROUP_ACCEPT_SURPLUSset toTrue , then either group_physics.lep and group_physics.hep would not be limited
by quota.

Surplus slots are distributed bottom-up from within the quota tree. That is, any leaf nodes of this tree with excess
quota will share it with any peers which accept surplus. Any subsequent excess will then be passed up to the parent
node and over to all of its children, recursively. Any node that does not accept surplus implements a hard cap on the
number of slots that the sum of it’s children use.

HTCondor Version 8.6.4 Manual

3.7. Policy Configuration for Execute Hosts and for Submit Hosts 370

After thecondor_negotiatorcalculates the quota assigned to each group, possibly adding in surplus, it then nego-
tiates with thecondor_schedddaemons in the system to try to match jobs to each group. It does this one group at a
time. By default, it goes in "starvation group order." That is, the group whose current usage is the smallest fraction
of its quota goes first, then the next, and so on. The "<none>" group implicitly at the root of the tree goes last. This
ordering can be replaced by defining configuration variableGROUP_SORT_EXPR. Thecondor_negotiatorevaluates
this ClassAd expression for each group ClassAd, sorts the groups by the floating point result, and then negotiates with
the smallest positive value going first. Useful attributes to use are documented in section 3.6.3.

One possible group quota policy is strict priority. For example, a site prefers physics users to match as many
slots as they can, and only when all the physics jobs are running, and idle slots remain, are chemistry jobs al-
lowed to run. The default "starvation group order" can be used to implement this. By setting configuration vari-
ableNEGOTIATOR_ALLOW_QUOTA_OVERSUBSCRIPTIONto True , and setting the physics quota to a number so
large that it cannot ever be met, such as one million, the physics group will always be the "most starving" group, will
always negotiate first, and will always be unable to meet the quota. Only when all the physics jobs are running will
the chemistry jobs then run. If the chemistry quota is set to avalue smaller than physics, but still larger than the pool,
this policy can support a third, even lower priority group, and so on.

Thecondor_userpriocommand can show the current quotas in effect, and the current usage by group. For example:

$ condor_userprio -quotas
Last Priority Update: 11/12 15:18
Group Effective Config Use Subtree Requested
Name Quota Quota Surplus Quota Resources
------------------------------ --------- --------- --- ---- --------- ----------
group_physics.hep 15.00 15.00 no 15.00 60
group_physics.lep 5.00 5.00 no 5.00 60
------------------------------ --------- --------- --- ---- --------- ----------
Number of users: 2 ByQuota

This shows that there are two groups, each with 60 jobs in the queue. group_physics.hep has a quota of 15
machines, and group_physics.lep has 5 machines. Other options tocondor_userprio, such as-mostwill also show the
number of resources in use.

3.7 Policy Configuration for Execute Hosts and for Submit Hosts

Note: configuration templates make it easier to implement certain policies; see information on policy templates
here: 3.5.1.

3.7.1 condor_startdPolicy Configuration

This section describes the configuration of machines, such that they, through thecondor_startddaemon, implement
a desired policy for when remote jobs should start, be suspended, (possibly) resumed, vacate (with a checkpoint) or
be killed. This policy is the heart of HTCondor’s balancing act between the needs and wishes of resource owners

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 371

(machine owners) and resource users (people submitting their jobs to HTCondor). Please read this section carefully
before changing any of the settings described here, as a wrong setting can have a severe impact on either the owners
of machines in the pool or the users of the pool.

condor_startdTerminology

Understanding the configuration requires an understandingof ClassAd expressions, which are detailed in section 4.1.

Each machine runs onecondor_startddaemon. Each machine may contain one or more cores (or CPUs).The
HTCondor construct of aslot describes the unit which is matched to a job. Each slot may contain one or more integer
number of cores. Each slot is represented by its own machine ClassAd, distinguished by the machine ClassAd attribute
Name, which is of the formslot<N>@hostname . The value for<N> will also be defined with machine ClassAd
attributeSlotID .

Each slot has its own machine ClassAd, and within that ClassAd, its ownstateandactivity. Other policy expres-
sions are propagated or inherited from the machine configuration by thecondor_startddaemon, such that all slots have
the same policy from the machine configuration. This requires configuration expressions to incorporate theSlotID
attribute when policy is intended to be individualized based on a slot. So, in this discussion of policy expressions,
where a machine is referenced, the policy can equally be applied to a slot.

The condor_startddaemon represents the machine on which it is running to the HTCondor pool. The daemon
publishes characteristics about the machine in the machine’s ClassAd to aid matchmaking with resource requests. The
values of these attributes may be listed by using the command:

condor_status -l hostname

The START Expression

The most important expression to thecondor_startdis theSTARTexpression. This expression describes the conditions
that must be met for a machine or slot to run a job. This expression can reference attributes in the machine’s ClassAd
(such asKeyboardIdle andLoadAvg) and attributes in a job ClassAd (such asOwner, Imagesize , andCmd,
the name of the executable the job will run). The value of theSTARTexpression plays a crucial role in determining
the state and activity of a machine.

TheRequirements expression is used for matching machines with jobs.

For platforms that support standard universe jobs, thecondor_startddefines theRequirements expression by
logically anding theSTARTexpression and theIS_VALID_CHECKPOINT_PLATFORMexpression.

In situations where a machine wants to make itself unavailable for further matches, theRequirements ex-
pression is set toFalse . When theSTARTexpression locally evaluates toTrue , the machine advertises the
Requirements expression asTrue and does not publish theSTARTexpression.

Normally, the expressions in the machine ClassAd are evaluated against certain request ClassAds in thecon-
dor_negotiatorto see if there is a match, or against whatever request ClassAd currently has claimed the machine.
However, by locally evaluating an expression, the machine only evaluates the expression against its own ClassAd. If

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 372

an expression cannot be locally evaluated (because it references other expressions that are only found in a request
ClassAd, such asOwner or Imagesize), the expression is (usually) undefined. See section 4.1 forspecifics on how
undefined terms are handled in ClassAd expression evaluation.

A note of caution is in order when modifying theSTARTexpression to reference job ClassAd attributes. The
defaultIS_OWNERexpression is a function of theSTARTexpression

START =?= FALSE

See a detailed discussion of theIS_OWNERexpression in section 3.7.1. However, the machine locally evaluates
the IS_OWNERexpression to determine if it is capable of running jobs for HTCondor. Any job ClassAd attributes
appearing in theSTARTexpression, and hence in theIS_OWNERexpression are undefined in this context, and may
lead to unexpected behavior. Whenever theSTARTexpression is modified to reference job ClassAd attributes,the
IS_OWNERexpression should also be modified to reference only machineClassAd attributes.

NOTE: If you have machines with lots of real memory and swap space such that the only scarce resource is CPU
time, consider definingJOB_RENICE_INCREMENTso that HTCondor starts jobs on the machine with low priority.
Then, further configure to set up the machines with:

START = True
SUSPEND = False
PREEMPT = False
KILL = False

In this way, HTCondor jobs always run and can never be kicked off from activity on the machine. However, because
they would run with the low priority, interactive response on the machines will not suffer. A machine user probably
would not notice that HTCondor was running the jobs, assuming you had enough free memory for the HTCondor jobs
such that there was little swapping.

The IS_VALID_CHECKPOINT_PLATFORMExpression

A checkpoint is the platform-dependent information necessary to continue the execution of a standard universe job.
Therefore, the machine (platform) upon which a job executedand produced a checkpoint limits the machines (plat-
forms) which may use the checkpoint to continue job execution. This platform-dependent information is no longer
the obvious combination of architecture and operating system, but may include subtle items such as the difference be-
tween the normal, bigmem, and hugemem kernels within the Linux operating system. This results in the incorporation
of a separate expression to indicate the ability of a machineto resume and continue the execution of a job that has
produced a checkpoint. TheREQUIREMENTSexpression is dependent on this information.

At a high level,IS_VALID_CHECKPOINT_PLATFORMis an expression which becomes true when a job’s check-
point platform matches the current checkpointing platformof the machine. Since this expression isanded with the
STARTexpression to produce theREQUIREMENTSexpression, it must also behave correctly when evaluating in the
context of jobs that are not standard universe.

In words, the current default policy for this expression:

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 373

Any non standard universe job may run on this machine. A standard universe job may run on machines
with the new checkpointing identification system. A standard universe job may run if it has not yet produced a
first checkpoint. If a standard universe job has produced a checkpoint, then make sure the checkpoint platforms
between the job and the machine match.

The following is the default boolean expression for this policy. A JobUniverse value of 1 denotes the standard
universe. This expression may be overridden in the HTCondorconfiguration files.

IS_VALID_CHECKPOINT_PLATFORM =
(

(TARGET.JobUniverse =!= 1) ||

(
(MY.CheckpointPlatform =!= UNDEFINED) &&
(

(TARGET.LastCheckpointPlatform =?= MY.CheckpointPlatf orm) ||
(TARGET.NumCkpts == 0)

)
)

)

IS_VALID_CHECKPOINT_PLATFORM is a separate policy expression because the complexity of
IS_VALID_CHECKPOINT_PLATFORMcan be very high. While this functionality is conceptually separate from
the normalSTARTpolicies usually constructed, it is also a part of theRequirements to allow the job to run.

The RANK Expression

A machine may be configured to prefer certain jobs over othersusing theRANKexpression. It is an expression, like
any other in a machine ClassAd. It can reference any attribute found in either the machine ClassAd or a job ClassAd.
The most common use of this expression is likely to configure amachine to prefer to run jobs from the owner of that
machine, or by extension, a group of machines to prefer jobs from the owners of those machines.

For example, imagine there is a small research group with 4 machines called tenorsax, piano, bass, and drums.
These machines are owned by the 4 users coltrane, tyner, garrison, and jones, respectively.

Assume that there is a large HTCondor pool in the department,and this small research group has spent a lot of
money on really fast machines for the group. As part of the larger pool, but to implement a policy that gives priority
on the fast machines to anyone in the small research group, set theRANKexpression on the machines to reference the
Owner attribute and prefer requests where that attribute matchesone of the people in the group as in

RANK = Owner == "coltrane" || Owner == "tyner" \
|| Owner == "garrison" || Owner == "jones"

TheRANKexpression is evaluated as a floating point number. However,like in C, boolean expressions evaluate
to either 1 or 0 depending on if they areTrue or False . So, if this expression evaluated to 1, because the remote
job was owned by one of the preferred users, it would be a larger value than any other user for whom the expression
would evaluate to 0.

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 374

A more complexRANKexpression has the same basic set up, where anyone from the group has priority on their
fast machines. Its difference is that the machine owner has better priority on their own machine. To set this up for
Garrison’s machine (bass), place the following entry in the local configuration file ofmachinebass :

RANK = (Owner == "coltrane") + (Owner == "tyner") \
+ ((Owner == "garrison") * 10) + (Owner == "jones")

Note that the parentheses in this expression are important,because the+ operator has higher default precedence than
==.

The use of+ instead of|| allows us to distinguish which terms matched and which ones did not. If anyone not in
the research group quartet was running a job on the machine called bass , theRANKwould evaluate numerically to 0,
since none of the boolean terms evaluates to 1, and 0+0+0+0 still equals 0.

Suppose Elvin Jones submits a job. His job would match thebass machine, assumingSTARTevaluated toTrue
for him at that time. TheRANKwould numerically evaluate to 1. Therefore, the Elvin Jonesjob could preempt the
HTCondor job currently running. Further assume that later Jimmy Garrison submits a job. TheRANKevaluates to
10 on machinebass , since the boolean that matches gets multiplied by 10. Due tothis, Jimmy Garrison’s job could
preempt Elvin Jones’ job on thebass machine where Jimmy Garrison’s jobs are preferred.

TheRANKexpression is not required to reference theOwner of the jobs. Perhaps there is one machine with an
enormous amount of memory, and others with not much at all. Perhaps configure this large-memory machine to prefer
to run jobs with larger memory requirements:

RANK = ImageSize

That’s all there is to it. The bigger the job, the more this machine wants to run it. It is an altruistic preference,
always servicing the largest of jobs, no matter who submitted them. A little less altruistic is theRANKon Coltrane’s
machine that prefers John Coltrane’s jobs over those with the largestImagesize :

RANK = (Owner == "coltrane" * 1000000000000) + Imagesize

ThisRANKdoes not work if a job is submitted with an image size of more1012 Kbytes. However, with that size, this
RANKexpression preferring that job would not be HTCondor’s onlyproblem!

Machine States

A machine is assigned astateby HTCondor. The state depends on whether or not the machine is available to run
HTCondor jobs, and if so, what point in the negotiations has been reached. The possible states are

Owner The machine is being used by the machine owner, and/or is not available to run HTCondor jobs. When the
machine first starts up, it begins in this state.

Unclaimed The machine is available to run HTCondor jobs, but it is not currently doing so.

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 375

Matched The machine is available to run jobs, and it has been matched by the negotiator with a specific schedd. That
schedd just has not yet claimed this machine. In this state, the machine is unavailable for further matches.

Claimed The machine has been claimed by a schedd.

Preempting The machine was claimed by a schedd, but is now preempting that claim for one of the following reasons.

1. the owner of the machine came back

2. another user with higher priority has jobs waiting to run

3. another request that this resource would rather serve wasfound

Backfill The machine is running a backfill computation while waiting for either the machine owner to come back or
to be matched with an HTCondor job. This state is only enteredif the machine is specifically configured to
enable backfill jobs.

Drained The machine is not running jobs, because it is being drained.One reason a machine may be drained is to
consolidate resources that have been divided in a partitionable slot. Consolidating the resources gives large jobs
a chance to run.

Figure 3.1 shows the states and the possible transitions between the states.

Figure 3.1: Machine States

Each transition is labeled with a letter. The cause of each transition is described below.

• Transitions out of the Owner state

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 376

A The machine switches from Owner to Unclaimed whenever theSTARTexpression no longer locally evaluates
to FALSE. This indicates that the machine is potentially available to run an HTCondor job.

N The machine switches from the Owner to the Drained state whenever draining of the machine is initiated, for
example bycondor_drainor by thecondor_defragdaemon.

• Transitions out of the Unclaimed state

B The machine switches from Unclaimed back to Owner whenever the STARTexpression locally evaluates
to FALSE. This indicates that the machine is unavailable to run an HTCondor job and is in use by the
resource owner.

C The transition from Unclaimed to Matched happens whenever thecondor_negotiatormatches this resource
with an HTCondor job.

D The transition from Unclaimed directly to Claimed also happens if thecondor_negotiatormatches this re-
source with an HTCondor job. In this case thecondor_scheddreceives the match and initiates the claim-
ing protocol with the machine before thecondor_startdreceives the match notification from thecon-
dor_negotiator.

E The transition from Unclaimed to Backfill happens if the machine is configured to run backfill computations
(see section 3.14.9) and theSTART_BACKFILLexpression evaluates to TRUE.

P The transition from Unclaimed to Drained happens if draining of the machine is initiated, for example by
condor_drainor by thecondor_defragdaemon.

• Transitions out of the Matched state

F The machine moves from Matched to Owner if either theSTARTexpression locally evaluates to FALSE, or
if the MATCH_TIMEOUTtimer expires. This timeout is used to ensure that if a machine is matched with
a givencondor_schedd, but thatcondor_schedddoes not contact thecondor_startdto claim it, that the
machine will give up on the match and become available to be matched again. In this case, since theSTART
expression does not locally evaluate to FALSE, as soon as transition F is complete, the machine will
immediately enter the Unclaimed state again (via transition A). The machine might also go from Matched
to Owner if thecondor_scheddattempts to perform the claiming protocol but encounters some sort of
error. Finally, the machine will move into the Owner state ifthecondor_startdreceives acondor_vacate
command while it is in the Matched state.

G The transition from Matched to Claimed occurs when thecondor_scheddsuccessfully completes the claim-
ing protocol with thecondor_startd.

• Transitions out of the Claimed state

H From the Claimed state, the only possible destination is thePreempting state. This transition can be caused
by many reasons:

– Thecondor_scheddthat has claimed the machine has no more work to perform and releases the claim

– The PREEMPTexpression evaluates toTrue (which usually means the resource owner has started
using the machine again and is now using the keyboard, mouse,CPU, etc.)

– Thecondor_startdreceives acondor_vacatecommand

– Thecondor_startdis told to shutdown (either via a signal or acondor_offcommand)

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 377

– The resource is matched to a job with a better priority (either a better user priority, or one where the
machine rank is higher)

• Transitions out of the Preempting state

I The resource will move from Preempting back to Claimed if theresource was matched to a job with a better
priority.

J The resource will move from Preempting to Owner if thePREEMPTexpression had evaluated to TRUE, if
condor_vacatewas used, or if theSTARTexpression locally evaluates to FALSE when thecondor_startd
has finished evicting whatever job it was running when it entered the Preempting state.

• Transitions out of the Backfill state

K The resource will move from Backfill to Owner for the following reasons:

– TheEVICT_BACKFILL expression evaluates to TRUE

– Thecondor_startdreceives acondor_vacatecommand

– Thecondor_startdis being shutdown

L The transition from Backfill to Matched occurs whenever a resource running a backfill computation is
matched with acondor_scheddthat wants to run an HTCondor job.

M The transition from Backfill directly to Claimed is similar to the transition from Unclaimed directly to
Claimed. It only occurs if thecondor_scheddcompletes the claiming protocol before thecondor_startd
receives the match notification from thecondor_negotiator.

• Transitions out of the Drained state

O The transition from Drained to Owner state happens when draining is finalized or is canceled. When a
draining request is made, the request either asks for the machine to stay in a Drained state until canceled,
or it asks for draining to be automatically finalized once allslots have finished draining.

The Claimed State and Leases

When acondor_scheddclaims acondor_startd, there is a claim lease. So long as the keep alive updates fromthe
condor_scheddto thecondor_startdcontinue to arrive, the lease is reset. If the lease durationpasses with no updates,
thecondor_startddrops the claim and evicts any jobs thecondor_scheddsent over.

The alive interval is the amount of time between, or the frequency at which thecondor_scheddsends keep alive
updates to allcondor_schedddaemons. An alive update resets the claim lease at thecondor_startd. Updates are UDP
packets.

Initially, as when thecondor_scheddstarts up, the alive interval starts at the value set by the configuration variable
ALIVE_INTERVAL . It may be modified when a job is started. The job’s ClassAd attributeJobLeaseDuration is
checked. If the value ofJobLeaseDuration/3 is less than the current alive interval, then the alive interval is set
to either this lower value or the imposed lowest limit on the alive interval of 10 seconds. Thus, the alive interval starts
at ALIVE_INTERVAL and goes down, never up.

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 378

If a claim lease expires, thecondor_startdwill drop the claim. The length of the claim lease is the
job’s ClassAd attributeJobLeaseDuration . JobLeaseDuration defaults to 40 minutes time, except
when explicitly set within the job’s submit description file. If JobLeaseDuration is explicitly set to
0, or it is not set as may be the case for a Web Services job that does not define the attribute, then
JobLeaseDuration is given the Undefined value. Further, when undefined, the claim lease duration is calcu-
lated withMAX_CLAIM_ALIVES_MISSED* alive interval . The alive interval is thecurrentvalue, as sent
by thecondor_schedd. If the condor_scheddreduces the current alive interval, it does not update thecondor_startd.

Machine Activities

Within some machine states,activities of the machine are defined. The state has meaning regardless of activity.
Differences between activities are significant. Therefore, a “state/activity” pair describes a machine. The following
list describes all the possible state/activity pairs.

• Owner

Idle This is the only activity for Owner state. As far as HTCondor is concerned the machine is Idle, since it is
not doing anything for HTCondor.

• Unclaimed

Idle This is the normal activity of Unclaimed machines. The machine is still Idle in that the machine owner is
willing to let HTCondor jobs run, but HTCondor is not using the machine for anything.

Benchmarking The machine is running benchmarks to determine the speed on this machine. This activity only
occurs in the Unclaimed state. How often the activity occursis determined by theRUNBENCHMARKS
expression.

• Matched

Idle When Matched, the machine is still Idle to HTCondor.

• Claimed

Idle In this activity, the machine has been claimed, but the schedd that claimed it has yet toactivatethe claim
by requesting acondor_starterto be spawned to service a job. The machine returns to this state (usually
briefly) when jobs (and thereforecondor_starter) finish.

Busy Once acondor_starterhas been started and the claim is active, the machine moves tothe Busy activity to
signify that it is doing something as far as HTCondor is concerned.

SuspendedIf the job is suspended by HTCondor, the machine goes into theSuspended activity. The match
between the schedd and machine has not been broken (the claimis still valid), but the job is not making
any progress and HTCondor is no longer generating a load on the machine.

Retiring When an active claim is about to be preempted for any reason, it enters retirement, while it waits for the
current job to finish. TheMaxJobRetirementTime expression determines how long to wait (counting
since the time the job started). Once the job finishes or the retirement time expires, the Preempting state is
entered.

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 379

• Preempting The Preempting state is used for evicting an HTCondor job from a given machine. When the
machine enters the Preempting state, it checks theWANT_VACATEexpression to determine its activity.

Vacating In the Vacating activity, the job that was running is in the process of checkpointing. As soon as
the checkpoint process completes, the machine moves into either the Owner state or the Claimed state,
depending on the reason for its preemption.

Killing Killing means that the machine has requested the running jobto exit the machine immediately, without
checkpointing.

• Backfill

Idle The machine is configured to run backfill jobs and is ready to doso, but it has not yet had a chance to
spawn a backfill manager (for example, the BOINC client).

Busy The machine is performing a backfill computation.

Killing The machine was running a backfill computation, but it is now killing the job to either return resources
to the machine owner, or to make room for a regular HTCondor job.

• Drained

Idle All slots have been drained.

Retiring This slot has been drained. It is waiting for other slots to finish draining.

Figure 3.2 on page 380 gives the overall view of all machine states and activities and shows the possible transitions
from one to another within the HTCondor system. Each transition is labeled with a number on the diagram, and
transition numbers referred to in this manual will bebold.

Various expressions are used to determine when and if many ofthese state and activity transitions occur. Other
transitions are initiated by parts of the HTCondor protocol(such as when thecondor_negotiatormatches a machine
with a schedd). The following section describes the conditions that lead to the various state and activity transitions.

State and Activity Transitions

This section traces through all possible state and activitytransitions within a machine and describes the conditions
under which each one occurs. Whenever a transition occurs, HTCondor records when the machine entered its new
activity and/or new state. These times are often used to write expressions that determine when further transitions
occurred. For example, enter the Killing activity if a machine has been in the Vacating activity longer than a specified
amount of time.

Owner State

When the startd is first spawned, the machine it represents enters the Owner state. The machine remains in the
Owner state while the expressionIS_OWNERis TRUE. If theIS_OWNERexpression is FALSE, then the machine
transitions to the Unclaimed state. The default value for the IS_OWNERexpression is optimized for a shared resource

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 380

Figure 3.2: Machine States and Activities

START =?= FALSE

So, the machine will remain in the Owner state as long as theSTARTexpression locally evaluates to FALSE. Sec-
tion 3.7.1 provides more detail on theSTARTexpression. If theSTART locally evaluates to TRUE or cannot be
locally evaluated (it evaluates to UNDEFINED), transition1 occurs and the machine enters the Unclaimed state. The
IS_OWNERexpression is locally evaluated by the machine, and should not reference job ClassAd attributes, which
would be UNDEFINED.

For dedicated resources, the recommended value for theIS_OWNERexpression is FALSE.

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 381

The Owner state represents a resource that is in use by its interactive owner (for example, if the keyboard is being
used). The Unclaimed state represents a resource that is neither in use by its interactive user, nor the HTCondor
system. From HTCondor’s point of view, there is little difference between the Owner and Unclaimed states. In both
cases, the resource is not currently in use by the HTCondor system. However, if a job matches the resource’sSTART
expression, the resource is available to run a job, regardless of if it is in the Owner or Unclaimed state. The only
differences between the two states are how the resource shows up incondor_statusand other reporting tools, and the
fact that HTCondor will not run benchmarking on a resource inthe Owner state. As long as theIS_OWNERexpression
is TRUE, the machine is in the Owner State. When theIS_OWNERexpression is FALSE, the machine goes into the
Unclaimed State.

Here is an example that assumes that anIS_OWNERexpression is not present in the configuration. If theSTART
expression is

START = KeyboardIdle > 15 * $(MINUTE) && Owner == "coltrane"

and if KeyboardIdle is 34 seconds, then the machine would remain in the Owner state. Owner is undefined, and
anything && FALSE is FALSE.

If, however, theSTARTexpression is

START = KeyboardIdle > 15 * $(MINUTE) || Owner == "coltrane"

andKeyboardIdle is 34 seconds, then the machine leaves the Owner state and becomes Unclaimed. This is because
FALSE || UNDEFINED is UNDEFINED. So, while this machine is not available to justanybody, if user coltrane
has jobs submitted, the machine is willing to run them. Any other user’s jobs have to wait untilKeyboardIdle
exceeds 15 minutes. However, since coltrane might claim this resource, but has not yet, the machine goes to the
Unclaimed state.

While in the Owner state, the startd polls the status of the machine everyUPDATE_INTERVALto see if anything
has changed that would lead it to a different state. This minimizes the impact on the Owner while the Owner is using
the machine. Frequently waking up, computing load averages, checking the access times on files, computing free swap
space take time, and there is nothing time critical that the startd needs to be sure to notice as soon as it happens. If the
STARTexpression evaluates to TRUE and five minutes pass before thestartd notices, that’s a drop in the bucket of
high-throughput computing.

The machine can only transition to the Unclaimed state from the Owner state. It does so when theIS_OWNER
expression no longer evaluates to FALSE. By default, that happens whenSTARTno longer locally evaluates to FALSE.

Whenever the machine is not actively running a job, it will transition back to the Owner state ifIS_OWNER
evaluates to TRUE. Once a job is started, the value ofIS_OWNERdoes not matter; the job either runs to completion or
is preempted. Therefore, you must configure the preemption policy if you want to transition back to the Owner state
from Claimed Busy.

If draining of the machine is initiated while in the Owner state, the slot transitions to Drained/Retiring (transition
36).

Unclaimed State

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 382

If the IS_OWNERexpression becomes TRUE, then the machine returns to the Owner state. If theIS_OWNER
expression becomes FALSE, then the machine remains in the Unclaimed state. If theIS_OWNERexpression is not
present in the configuration files, then the default value fortheIS_OWNERexpression is

START =?= FALSE

so that while in the Unclaimed state, if theSTARTexpression locally evaluates to FALSE, the machine returnsto the
Owner state by transition2.

When in the Unclaimed state, theRUNBENCHMARKSexpression is relevant. IfRUNBENCHMARKSevaluates
to TRUE while the machine is in the Unclaimed state, then the machine will transition from the Idle activity to the
Benchmarking activity (transition3) and perform benchmarks to determineMIPSandKFLOPS. When the benchmarks
complete, the machine returns to the Idle activity (transition 4).

The startd automatically inserts an attribute,LastBenchmark , whenever it runs benchmarks, so commonly
RunBenchmarks is defined in terms of this attribute, for example:

RunBenchmarks = (time() - LastBenchmark) >= (4 * $(HOUR))

This macro calculates the time since the last benchmark, so when this time exceeds 4 hours, we run the benchmarks
again. The startd keeps a weighted average of these benchmarking results to try to get the most accurate numbers
possible. This is why it is desirable for the startd to run them more than once in its lifetime.

NOTE: LastBenchmark is initialized to 0 before benchmarks have ever been run. To have thecondor_startd
run benchmarks as soon as the machine is Unclaimed (if it has not done so already), include a term using
LastBenchmark as in the example above.

NOTE: If RUNBENCHMARKSis defined and set to something other than FALSE, the startd will automatically run
one set of benchmarks when it first starts up. To disable benchmarks, both at startup and at any time thereafter, set
RUNBENCHMARKSto FALSE or comment it out of the configuration file.

From the Unclaimed state, the machine can go to four other possible states: Owner (transition2), Backfill/Idle,
Matched, or Claimed/Idle.

Once thecondor_negotiatormatches an Unclaimed machine with a requester at a given schedd, the negotiator
sends a command to both parties, notifying them of the match.If the schedd receives that notification and initiates the
claiming procedure with the machine before the negotiator’s message gets to the machine, the Match state is skipped,
and the machine goes directly to the Claimed/Idle state (transition5). However, normally the machine will enter the
Matched state (transition6), even if it is only for a brief period of time.

If the machine has been configured to perform backfill jobs (see section 3.14.9), while it is in Unclaimed/Idle it
will evaluate theSTART_BACKFILLexpression. OnceSTART_BACKFILLevaluates to TRUE, the machine will
enter the Backfill/Idle state (transition7) to begin the process of running backfill jobs.

If draining of the machine is initiated while in the Unclaimed state, the slot transitions to Drained/Retiring (transi-
tion 37).

Matched State

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 383

The Matched state is not very interesting to HTCondor. Noteworthy in this state is that the machine lies about
its STARTexpression while in this state and says thatRequirements areFalse to prevent being matched again
before it has been claimed. Also interesting is that the startd starts a timer to make sure it does not stay in the Matched
state too long. The timer is set with theMATCH_TIMEOUTconfiguration file macro. It is specified in seconds and
defaults to 120 (2 minutes). If the schedd that was matched with this machine does not claim it within this period of
time, the machine gives up, and goes back into the Owner statevia transition8. It will probably leave the Owner state
right away for the Unclaimed state again and wait for anothermatch.

At any time while the machine is in the Matched state, if theSTARTexpression locally evaluates to FALSE, the
machine enters the Owner state directly (transition8).

If the schedd that was matched with the machine claims it before theMATCH_TIMEOUTexpires, the machine goes
into the Claimed/Idle state (transition9).

Claimed State

The Claimed state is certainly the most complex state. It hasthe most possible activities and the most expressions
that determine its next activities. In addition, thecondor_checkpointandcondor_vacatecommands affect the machine
when it is in the Claimed state. In general, there are two setsof expressions that might take effect. They depend on
the universe of the request: standard or vanilla. The standard universe expressions are the normal expressions. For
example:

WANT_SUSPEND = True
WANT_VACATE = $(ActivationTimer) > 10 * $(MINUTE)
SUSPEND = $(KeyboardBusy) || $(CPUBusy)
...

The vanilla expressions have the string“_VANILLA” appended to their names. For example:

WANT_SUSPEND_VANILLA = True
WANT_VACATE_VANILLA = True
SUSPEND_VANILLA = $(KeyboardBusy) || $(CPUBusy)
...

Without specific vanilla versions, the normal versions willbe used for all jobs, including vanilla jobs. In this
manual, the normal expressions are referenced. The difference exists for the the resource owner that might want the
machine to behave differently for vanilla jobs, since they cannot checkpoint. For example, owners may want vanilla
jobs to remain suspended for longer than standard jobs.

While Claimed, thePOLLING_INTERVAL takes effect, and the startd polls the machine much more frequently
to evaluate its state.

If the machine owner starts typing on the console again, it isbest to notice this as soon as possible to be able to
start doing whatever the machine owner wants at that point. For multi-core machines, if any slot is in the Claimed
state, the startd polls the machine frequently. If already polling one slot, it does not cost much to evaluate the state of
all the slots at the same time.

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 384

There are a variety of events that may cause the startd to try to get rid of or temporarily suspend a running job.
Activity on the machine’s console, load from other jobs, or shutdown of the startd via an administrative command
are all possible sources of interference. Another one is theappearance of a higher priority claim to the machine by a
different HTCondor user.

Depending on the configuration, the startd may respond quitedifferently to activity on the machine, such as
keyboard activity or demand for the cpu from processes that are not managed by HTCondor. The startd can be
configured to completely ignore such activity or to suspend the job or even to kill it. A standard configuration for a
desktop machine might be to go through successive levels of getting the job out of the way. The first and least costly
to the job is suspending it. This works for both standard and vanilla jobs. If suspending the job for a short while does
not satisfy the machine owner (the owner is still using the machine after a specific period of time), the startd moves
on to vacating the job. Vacating a standard universe job involves performing a checkpoint so that the work already
completed is not lost. Vanilla jobs are sent asoft kill signalso that they can gracefully shut down if necessary; the
default isSIGTERM. If vacating does not satisfy the machine owner (usually because it is taking too long and the
owner wants their machine backnow), the final, most drastic stage is reached: killing. Killingis a quick death to the
job, using a hard-kill signal that cannot be intercepted by the application. For vanilla jobs that do no special signal
handling, vacating and killing are equivalent.

TheWANT_SUSPENDexpression determines if the machine will evaluate theSUSPENDexpression to consider
entering the Suspended activity. TheWANT_VACATEexpression determines what happens when the machine enters
the Preempting state. It will go to the Vacating activity or directly to Killing. If one or both of these expressions
evaluates to FALSE, the machine will skip that stage of getting rid of the job and proceed directly to the more drastic
stages.

When the machine first enters the Claimed state, it goes to theIdle activity. From there, it has two options. It can
enter the Preempting state via transition10(if a condor_vacatearrives, or if theSTARTexpression locally evaluates to
FALSE), or it can enter the Busy activity (transition11) if the schedd that has claimed the machine decides to activate
the claim and start a job.

From Claimed/Busy, the machine can transition to three other state/activity pairs. The startd evaluates the
WANT_SUSPENDexpression to decide which other expressions to evaluate. If WANT_SUSPENDis TRUE, then the
startd evaluates theSUSPENDexpression. IfWANT_SUSPENDis any value other than TRUE, then the startd will
evaluate thePREEMPTexpression and skip the Suspended activity entirely. By transition, the possible state/activity
destinations from Claimed/Busy:

Claimed/Idle If the starter that is serving a given job exits (for example because the jobs completes), the machine
will go to Claimed/Idle (transition12).

Claimed/Retiring If WANT_SUSPENDis FALSE and thePREEMPTexpression isTrue , the machine enters the
Retiring activity (transition13). From there, it waits for a configurable amount of time for the job to finish
before moving on to preemption.

Another reason the machine would go from Claimed/Busy to Claimed/Retiring is if thecondor_negotiator
matched the machine with a “better” match. This better matchcould either be from the machine’s perspective
using the startdRANKexpression, or it could be from the negotiator’s perspective due to a job with a higher user
priority.

Another case resulting in a transition to Claimed/Retiringis when the startd is being shut down. The only
exception is a “fast” shutdown, which bypasses retirement completely.

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 385

Claimed/SuspendedIf both theWANT_SUSPENDandSUSPENDexpressions evaluate to TRUE, the machine sus-
pends the job (transition14).

If a condor_checkpointcommand arrives, or thePERIODIC_CHECKPOINTexpression evaluates to TRUE, there
is no state change. The startd has no way of knowing when this process completes, so periodic checkpointing can not
be another state. Periodic checkpointing remains in the Claimed/Busy state and appears as a running job.

From the Claimed/Suspended state, the following transitions may occur:

Claimed/Busy If the CONTINUEexpression evaluates to TRUE, the machine resumes the job and enters the
Claimed/Busy state (transition15) or the Claimed/Retiring state (transition16), depending on whether the claim
has been preempted.

Claimed/Retiring If the PREEMPTexpression is TRUE, the machine will enter the Claimed/Retiring activity (tran-
sition16).

Preempting If the claim is in suspended retirement and the retirement time expires, the job enters the Preempting
state (transition17). This is only possible ifMaxJobRetirementTime decreasesduring the suspension.

For the Claimed/Retiring state, the following transitionsmay occur:

Preempting If the job finishes or the job’s run time exceeds the value defined for the job ClassAd attribute
MaxJobRetirementTime , the Preempting state is entered (transition18). The run time is computed from
the time when the job was started by the startd minus any suspension time. When retiring due tocondor_startd
daemon shutdown or restart, it is possible for the administrator to issue apeacefulshutdown command, which
causesMaxJobRetirementTime to effectively be infinite, avoiding any killing of jobs. It is also possi-
ble for the administrator to issue afastshutdown command, which causesMaxJobRetirementTime to be
effectively 0.

Claimed/Busy If the startd was retiring because of a preempting claim onlyand the preempting claim goes away,
the normal Claimed/Busy state is resumed (transition19). If instead the retirement is due to owner activity
(PREEMPT) or the startd is being shut down, no unretirement is possible.

Claimed/SuspendedIn exactly the same way that suspension may happen from the Claimed/Busy state, it may also
happen during the Claimed/Retiring state (transition20). In this case, when the job continues from suspension,
it moves back into Claimed/Retiring (transition16) instead of Claimed/Busy (transition15).

Preempting State

The Preempting state is less complex than the Claimed state.There are two activities. Depending on the value of
WANT_VACATE, a machine will be in the Vacating activity (ifTrue) or the Killing activity (if False).

While in the Preempting state (regardless of activity) the machine advertises itsRequirements expression as
False to signify that it is not available for further matches, either because it is about to transition to the Owner state,

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 386

or because it has already been matched with one preempting match, and further preempting matches are disallowed
until the machine has been claimed by the new match.

The main function of the Preempting state is to get rid of thecondor_starterassociated with the resource. If the
condor_starterassociated with a given claim exits while the machine is still in the Vacating activity, then the job
successfully completed a graceful shutdown. For standard universe jobs, this means that a checkpoint was saved. For
other jobs, this means the application was given an opportunity to do a graceful shutdown, by intercepting the soft kill
signal.

If the machine is in the Vacating activity, it keeps evaluating theKILL expression. As soon as this expression
evaluates to TRUE, the machine enters the Killing activity (transition21). If the Vacating activity lasts for as long
as the maximum vacating time, then the machine also enters the Killing activity. The maximum vacating time is
determined by the configuration variableMachineMaxVacateTime . This may be adjusted by the setting of the job
ClassAd attributeJobMaxVacateTime .

When the starter exits, or if there was no starter running when the machine enters the Preempting state (transition
10), the other purpose of the Preempting state is completed: notifying the schedd that had claimed this machine that
the claim is broken.

At this point, the machine enters either the Owner state by transition22 (if the job was preempted because the
machine owner came back) or the Claimed/Idle state by transition 23 (if the job was preempted because a better match
was found).

If the machine enters the Killing activity, (because eitherWANT_VACATEwasFalse or theKILL expression
evaluated toTrue), it attempts to force thecondor_starterto immediately kill the underlying HTCondor job. Once
the machine has begun to hard kill the HTCondor job, thecondor_startdstarts a timer, the length of which is defined
by the KILLING_TIMEOUT macro. This macro is defined in seconds and defaults to 30. If this timer expires
and the machine is still in the Killing activity, something has gone seriously wrong with thecondor_starterand the
startd tries to vacate the job immediately by sending SIGKILL to all of thecondor_starter’s children, and then to the
condor_starteritself.

Once thecondor_starterhas killed off all the processes associated with the job and exited, and once the schedd
that had claimed the machine is notified that the claim is broken, the machine will leave the Preempting/Killing state.
If the job was preempted because a better match was found, themachine will enter Claimed/Idle (transition24). If
the preemption was caused by the machine owner (thePREEMPTexpression evaluated to TRUE,condor_vacatewas
used, etc), the machine will enter the Owner state (transition25).

Backfill State

The Backfill state is used whenever the machine is performinglow priority background tasks to keep itself busy.
For more information about backfill support in HTCondor, seesection 3.14.9 on page 498. This state is only used if
the machine has been configured to enable backfill computation, if a specific backfill manager has been installed and
configured, and if the machine is otherwise idle (not being used interactively or for regular HTCondor computations).
If the machine meets all these requirements, and theSTART_BACKFILLexpression evaluates to TRUE, the machine
will move from the Unclaimed/Idle state to Backfill/Idle (transition7).

Once a machine is in Backfill/Idle, it will immediately attempt to spawn whatever backfill manager it has been
configured to use (currently, only the BOINC client is supported as a backfill manager in HTCondor). Once the

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 387

BOINC client is running, the machine will enter Backfill/Busy (transition26) to indicate that it is now performing a
backfill computation.

NOTE: On multi-core machines, thecondor_startdwill only spawn a single instance of the BOINC client, even
if multiple slots are available to run backfill jobs. Therefore, only the first machine to enter Backfill/Idle will cause a
copy of the BOINC client to start running. If a given slot on a multi-core enters the Backfill state and a BOINC client
is already running under thiscondor_startd, the slot will immediately enter Backfill/Busy without waiting to spawn
another copy of the BOINC client.

If the BOINC client ever exits on its own (which normally wouldn’t happen), the machine will go back to Back-
fill/Idle (transition27) where it will immediately attempt to respawn the BOINC client (and return to Backfill/Busy
via transition26).

As the BOINC client is running a backfill computation, a number of events can occur that will drive the machine out
of the Backfill state. The machine can get matched or claimed for an HTCondor job, interactive users can start using
the machine again, the machine might be evicted withcondor_vacate, or thecondor_startdmight be shutdown. All
of these events cause thecondor_startdto kill the BOINC client and all its descendants, and enter the Backfill/Killing
state (transition28).

Once the BOINC client and all its children have exited the system, the machine will enter the Backfill/Idle state to
indicate that the BOINC client is now gone (transition29). As soon as it enters Backfill/Idle after the BOINC client
exits, the machine will go into another state, depending on what caused the BOINC client to be killed in the first place.

If the EVICT_BACKFILL expression evaluates to TRUE while a machine is in Backfill/Busy, after the BOINC
client is gone, the machine will go back into the Owner/Idle state (transition30). The machine will also return to the
Owner/Idle state after the BOINC client exits ifcondor_vacatewas used, or if thecondor_startdis being shutdown.

When a machine running backfill jobs is matched with a requester that wants to run an HTCondor job, the machine
will either enter the Matched state, or go directly into Claimed/Idle. As with the case of a machine in Unclaimed/Idle
(described above), thecondor_negotiatorinforms both thecondor_startdand thecondor_scheddof the match, and
the exact state transitions at the machine depend on what order the various entities initiate communication with each
other. If thecondor_scheddis notified of the match and sends a request to claim thecondor_startdbefore thecon-
dor_negotiatorhas a chance to notify thecondor_startd, once the BOINC client exits, the machine will immediately
enter Claimed/Idle (transition31). Normally, the notification from thecondor_negotiatorwill reach thecondor_startd
before thecondor_scheddattempts to claim it. In this case, once the BOINC client exits, the machine will enter
Matched/Idle (transition32).

Drained State

The Drained state is used when the machine is being drained, for example bycondor_drainor by thecondor_defrag
daemon, and the slot has finished running jobs and is no longerwilling to run new jobs.

Slots initially enter the Drained/Retiring state. Once allslots have been drained, the slots transition to the Idle
activity (transition33).

If draining is finalized or canceled, the slot transitions toOwner/Idle (transitions34and35).

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 388

State/Activity Transition Expression Summary

This section is a summary of the information from the previous sections. It serves as a quick reference.

START When TRUE, the machine is willing to spawn a remote HTCondor job.

RUNBENCHMARKS While in the Unclaimed state, the machine will run benchmarks whenever TRUE.

MATCH_TIMEOUT If the machine has been in the Matched state longer than this value, it will transition to the Owner
state.

WANT_SUSPEND If True , the machine evaluates theSUSPENDexpression to see if it should transition to the Sus-
pended activity. If any value other thanTrue , the machine will look at thePREEMPTexpression.

SUSPEND If WANT_SUSPENDisTrue , and the machine is in the Claimed/Busy state, it enters the Suspended activity
if SUSPENDis True .

CONTINUE If the machine is in the Claimed/Suspended state, it enter the Busy activity ifCONTINUEis True .

PREEMPT If the machine is either in the Claimed/Suspended activity,or is in the Claimed/Busy activity and
WANT_SUSPENDis FALSE, the machine enters the Claimed/Retiring state wheneverPREEMPTis TRUE.

CLAIM_WORKLIFE This expression specifies the number of seconds after which aclaim will stop accepting addi-
tional jobs. This configuration macro is fully documented here: 3.5.9.

MachineMaxVacateTime When the machine enters the Preempting/Vacating state, this expression specifies the
maximum time in seconds that thecondor_startdwill wait for the job to finish. The job may adjust the wait time
by settingJobMaxVacateTime . If the job’s setting is less than the machine’s, the job’s isused. If the job’s
setting is larger than the machine’s, the result depends on whether the job has any excess retirement time. If the
job has more retirement time left than the machine’s maximumvacate time setting, then retirement time will be
converted into vacating time, up to the amount ofJobMaxVacateTime . Once the vacating time expires, the
job is hard-killed. TheKILL expression may be used to abort the graceful shutdown of the job at any time.

MAXJOBRETIREMENTTIME If the machine is in the Claimed/Retiring state, jobs which have run for less than the
number of seconds specified by this expression will not be hard-killed. Thecondor_startdwill wait for the job
to finish or to exceed this amount of time, whichever comes sooner. Time spent in suspension does not count
against the job. If the job vacating policy grants the job X seconds of vacating time, a preempted job will be
soft-killed X seconds before the end of its retirement time,so that hard-killing of the job will not happen until
the end of the retirement time if the job does not finish shutting down before then. The job may provide its own
expression forMaxJobRetirementTime , but this can only be used to takelessthan the time granted by the
condor_startd, never more. For convenience, standard universe and nice_user jobs are submitted with a default
retirement time of 0, so they will never wait in retirement unless the user overrides the default.

The machine enters the Preempting state with the goal of finishing shutting down the job by the end of the
retirement time. If the job vacating policy grants the job X seconds of vacating time, the transition to the
Preempting state will happen X seconds before the end of the retirement time, so that the hard-killing of the job
will not happen until the end of the retirement time, if the job does not finish shutting down before then.

This expression is evaluated in the context of the job ClassAd, so it may refer to attributes of the current job as
well as machine attributes.

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 389

By default thecondor_negotiatorwill not match jobs to a slot with retirement time remaining.This behavior is
controlled byNEGOTIATOR_CONSIDER_EARLY_PREEMPTION.

WANT_VACATE This is checked only when thePREEMPTexpression isTrue and the machine enters the Preempting
state. IfWANT_VACATEis True , the machine enters the Vacating activity. If it isFalse , the machine will
proceed directly to the Killing activity.

KILL If the machine is in the Preempting/Vacating state, it enters Preempting/Killing wheneverKILL is True .

KILLING_TIMEOUT If the machine is in the Preempting/Killing state for longerthanKILLING_TIMEOUT sec-
onds, thecondor_startdsends a SIGKILL to thecondor_starterand all its children to try to kill the job as
quickly as possible.

PERIODIC_CHECKPOINT If the machine is in the Claimed/Busy state andPERIODIC_CHECKPOINTis TRUE,
the user’s job begins a periodic checkpoint.

RANK If this expression evaluates to a higher number for a pendingresource request than it does for the current request,
the machine may preempt the current request (enters the Preempting/Vacating state). When the preemption is
complete, the machine enters the Claimed/Idle state with the new resource request claiming it.

START_BACKFILL When TRUE, if the machine is otherwise idle, it will enter theBackfill state and spawn a backfill
computation (using BOINC).

EVICT_BACKFILL When TRUE, if the machine is currently running a backfill computation, it will kill the BOINC
client and return to the Owner/Idle state.

Examples of Policy Configuration

This section describes various policy configurations, including the default policy.

Default Policy

These settings are the default as shipped with HTCondor. They have been used for many years with no problems.
The vanilla expressions are identical to the regular ones. (They are not listed here. If not defined, the standard
expressions are used for vanilla jobs as well).

The following are macros to help write the expressions clearly.

StateTimer Amount of time in seconds in the current state.

ActivityTimer Amount of time in seconds in the current activity.

ActivationTimer Amount of time in seconds that the job has been running on thismachine.

LastCkpt Amount of time since the last periodic checkpoint.

NonCondorLoadAvg The difference between the system load and the HTCondor load(the load generated by ev-
erything but HTCondor).

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 390

BackgroundLoad Amount of background load permitted on the machine and stillstart an HTCondor job.

HighLoad If the $(NonCondorLoadAvg) goes over this, the CPU is considered too busy, and eviction of the
HTCondor job should start.

StartIdleTime Amount of time the keyboard must to be idle before HTCondor will start a job.

ContinueIdleTime Amount of time the keyboard must to be idle before resumptionof a suspended job.

MaxSuspendTime Amount of time a job may be suspended before more drastic measures are taken.

KeyboardBusy A boolean expression that evaluates to TRUE when the keyboard is being used.

CPUIdle A boolean expression that evaluates to TRUE when the CPU is idle.

CPUBusy A boolean expression that evaluates to TRUE when the CPU is busy.

MachineBusy The CPU or the Keyboard is busy.

CPUIsBusy A boolean value set to the same value asCPUBusy.

CPUBusyTime The value 0 ifCPUBusy is False; the time in seconds sinceCPUBusybecame True.

These variable definitions exist in the example configuration file in order to help write legible expressions. They
are not required, and perhaps will go unused by many configurations.

These macros are here to help write legible expressions:
MINUTE = 60
HOUR = (60 * $(MINUTE))
StateTimer = (time() - EnteredCurrentState)
ActivityTimer = (time() - EnteredCurrentActivity)
ActivationTimer = (time() - JobStart)
LastCkpt = (time() - LastPeriodicCheckpoint)

NonCondorLoadAvg = (LoadAvg - CondorLoadAvg)
BackgroundLoad = 0.3
HighLoad = 0.5
StartIdleTime = 15 * $(MINUTE)
ContinueIdleTime = 5 * $(MINUTE)
MaxSuspendTime = 10 * $(MINUTE)

KeyboardBusy = KeyboardIdle < $(MINUTE)
ConsoleBusy = (ConsoleIdle < $(MINUTE))
CPUIdle = $(NonCondorLoadAvg) <= $(BackgroundLoad)
CPUBusy = $(NonCondorLoadAvg) >= $(HighLoad)
KeyboardNotBusy = ($(KeyboardBusy) == False)
MachineBusy = ($(CPUBusy) || $(KeyboardBusy)

Preemption is disabled as a default. Always desire to start jobs.

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 391

WANT_SUSPEND = False
WANT_VACATE = False
START = True
SUSPEND = False
CONTINUE = True
PREEMPT = False
Kill jobs that take too long leaving gracefully.
MachineMaxVacateTime = 10 * $(MINUTE)
KILL = False

Periodic checkpointing specifies that for jobs smaller than60 Mbytes, take a periodic checkpoint every 6 hours.
For larger jobs, only take a checkpoint every 12 hours.

PERIODIC_CHECKPOINT = ((ImageSize < 60000) && \
($(LastCkpt) > (6 * $(HOUR)))) || \

($(LastCkpt) > (12 * $(HOUR)))

At UW-Madison, we have a fast network. We simplify our expression considerably to

PERIODIC_CHECKPOINT = $(LastCkpt) > (3 * $(HOUR))

Test-job Policy Example

This example shows how the default macros can be used to set upa machine for running test jobs from a specific
user. Suppose we want the machine to behave normally, exceptif user coltrane submits a job. In that case, we want
that job to start regardless of what is happening on the machine. We do not want the job suspended, vacated or killed.
This is reasonable if we know coltrane is submitting very short running programs for testing purposes. The jobs should
be executed right away. This works with any machine (or the whole pool, for that matter) by adding the following 5
expressions to the existing configuration:

START = ($(START)) || Owner == "coltrane"
SUSPEND = ($(SUSPEND)) && Owner != "coltrane"
CONTINUE = $(CONTINUE)
PREEMPT = ($(PREEMPT)) && Owner != "coltrane"
KILL = $(KILL)

Notice that there is nothing special in either theCONTINUEor KILL expressions. If Coltrane’s jobs never suspend,
they never look atCONTINUE. Similarly, if they never preempt, they never look atKILL .

Time of Day Policy

HTCondor can be configured to only run jobs at certain times ofthe day. In general, we discourage configuring a
system like this, since there will often be lots of good cycles on machines, even when their owners say “I’m always

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 392

using my machine during the day.” However, if you submit mostly vanilla jobs or other jobs that cannot produce
checkpoints, it might be a good idea to only allow the jobs to run when you know the machines will be idle and when
they will not be interrupted.

To configure this kind of policy, use theClockMin andClockDay attributes. These are special attributes which
are automatically inserted by thecondor_startdinto its ClassAd, so you can always reference them in your policy
expressions.ClockMin defines the number of minutes that have passed since midnight. For example, 8:00am is 8
hours after midnight, or 8 * 60 minutes, or 480. 5:00pm is 17 hours after midnight, or 17 * 60, or 1020.ClockDay
defines the day of the week, Sunday = 0, Monday = 1, and so on.

To make the policy expressions easy to read, we recommend using macros to define the time periods when you
want jobs to run or not run. For example, assume regular work hours at your site are from 8:00am until 5:00pm,
Monday through Friday:

WorkHours = ((ClockMin >= 480 && ClockMin < 1020) && \
(ClockDay > 0 && ClockDay < 6))

AfterHours = ((ClockMin < 480 || ClockMin >= 1020) || \
(ClockDay == 0 || ClockDay == 6))

Of course, you can fine-tune these settings by changing the definition of AfterHours andWorkHours for your
site.

To force HTCondor jobs to stay off of your machines during work hours:

Only start jobs after hours.
START = $(AfterHours)

Consider the machine busy during work hours, or if the keybo ard or
CPU are busy.
MachineBusy = ($(WorkHours) || $(CPUBusy) || $(KeyboardBu sy))

ThisMachineBusy macro is convenient if other than the defaultSUSPENDandPREEMPTexpressions are used.

Desktop/Non-Desktop Policy

Suppose you have two classes of machines in your pool: desktop machines and dedicated cluster machines. In this
case, you might not want keyboard activity to have any effecton the dedicated machines. For example, when you log
into these machines to debug some problem, you probably do not want a running job to suddenly be killed. Desktop
machines, on the other hand, should do whatever is necessaryto remain responsive to the user.

There are many ways to achieve the desired behavior. One way is to make a standard desktop policy and a
standard non-desktop policy and to copy the desired one intothe local configuration file for each machine. Another
way is to define one standard policy (in the global configuration file) with a simple toggle that can be set in the local
configuration file. The following example illustrates the latter approach.

For ease of use, an entire policy is included in this example.Some of the expressions are just the usual default
settings.

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 393

If "IsDesktop" is configured, make it an attribute of the ma chine ClassAd.
STARTD_ATTRS = IsDesktop

Only consider starting jobs if:
1) the load average is low enough OR the machine is currently
running an HTCondor job
2) AND the user is not active (if a desktop)
START = (($(CPUIdle) || (State != "Unclaimed" && State != "Ow ner")) \

&& (IsDesktop =!= True || (KeyboardIdle > $(StartIdleTime))))

Suspend (instead of vacating/killing) for the following c ases:
WANT_SUSPEND = ($(SmallJob) || $(JustCpu) \

|| $(IsVanilla))

When preempting, vacate (instead of killing) in the follow ing cases:
WANT_VACATE = ($(ActivationTimer) > 10 * $(MINUTE) \

|| $(IsVanilla))

Suspend jobs if:
1) The CPU has been busy for more than 2 minutes, AND
2) the job has been running for more than 90 seconds
3) OR suspend if this is a desktop and the user is active
SUSPEND = (((CpuBusyTime > 2 * $(MINUTE)) && ($(ActivationTimer) > 90)) \

|| (IsDesktop =?= True && $(KeyboardBusy)))

Continue jobs if:
1) the CPU is idle, AND
2) we've been suspended more than 5 minutes AND
3) the keyboard has been idle for long enough (if this is a des ktop)
CONTINUE = ($(CPUIdle) && ($(ActivityTimer) > 300) \

&& (IsDesktop =!= True || (KeyboardIdle > $(ContinueIdleTi me))))

Preempt jobs if:
1) The job is suspended and has been suspended longer than we want
2) OR, we don't want to suspend this job, but the conditions t o
suspend jobs have been met (someone is using the machine)
PREEMPT = (((Activity == "Suspended") && \

($(ActivityTimer) > $(MaxSuspendTime))) \
|| (SUSPEND && (WANT_SUSPEND == False)))

Replace 0 in the following expression with whatever amount of
retirement time you want dedicated machines to provide. Th e other part
of the expression forces the whole expression to 0 on deskto p
machines.
MAXJOBRETIREMENTTIME = (IsDesktop =!= True) * 0

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 394

Kill jobs if they have taken too long to vacate gracefully
MachineMaxVacateTime = 10 * $(MINUTE)
KILL = False

With this policy in the global configuration, the local configuration files for desktops can be easily configured with
the following line:

IsDesktop = True

In all other cases, the default policy described above will ignore keyboard activity.

Disabling and Enabling Preemption

Preemption causes a running job to be suspended or killed, such that another job can run. As of HTCondor version
8.1.5, preemption is disabled by the default configuration.Previous versions of HTCondor had configuration that
enabled preemption. Upon upgrade, the previous behavior will continue, if the previous configuration files are used.
New configuration file examples disable preemption, but contain directions for enabling preemption.

Job Suspension

As new jobs are submitted that receive a higher priority thancurrently executing jobs, the executing jobs may be
preempted. If the preempted jobs are not capable of writing checkpoints, they lose whatever forward progress they
have made, and are sent back to the job queue to await startingover again as another machine becomes available. An
alternative to this is to use suspension to freeze the job while some other task runs, and then unfreeze it so that it can
continue on from where it left off. This does not require any special handling in the job, unlike most strategies that
take checkpoints. However, it does require a special configuration of HTCondor. This example implements a policy
that allows the job to decide whether it should be evicted or suspended. The jobs announce their choice through the
use of the invented job ClassAd attributeIsSuspendableJob , that is also utilized in the configuration.

The implementation of this policy utilizes two categories of slots, identified as suspendable or nonsuspendable. A
job identifies which category of slot it wishes to run on. Thisaffects two aspects of the policy:

• Of two jobs that might run on a slot, which job is chosen. The four cases that may occur depend on whether
the currently running job identifies itself as suspendable or nonsuspendable, and whether the potentially running
job identifies itself as suspendable or nonsuspendable.

1. If the currently running job is one that identifies itself as suspendable, and the potentially running job
identifies itself as nonsuspendable, the currently runningjob is suspended, in favor of running the nonsus-
pendable one. This occurs independent of the user priority of the two jobs.

2. If both the currently running job and the potentially running job identify themselves as suspendable, then
the relative priorities of the users and the preemption policy determines whether the new job will replace
the existing job.

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 395

3. If both the currently running job and the potentially running job identify themselves as nonsuspendable,
then the relative priorities of the users and the preemptionpolicy determines whether the new job will
replace the existing job.

4. If the currently running job is one that identifies itself as nonsuspendable, and the potentially running job
identifies itself as suspendable, the currently running jobcontinues running.

• What happens to a currently running job that is preempted. Ajob that identifies itself as suspendable will be
suspended, which means it is frozen in place, and will later be unfrozen when the preempting job is finished. A
job that identifies itself as nonsuspendable is evicted, which means it writes a checkpoint, when possible, and
then is killed. The job will return to the idle state in the jobqueue, and it can try to run again in the future.

Lie to HTCondor, to achieve 2 slots for each real slot
NUM_CPUS = $(DETECTED_CORES)* 2
There is no good way to tell HTCondor that the two slots shoul d be treated
as though they share the same real memory, so lie about how mu ch
memory we have.
MEMORY = $(DETECTED_MEMORY)* 2

Slots 1 through DETECTED_CORES are nonsuspendable and the rest are
suspendable
IsSuspendableSlot = SlotID > $(DETECTED_CORES)

If I am a suspendable slot, my corresponding nonsuspendabl e slot is
my SlotID plus $(DETECTED_CORES)
NonSuspendableSlotState = eval(strcat("slot",SlotID-$ (DETECTED_CORES),"_State")

The above expression looks at slotX_State, so we need to add
State to the list of slot attributes to advertise.
STARTD_SLOT_ATTRS = $(STARTD_SLOT_ATTRS) State

For convenience, advertise these expressions in the machi ne ad.
STARTD_ATTRS = $(STARTD_ATTRS) IsSuspendableSlot NonSus pendableSlotState

MyNonSuspendableSlotIsIdle = \
(NonSuspendableSlotState =!= "Claimed" && NonSuspendabl eSlotState =!= "Preempting")

NonSuspendable slots are always willing to start jobs.
Suspendable slots are only willing to start if the NonSuspe ndable slot is idle.
START = \

IsSuspendableSlot!=True && IsSuspendableJob=!=True || \
IsSuspendableSlot && IsSuspendableJob==True && $(MyNonS uspendableSlotIsIdle)

Suspend the suspendable slot if the other slot is busy.
SUSPEND = \

IsSuspendableSlot && $(MyNonSuspendableSlotIsIdle)!=T rue

WANT_SUSPEND = $(SUSPEND)

CONTINUE = ($(SUSPEND)) != True

Note that in this example, the job ClassAd attributeIsSuspendableJob has no special meaning to HTCondor.
It is an invented name chosen for this example. To take advantage of the policy, a job that wishes to be suspended must
submit the job so that this attribute is defined. The following line should be placed in the job’s submit description file:

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 396

+IsSuspendableJob = True

Configuration for Interactive Jobs

Policy may be set based on whether a job is an interactive one or not. Each interactive job has the job ClassAd
attribute

InteractiveJob = True

and this may be used to identify interactive jobs, distinguishing them from all other jobs.

As an example, presume that slot 1 prefers interactive jobs.Set the machine’sRANKto show the preference:

RANK = ((MY.SlotID == 1) && (TARGET.InteractiveJob =?= True))

Or, if slot 1 should be reserved for interactive jobs:

START = ((MY.SlotID == 1) && (TARGET.InteractiveJob =?= Tru e))

Multi-Core Machine Terminology

Machines with more than one CPU or core may be configured to runmore than one job at a time. As always, owners
of the resources have great flexibility in defining the policyunder which multiple jobs may run, suspend, vacate, etc.

Multi-core machines are represented to the HTCondor systemas shared resources broken up into individual
slots. Each slot can be matched and claimed by users for jobs. Each slot is represented by an individual ma-
chine ClassAd. In this way, each multi-core machine will appear to the HTCondor system as a collection of sep-
arate slots. As an example, a multi-core machine namedvulture.cs.wisc.edu would appear to HTCon-
dor as the multiple machines, namedslot1@vulture.cs.wisc.edu , slot2@vulture.cs.wisc.edu ,
slot3@vulture.cs.wisc.edu , and so on.

The way that thecondor_startdbreaks up the shared system resources into the different slots is configurable. All
shared system resources, such as RAM, disk space, and swap space, can be divided evenly among all the slots, with
each slot assigned one core. Alternatively,slot typesare defined by configuration, so that resources can be unevenly
divided. Regardless of the scheme used, it is important to remember that the goal is to create a representative slot
ClassAd, to be used for matchmaking with jobs.

HTCondor does not directly enforce slot shared resource allocations, and jobs are free to oversubscribe to shared
resources. Consider an example where two slots are each defined with 50% of available RAM. The resultant ClassAd
for each slot will advertise one half the available RAM. Users may submit jobs with RAM requirements that match
these slots. However, jobs run on either slot are free to consume more than 50% of available RAM. HTCondor will
not directly enforce a RAM utilization limit on either slot.If a shared resource enforcement capability is needed, it is
possible to write a policy that will evict a job that oversubscribes to shared resources, as described in section 3.7.1.

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 397

Dividing System Resources in Multi-core Machines

Within a machine the shared system resources of cores, RAM, swap space and disk space will be divided for use by
the slots. There are two main ways to go about dividing the resources of a multi-core machine:

Evenly divide all resources.By default, thecondor_startdwill automatically divide the machine into slots, placing
one core in each slot, and evenly dividing all shared resources among the slots. The only specification may be
how many slots are reported at a time. By default, all slots are reported to HTCondor.

How many slots are reported at a time is accomplished by setting the configuration variableNUM_SLOTSto the
integer number of slots desired. If variableNUM_SLOTSis not defined, it defaults to the number of cores within
the machine. VariableNUM_SLOTSmay not be used to make HTCondor advertise more slots than there are
cores on the machine. The number of cores is defined byNUM_CPUS.

Define slot types.Instead of an even division of resources per slot, the machine may have definitions ofslot types,
where each type is provided with a fraction of shared system resources. Given the slot type definition, control
how many of each type are reported at any given time with further configuration.

Configuration variables define the slot types, as well as variables that list how much of each system resource
goes to each slot type.

Configuration variableSLOT_TYPE_<N>, where<N> is an integer (for example,SLOT_TYPE_1) defines the
slot type. Note that there may be multiple slots of each type.The number of slots created of a given type is
configured withNUM_SLOTS_TYPE_<N>.

The type can be defined by:

• A simple fraction, such as 1/4

• A simple percentage, such as 25%

• A comma-separated list of attributes, with a percentage, fraction, numerical value, orauto for each one.

• A comma-separated list that includes a blanket value that serves as a default for any resources not explicitly
specified in the list.

A simple fraction or percentage describes the allocation ofthe total system resources, including the number of
CPUS or cores. A comma separated list allows a fine tuning of the amounts for specific resources.

The number of CPUs and the total amount of RAM in the machine donot change over time. For these attributes,
specify either absolute values or percentages of the total available amount (orauto). For example, in a machine
with 128 Mbytes of RAM, all the following definitions result in the same allocation amount.

SLOT_TYPE_1 = mem=64

SLOT_TYPE_1 = mem=1/2

SLOT_TYPE_1 = mem=50%

SLOT_TYPE_1 = mem=auto

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 398

Amounts of disk space and swap space are dynamic, as they change over time. For these, specify a percentage
or fraction of the total value that is allocated to each slot,instead of specifying absolute values. As the total
values of these resources change on the machine, each slot will take its fraction of the total and report that as its
available amount.

The disk space allocated to each slot is taken from the disk partition containing the slot’sEXECUTEor
SLOT<N>_EXECUTEdirectory. If every slot is in a different partition, then each one may be defined with
up to 100% for its disk share. If some slots are in the same partition, then their total is not allowed to exceed
100%.

The four predefined attribute names are case insensitive when defining slot types. The first letter of the attribute
name distinguishes between these attributes. The four attributes, with several examples of acceptable names for
each:

• Cpus, C, c, cpu

• ram, RAM, MEMORY, memory, Mem, R, r, M, m

• disk, Disk, D, d

• swap, SWAP, S, s, VirtualMemory, V, v

As an example, consider a machine with 4 cores and 256 Mbytes of RAM. Here are valid example slot type
definitions. Types 1-3 are all equivalent to each other, as are types 4-6. Note that in a real configuration, all
of these slot types would not be used together, because they add up to more than 100% of the various system
resources. This configuration example also omits definitions ofNUM_SLOTS_TYPE_<N>, to define the number
of each slot type.

SLOT_TYPE_1 = cpus=2, ram=128, swap=25%, disk=1/2

SLOT_TYPE_2 = cpus=1/2, memory=128, virt=25%, disk=50%

SLOT_TYPE_3 = c=1/2, m=50%, v=1/4, disk=1/2

SLOT_TYPE_4 = c=25%, m=64, v=1/4, d=25%

SLOT_TYPE_5 = 25%

SLOT_TYPE_6 = 1/4

The default value for each resource share isauto . The share may also be explicitly set toauto . All slots with
the valueauto for a given type of resource will evenly divide whatever remains, after subtracting out explicitly
allocated resources given in other slot definitions. For example, if one slot is defined to use 10% of the memory
and the rest define it asauto (or leave it undefined), then the rest of the slots will evenlydivide 90% of the
memory between themselves.

In both of the following examples, the disk share is set toauto , number of cores is 1, and everything else is
50%:

SLOT_TYPE_1 = cpus=1, ram=1/2, swap=50%

SLOT_TYPE_1 = cpus=1, disk=auto, 50%

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 399

Note that it is possible to set the configuration variables such that they specify an impossible configuration. If this
occurs, thecondor_startddaemon fails after writing a message to its log attempting toindicate the configuration
requirements that it could not implement.

In addition to the standard resources of CPUs, memory, disk,and swap, the administrator may also define custom
resources on a localized per-machine basis.

The resource names and quantities of available resources are defined using configuration variables of the form
MACHINE_RESOURCE_<name>, as shown in this example:

MACHINE_RESOURCE_gpu = 16
MACHINE_RESOURCE_actuator = 8

If the configuration uses the optional configuration variableMACHINE_RESOURCE_NAMESto enable and dis-
able local machine resources, also add the resource names tothis variable. For example:

if defined MACHINE_RESOURCE_NAMES
MACHINE_RESOURCE_NAMES = $(MACHINE_RESOURCE_NAMES) gpuactuator

endif

Local machine resource names defined in this way may now be used in conjunction withSLOT_TYPE_<N>,
using all the same syntax described earlier in this section.The following example demonstrates the definition of
static and partitionable slot types with local machine resources:

declare one partitionable slot with half of the GPUs, 6 actu ators, and
50% of all other resources:
SLOT_TYPE_1 = gpu=50%,actuator=6,50%
SLOT_TYPE_1_PARTITIONABLE = TRUE
NUM_SLOTS_TYPE_1 = 1

declare two static slots, each with 25% of the GPUs, 1 actuat or, and
25% of all other resources:
SLOT_TYPE_2 = gpu=25%,actuator=1,25%
SLOT_TYPE_2_PARTITIONABLE = FALSE
NUM_SLOTS_TYPE_2 = 2

A job may request these local machine resources using the syntax request_<name>, as described in sec-
tion 3.7.1. This example shows a portion of a submit description file that requests GPUs and an actuator:

universe = vanilla

request two GPUs and one actuator:
request_gpu = 2
request_actuator = 1

queue

The slot ClassAd will represent each local machine resourcewith the following attributes:

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 400

Total<name> : the total quantity of the resource identified by<name>

Detected<name> : the quantity detected of the resource identified by<name>; this attribute is currently
equivalent toTotal<name>

TotalSlot<name> : the quantity of the resource identified by<name> allocated to this slot

<name>: the amount of the resource identified by<name> available to be used on this slot

From the example given, thegpu resource would be represented by the ClassAd attributesTotalGpu ,
DetectedGpu , TotalSlotGpu , andGpu. In the job ClassAd, the amount of the requested machine re-
source appears in a job ClassAd attribute namedRequest<name> . For this example, the two attributes will
beRequestGpu andRequestActuator .

The number of each type being reported can be changed at run time, by issuing a reconfiguration command to
thecondor_startddaemon (sending a SIGHUP or usingcondor_reconfig). However, the definitions for the types
themselves cannot be changed with reconfiguration. To change any slot type definitions, usecondor_restart

condor_restart -startd

for that change to take effect.

Configuration Specific to Multi-core Machines

Each slot within a multi-core machine is treated as an independent machine, each with its own view of its state as
represented by the machine ClassAd attributeState . The policy expressions for the multi-core machine as a whole
are propagated from thecondor_startdto the slot’s machine ClassAd. This policy may consider a slot state(s) in its
expressions. This makes some policies easy to set, but it makes other policies difficult or impossible to set.

An easy policy to set configures how many of the slots notice console or tty activity on the multi-core machine as
a whole. Slots that are not configured to notice any activity will report ConsoleIdle andKeyboardIdle times
from when thecondor_startddaemon was started, plus a configurable number of seconds. A multi-core machine with
the default policy settings can add the keyboard and consoleto be noticed by only one slot. Assuming a reasonable
load average, only the one slot will suspend or vacate its jobwhen the owner starts typing at their machine again. The
rest of the slots could be matched with jobs and continue running them, even while the user was interactively using
the machine. If the default policy is used, all slots notice tty and console activity and currently running jobs would
suspend.

This example policy is controlled with the following configuration variables.

• SLOTS_CONNECTED_TO_CONSOLE, with definition at section 3.5.9

• SLOTS_CONNECTED_TO_KEYBOARD, with definition at section 3.5.9

• DISCONNECTED_KEYBOARD_IDLE_BOOST, with definition at section 3.5.9

Each slot has its own machine ClassAd. Yet, the policy expressions for the multi-core machine are propagated and
inherited from configuration of thecondor_startd. Therefore, the policy expressions for each slot are the same. This
makes the implementation of certain types of policies impossible, because while evaluating the state of one slot within

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 401

the multi-core machine, the state of other slots are not available. Decisions for one slot cannot be based on what other
slots are doing.

Specifically, the evaluation of a slot policy expression works in the following way.

1. The configuration file specifies policy expressions that are shared by all of the slots on the machine.

2. Each slot reads the configuration file and sets up its own machine ClassAd.

3. Each slot is now separate from the others. It has a different ClassAd attributeState , a different machine
ClassAd, and if there is a job running, a separate job ClassAd. Each slot periodically evaluates the policy
expressions, changing its own state as necessary. This occurs independently of the other slots on the machine.
So, if thecondor_startddaemon is evaluating a policy expression on a specific slot, and the policy expression
refers toProcID , Owner, or any attribute from a job ClassAd, italwaysrefers to the ClassAd of the job
running on the specific slot.

To set a different policy for the slots within a machine, incorporate the slot-specific machine ClassAd attribute
SlotID . A SUSPENDpolicy that is different for each of the two slots will be of the form

SUSPEND = ((SlotID == 1) && (PolicyForSlot1)) || \
((SlotID == 2) && (PolicyForSlot2))

where(PolicyForSlot1) and(PolicyForSlot2) are the desired expressions for each slot.

Load Average for Multi-core Machines

Most operating systems define the load average for a multi-core machine as the total load on all cores. For example,
a 4-core machine with 3 CPU-bound processes running at the same time will have a load of 3.0. In HTCondor, we
maintain this view of the total load average and publish it inall resource ClassAds asTotalLoadAvg .

HTCondor also provides a per-core load average for multi-core machines. This nicely represents the model that
each node on a multi-core machine is a slot, separate from theother nodes. All of the default, single-core policy expres-
sions can be used directly on multi-core machines, without modification, since theLoadAvg andCondorLoadAvg
attributes are the per-slot versions, not the total, multi-core wide versions.

The per-core load average on multi-core machines is an HTCondor invention. No system call exists to ask the
operating system for this value. HTCondor already computesthe load average generated by HTCondor on each
slot. It does this by close monitoring of all processes spawned by any of the HTCondor daemons, even ones
that are orphaned and then inherited byinit. This HTCondor load average per slot is reported as the attribute
CondorLoadAvg in all resource ClassAds, and the total HTCondor load average for the entire machine is re-
ported asTotalCondorLoadAvg . The total, system-wide load average for the entire machineis reported as
TotalLoadAvg . Basically, HTCondor walks through all the slots and assigns out portions of the total load av-
erage to each one. First, HTCondor assigns the known HTCondor load average to each node that is generating load. If
there is any load average left in the total system load, it is considered an owner load. Any slots HTCondor believes are
in the Owner state, such as ones that have keyboard activity,are the first to get assigned this owner load. HTCondor

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 402

hands out owner load in increments of at most 1.0, so generally speaking, no slot has a load average above 1.0. If
HTCondor runs out of total load average before it runs out of slots, all the remaining machines believe that they have
no load average at all. If, instead, HTCondor runs out of slots and it still has owner load remaining, HTCondor starts
assigning that load to HTCondor nodes as well, giving individual nodes with a load average higher than 1.0.

Debug Logging in the Multi-Core condor_startdDaemon

This section describes how thecondor_startddaemon handles its debugging messages for multi-core machines. In
general, a given log message will either be something that ismachine-wide, such as reporting the total system load
average, or it will be specific to a given slot. Any log entriesspecific to a slot have an extra word printed out in the
entry with the slot number. So, for example, here’s the output about system resources that are being gathered (with
D_FULLDEBUGandD_LOADturned on) on a 2-core machine with no HTCondor activity, andthe keyboard connected
to both slots:

11/25 18:15 Swap space: 131064
11/25 18:15 number of Kbytes available for (/home/condor/e xecute): 1345063
11/25 18:15 Looking up RESERVED_DISK parameter
11/25 18:15 Reserving 5120 Kbytes for file system
11/25 18:15 Disk space: 1339943
11/25 18:15 Load avg: 0.340000 0.800000 1.170000
11/25 18:15 Idle Time: user= 0 , console= 4 seconds
11/25 18:15 SystemLoad: 0.340 TotalCondorLoad: 0.000 Tota lOwnerLoad: 0.340
11/25 18:15 slot1: Idle time: Keyboard: 0 Console: 4
11/25 18:15 slot1: SystemLoad: 0.340 CondorLoad: 0.000 Own erLoad: 0.340
11/25 18:15 slot2: Idle time: Keyboard: 0 Console: 4
11/25 18:15 slot2: SystemLoad: 0.000 CondorLoad: 0.000 Own erLoad: 0.000
11/25 18:15 slot1: State: Owner Activity: Idle
11/25 18:15 slot2: State: Owner Activity: Idle

If, on the other hand, this machine only had one slot connected to the keyboard and console, and the other slot was
running a job, it might look something like this:

11/25 18:19 Load avg: 1.250000 0.910000 1.090000
11/25 18:19 Idle Time: user= 0 , console= 0 seconds
11/25 18:19 SystemLoad: 1.250 TotalCondorLoad: 0.996 Tota lOwnerLoad: 0.254
11/25 18:19 slot1: Idle time: Keyboard: 0 Console: 0
11/25 18:19 slot1: SystemLoad: 0.254 CondorLoad: 0.000 Own erLoad: 0.254
11/25 18:19 slot2: Idle time: Keyboard: 1496 Console: 1496
11/25 18:19 slot2: SystemLoad: 0.996 CondorLoad: 0.996 Own erLoad: 0.000
11/25 18:19 slot1: State: Owner Activity: Idle
11/25 18:19 slot2: State: Claimed Activity: Busy

Shared system resources are printed without the header, such as total swap space, and slot-specific messages, such
as the load average or state of each slot, get the slot number appended.

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 403

Configuring GPUs

HTCondor supports incorporating GPU resources and making them available for jobs. First, GPUs must be detected
as available resources. Then, machine ClassAd attributes advertise this availability. Both detection and advertisement
are accomplished by having this configuration for each execute machine that has GPUs:

use feature : GPUs

Use of this configuration templdate invokes thecondor_gpu_discoverytool to create a custom resource, with
a custom resource name ofGPUs, and it generates the ClassAd attributes needed to advertise the GPUs. con-
dor_gpu_discoveryis invoked in a mode that discovers and advertises both CUDA and OpenCL GPUs.

This configuration template refers to macroGPU_DISCOVERY_EXTRA, which can be used to define additional
command line arguments for thecondor_gpu_discoverytool. For example, setting

use feature : GPUs
GPU_DISCOVERY_EXTRA = -extra

causes thecondor_gpu_discoverytool to output more attributes that describe the detected GPUs on the machine.

Configuring STARTD_ATTRS on a per-slot basis

The STARTD_ATTRS(and legacySTARTD_EXPRS) settings can be configured on a per-slot basis. Thecon-
dor_startddaemon builds the list of items to advertise by combining thelists in this order:

1. STARTD_ATTRS

2. STARTD_EXPRS

3. SLOT<N>_STARTD_ATTRS

4. SLOT<N>_STARTD_EXPRS

For example, consider the following configuration:

STARTD_ATTRS = favorite_color, favorite_season
SLOT1_STARTD_ATTRS = favorite_movie
SLOT2_STARTD_ATTRS = favorite_song

This will result in the condor_startd ClassAd for slot1 defining values forfavorite_color ,
favorite_season , and favorite_movie . Slot2 will have values for favorite_color ,
favorite_season , andfavorite_song .

Attributes themselves in theSTARTD_ATTRSlist can also be defined on a per-slot basis. Here is another example:

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 404

favorite_color = "blue"
favorite_season = "spring"
STARTD_ATTRS = favorite_color, favorite_season
SLOT2_favorite_color = "green"
SLOT3_favorite_season = "summer"

For this example, thecondor_startdClassAds are

slot1:

favorite_color = "blue"
favorite_season = "spring"

slot2:

favorite_color = "green"
favorite_season = "spring"

slot3:

favorite_color = "blue"
favorite_season = "summer"

Dynamic Provisioning: Partitionable and Dynamic Slots

Dynamic provisioning, also referred to as partitionable or dynamic slots, allowsHTCondor to use the resources of a
slot in a dynamic way; these slots may be partitioned. This means that more than one job can occupy a single slot at
any one time. Slots have a fixed set of resources which includethe cores, memory and disk space. By partitioning the
slot, the use of these resources becomes more flexible.

Here is an example that demonstrates how resources are divided as more than one job is or can be matched to a
single slot. In this example, Slot1 is identified as a partitionable slot and has the following resources:

cpu = 10

memory = 10240

disk = BIG

Assume that JobA is allocated to this slot. JobA includes thefollowing requirements:

cpu = 3

memory = 1024

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 405

disk = 10240

The portion of the slot that is carved out is now known as a dynamic slot. This dynamic slot has its own machine
ClassAd, and itsNameattribute distinguishes itself as a dynamic slot with incorporating the substringSlot1_1 .

After allocation, the partitionable Slot1 advertises thatit has the following resources still available:

cpu = 7

memory = 9216

disk = BIG-10240

As each new job is allocated to Slot1, it breaks intoSlot1_1 , Slot1_2 , Slot1_3 etc., until the entire set of
Slot1’s available resources have been consumed by jobs.

To enable dynamic provisioning, define a slot type. and declare at least one slot of that type. Then, identify
that slot type as partitionable by setting configuration variableSLOT_TYPE_<N>_PARTITIONABLEto True . The
value of<N> within the configuration variable name is the same value as inslot type definition configuration variable
SLOT_TYPE_<N>. For the most common cases the machine should be configured for one slot, managing all the
resources on the machine. To do so, set the following configuration variables:

NUM_SLOTS = 1
NUM_SLOTS_TYPE_1 = 1
SLOT_TYPE_1 = 100%
SLOT_TYPE_1_PARTITIONABLE = TRUE

In a pool using dynamic provisioning, jobs can have extra, and desired, resources specified in the submit description
file:

request_cpus

request_memory

request_disk (in kilobytes)

This example shows a portion of the job submit description file for use when submitting a job to a pool with
dynamic provisioning.

universe = vanilla

request_cpus = 3
request_memory = 1024
request_disk = 10240

queue

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 406

Each partitionable slot will have the ClassAd attributes

PartitionableSlot = True
SlotType = "Partitionable"

Each dynamic slot will have the ClassAd attributes

DynamicSlot = True
SlotType = "Dynamic"

These attributes may be used in aSTARTexpression for the purposes of creating detailed policies.

A partitionable slot will always appear as though it is not running a job. If matched jobs consume all its resources,
the partitionable slot will eventually show as having no available resources; this will prevent further matching of new
jobs. The dynamic slots will show as running jobs. The dynamic slots can be preempted in the same way as all other
slots.

Dynamic provisioning provides powerful configuration possibilities, and so should be used with care. Specifically,
while preemption occurs for each individual dynamic slot, it cannot occur directly for the partitionable slot, or for
groups of dynamic slots. For example, for a large number of jobs requiring 1GB of memory, a pool might be split up
into 1GB dynamic slots. In this instance a job requiring 2GB of memory will be starved and unable to run. A partial
solution to this problem is provided by defragmentation accomplished by thecondor_defragdaemon, as discussed in
section 3.7.1.

Another partial solution is a new matchmaking algorithm in the negotiator, referred to aspartitionable slot pre-
emption, orpslot preemption. Without pslot preemption, when the negotiator searches for a match for a job, it looks at
each slot ClassAd individually. With pslot preemption, thenegotiator looks at a partitionable slot and all of its dynamic
slots as a group. If the partitionable slot does not have sufficient resources (memory, cpu, and disk) to be matched with
the candidate job, then the negotiator looks at all of the related dynamic slots that the candidate job might preempt
(following the normal preemption rules described elsewhere). The resources of each dynamic slot are added to those
of the partitionable slot, one dynamic slot at a time. Once this partial sum of resources is sufficient to enable a match,
the negotiator sends the match information to thecondor_schedd. When thecondor_scheddclaims the partitionable
slot, the dynamic slots are preempted, such that their resources are returned to the partitionable slot for use by the new
job.

To enable pslot preemption, the following configuration variable must be set for thecondor_negotiator:

ALLOW_PSLOT_PREEMPTION = True

When the negotiator examines the resources of dynamic slots, it sorts the slots by theirCurrentRank attribute,
such that slots with lower values are considered first. The negotiator only examines the cpu, memory and disk resources
of the dynamic slots; custom resources are ignored.

Dynamic slots that have retirement time remaining are not considered eligible for preemption, regardless of how
configuration variableNEGOTIATOR_CONSIDER_EARLY_PREEMPTIONis set.

When pslot preemption is enabled, the negotiator will not preempt dynamic slots directly. It will preempt them
only as part of a match to a partitionable slot.

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 407

When multiple partitionable slots match a candidate job andthe various job rank expressions are evaluated to sort
the matching slots, the ClassAd of the partitionable slot isused for evaluation. This may cause unexpected results for
some expressions, as attributes such asRemoteOwner will not be present in a partitionable slot that matches with
preemption of some of its dynamic slots.

Defaults for Partitionable Slot Sizes

If a job does not specify the required number of CPUs, amount of memory, or disk space, there are ways for the
administrator to set default values for all of these parameters.

First, if any of these attributes are not set in the submit description file, there are three variables in the configuration
file that condor_submit will use to fill in default values. These are

JOB_DEFAULT_REQUESTMEMORY

JOB_DEFAULT_REQUESTDISK

JOB_DEFAULT_REQUESTCPUS

The value of these variables can be ClassAd expressions. Thedefault values for these variables, should they not
be set are

JOB_DEFAULT_REQUESTMEMORY= ifThenElse(MemoryUsage =!= UNDEFINED, MemoryUsage, 1)

JOB_DEFAULT_REQUESTCPUS= 1

JOB_DEFAULT_REQUESTDISK= DiskUsage

Note that these default values are chosen such that jobs matched to partitionable slots function similar to static
slots.

Once the job has been matched, and has made it to the execute machine, thecondor_startdhas the ability to modify
these resource requests before using them to size the actualdynamic slots carved out of the partitionable slot. Clearly,
for the job to work, thecondor_startddaemon must create slots with at least as many resources as the job needs.
However, it may be valuable to create dynamic slots somewhatbigger than the job’s request, as subsequent jobs may
be more likely to reuse the newly created slot when the initial job is done using it.

Thecondor_startdconfiguration variables which control this and their defaults are

MODIFY_REQUEST_EXPR_REQUESTCPUS= quantize(RequestCpus, {1})

MODIFY_REQUEST_EXPR_REQUESTMEMORY= quantize(RequestMemory, {128})

MODIFY_REQUEST_EXPR_REQUESTDISK= quantize(RequestDisk, {1024})

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 408

condor_negotiator-Side Resource Consumption Policies

For partitionable slots, the specification of a consumptionpolicy permits matchmaking at the negotiator. A dynamic
slot carved from the partitionable slot acquires the required quantities of resources, leaving the partitionable slotwith
the remainder. This differs from scheduler matchmaking in that multiple jobs can match with the partitionable slot
during a single negotiation cycle.

All specification of the resources available is done by configuration of the partitionable slot. The machine is
identified as having a resource consumption policy enabled with

CONSUMPTION_POLICY = True

A defined slot type that is partitionable may override the machine value with

SLOT_TYPE_<N>_CONSUMPTION_POLICY = True

A job seeking a match may always request a specific number of cores, amount of memory, and amount of disk
space. Availability of these three resources on a machine and within the partitionable slot is always defined and have
these default values:

CONSUMPTION_CPUS = quantize(target.RequestCpus,{1})
CONSUMPTION_MEMORY = quantize(target.RequestMemory,{1 28})
CONSUMPTION_DISK = quantize(target.RequestDisk,{1024})

Here is an example-driven definition of a consumption policy. Assume a single partitionable slot type on a multi-
core machine with 8 cores, and that the resource this policy cares about allocating are the cores. Configuration for the
machine includes the definition of the slot type and that it ispartitionable.

SLOT_TYPE_1 = cpus=8
SLOT_TYPE_1_PARTITIONABLE = True
NUM_SLOTS_TYPE_1 = 1

Enable use of thecondor_negotiator-side resource consumption policy, allocating the job-requested number of
cores to the dynamic slot, and useSLOT_WEIGHTto assess the user usage that will affect user priority by thenumber
of cores allocated. Note that the only attributes valid within theSLOT_WEIGHTexpression are Cpus, Memory, and
disk. This must the set to the same value on all machines in thepool.

SLOT_TYPE_1_CONSUMPTION_POLICY = True
SLOT_TYPE_1_CONSUMPTION_CPUS = TARGET.RequestCpus
SLOT_WEIGHT = Cpus

If custom resources are available within the partitionableslot, they may be used in a consumption policy, by
specifying the resource. Using a machine with 4 GPUs as an example custom resource, define the resource and
include it in the definition of the partitionable slot:

HTCondor Version 8.6.4 Manual

3.7.1.condor_startdPolicy Configuration 409

MACHINE_RESOURCE_NAMES = gpus
MACHINE_RESOURCE_gpus = 4
SLOT_TYPE_2 = cpus=8, gpus=4
SLOT_TYPE_2_PARTITIONABLE = True
NUM_SLOTS_TYPE_2 = 1

Add the consumption policy to incorporate availability of the GPUs:

SLOT_TYPE_2_CONSUMPTION_POLICY = True
SLOT_TYPE_2_CONSUMPTION_gpus = TARGET.RequestGpu
SLOT_WEIGHT = Cpus

Defragmenting Dynamic Slots

When partitionable slots are used, some attention must be given to the problem of the starvation of large jobs due to
the fragmentation of resources. The problem is that over time the machine resources may become partitioned into slots
suitable for running small jobs. If a sufficient number of these slots do not happen to become idle at the same time on
a machine, then a large job will not be able to claim that machine, even if the large job has a better priority than the
small jobs.

One way of addressing the partitionable slot fragmentationproblem is to periodically drain all jobs from frag-
mented machines so that they become defragmented. Thecondor_defragdaemon implements a configurable policy
for doing that. Its implementation is targeted at machines configured to run whole-machine jobs and at machines that
only have partitionable slots. The draining of a machine configured to have both partitionable slots and static slots
would have a negative impact on single slot jobs running in static slots.

To use this daemon,DEFRAGmust be added toDAEMON_LIST, and the defragmentation policy must be config-
ured. Typically, only one instance of thecondor_defragdaemon would be run per pool. It is a lightweight daemon
that should not require a lot of system resources.

Here is an example configuration that puts thecondor_defragdaemon to work:

DAEMON_LIST = $(DAEMON_LIST) DEFRAG
DEFRAG_INTERVAL = 3600
DEFRAG_DRAINING_MACHINES_PER_HOUR = 1.0
DEFRAG_MAX_WHOLE_MACHINES = 20
DEFRAG_MAX_CONCURRENT_DRAINING = 10

This example policy tellscondor_defragto initiate draining jobs from 1 machine per hour, but to avoid initiating
new draining if there are 20 completely defragmented machines or 10 machines in a draining state. A full description
of each configuration variable used by thecondor_defragdaemon may be found in section 3.5.35.

By default, when a machine is drained, existing jobs are gracefully evicted. This means that each job will be
allowed to use the remaining time promised to it byMaxJobRetirementTime . If the job has not finished when
the retirement time runs out, the job will be killed with a soft kill signal, so that it has an opportunity to save a

HTCondor Version 8.6.4 Manual

3.7.2.condor_scheddPolicy Configuration 410

checkpoint (if the job supports this). No new jobs will be allowed to start while the machine is draining. To reduce
unused time on the machine caused by some jobs having longer retirement time than others, the eviction of jobs with
shorter retirement time is delayed until the job with the longest retirement time needs to be evicted.

There is a trade off between reduced starvation and throughput. Frequent draining of machines reduces the chance
of starvation of large jobs. However, frequent draining reduces total throughput. Some of the machine’s resources
may go unused during draining, if some jobs finish before others. If jobs that cannot produce checkpoints are killed
because they run past the end of their retirement time duringdraining, this also adds to the cost of draining.

To help gauge the costs of draining, thecondor_startdadvertises the accumulated time that was unused due
to draining and the time spent by jobs that were killed due to draining. These are advertised respectively in
the attributesTotalMachineDrainingUnclaimedTime andTotalMachineDrainingBadput . Thecon-
dor_defragdaemon averages these values across the pool and advertisesthe result in its daemon ClassAd in the
attributesAvgDrainingBadput andAvgDrainingUnclaimed . Details of all attributes published by thecon-
dor_defragdaemon are described in section 12.

The following command may be used to view thecondor_defragdaemon ClassAd:

condor_status -l -any -constraint 'MyType == "Defrag"'

3.7.2 condor_scheddPolicy Configuration

There are two types of schedd policy: job transforms (which change the ClassAd of a job at submission) and submit
requirements (which prevent some jobs from entering the queue). These policies are explained below.

Job Transforms

Thecondor_scheddcan transform jobs as they are submitted. Transformations can be used to guarantee the presence
of required job attributes, to set defaults for job attributes the user does not supply, or to modify job attributes so that
they conform to schedd policy; an example of this might be to automatically set accounting attributes based on the
owner of the job while letting the job owner indicate a preference.

There can be multiple job transforms. Each transform can have a Requirements expression to indicate which jobs
it should transform and which it should ignore. Transforms without a Requirements expression apply to all jobs. Job
transforms are applied in order. The set of transforms and their order are configured using the Configuration variable
JOB_TRANSFORM_NAMES.

For each entry in this list there must be a correspondingJOB_TRANSFORM_<name>configuration variable that
specifies the transform rules. Transforms use the same syntax as condor_job_routertransforms; although unlike
thecondor_job_routerthere is no default transform, and all matching transforms are applied - not just the first one.
(See 5.4 for information on thecondor_job_router.)

The following example shows a set of two transforms: one thatautomatically assigns an accounting group to jobs
based on the submitting user, and one that shows one possibleway to transform Vanilla jobs to Docker jobs.

HTCondor Version 8.6.4 Manual

3.7.2.condor_scheddPolicy Configuration 411

JOB_TRANSFORM_NAMES = AssignGroup, SL6ToDocker

JOB_TRANSFORM_AssignGroup = [eval_set_AccountingGroup = userMap("Groups",Owner,AccountingGroup);]

JOB_TRANSFORM_SL6ToDocker @=end
[

Requirements = JobUniverse==5 && WantSL6 && DockerImage =? = undefined;
set_WantDocker = true;
set_DockerImage = "SL6";
copy_Requirements = "VanillaRequrements";
set_Requirements = TARGET.HasDocker && VanillaRequireme nts

]
@end

TheAssignGroup transform above assumes that a mapfile that can map an owner toone or more accounting
groups has been configured viaSCHEDD_CLASSAD_USER_MAP_NAMES, and given the name "Groups".

TheSL6ToDocker transform above is most likely incomplete, as it assumes some custom attributes (WantSL6
andWantDocker andHasDocker) that your pool may or may not use.

Submit Requirements

Thecondor_scheddmay reject job submissions, such that rejected jobs never enter the queue. Rejection may be best
for the case in which there are jobs that will never be able to run; an example of this might be all jobs that specify the
standard universe in a queue with restricted networking. Another appropriate example might be to reject all jobs that
do not request a minimum amount of memory. Or, it may be appropriate to prevent certain users from using a specific
submit host.

Rejection criteria are configured. Configuration variableSUBMIT_REQUIREMENT_NAMESlists criteria, where
each criterion is given a name. The chosen name is a major component of the default error message output if a user
attempts to submit a job which fails to meet the requirements. Therefore, choose a descriptive name. For the three
example submit requirements described:

SUBMIT_REQUIREMENT_NAMES = NotStandardUniverse, Minima lRequestMemory, NotChris

The criterion for each submit requirement is then specified in configuration vari-
able SUBMIT_REQUIREMENT_<Name>, where <Name> matches the chosen name listed in
SUBMIT_REQUIREMENT_NAMES. The value is a boolean ClassAd expression. The three example criterion
result in these configuration variable definitions:

SUBMIT_REQUIREMENT_NotStandardUniverse = JobUniverse ! = 1
SUBMIT_REQUIREMENT_MinimalRequestMemory = RequestMemo ry > 512
SUBMIT_REQUIREMENT_NotChris = Owner != "chris"

Submit requirements are evaluated in the listed order; the first requirement that evaluates toFalse causes rejection
of the job, terminates further evaluation of other submit requirements, and is the only requirement reported. Each
submit requirement is evaluated in the context of thecondor_scheddClassAd, which is theMY. name space and the

HTCondor Version 8.6.4 Manual

3.8. Security 412

job ClassAd, which is theTARGET. name space. Note thatJobUniverse andRequestMemory are both job
ClassAd attributes.

Further configuration may associate a rejection reason witha submit requirement with the
SUBMIT_REQUIREMENT_<Name>_REASON.

SUBMIT_REQUIREMENT_NotStandardUniverse_REASON = "This pool does not accept standard universe jobs."
SUBMIT_REQUIREMENT_MinimalRequestMemory_REASON = strc at("The job only requested ", \

RequestMemory, " Megabytes. If that small amount is really e nough, please contact ...")
SUBMIT_REQUIREMENT_NotChris_REASON = "Chris, you may onl y submit jobs to the instructional pool."

The value must be a ClassAd expression which evaluates to a string. Thus, double quotes
were required to make strings for bothSUBMIT_REQUIREMENT_NotStandardUniverse_REASON and
SUBMIT_REQUIREMENT_NotChris_REASON. The ClassAd functionstrcat() produces a string in the def-
inition of SUBMIT_REQUIREMENT_MinimalRequestMemory_REASON.

Rejection reasons are sent back to the submitting program and will typically be immediately presented to the
user. If an optionalSUBMIT_REQUIREMENT_<Name>_REASONis not defined, a default reason will include the
<Name>chosen for the submit requirement. Completing the presentation of the example submit requirements, upon
an attempt to submit a standard universe job,condor_submitwould print

Submitting job(s).
ERROR: Failed to commit job submission into the queue.
ERROR: This pool does not accept standard universe jobs.

Where there are multiple jobs in a cluster, if any job within the cluster is rejected due to a submit requirement, the
entire cluster of jobs will be rejected.

3.8 Security

Security in HTCondor is a broad issue, with many aspects to consider. Because HTCondor’s main purpose is to allow
users to run arbitrary code on large numbers of computers, itis important to try to limit who can access an HTCondor
pool and what privileges they have when using the pool. This section covers these topics.

There is a distinction between the kinds of resource attacksHTCondor can defeat, and the kinds of attacks HTCon-
dor cannot defeat. HTCondor cannot prevent security breaches of users that can elevate their privilege to the root or
administrator account. HTCondor does not run user jobs in sandboxes (standard universe jobs are a partial exception
to this), so HTCondor cannot defeat all malicious actions byuser jobs. An example of a malicious job is one that
launches a distributed denial of service attack. HTCondor assumes that users are trustworthy. HTCondor can prevent
unauthorized access to the HTCondor pool, to help ensure that only trusted users have access to the pool. In addi-
tion, HTCondor provides encryption and integrity checking, to ensure that network transmissions are not examined or
tampered with while in transit.

Broadly speaking, the aspects of security in HTCondor may becategorized and described:

HTCondor Version 8.6.4 Manual

3.8.1. HTCondor’s Security Model 413

Users Authorization or capability in an operating system is basedon a process owner. Both those that submit jobs
and HTCondor daemons become process owners. The HTCondor system prefers that HTCondor daemons are
run as the userroot , while other common operations are owned by a user of HTCondor. Operations that do
not belong to eitherroot or an HTCondor user are often owned by thecondor user. See Section 3.8.13 for
more detail.

Authentication Proper identification of a user is accomplished by the process of authentication. It attempts to dis-
tinguish between real users and impostors. By default, HTCondor’s authentication uses the user id (UID) to
determine identity, but HTCondor can choose among a varietyof authentication mechanisms, including the
stronger authentication methods Kerberos and GSI.

Authorization Authorization specifies who is allowed to do what. Some usersare allowed to submit jobs, while other
users are allowed administrative privileges over HTCondoritself. HTCondor provides authorization on either a
per-user or on a per-machine basis.

Privacy HTCondor may encrypt data sent across the network, which prevents others from viewing the data. With per-
sistence and sufficient computing power, decryption is possible. HTCondor can encrypt the data sent for internal
communication, as well as user data, such as files and executables. Encryption operates on network transmis-
sions: unencrypted data is stored on disk by default. However, see theENCRYPT_EXECUTE_DIRECTORY
setting for how to encrypt job data on the disk of an execute node.

Integrity Theman-in-the-middleattack tampers with data without the awareness of either side of the communication.
HTCondor’s integrity check sends additional cryptographic data to verify that network data transmissions have
not been tampered with. Note that the integrity informationis only for network transmissions: data stored on
disk does not have this integrity information. Also note that integrity checks are not performed upon job data
files that are transferred by HTCondor via the File Transfer Mechanism described in section 2.5.9.

3.8.1 HTCondor’s Security Model

At the heart of HTCondor’s security model is the notion that communications are subject to various security checks.
A request from one HTCondor daemon to another may require authentication to prevent subversion of the system. A
request from a user of HTCondor may need to be denied due to theconfidential nature of the request. The security
model handles these example situations and many more.

Requests to HTCondor are categorized into groups ofaccess levels, based on the type of operation requested. The
user of a specific request must be authorized at the required access level. For example, executing thecondor_status
command requires theREADaccess level. Actions that accomplish management tasks, such as shutting down or
restarting of a daemon require anADMINISTRATORaccess level. See Section 3.8.7 for a full list of HTCondor’s
access levels and their meanings.

There are two sides to any communication or command invocation in HTCondor. One side is identified as the
client, and the other side is identified as thedaemon. The client is the party that initiates the command, and the daemon
is the party that processes the command and responds. In somecases it is easy to distinguish the client from the dae-
mon, while in other cases it is not as easy. HTCondor tools such ascondor_submitandcondor_config_valare clients.
They send commands to daemons and act as clients in all their communications. For example, thecondor_submitcom-
mand communicates with thecondor_schedd. Behind the scenes, HTCondor daemons also communicate witheach
other; in this case the daemon initiating the command plays the role of the client. For instance, thecondor_negotiator

HTCondor Version 8.6.4 Manual

3.8.1. HTCondor’s Security Model 414

daemon acts as a client when contacting thecondor_schedddaemon to initiate matchmaking. Once a match has been
found, thecondor_schedddaemon acts as a client and contacts thecondor_startddaemon.

HTCondor’s security model is implemented using configuration. Commands in HTCondor are executed over
TCP/IP network connections. While network communication enables HTCondor to manage resources that are dis-
tributed across an organization (or beyond), it also bringsin security challenges. HTCondor must have ways of
ensuring that communications are being sent by trustworthyusers and not tampered with in transit. These issues can
be addressed with HTCondor’s authentication, encryption,and integrity features.

Access Level Descriptions

Authorization is granted based on specified access levels. This list describes each access level, and provides examples
of their usage. The levels implement a partial hierarchy; a higher level often implies aREADor both aWRITEand a
READlevel of access as described.

READ This access level can obtain or read information about HTCondor. Examples that require onlyREADaccess
are viewing the status of the pool withcondor_status, checking a job queue withcondor_q, or viewing user
priorities withcondor_userprio. READaccess does not allow any changes, and it does not allow job submission.

WRITE This access level is required to send (write) information toHTCondor. Examples that requireWRITEaccess
are job submission withcondor_submitand advertising a machine so it appears in the pool (this is usually done
automatically by thecondor_startddaemon). TheWRITElevel of access impliesREADaccess.

ADMINISTRATOR This access level has additional HTCondor administrator rights to the pool. It includes the abil-
ity to change user priorities with the commandcondor_userprio, as well as the ability to turn HTCondor
on and off (as with the commandscondor_onand condor_off). The condor_fetchlogtool also requires an
ADMINISTRATORaccess level. TheADMINISTRATORlevel of access implies bothREADandWRITEaccess.

SOAP This access level is required for the authorization of any party that will use the Web Services (SOAP) inter-
face to HTCondor. It is not a general access level to be used with the variety of configuration variables for
authentication, encryption, and integrity checks.

CONFIG This access level is required to modify a daemon’s configuration using thecondor_config_valcommand.
By default, this level of access can change any configurationparameters of an HTCondor pool, except those
specified in thecondor_config.root configuration file. TheCONFIGlevel of access impliesREADaccess.

OWNER This level of access is required for commands that the owner of a machine (any local user) should be able to
use, in addition to the HTCondor administrators. An examplethat requires theOWNERaccess level is thecon-
dor_vacatecommand. The command causes thecondor_startddaemon to vacate any HTCondor job currently
running on a machine. The owner of that machine should be ableto cause the removal of a job running on the
machine.

DAEMON This access level is used for commands that are internal to the operation of HTCondor. An example of this
internal operation is when thecondor_startddaemon sends its ClassAd updates to thecondor_collectordaemon
(which may be more specifically controlled by theADVERTISE_STARTDaccess level). Authorization at this
access level should only be given to the user account under which the HTCondor daemons run. TheDAEMON
level of access implies bothREADandWRITEaccess. Any setting for this access level that is not defined will
default to the corresponding setting in theWRITEaccess level.

HTCondor Version 8.6.4 Manual

3.8.1. HTCondor’s Security Model 415

NEGOTIATOR This access level is used specifically to verify that commands are sent by thecondor_negotiatordae-
mon. Thecondor_negotiatordaemon runs on the central manager of the pool. Commands requiring this access
level are the ones that tell thecondor_schedddaemon to begin negotiating, and those that tell an availablecon-
dor_startddaemon that it has been matched to acondor_scheddwith jobs to run. TheNEGOTIATORlevel of
access impliesREADaccess.

ADVERTISE_MASTER This access level is used specifically for commands used to advertise acondor_masterdae-
mon to the collector. Any setting for this access level that is not defined will default to the corresponding setting
in theDAEMONaccess level.

ADVERTISE_STARTD This access level is used specifically for commands used to advertise acondor_startddaemon
to the collector. Any setting for this access level that is not defined will default to the corresponding setting in
theDAEMONaccess level.

ADVERTISE_SCHEDD This access level is used specifically for commands used to advertise acondor_schedddae-
mon to the collector. Any setting for this access level that is not defined will default to the corresponding setting
in theDAEMONaccess level.

CLIENT This access level is different from all the others. Whereas all of the other access levels refer to the security
policy for accepting connectionsfrom others, theCLIENT access level applies when an HTCondor daemon or
tool is connectingto some other HTCondor daemon. In other words, it specifies the policy of the client that is
initiating the operation, rather than the server that is being contacted.

The following is a list of registered commands that daemons will accept. The list is ordered by daemon. For each
daemon, the commands are grouped by the access level required for a daemon to accept the command from a given
machine.

ALL DAEMONS:

WRITE The command sent as a result ofcondor_reconfigto reconfigure a daemon.

STARTD:

WRITE All commands that relate to acondor_schedddaemon claiming a machine, starting jobs there, or stopping
those jobs.

The command thatcondor_checkpointsends to periodically checkpoint all running jobs.

READ The command thatcondor_preensends to request the current state of thecondor_startddaemon.

OWNER The command thatcondor_vacatesends to cause any running jobs to stop running.

NEGOTIATOR The command that thecondor_negotiatordaemon sends to match a machine’scondor_startddaemon
with a givencondor_schedddaemon.

NEGOTIATOR:

HTCondor Version 8.6.4 Manual

3.8.1. HTCondor’s Security Model 416

WRITE The command that initiates a new negotiation cycle. It is sent by thecondor_scheddwhen new jobs are
submitted or acondor_reschedulecommand is issued.

READ The command that can retrieve the current state of user priorities in the pool, sent by thecondor_userprio
command.

ADMINISTRATOR The command that can set the current values of user priorities, sent as a result of thecon-
dor_userpriocommand.

COLLECTOR:

ADVERTISE_MASTER Commands that update thecondor_collectordaemon with newcondor_masterClassAds.

ADVERTISE_SCHEDD Commands that update thecondor_collectordaemon with newcondor_scheddClassAds.

ADVERTISE_STARTD Commands that update thecondor_collectordaemon with newcondor_startdClassAds.

DAEMON All other commands that update thecondor_collectordaemon with new ClassAds. Note that the specific
access levels such asADVERTISE_STARTDdefault to theDAEMONsettings, which in turn defaults toWRITE.

READ All commands that query thecondor_collectordaemon for ClassAds.

SCHEDD:

NEGOTIATOR The command that thecondor_negotiatorsends to begin negotiating with thiscondor_scheddto match
its jobs with availablecondor_startds.

WRITE The command whichcondor_reschedulesends to thecondor_scheddto get it to update thecondor_collector
with a current ClassAd and begin a negotiation cycle.

The commands which write information into the job queue (such ascondor_submitandcondor_hold). Note
that for most commands which attempt to write to the job queue, HTCondor will perform an additional user-
level authentication step. This additional user-level authentication prevents, for example, an ordinary user from
removing a different user’s jobs.

READ The command from any tool to view the status of the job queue.

The commands that acondor_startdsends to thecondor_scheddwhen thecondor_schedddaemon’s claim is
being preempted and also when the lease on the claim is renewed. These operations only requireREADaccess,
rather thanDAEMONin order to limit the level of trust that thecondor_scheddmust have for thecondor_startd.
Success of these commands is only possible if thecondor_startdknows the secret claim id, so effectively,
authorization for these commands is more specific than HTCondor’s general security model implies. Thecon-
dor_schedd automaticallygrants thecondor_startdREADaccess for the duration of the claim. Therefore, if
one desires to only authorize specific execute machines to run jobs, one must either limit which machines are
allowed to advertise themselves to the pool (most common) orconfigure thecondor_schedd’s ALLOW_CLIENT
setting to only allow connections from thecondor_scheddto the trusted execute machines.

MASTER: All commands are registered withADMINISTRATORaccess:

HTCondor Version 8.6.4 Manual

3.8.2. Security Negotiation 417

restart : Master restarts itself (and all its children)

off : Master shuts down all its children

off -master : Master shuts down all its children and exits

on : Master spawns all the daemons it is configured to spawn

3.8.2 Security Negotiation

Because of the wide range of environments and security demands necessary, HTCondor must be flexible. Configu-
ration provides this flexibility. The process by which HTCondor determines the security settings that will be used
when a connection is established is calledsecurity negotiation. Security negotiation’s primary purpose is to deter-
mine which of the features of authentication, encryption, and integrity checking will be enabled for a connection. In
addition, since HTCondor supports multiple technologies for authentication and encryption, security negotiation also
determines which technology is chosen for the connection.

Security negotiation is a completely separate process frommatchmaking, and should not be confused with any
specific function of thecondor_negotiatordaemon. Security negotiation occurs when one HTCondor daemon or tool
initiates communication with another HTCondor daemon, to determine the security settings by which the communi-
cation will be ruled. Thecondor_negotiatordaemon does negotiation, whereby queued jobs and availablemachines
within a pool go through the process of matchmaking (deciding out which machines will run which jobs).

Configuration

The configuration macro names that determine what features will be used during client-daemon communication follow
the pattern:

SEC_<context>_<feature>

The<feature> portion of the macro name determines which security feature’s policy is being set.<feature>
may be any one of

AUTHENTICATION
ENCRYPTION
INTEGRITY
NEGOTIATION

The<context> component of the security policy macros can be used to craft afine-grained security policy based
on the type of communication taking place.<context> may be any one of

CLIENT
READ
WRITE

HTCondor Version 8.6.4 Manual

3.8.2. Security Negotiation 418

ADMINISTRATOR
CONFIG
OWNER
DAEMON
NEGOTIATOR
ADVERTISE_MASTER
ADVERTISE_STARTD
ADVERTISE_SCHEDD
DEFAULT

Any of these constructed configuration macros may be set to any of the following values:

REQUIRED
PREFERRED
OPTIONAL
NEVER

Security negotiation resolves various client-daemon combinations of desired security features in order to set a
policy.

As an example, consider Frida the scientist. Frida wants to avoid authentication when possible. She sets

SEC_DEFAULT_AUTHENTICATION = OPTIONAL

The machine running thecondor_scheddto which Frida will remotely submit jobs, however, is operated by a security-
conscious system administrator who dutifully sets:

SEC_DEFAULT_AUTHENTICATION = REQUIRED

When Frida submits her jobs, HTCondor’s security negotiation determines that authentication will be used, and allows
the command to continue. This example illustrates the pointthat the most restrictive security policy sets the levels of
security enforced. There is actually more to the understanding of this scenario. Some HTCondor commands, such as
the use ofcondor_submitto submit jobsalwaysrequire authentication of the submitter, no matter what thepolicy says.
This is because the identity of the submitter needs to be known in order to carry out the operation. Others commands,
such ascondor_q, do not always require authentication, so in the above example, the server’s policy would force
Frida’scondor_qqueries to be authenticated, whereas a different policy could allow condor_qto happen without any
authentication.

Whether or not security negotiation occurs depends on the setting at both the client and daemon side of the config-
uration variable(s) defined bySEC_* _NEGOTIATION. SEC_DEFAULT_NEGOTIATIONis a variable representing
the entire set of configuration variables forNEGOTIATION. For the client side setting, the only definitions that make
sense areREQUIREDandNEVER. For the daemon side setting, thePREFERREDvalue makes no sense. Table 3.1
shows how security negotiation resolves various client-daemon combinations of security negotiation policy settings.
Within the table, Yes means the security negotiation will take place. No means it will not. Fail means that the policy
settings are incompatible and the communication cannot continue.

HTCondor Version 8.6.4 Manual

3.8.2. Security Negotiation 419

Daemon Setting
NEVER OPTIONAL REQUIRED

Client NEVER No No Fail
Setting REQUIRED Fail Yes Yes

Table 3.1: Resolution of security negotiation.

Daemon Setting
NEVER OPTIONAL PREFERRED REQUIRED

NEVER No No No Fail
Client OPTIONAL No No Yes Yes
Setting PREFERRED No Yes Yes Yes

REQUIRED Fail Yes Yes Yes

Table 3.2: Resolution of security features.

Enabling authentication, encryption, and integrity checks is dependent on security negotiation taking place. The
enabled security negotiation further sets the policy for these other features. Table 3.2 shows how security features are
resolved for client-daemon combinations of security feature policy settings. Like Table 3.1, Yes means the feature will
be utilized. No means it will not. Fail implies incompatibility and the feature cannot be resolved.

The enabling of encryption and/or integrity checks is dependent on authentication taking place. The authentication
provides a key exchange. The key is needed for both encryption and integrity checks.

SettingSEC_CLIENT_<feature> determines the policy for all outgoing commands. The policyfor incoming
commands (the daemon side of the communication) takes a morefine-grained approach that implements a set of access
levels for the received command. For example, it is desirable to have all incoming administrative requests require
authentication. Inquiries on pool status may not be so restrictive. To implement this, the administrator configures the
policy:

SEC_ADMINISTRATOR_AUTHENTICATION = REQUIRED
SEC_READ_AUTHENTICATION = OPTIONAL

TheDEFAULTvalue for<context> provides a way to set a policy for all access levels (READ, WRITE, etc.)
that do not have a specific configuration variable defined. In addition, some access levels will default to the settings
specified for other access levels. For example,ADVERTISE_STARTDdefaults toDAEMON, andDAEMONdefaults to
WRITE, which then defaults to the generalDEFAULTsetting.

Configuration for Security Methods

Authentication and encryption can each be accomplished by avariety of methods or technologies. Which method is
utilized is determined during security negotiation.

The configuration macros that determine the methods to use for authentication and/or encryption are

HTCondor Version 8.6.4 Manual

3.8.3. Authentication 420

SEC_<context>_AUTHENTICATION_METHODS
SEC_<context>_CRYPTO_METHODS

These macros are defined by a comma or space delimited list of possible methods to use. Section 3.8.3 lists all
implemented authentication methods. Section 3.8.5 lists all implemented encryption methods.

3.8.3 Authentication

The client side of any communication uses one of two macros tospecify whether authentication is to occur:

SEC_DEFAULT_AUTHENTICATION
SEC_CLIENT_AUTHENTICATION

For the daemon side, there are a larger number of macros to specify whether authentication is to take place, based
upon the necessary access level:

SEC_DEFAULT_AUTHENTICATION
SEC_READ_AUTHENTICATION
SEC_WRITE_AUTHENTICATION
SEC_ADMINISTRATOR_AUTHENTICATION
SEC_CONFIG_AUTHENTICATION
SEC_OWNER_AUTHENTICATION
SEC_DAEMON_AUTHENTICATION
SEC_NEGOTIATOR_AUTHENTICATION
SEC_ADVERTISE_MASTER_AUTHENTICATION
SEC_ADVERTISE_STARTD_AUTHENTICATION
SEC_ADVERTISE_SCHEDD_AUTHENTICATION

As an example, the macro defined in the configuration file for a daemon as

SEC_WRITE_AUTHENTICATION = REQUIRED

signifies that the daemon must authenticate the client for any communication that requires theWRITEaccess level. If
the daemon’s configuration contains

SEC_DEFAULT_AUTHENTICATION = REQUIRED

and does not contain any other security configuration forAUTHENTICATION, then this default defines the daemon’s
needs for authentication over all access levels. Where a specific macro is defined, the more specific value takes
precedence over the default definition.

If authentication is to be done, then the communicating parties must negotiate a mutually acceptable method of
authentication to be used. A list of acceptable methods may be provided by the client, using the macros

HTCondor Version 8.6.4 Manual

3.8.3. Authentication 421

SEC_DEFAULT_AUTHENTICATION_METHODS
SEC_CLIENT_AUTHENTICATION_METHODS

A list of acceptable methods may be provided by the daemon, using the macros

SEC_DEFAULT_AUTHENTICATION_METHODS
SEC_READ_AUTHENTICATION_METHODS
SEC_WRITE_AUTHENTICATION_METHODS
SEC_ADMINISTRATOR_AUTHENTICATION_METHODS
SEC_CONFIG_AUTHENTICATION_METHODS
SEC_OWNER_AUTHENTICATION_METHODS
SEC_DAEMON_AUTHENTICATION_METHODS
SEC_NEGOTIATOR_AUTHENTICATION_METHODS
SEC_ADVERTISE_MASTER_AUTHENTICATION_METHODS
SEC_ADVERTISE_STARTD_AUTHENTICATION_METHODS
SEC_ADVERTISE_SCHEDD_AUTHENTICATION_METHODS

The methods are given as a comma-separated list of acceptable values. These variables list the authentication methods
that are available to be used. The ordering of the list definespreference; the first item in the list indicates the highest
preference. As not all of the authentication methods work onWindows platforms, which ones donotwork on Windows
are indicated in the following list of defined values:

GSI (not available on Windows platforms)
SSL
KERBEROS
PASSWORD
FS (not available on Windows platforms)
FS_REMOTE (not available on Windows platforms)
NTSSPI
CLAIMTOBE
ANONYMOUS

For example, a client may be configured with:

SEC_CLIENT_AUTHENTICATION_METHODS = FS, GSI

and a daemon the client is trying to contact with:

SEC_DEFAULT_AUTHENTICATION_METHODS = GSI

Security negotiation will determine that GSI authentication is the only compatible choice. If there are multiple
compatible authentication methods, security negotiationwill make a list of acceptable methods and they will be tried
in order until one succeeds.

As another example, the macro

HTCondor Version 8.6.4 Manual

3.8.3. Authentication 422

SEC_DEFAULT_AUTHENTICATION_METHODS = KERBEROS, NTSSPI

indicates that either Kerberos or Windows authentication may be used, but Kerberos is preferred over Windows. Note
that if the client and daemon agree that multiple authentication methods may be used, then they are tried in turn. For
instance, if they both agree that Kerberos or NTSSPI may be used, then Kerberos will be tried first, and if there is a
failure for any reason, then NTSSPI will be tried.

An additional specialized method of authentication existsfor communication between thecondor_scheddand
condor_startd. It is especially useful when operating at large scale over high latency networks or in situations where it
is inconvenient to set up one of the other methods of strong authentication between the submit and execute daemons.
See the description ofSEC_ENABLE_MATCH_PASSWORD_AUTHENTICATIONon 340 for details.

If the configuration for a machine does not define any variablefor
SEC_<access-level>_AUTHENTICATION , then HTCondor uses a default value ofOPTIONAL. Authentication
will be required for any operation which modifies the job queue, such ascondor_qeditandcondor_rm. If the config-
uration for a machine does not define any variable forSEC_<access-level>_AUTHENTICATION_METHODS ,
the default value for a Unix machine isFS, KERBEROS, GSI. This default value for a Windows machine isNTSSPI,
KERBEROS, GSI.

GSI Authentication

The GSI (Grid Security Infrastructure) protocol provides an avenue for HTCondor to do PKI-based (Public Key
Infrastructure) authentication using X.509 certificates.The basics of GSI are well-documented elsewhere, such as
http://www.globus.org/.

A simple introduction to this type of authentication definesHTCondor’s use of terminology, and it illuminates the
needed items that HTCondor must access to do this authentication. Assume that A authenticates to B. In this example,
A is the client, and B is the daemon within their communication. This example’s one-way authentication implies that
B is verifying the identity of A, using the certificate A provides, and utilizing B’s own set of trusted CAs (Certification
Authorities). Client A provides its certificate (or proxy) to daemon B. B does two things: B checks that the certificate
is valid, and B checks to see that the CA that signed A’s certificate is one that B trusts.

For the GSI authentication protocol, an X.509 certificate isrequired. Files with predetermined names hold a
certificate, a key, and optionally, a proxy. A separate directory has one or more files that become the list of trusted
CAs.

Allowing HTCondor to do this GSI authentication requires knowledge of the locations of the client A’s certificate
and the daemon B’s list of trusted CAs. When one side of the communication (as either client A or daemon B) is
an HTCondor daemon, these locations are determined by configuration or by default locations. When one side of
the communication (as a client A) is a user of HTCondor (the process owner of an HTCondor tool, for example
condor_submit), these locations are determined by the pre-set values of environment variables or by default locations.

GSI certificate locations for HTCondor daemons For an HTCondor daemon, the certificate may be a single host
certificate, and all HTCondor daemons on the same machine mayshare the same certificate. In some cases,
the certificate can also be copied to other machines, where local copies are necessary. This may occur only in
cases where a single host certificate can match multiple hostnames, something that is beyond the scope of this

HTCondor Version 8.6.4 Manual

http://www.globus.org/

3.8.3. Authentication 423

manual. The certificates must be protected by access rights to files, since the password file is not encrypted.

The specification of the location of the necessary files through configuration uses the following precedence.

1. Configuration variableGSI_DAEMON_DIRECTORYgives the complete path name to the directory that
contains the certificate, key, and directory with trusted CAs. HTCondor uses this directory as follows in
its construction of the following configuration variables:

GSI_DAEMON_CERT = $(GSI_DAEMON_DIRECTORY)/hostcert.pe m
GSI_DAEMON_KEY = $(GSI_DAEMON_DIRECTORY)/hostkey.pem
GSI_DAEMON_TRUSTED_CA_DIR = $(GSI_DAEMON_DIRECTORY)/certificates

Note that no proxy is assumed in this case.

2. If theGSI_DAEMON_DIRECTORYis not defined, or when defined, the location may be overriddenwith
specific configuration variables that specify the complete path and file name of the certificate with

GSI_DAEMON_CERT

the key with

GSI_DAEMON_KEY

a proxy with

GSI_DAEMON_PROXY

the complete path to the directory containing the list of trusted CAs with

GSI_DAEMON_TRUSTED_CA_DIR

3. The default location assumed is/etc/grid-security . Note that this implemented by setting the
value ofGSI_DAEMON_DIRECTORY.

When a daemon acts as the client within authentication, the daemon needs a listing of those from which it will
accept certificates. This is done withGSI_DAEMON_NAME. This name is specified with the following format

GSI_DAEMON_NAME = /X.509/name/of/server/1,/X.509/name /of/server/2,...

HTCondor will also need a way to map an X.509 distinguished name to an HTCondor user id. There are two
ways to accomplish this mapping. For a first way to specify themapping, see section 3.8.4 to use HTCondor’s
unified map file. The second way to do the mapping is within an administrator-maintained GSI-specific file
called an X.509 map file, mapping from X.509 Distinguished Name (DN) to HTCondor user id. It is similar to a
Globus grid map file, except that it is only used for mapping toa user id, not for authorization. If the user names
in the map file do not specify a domain for the user (specification would appear asuser@domain), then the
value ofUID_DOMAINis used. Entries (lines) in the file each contain two items. The first item in an entry is
the X.509 certificate subject name, and it is enclosed in double quote marks (using the character"). The second
item is the HTCondor user id. The two items in an entry are separated by tab or space character(s). Here is an
example of an entry in an X.509 map file. Entries must be on a single line; this example is broken onto two lines
for formatting reasons.

"/C=US/O=Globus/O=University of Wisconsin/
OU=Computer Sciences Department/CN=Alice Smith" asmith

HTCondor finds the map file in one of three ways. If the configuration variableGRIDMAPis defined, it gives
the full path name to the map file. When not defined, HTCondor looks for the map file in

HTCondor Version 8.6.4 Manual

3.8.3. Authentication 424

$(GSI_DAEMON_DIRECTORY)/grid-mapfile

If GSI_DAEMON_DIRECTORYis not defined, then the third place HTCondor looks for the mapfile is given by

/etc/grid-security/grid-mapfile

GSI certificate locations for Users The user specifies the location of a certificate, proxy, etc. in one of two ways:

1. Environment variables give the location of necessary items.

X509_USER_PROXYgives the path and file name of the proxy. This proxy will have been created using
the grid-proxy-init program, which will place the proxy in the/tmp directory with the file name being
determined by the format:

/tmp/x509up_uXXXX

The specific file name is given by substituting theXXXXcharacters with the UID of the user. Note that
when a valid proxy is used, the certificate and key locations are not needed.
X509_USER_CERTgives the path and file name of the certificate. It is also used if a proxy location has
been checked, but the proxy is no longer valid.
X509_USER_KEYgives the path and file name of the key. Note that most keys are password encrypted,
such that knowing the location could not lead to using the key.
X509_CERT_DIR gives the path to the directory containing the list of trusted CAs.

2. Without environment variables to give locations of necessary certificate information, HTCondor uses a
default directory for the user. This directory is given by

$(HOME)/.globus

Example GSI Security Configuration Here is an example portion of the configuration file that wouldenable and
require GSI authentication, along with a minimal set of other variables to make it work.

SEC_DEFAULT_AUTHENTICATION = REQUIRED
SEC_DEFAULT_AUTHENTICATION_METHODS = GSI
SEC_DEFAULT_INTEGRITY = REQUIRED
GSI_DAEMON_DIRECTORY = /etc/grid-security
GRIDMAP = /etc/grid-security/grid-mapfile

authorize based on user names produced by the map file
ALLOW_READ =* @cs.wisc.edu/ * .cs.wisc.edu
ALLOW_DAEMON = condor@cs.wisc.edu/ * .cs.wisc.edu
ALLOW_NEGOTIATOR = condor@cs.wisc.edu/condor.cs.wisc. edu, \

condor@cs.wisc.edu/condor2.cs.wisc.edu
ALLOW_ADMINISTRATOR = condor-admin@cs.wisc.edu/ * .cs.wisc.edu

condor daemon certificate(s) trusted by condor tools and d aemons
when connecting to other condor daemons
GSI_DAEMON_NAME = /C=US/O=Condor/O=UW/OU=CS/CN=condor@cs.wisc.edu

clear out any host-based authorizations
(unnecessary if you leave authentication REQUIRED,
but useful if you make it optional and want to
allow some unauthenticated operations, such as

HTCondor Version 8.6.4 Manual

3.8.3. Authentication 425

ALLOW_READ =* / * .cs.wisc.edu)
HOSTALLOW_READ =
HOSTALLOW_WRITE =
HOSTALLOW_NEGOTIATOR =
HOSTALLOW_ADMINISTRATOR =

TheSEC_DEFAULT_AUTHENTICATIONmacro specifies that authentication is required for all communica-
tions. This single macro covers all communications, but could be replaced with a set of macros that require
authentication for only specific communications.

The macroGSI_DAEMON_DIRECTORYis specified to give HTCondor a single place to find the daemon’s
certificate. This path may be a directory on a shared file system such as AFS. Alternatively, this path name can
point to local copies of the certificate stored in a local file system.

The macroGRIDMAPspecifies the file to use for mapping GSI names to user names within HTCondor. For
example, it might look like this:

"/C=US/O=Condor/O=UW/OU=CS/CN=condor@cs.wisc.edu" co ndor@cs.wisc.edu

Additional mappings would be needed for the users who submitjobs to the pool or who issue administrative
commands.

SSL Authentication

SSL authentication is similar to GSI authentication, but without GSI’s delegation (proxy) capabilities. SSL utilizes
X.509 certificates.

All SSL authentication is mutual authentication in HTCondor. This means that when SSL authentication is used
and when one process communicates with another, each process must be able to verify the signature on the certificate
presented by the other process. The process that initiates the connection is the client, and the process that receives the
connection is the server. For example, when acondor_startddaemon authenticates with acondor_collectordaemon
to provide a machine ClassAd, thecondor_startddaemon initiates the connection and acts as the client, and the
condor_collectordaemon acts as the server.

The names and locations of keys and certificates for clients,servers, and the files used to specify trusted certificate
authorities (CAs) are defined by settings in the configuration files. The contents of the files are identical in format and
interpretation to those used by other systems which use SSL,such as Apache httpd.

The configuration variablesAUTH_SSL_CLIENT_CERTFILEandAUTH_SSL_SERVER_CERTFILEspecify
the file location for the certificate file for the initiator andrecipient of connections, respectively. Similarly, the config-
uration variablesAUTH_SSL_CLIENT_KEYFILEandAUTH_SSL_SERVER_KEYFILEspecify the locations for
keys.

The configuration variablesAUTH_SSL_SERVER_CAFILEandAUTH_SSL_CLIENT_CAFILEeach specify a
path and file name, providing the location of a file containingone or more certificates issued by trusted certificate
authorities. Similarly,AUTH_SSL_SERVER_CADIRandAUTH_SSL_CLIENT_CADIReach specify a directory
with one or more files, each which may contain a single CA certificate. The directories must be prepared using the
OpenSSLc_rehash utility.

HTCondor Version 8.6.4 Manual

3.8.3. Authentication 426

Kerberos Authentication

If Kerberos is used for authentication, then a mapping from aKerberos domain (called a realm) to an HTCondor UID
domain is necessary. There are two ways to accomplish this mapping. For a first way to specify the mapping, see
section 3.8.4 to use HTCondor’s unified map file. A second way to specify the mapping defines the configuration
variableKERBEROS_MAP_FILEto define a path to an administrator-maintained Kerberos-specific map file. The
configuration syntax is

KERBEROS_MAP_FILE = /path/to/etc/condor.kmap

Lines within this map file have the syntax

KERB.REALM = UID.domain.name

Here are two lines from a map file to use as an example:

CS.WISC.EDU = cs.wisc.edu
ENGR.WISC.EDU = ee.wisc.edu

If a KERBEROS_MAP_FILEconfiguration variable is defined and set, then all permittedrealms must be explicitly
mapped. If no map file is specified, then HTCondor assumes thatthe Kerberos realm is the same as the HTCondor
UID domain.

The configuration variableKERBEROS_SERVER_PRINCIPALdefines the name of a Kerberos principal. If
KERBEROS_SERVER_PRINCIPALis not defined, then the default value used ishost . A principal specifies a
unique name to which a set of credentials may be assigned.

HTCondor takes the specified (or default) principal and appends a slash character, the host name, an ’@’ (at sign
character), and the Kerberos realm. As an example, the configuration

KERBEROS_SERVER_PRINCIPAL = condor-daemon

results in HTCondor’s use of

condor-daemon/the.host.name@YOUR.KERB.REALM

as the server principal.

Here is an example of configuration settings that use Kerberos for authentication and require authentication of all
communications of the write or administrator access level.

SEC_WRITE_AUTHENTICATION = REQUIRED
SEC_WRITE_AUTHENTICATION_METHODS = KERBEROS
SEC_ADMINISTRATOR_AUTHENTICATION = REQUIRED
SEC_ADMINISTRATOR_AUTHENTICATION_METHODS = KERBEROS

HTCondor Version 8.6.4 Manual

3.8.3. Authentication 427

Kerberos authentication on Unix platforms requires accessto various files that usually are only accessible by the
root user. At this time, the only supported way to use KERBEROS authentication on Unix platforms is to start daemons
HTCondor as userroot .

Password Authentication

The password method provides mutual authentication through the use of a shared secret. This is often a good choice
when strong security is desired, but an existing Kerberos orX.509 infrastructure is not in place. Password authentica-
tion is available on both Unix and Windows. It currently can only be used for daemon-to-daemon authentication. The
shared secret in this context is referred to as thepool password.

Before a daemon can use password authentication, the pool password must be stored on the daemon’s local ma-
chine. On Unix, the password will be placed in a file defined by the configuration variableSEC_PASSWORD_FILE.
This file will be accessible only by the UID that HTCondor is started as. On Windows, the same secure password store
that is used for user passwords will be used for the pool password (see section 7.2.3).

Under Unix, the password file can be generated by using the following command to write directly to the password
file:

condor_store_cred -f /path/to/password/file

Under Windows (or under Unix), storing the pool password is done with the-c option when using tocon-
dor_store_credadd. Running

condor_store_cred -c add

prompts for the pool password and store it on the local machine, making it available for daemons to use in authentica-
tion. Thecondor_mastermust be running for this command to work.

In addition, storing the pool password to a given machine requiresCONFIG-level access. For example, if the pool
password should only be set locally, and only by root, the following would be placed in the global configuration file.

ALLOW_CONFIG = root@mydomain/$(IP_ADDRESS)

It is also possible to set the pool password remotely, but this is recommended only if it can be done over an
encrypted channel. This is possible on Windows, for example, in an environment where common accounts exist
across all the machines in the pool. In this case,ALLOW_CONFIGcan be set to allow the HTCondor administrator
(who in this example has an accountcondor common to all machines in the pool) to set the password from the central
manager as follows.

ALLOW_CONFIG = condor@mydomain/$(CONDOR_HOST)

The HTCondor administrator then executes

HTCondor Version 8.6.4 Manual

3.8.3. Authentication 428

condor_store_cred -c -n host.mydomain add

from the central manager to store the password to a given machine. Since thecondor account exists on both the
central manager andhost.mydomain , the NTSSPI authentication method can be used to authenticate and encrypt
the connection.condor_store_credwill warn and prompt for cancellation, if the channel is not encrypted for whatever
reason (typically because common accounts do not exist or HTCondor’s security is misconfigured).

When a daemon is authenticated using a pool password, its security principle is
condor_pool@$(UID_DOMAIN) , where $(UID_DOMAIN) is taken from the daemon’s configuration.
The ALLOW_DAEMONand ALLOW_NEGOTIATORconfiguration variables for authorization should restrictaccess
using this name. For example,

ALLOW_DAEMON = condor_pool@mydomain/* , condor@mydomain/$(IP_ADDRESS)
ALLOW_NEGOTIATOR = condor_pool@mydomain/$(CONDOR_HOST)

This configuration allows remoteDAEMON-level andNEGOTIATOR-level access, if the pool password is known. Local
daemons authenticated ascondor@mydomain are also allowed access. This is done so local authentication can be
done using another method such asFS.

Example Security Configuration Using Pool PasswordThe following example configuration uses pool password
authentication and network message integrity checking forall communication between HTCondor daemons.

SEC_PASSWORD_FILE = $(LOCK)/pool_password
SEC_DAEMON_AUTHENTICATION = REQUIRED
SEC_DAEMON_INTEGRITY = REQUIRED
SEC_DAEMON_AUTHENTICATION_METHODS = PASSWORD
SEC_NEGOTIATOR_AUTHENTICATION = REQUIRED
SEC_NEGOTIATOR_INTEGRITY = REQUIRED
SEC_NEGOTIATOR_AUTHENTICATION_METHODS = PASSWORD
SEC_CLIENT_AUTHENTICATION_METHODS = FS, PASSWORD, KERBEROS, GSI
ALLOW_DAEMON = condor_pool@$(UID_DOMAIN)/* .cs.wisc.edu, \

condor@$(UID_DOMAIN)/$(IP_ADDRESS)
ALLOW_NEGOTIATOR = condor_pool@$(UID_DOMAIN)/negotiat or.machine.name

Example Using Pool Password forcondor_startdAdvertisement One problem with the pool password method of
authentication is that it involves a single, shared secret.This does not scale well with the addition of remote
users who flock to the local pool. However, the pool password may still be used for authenticating portions of
the local pool, while others (such as the remotecondor_schedddaemons involved in flocking) are authenticated
by other means.

In this example, only thecondor_startddaemons in the local pool are required to have the pool password when
they advertise themselves to thecondor_collectordaemon.

SEC_PASSWORD_FILE = $(LOCK)/pool_password
SEC_ADVERTISE_STARTD_AUTHENTICATION = REQUIRED

HTCondor Version 8.6.4 Manual

3.8.3. Authentication 429

SEC_ADVERTISE_STARTD_INTEGRITY = REQUIRED
SEC_ADVERTISE_STARTD_AUTHENTICATION_METHODS = PASSWORD
SEC_CLIENT_AUTHENTICATION_METHODS = FS, PASSWORD, KERBEROS, GSI
ALLOW_ADVERTISE_STARTD = condor_pool@$(UID_DOMAIN)/ * .cs.wisc.edu

File System Authentication

This form of authentication utilizes the ownership of a file in the identity verification of a client. A daemon authenti-
cating a client requires the client to write a file in a specificlocation (/tmp). The daemon then checks the ownership
of the file. The file’s ownership verifies the identity of the client. In this way, the file system becomes the trusted
authority. This authentication method is only appropriatefor clients and daemons that are on the same computer.

File System Remote Authentication

Like file system authentication, this form of authentication utilizes the ownership of a file in the identity verification
of a client. In this case, a daemon authenticating a client requires the client to write a file in a specific location, but the
location is not restricted to/tmp . The location of the file is specified by the configuration variableFS_REMOTE_DIR.

Windows Authentication

This authentication is done only among Windows machines using a proprietary method. The Windows security inter-
face SSPI is used to enforce NTLM (NT LAN Manager). The authentication is based on challenge and response, using
the user’s password as a key. This is similar to Kerberos. Themain difference is that Kerberos provides an access
token that typically grants access to an entire network, whereas NTLM authentication only verifies an identity to one
machine at a time. NTSSPI is best-used in a way similar to file system authentication in Unix, and probably should
not be used for authentication between two computers.

Claim To Be Authentication

Claim To Be authentication accepts any identity claimed by the client. As such, it does not authenticate. It is included
in HTCondor and in the list of authentication methods for testing purposes only.

Anonymous Authentication

Anonymous authentication causes authentication to be skipped entirely. As such, it does not authenticate. It is included
in HTCondor and in the list of authentication methods for testing purposes only.

HTCondor Version 8.6.4 Manual

3.8.4. The Unified Map File for Authentication 430

3.8.4 The Unified Map File for Authentication

HTCondor’s unified map file allows the mappings from authenticated names to an HTCondor canonical user name to
be specified as a single list within a single file. The locationof the unified map file is defined by the configuration
variableCERTIFICATE_MAPFILE; it specifies the path and file name of the unified map file. Each mapping is on
its own line of the unified map file. Each line contains 3 fields,separated by white space (space or tab characters):

1. The name of the authentication method to which the mappingapplies.

2. A name or a regular expression representing the authenticated name to be mapped.

3. The canonical HTCondor user name.

Allowable authentication method names are the same as used to define any of the configuration variables
SEC_* _AUTHENTICATION_METHODS, as repeated here:

GSI
SSL
KERBEROS
PASSWORD
FS
FS_REMOTE
NTSSPI
CLAIMTOBE
ANONYMOUS

The fields that represent an authenticated name and the canonical HTCondor user name may utilize regular expres-
sions as defined by PCRE (Perl-Compatible Regular Expressions). Due to this, more than one line (mapping) within
the unified map file may match. Look ups are therefore defined touse the first mapping that matches.

For HTCondor version 8.5.8 and later, the authenticated name field will be interpreted as a regular expression
or as a simple string based on the value of theCERTIFICATE_MAPFILE_ASSUME_HASH_KEYSconfiguration
variable. If this configuration varible is true, then the authenticated name field is a regular expression only when it
begins and ends with the / character. If this configuration variable is false, or on HTCondor versions older than 8.5.8,
the authenticated name field is always a regular expression.

A regular expression may need to contain spaces, and in this case the entire expression can be surrounded by double
quote marks. If a double quote character also needs to appearin such an expression, it is preceded by a backslash.

The default behavior of HTCondor when no map file is specified is to do the following mappings, with some
additional logic noted below:

FS (. *) \1
FS_REMOTE (.*) \1
GSI (. *) GSS_ASSIST_GRIDMAP
SSL (. *) ssl@unmapped

HTCondor Version 8.6.4 Manual

3.8.5. Encryption 431

KERBEROS ([^/] *)/?[^@] * @(. *) \1@\2
NTSSPI (. *) \1
CLAIMTOBE (. *) \1
PASSWORD (.*) \1

For GSI (or SSL), the special nameGSS_ASSIST_GRIDMAPinstructs HTCondor to use the GSI grid map file
(configured withGRIDMAPas shown in section 3.8.3) to do the mapping. If no mapping canbe found for GSI (with
or without the use ofGSS_ASSIST_GRIDMAP), the user is mapped togsi@unmapped .

For Kerberos, ifKERBEROS_MAP_FILEis specified, the domain portion of the name is obtained by mapping the
Kerberos realm to the value specified in the map file, rather than just using the realm verbatim as the domain portion
of the condor user name. See section 3.8.3 for details.

If authentication did not happen or failed and was not required, then the user is given the name
unauthenticated@unmapped .

With the integration of VOMS for GSI authentication, the interpretation of the regular expression representing the
authenticated name may change. First, the full serialized DN and FQAN are used in attempting a match. If no match
is found using the full DN and FQAN, then the DN is then used on its own without the FQAN. Using this, roles or
user names from the VOMS attributes may be extracted to be used as the target for mapping. And, in this case the
FQAN are verified, permitting reliance on their authenticity.

3.8.5 Encryption

Encryption provides privacy support between two communicating parties. Through configuration macros, both the
client and the daemon can specify whether encryption is required for further communication.

The client uses one of two macros to enable or disable encryption:

SEC_DEFAULT_ENCRYPTION
SEC_CLIENT_ENCRYPTION

For the daemon, there are seven macros to enable or disable encryption:

SEC_DEFAULT_ENCRYPTION
SEC_READ_ENCRYPTION
SEC_WRITE_ENCRYPTION
SEC_ADMINISTRATOR_ENCRYPTION
SEC_CONFIG_ENCRYPTION
SEC_OWNER_ENCRYPTION
SEC_DAEMON_ENCRYPTION
SEC_NEGOTIATOR_ENCRYPTION
SEC_ADVERTISE_MASTER_ENCRYPTION
SEC_ADVERTISE_STARTD_ENCRYPTION
SEC_ADVERTISE_SCHEDD_ENCRYPTION

HTCondor Version 8.6.4 Manual

3.8.6. Integrity 432

As an example, the macro defined in the configuration file for a daemon as

SEC_CONFIG_ENCRYPTION = REQUIRED

signifies that any communication that changes a daemon’s configuration must be encrypted. If a daemon’s configura-
tion contains

SEC_DEFAULT_ENCRYPTION = REQUIRED

and does not contain any other security configuration for ENCRYPTION, then this default defines the daemon’s needs
for encryption over all access levels. Where a specific macrois present, its value takes precedence over any default
given.

If encryption is to be done, then the communicating parties must find (negotiate) a mutually acceptable method of
encryption to be used. A list of acceptable methods may be provided by the client, using the macros

SEC_DEFAULT_CRYPTO_METHODS
SEC_CLIENT_CRYPTO_METHODS

A list of acceptable methods may be provided by the daemon, using the macros

SEC_DEFAULT_CRYPTO_METHODS
SEC_READ_CRYPTO_METHODS
SEC_WRITE_CRYPTO_METHODS
SEC_ADMINISTRATOR_CRYPTO_METHODS
SEC_CONFIG_CRYPTO_METHODS
SEC_OWNER_CRYPTO_METHODS
SEC_DAEMON_CRYPTO_METHODS
SEC_NEGOTIATOR_CRYPTO_METHODS
SEC_ADVERTISE_MASTER_CRYPTO_METHODS
SEC_ADVERTISE_STARTD_CRYPTO_METHODS
SEC_ADVERTISE_SCHEDD_CRYPTO_METHODS

The methods are given as a comma-separated list of acceptable values. These variables list the encryption methods
that are available to be used. The ordering of the list gives preference; the first item in the list indicates the highest
preference. Possible values are

3DES
BLOWFISH

3.8.6 Integrity

An integrity check assures that the messages between communicating parties have not been tampered with. Any
change, such as addition, modification, or deletion can be detected. Through configuration macros, both the client and
the daemon can specify whether an integrity check is required of further communication.

HTCondor Version 8.6.4 Manual

3.8.7. Authorization 433

Note at this time, integrity checks are not performed upon job data files that are transferred by HTCondor via the
File Transfer Mechanism described in section 2.5.9.

The client uses one of two macros to enable or disable an integrity check:

SEC_DEFAULT_INTEGRITY
SEC_CLIENT_INTEGRITY

For the daemon, there are seven macros to enable or disable anintegrity check:

SEC_DEFAULT_INTEGRITY
SEC_READ_INTEGRITY
SEC_WRITE_INTEGRITY
SEC_ADMINISTRATOR_INTEGRITY
SEC_CONFIG_INTEGRITY
SEC_OWNER_INTEGRITY
SEC_DAEMON_INTEGRITY
SEC_NEGOTIATOR_INTEGRITY
SEC_ADVERTISE_MASTER_INTEGRITY
SEC_ADVERTISE_STARTD_INTEGRITY
SEC_ADVERTISE_SCHEDD_INTEGRITY

As an example, the macro defined in the configuration file for a daemon as

SEC_CONFIG_INTEGRITY = REQUIRED

signifies that any communication that changes a daemon’s configuration must have its integrity assured. If a daemon’s
configuration contains

SEC_DEFAULT_INTEGRITY = REQUIRED

and does not contain any other security configuration forINTEGRITY, then this default defines the daemon’s needs
for integrity checks over all access levels. Where a specificmacro is present, its value takes precedence over any
default given.

A signed MD5 check sum is currently the only available methodfor integrity checking. Its use is implied whenever
integrity checks occur. If more methods are implemented, then there will be further macros to allow both the client
and the daemon to specify which methods are acceptable.

3.8.7 Authorization

Authorization protects resource usage by granting or denying access requests made to the resources. It defines who is
allowed to do what.

HTCondor Version 8.6.4 Manual

3.8.7. Authorization 434

Authorization is defined in terms of users. An initial implementation provided authorization based on hosts (ma-
chines), while the current implementation relies on user-based authorization. Section 3.8.9 on Setting Up IP/Host-
Based Security in HTCondor describes the previous implementation. This IP/Host-Based security still exists, and it
can be used, but significantly stronger and more flexible security can be achieved with the newer authorization based
on fully qualified user names. This section discusses user-based authorization.

The authorization portion of the security of an HTCondor pool is based on a set of configuration macros. The
macros list which user will be authorized to issue what request given a specific access level. When a daemon is to be
authorized, its user name is the login under which the daemonis executed.

These configuration macros define a set of users that will be allowed to (or denied from) carrying out various
HTCondor commands. Each access level may have its own list ofauthorized users. A complete list of the authorization
macros:

ALLOW_READ
ALLOW_WRITE
ALLOW_ADMINISTRATOR
ALLOW_CONFIG
ALLOW_SOAP
ALLOW_OWNER
ALLOW_NEGOTIATOR
ALLOW_DAEMON
DENY_READ
DENY_WRITE
DENY_ADMINISTRATOR
DENY_SOAP
DENY_CONFIG
DENY_OWNER
DENY_NEGOTIATOR
DENY_DAEMON

In addition, the following are used to control authorization of specific types of HTCondor daemons when ad-
vertising themselves to the pool. If unspecified, these default to the broaderALLOW_DAEMONandDENY_DAEMON
settings.

ALLOW_ADVERTISE_MASTER
ALLOW_ADVERTISE_STARTD
ALLOW_ADVERTISE_SCHEDD
DENY_ADVERTISE_MASTER
DENY_ADVERTISE_STARTD
DENY_ADVERTISE_SCHEDD

Each client side of a connection may also specify its own listof trusted servers. This is done using the following
settings. Note that the FS and CLAIMTOBE authentication methods are not symmetric. The client is authenticated by
the server, but the server is not authenticated by the client. When the server is not authenticated to the client, only the
network address of the host may be authorized and not the specific identity of the server.

HTCondor Version 8.6.4 Manual

3.8.7. Authorization 435

ALLOW_CLIENT
DENY_CLIENT

The namesALLOW_CLIENTandDENY_CLIENTshould be thought of as “when I am acting as a client, these are
the servers I allow or deny.” It shouldnot be confused with the incorrect thought “when I am the server,these are the
clients I allow or deny.”

All authorization settings are defined by a comma-separatedlist of fully qualified users. Each fully qualified user
is described using the following format:

username@domain/hostname

The information to the left of the slash character describesa user within a domain. The information to the right of the
slash character describes one or more machines from which the user would be issuing a command. This host name
may take the form of either a fully qualified host name of the form

bird.cs.wisc.edu

or an IP address of the form

128.105.128.0

An example is

zmiller@cs.wisc.edu/bird.cs.wisc.edu

Within the format, wild card characters (the asterisk, *) are allowed. The use of wild cards is limited to one wild
card on either side of the slash character. A wild card character used in the host name is further limited to come at the
beginning of a fully qualified host name or at the end of an IP address. For example,

* @cs.wisc.edu/bird.cs.wisc.edu

refers to any user that comes fromcs.wisc.edu , where the command is originating from the machine
bird.cs.wisc.edu . Another valid example,

zmiller@cs.wisc.edu/ * .cs.wisc.edu

refers to commands coming from any machine within thecs.wisc.edu domain, and issued byzmiller . A third
valid example,

* @cs.wisc.edu/ *

HTCondor Version 8.6.4 Manual

3.8.7. Authorization 436

refers to commands coming from any user within thecs.wisc.edu domain where the command is issued from any
machine. A fourth valid example,

* @cs.wisc.edu/128.105. *

refers to commands coming from any user within thecs.wisc.edu domain where the command is issued from
machines within the network that match the first two octets ofthe IP address.

If the set of machines is specified by an IP address, then further specification using a net mask identifies a physical
set (subnet) of machines. This physical set of machines is specified using the form

network/netmask

Thenetwork is an IP address. The net mask takes one of two forms. It may be adecimal number which refers to the
number of leading bits of the IP address that are used in describing a subnet. Or, the net mask may take the form of

a.b.c.d

wherea, b, c , andd are decimal numbers that each specify an 8-bit mask. An example net mask is

255.255.192.0

which specifies the bit mask

11111111.11111111.11000000.00000000

A single complete example of a configuration variable that uses a net mask is

ALLOW_WRITE = joesmith@cs.wisc.edu/128.105.128.0/17

User joesmith within the cs.wisc.edu domain is given write authorization when originating from machines
that match their leftmost 17 bits of the IP address.

For Unix platforms where netgroups are implemented, a netgroup may specify a set of fully qualified users by
using an extension to the syntax for all configuration variables of the formALLOW_* andDENY_* . The syntax is the
plus sign character (+) followed by the netgroup name. Permissions are applied to all members of the netgroup.

This flexible set of configuration macros could be used to define conflicting authorization. Therefore, the following
protocol defines the precedence of the configuration macros.

1. DENY_* macros take precedence overALLOW_* macros where there is a conflict. This implies that if a specific
user is both denied and granted authorization, the conflict is resolved by denying access.

2. If macros are omitted, the default behavior is to grant authorization for every user.

HTCondor Version 8.6.4 Manual

3.8.7. Authorization 437

In addition, there are some hard-coded authorization rulesthat cannot be modified by configuration.

1. Connections with a name matching* @unmappedare not allowed to do any job management commands (e.g.
submitting, removing, or modifying jobs). This prevents these operations from being done by unauthenticated
users and users who are authenticated but lacking a name in the map file.

2. To simplify flocking, thecondor_scheddautomatically grants thecondor_startdREADaccess for the duration
of a claim so that claim-related communications are possible. Thecondor_shadowgrants thecondor_starter
DAEMONaccess so that file transfers can be done. The identity that isgranted access in both these cases is the
authenticated name (if available) and IP address of thecondor_startdwhen thecondor_scheddinitially connects
to it to request the claim. It is important that only trustedcondor_startds are allowed to publish themselves to
the collector or that thecondor_schedd’s ALLOW_CLIENTsetting prevent it from allowing connections to
condor_startds that it does not trust to run jobs.

3. When SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION is true,
execute-side@matchsession is automatically grantedREAD access to thecondor_scheddand
DAEMONaccess to thecondor_shadow.

Example of Authorization Security Configuration

An example of the configuration variables for the user-side authorization is derived from the necessary access levels
as described in Section 3.8.1.

ALLOW_READ =* @cs.wisc.edu/ *
ALLOW_WRITE =* @cs.wisc.edu/ * .cs.wisc.edu
ALLOW_ADMINISTRATOR = condor-admin@cs.wisc.edu/ * .cs.wisc.edu
ALLOW_CONFIG = condor-admin@cs.wisc.edu/ * .cs.wisc.edu
ALLOW_NEGOTIATOR = condor@cs.wisc.edu/condor.cs.wisc. edu, \

condor@cs.wisc.edu/condor2.cs.wisc.edu
ALLOW_DAEMON = condor@cs.wisc.edu/ * .cs.wisc.edu

Clear out any old-style HOSTALLOW settings:
HOSTALLOW_READ =
HOSTALLOW_WRITE =
HOSTALLOW_DAEMON =
HOSTALLOW_NEGOTIATOR =
HOSTALLOW_ADMINISTRATOR =
HOSTALLOW_OWNER =

This example configuration authorizes any authenticated user in thecs.wisc.edu domain to carry out a request
that requires theREADaccess level from any machine. Any user in thecs.wisc.edu domain may carry out
a request that requires theWRITE access level from any machine in thecs.wisc.edu domain. Only the user
calledcondor-admin may carry out a request that requires theADMINISTRATORaccess level from any machine
in the cs.wisc.edu domain. The administrator, logged into any machine within the cs.wisc.edu domain is
authorized at theCONFIGaccess level. Only the negotiator daemon, running ascondor on the two central managers
are authorized with theNEGOTIATORaccess level. And, the last line of the example presumes thatthere is a user
called condor, and that the daemons have all been started up as this user. It authorizes only programs (which will be

HTCondor Version 8.6.4 Manual

3.8.8. Security Sessions 438

the daemons) running ascondor to carry out requests that require theDAEMONaccess level, where the commands
originate from any machine in thecs.wisc.edu domain.

In the local configuration file for each host, the host’s ownershould be authorized as the owner of the machine. An
example of the entry in the local configuration file:

ALLOW_OWNER = username@cs.wisc.edu/hostname.cs.wisc.e du

In this example the owner has a login ofusername , and the machine’s name is represented byhostname .

Debugging Security Configuration

If the authorization policy denies a network request, an explanation of why the request was denied is printed in the log
file of the daemon that denied the request. The line in the log file contains the wordsPERMISSION DENIED.

To get HTCondor to generate a similar explanation of why requests are accepted, addD_SECURITYto the dae-
mon’s debug options (and restart or reconfig the daemon). Theline in the log file for these cases will contain the words
PERMISSION GRANTED. If you do not want to see a full explanation but just want to see when requests are made,
addD_COMMANDto the daemon’s debug options.

If the authorization policy makes use of host or domain names, then be aware that HTCondor depends on DNS
to map IP addresses to names. The security and accuracy of your DNS service is therefore a requirement. Typos
in DNS mappings are an occasional source of unexpected behavior. If the authorization policy is not behaving as
expected, carefully compare the names in the policy with thehost names HTCondor mentions in the explanations of
why requests are granted or denied.

3.8.8 Security Sessions

To set up and configure secure communications in HTCondor, authentication, encryption, and integrity checks can
be used. However, these come at a cost: performing strong authentication can take a significant amount of time, and
generating the cryptographic keys for encryption and integrity checks can take a significant amount of processing
power.

The HTCondor system makes many network connections betweendifferent daemons. If each one of these was
to be authenticated, and new keys were generated for each connection, HTCondor would not be able to scale well.
Therefore, HTCondor uses the concept ofsessionsto cache relevant security information for future use and greatly
speed up the establishment of secure communications between the various HTCondor daemons.

A new session is established the first time a connection is made from one daemon to another. Each session has
a fixed lifetime after which it will expire and a new session will need to be created again. But while a valid session
exists, it can be re-used as many times as needed, thereby preventing the need to continuously re-establish secure
connections. Each entity of a connection will have access toasession keythat proves the identity of the other entity on
the opposing side of the connection. This session key is exchanged securely using a strong authentication method, such
as Kerberos or GSI. Other authentication methods, such asNTSSPI, FS_REMOTE, CLAIMTOBE, andANONYMOUS,
do not support secure key exchange. An entity listening on the wire may be able to impersonate the client or server in
a session that does not use a strong authentication method.

HTCondor Version 8.6.4 Manual

3.8.9. Host-Based Security in HTCondor 439

Establishing a secure session requires that either the encryption or the integrity options be enabled. If the encryp-
tion capability is enabled, then the session will be restarted using the session key as the encryption key. If integrity
capability is enabled, then the check sum includes the session key even though it is not transmitted. Without either of
these two methods enabled, it is possible for an attacker to use an open session to make a connection to a daemon and
use that connection for nefarious purposes. It is strongly recommended that ifyou have authentication turned on, you
should also turn on integrity and/or encryption.

The configuration parameterSEC_DEFAULT_NEGOTIATIONwill allow a user to set the default level of se-
cure sessions in HTCondor. Like other security settings, the possible values for this parameter can beREQUIRED,
PREFERRED, OPTIONAL, or NEVER. If you disable sessions and you have authentication turnedon, then most au-
thentication (other than commands likecondor_submit) will fail because HTCondor requires sessions when you have
security turned on. On the other hand, if you are not using strong security in HTCondor, but you are relying on
the default host-based security, turning off sessions may be useful in certain situations. These might include debug-
ging problems with the security session management or slightly decreasing the memory consumption of the daemons,
which keep track of the sessions in use.

Session lifetimes for specific daemons are already properlyconfigured in the default installation of HTCondor.
HTCondor tools such ascondor_qandcondor_statuscreate a session that expires after one minute. Theoretically
they should not create a session at all, because the session cannot be reused between program invocations, but this is
difficult to do in the general case. This allows a very small window of time for any possible attack, and it helps keep
the memory footprint of running daemons down, because they are not keeping track of all of the sessions. The session
durations may be manually tuned by using macros in the configuration file, but this is not recommended.

3.8.9 Host-Based Security in HTCondor

This section describes the mechanisms for setting up HTCondor’s host-based security. This is now an outdated form
of implementing security levels for machine access. It remains available and documented for purposes of backward
compatibility. If used at the same time as the user-based authorization, the two specifications are merged together.

The host-based security paradigm allows control over whichmachines can join an HTCondor pool, which ma-
chines can find out information about your pool, and which machines within a pool can perform administrative com-
mands. By default, HTCondor is configured to allow anyone to view or join a pool. It is recommended that this
parameter is changed to only allow access from machines thatyou trust.

This section discusses how the host-based security works inside HTCondor. It lists the different levels of access
and what parts of HTCondor use which levels. There is a description of how to configure a pool to grant or deny
certain levels of access to various machines. Configurationexamples and the settings of configuration variables using
thecondor_config_valcommand complete this section.

Inside the HTCondor daemons or tools that use DaemonCore (see section 3.11 for details), most tasks are accom-
plished by sending commands to another HTCondor daemon. These commands are represented by an integer value
to specify which command is being requested, followed by anyoptional information that the protocol requires at that
point (such as a ClassAd, capability string, etc). When the daemons start up, they will register which commands they
are willing to accept, what to do with arriving commands, andthe access level required for each command. When a
command request is received by a daemon, HTCondor identifiesthe access level required and checks the IP address
of the sender to verify that it satisfies the allow/deny settings from the configuration file. If permission is granted, the

HTCondor Version 8.6.4 Manual

3.8.9. Host-Based Security in HTCondor 440

command request is honored; otherwise, the request will be aborted.

Settings for the access levels in the global configuration file will affect all the machines in the pool. Settings in a
local configuration file will only affect the specific machine. The settings for a given machine determine what other
hosts can send commands to that machine. If a machine foo is tobe given administrator access on machine bar, place
foo in bar’s configuration file access list (not the other way around).

The following are the various access levels that commands within HTCondor can be registered with:

READ Machines withREADaccess can read information from the HTCondor daemons. For example, they can view
the status of the pool, see the job queue(s), and view user permissions.READaccess does not allow a machine
to alter any information, and does not allow job submission.A machine listed withREADpermission will be
unable join an HTCondor pool; the machine can only view information about the pool.

WRITE Machines withWRITEaccess can write information to the HTCondor daemons. Most important for granting
a machine with this access is that the machine will be able to join a pool since they are allowed to send ClassAd
updates to the central manager. The machine can talk to the other machines in a pool in order to submit or run
jobs. In addition, any machine withWRITEaccess can request thecondor_startddaemon to perform periodic
checkpoints on an executing job. After the checkpoint is completed, the job will continue to execute and the
machine will still be claimed by the originalcondor_schedddaemon. This allows users on the machines where
they submitted their jobs to use thecondor_checkpointcommand to get their jobs to periodically checkpoint,
even if the users do not have an account on the machine where the jobs execute.

IMPORTANT: For a machine to join an HTCondor pool, the machine must have bothWRITEpermissionAND
READpermission.WRITEpermission is not enough.

ADMINISTRATOR Machines withADMINISTRATORaccess are granted additional HTCondor administrator rights
to the pool. This includes the ability to change user priorities with the commandcondor_userprio, and the
ability to turn HTCondor on and off usingcondor_onandcondor_off. It is recommended that few machines be
granted administrator access in a pool; typically these arethe machines that are used by HTCondor and system
administrators as their primary workstations, or the machines running as the pool’s central manager.

IMPORTANT: Giving ADMINISTRATORprivileges to a machine grants administrator access for thepool to
ANY USER on that machine. This includes any users who can run HTCondorjobs on that machine. It is
recommended thatADMINISTRATORaccess is granted with due diligence.

OWNER This level of access is required for commands that the owner of a machine (any local user) should be able
to use, in addition to the HTCondor administrators. For example, thecondor_vacatecommand causes the
condor_startddaemon to vacate any running HTCondor job. It requiresOWNERpermission, so that any user
logged into a local machine can issue acondor_vacatecommand.

NEGOTIATOR This access level is used specifically to verify that commands are sent by thecondor_negotiatordae-
mon. Thecondor_negotiatordaemon runs on the central manager of the pool. Commands requiring this access
level are the ones that tell thecondor_schedddaemon to begin negotiating, and those that tell an available
condor_startddaemon that it has been matched to acondor_scheddwith jobs to run.

CONFIG This access level is required to modify a daemon’s configuration using thecondor_config_valcommand.
By default, machines with this level of access are able to change any configuration parameter, except those
specified in thecondor_config.root configuration file. Therefore, one should exercise extreme caution

HTCondor Version 8.6.4 Manual

3.8.10. Examples of Security Configuration 441

before granting this level of host-wide access. Because of the implications caused byCONFIGprivileges, it is
disabled by default for all hosts.

DAEMON This access level is used for commands that are internal to the operation of HTCondor. An example of this
internal operation is when thecondor_startddaemon sends its ClassAd updates to thecondor_collectordaemon
(which may be more specifically controlled by theADVERTISE_STARTDaccess level). Authorization at this
access level should only be given to hosts that actually run HTCondor in your pool. TheDAEMONlevel of access
implies bothREADandWRITEaccess. Any setting for this access level that is not defined will default to the
corresponding setting in theWRITEaccess level.

ADVERTISE_MASTER This access level is used specifically for commands used to advertise acondor_masterdae-
mon to the collector. Any setting for this access level that is not defined will default to the corresponding setting
in theDAEMONaccess level.

ADVERTISE_STARTD This access level is used specifically for commands used to advertise acondor_startddaemon
to the collector. Any setting for this access level that is not defined will default to the corresponding setting in
theDAEMONaccess level.

ADVERTISE_SCHEDD This access level is used specifically for commands used to advertise acondor_schedddae-
mon to the collector. Any setting for this access level that is not defined will default to the corresponding setting
in theDAEMONaccess level.

CLIENT This access level is different from all the others. Whereas all of the other access levels refer to the security
policy for accepting connectionsfrom others, theCLIENT access level applies when an HTCondor daemon or
tool is connectingto some other HTCondor daemon. In other words, it specifies the policy of the client that is
initiating the operation, rather than the server that is being contacted.

ADMINISTRATORandNEGOTIATORaccess default to the central manager machine.OWNERaccess defaults
to the local machine, as well as any machines given withADMINISTRATORaccess.CONFIGaccess is not granted
to any machine as its default. These defaults are sufficient for most pools, and should not be changed without a
compelling reason. If machines other than the default are tohave to haveOWNERaccess, they probably should
also haveADMINISTRATORaccess. By granting machinesADMINISTRATORaccess, they will automatically have
OWNERaccess, given howOWNERaccess is set within the configuration.

3.8.10 Examples of Security Configuration

Here is a sample security configuration:

ALLOW_ADMINISTRATOR = $(CONDOR_HOST)
ALLOW_OWNER = $(FULL_HOSTNAME), $(ALLOW_ADMINISTRATOR)
ALLOW_READ =*
ALLOW_WRITE =*
ALLOW_NEGOTIATOR = $(COLLECTOR_HOST)
ALLOW_NEGOTIATOR_SCHEDD = $(COLLECTOR_HOST), $(FLOCK_NEGOTIATOR_HOSTS)
ALLOW_WRITE_COLLECTOR = $(ALLOW_WRITE), $(FLOCK_FROM)
ALLOW_WRITE_STARTD = $(ALLOW_WRITE), $(FLOCK_FROM)
ALLOW_READ_COLLECTOR = $(ALLOW_READ), $(FLOCK_FROM)
ALLOW_READ_STARTD = $(ALLOW_READ), $(FLOCK_FROM)
ALLOW_CLIENT = *

HTCondor Version 8.6.4 Manual

3.8.10. Examples of Security Configuration 442

This example configuration presumes that thecondor_collectorandcondor_negotiatordaemons are running on
the same machine.

For each access level, an ALLOW or a DENY may be added.

• If there is an ALLOW, it means "only allow these machines". No ALLOW means allow anyone.

• If there is a DENY, it means "deny these machines". No DENY means deny nobody.

• If there is both an ALLOW and a DENY, it means allow the machines listed in ALLOW except for the machines
listed in DENY.

• Exclusively for theCONFIGaccess, no ALLOW means allow no one. Note that this is different than the other
ALLOW configurations. It is different to enable more stringent security where older configurations are used,
since older configuration files would not have aCONFIGconfiguration entry.

Multiple machine entries in the configuration files may be separated by either a space or a comma. The machines
may be listed by

• Individual host names, for example:condor.cs.wisc.edu

• Individual IP address, for example:128.105.67.29

• IP subnets (use a trailing*), for example:144.105. * , 128.105.67. *

• Host names with a wild card* character (only one* is allowed per name), for example:
* .cs.wisc.edu, sol * .cs.wisc.edu

To resolve an entry that falls into both allow and deny: individual machines have a higher order of precedence
than wild card entries, and host names with a wild card have a higher order of precedence than IP subnets. Otherwise,
DENY has a higher order of precedence than ALLOW. This is how most people would intuitively expect it to work.

In addition, the above access levels may be specified on a per-daemon basis, instead of machine-wide for all
daemons. Do this with the subsystem string (described in section 3.5.1 on Subsystem Names), which is one of:
STARTD, SCHEDD, MASTER, NEGOTIATOR, or COLLECTOR. For example, to grant different read access for the
condor_schedd:

ALLOW_READ_SCHEDD = <list of machines>

Here are more examples of configuration settings. Notice that ADMINISTRATORaccess is only granted through
anALLOWsetting to explicitly grant access to a small number of machines. We recommend this.

• Let any machine join the pool. Only the central manager has administrative access.

ALLOW_ADMINISTRATOR = $(CONDOR_HOST)
ALLOW_OWNER = $(FULL_HOSTNAME), $(ALLOW_ADMINISTRATOR)

• Only allow machines at NCSA to join or view the pool. The central manager is the only machine with
ADMINISTRATORaccess.

HTCondor Version 8.6.4 Manual

3.8.11. Changing the Security Configuration 443

ALLOW_READ =* .ncsa.uiuc.edu
ALLOW_WRITE =* .ncsa.uiuc.edu
ALLOW_ADMINISTRATOR = $(CONDOR_HOST)
ALLOW_OWNER = $(FULL_HOSTNAME), $(ALLOW_ADMINISTRATOR)

• Only allow machines at NCSA and the U of I Math department join the pool,except do notallow lab machines
to do so. Also, do not allow the 177.55 subnet (perhaps this isthe dial-in subnet). Allow anyone to view pool
statistics. The machine named bigcheese administers the pool (not the central manager).

ALLOW_WRITE =* .ncsa.uiuc.edu, * .math.uiuc.edu
DENY_WRITE = lab- * .edu, * .lab.uiuc.edu, 177.55. *
ALLOW_ADMINISTRATOR = bigcheese.ncsa.uiuc.edu
ALLOW_OWNER = $(FULL_HOSTNAME), $(ALLOW_ADMINISTRATOR)

• Only allow machines at NCSA and UW-Madison’s CS departmentto view the pool. Only NCSA machines and
the machine raven.cs.wisc.edu can join the pool. Note: the machine raven.cs.wisc.edu has the read access it
needs through the wild card setting inALLOW_READ). This example also shows how to use the continuation
character,\ , to continue a long list of machines onto multiple lines, making it more readable. This works for all
configuration file entries, not just host access entries.

ALLOW_READ =* .ncsa.uiuc.edu, * .cs.wisc.edu
ALLOW_WRITE =* .ncsa.uiuc.edu, raven.cs.wisc.edu
ALLOW_ADMINISTRATOR = $(CONDOR_HOST), bigcheese.ncsa.u iuc.edu, \

biggercheese.uiuc.edu
ALLOW_OWNER = $(FULL_HOSTNAME), $(ALLOW_ADMINISTRATOR)

• Allow anyone except the military to view the status of the pool, but only let machines at NCSA view the job
queues. Only NCSA machines can join the pool. The central manager, bigcheese, and biggercheese can perform
most administrative functions. However, only biggercheese can update user priorities.

DENY_READ =* .mil
ALLOW_READ_SCHEDD =* .ncsa.uiuc.edu
ALLOW_WRITE =* .ncsa.uiuc.edu
ALLOW_ADMINISTRATOR = $(CONDOR_HOST), bigcheese.ncsa.u iuc.edu, \

biggercheese.uiuc.edu
ALLOW_ADMINISTRATOR_NEGOTIATOR = biggercheese.uiuc.ed u
ALLOW_OWNER = $(FULL_HOSTNAME), $(ALLOW_ADMINISTRATOR)

3.8.11 Changing the Security Configuration

A new security feature introduced in HTCondor version 6.3.2enables more fine-grained control over the configuration
settings that can be modified remotely with thecondor_config_valcommand. The manual page forcondor_config_val
on page 774 details how to usecondor_config_valto modify configuration settings remotely. Since certain configura-
tion attributes can have a large impact on the functioning ofthe HTCondor system and the security of the machines in
an HTCondor pool, it is important to restrict the ability to change attributes remotely.

For each security access level described, the HTCondor administrator can define which configuration settings a
host at that access level is allowed to change. Optionally, the administrator can define separate lists of settable attributes
for each HTCondor daemon, or the administrator can define onelist that is used by all daemons.

For each command that requests a change in configuration setting, HTCondor searches all the different possible
security access levels to see which, if any, the request satisfies. (Some hosts can qualify for multiple access levels. For

HTCondor Version 8.6.4 Manual

3.8.11. Changing the Security Configuration 444

example, any host withADMINISTRATORpermission probably hasWRITEpermission also). Within the qualified
access level, HTCondor searches for the list of attributes that may be modified. If the request is covered by the list, the
request will be granted. If not covered, the request will be refused.

The default configuration shipped with HTCondor is exceedingly restrictive. HTCondor users or administrators
cannot set configuration values from remote hosts withcondor_config_val. Enabling this feature requires a change to
the settings in the configuration file. Use this security feature carefully. Grant access only for attributes which you
need to be able to modify in this manner, and grant access onlyat the most restrictive security level possible.

The most secure use of this feature allows HTCondor users to set attributes in the configuration file which are
not used by HTCondor directly. These are custom attributes published by various HTCondor daemons with the
<SUBSYS>_ATTRSsetting described in section 3.5.4 on page 244. It is secure to grant access only to modify at-
tributes that are used by HTCondor to publish information. Granting access to modify settings used to control the
behavior of HTCondor is not secure. The goal is to ensure no one can use the power to change configuration attributes
to compromise the security of your HTCondor pool.

The control lists are defined by configuration settings that containSETTABLE_ATTRSin their name. The name
of the control lists have the following form:

<SUBSYS>.SETTABLE_ATTRS_<PERMISSION-LEVEL>

The two parts of this name that can vary are the<PERMISSION-LEVEL> and the <SUBSYS>. The
<PERMISSION-LEVEL> can be any of the security access levels described earlier inthis section. Examples in-
cludeWRITE, OWNER, andCONFIG.

The<SUBSYS>is an optional portion of the name. It can be used to define separate rules for which configuration
attributes can be set for each kind of HTCondor daemon (for example,STARTD, SCHEDD, andMASTER). There
are many configuration settings that can be defined differently for each daemon that use this<SUBSYS>naming
convention. See section 3.5.1 on page 222 for a list. If thereis no daemon-specific value for a given daemon, HTCondor
will look for SETTABLE_ATTRS_<PERMISSION-LEVEL>.

Each control list is defined by a comma-separated list of attribute names which should be allowed to be modified.
The lists can contain wild cards characters (*).

Some examples of valid definitions of control lists with explanations:

• SETTABLE_ATTRS_CONFIG =*

Grant unlimited access to modify configuration attributes to any request that came from a machine in the
CONFIGaccess level. This was the default behavior before HTCondorversion 6.3.2.

• SETTABLE_ATTRS_ADMINISTRATOR =* _DEBUG, MAX_* _LOG

Grant access to change any configuration setting that ended with _DEBUG(for example,STARTD_DEBUG)
and any attribute that matchedMAX_* _LOG (for example, MAX_SCHEDD_LOG) to any host with
ADMINISTRATORaccess.

• STARTD.SETTABLE_ATTRS_OWNER = HasDataSet

HTCondor Version 8.6.4 Manual

3.8.12. Using HTCondor w/ Firewalls, Private Networks, andNATs 445

Allows any request to modify theHasDataSet attribute that came from a host withOWNERaccess. By default,
OWNERcovers any request originating from the local host, plus anymachines listed in theADMINISTRATOR
level. Therefore, any HTCondor job would qualify for OWNER access to the machine where it is running.
So, this setting would allow any process running on a given host, including an HTCondor job, to modify the
HasDataSet variable for that host.HasDataSet is not used by HTCondor, it is an invented attribute in-
cluded in theSTARTD_ATTRSsetting in order for this example to make sense.

3.8.12 Using HTCondor w/ Firewalls, Private Networks, and NATs

This topic is now addressed in more detail in section 3.9, which explains network communication in HTCondor.

3.8.13 User Accounts in HTCondor on Unix Platforms

On a Unix system, UIDs (User IDentification numbers) form part of an operating system’s tools for maintaining access
control. Each executing program has a UID, a unique identifier of a user executing the program. This is also called the
real UID. A common situation has one user executing the program owned by another user. Many system commands
work this way, with a user (corresponding to a person) executing a program belonging to (owned by)root . Since the
program may require privileges thatroot has which the user does not have, a special bit in the program’s protection
specification (a setuid bit) allows the program to run with the UID of the program’s owner, instead of the user that
executes the program. This UID of the program’s owner is called an effective UID.

HTCondor works most smoothly when its daemons run asroot . The daemons then have the ability to switch
their effective UIDs at will. When the daemons run asroot , they normally leave their effective UID and GID (Group
IDentification) to be those of user and groupcondor . This allows access to the log files without changing the
ownership of the log files. It also allows access to these fileswhen the usercondor ’s home directory resides on an
NFS server.root can not normally access NFS files.

If there is nocondor user and group on the system, an administrator can specify which UID and GID the
HTCondor daemons should use when they do not need root privileges in two ways: either with theCONDOR_IDS
environment variable or theCONDOR_IDSconfiguration variable. In either case, the value should be the UID integer,
followed by a period, followed by the GID integer. For example, if an HTCondor administrator does not want to create
a condor user, and instead wants their HTCondor daemons to run as thedaemon user (a common non-root user for
system daemons to execute as), thedaemon user’s UID was 2, and groupdaemon had a GID of 2, the corresponding
setting in the HTCondor configuration file would beCONDOR_IDS = 2.2.

On a machine where a job is submitted, thecondor_schedddaemon changes its effective UID toroot such that
it has the capability to start up acondor_shadowdaemon for the job. Before acondor_shadowdaemon is created, the
condor_schedddaemon switches back toroot , so that it can start up thecondor_shadowdaemon with the (real) UID
of the user who submitted the job. Since thecondor_shadowruns as the owner of the job, all remote system calls are
performed under the owner’s UID and GID. This ensures that asthe job executes, it can access only files that its owner
could access if the job were running locally, without HTCondor.

On the machine where the job executes, the job runs either as the submitting user or as usernobody , to help
ensure that the job cannot access local resources or do harm.If the UID_DOMAINmatches, and the user exists as
the same UID in password files on both the submitting machine and on the execute machine, the job will run as the

HTCondor Version 8.6.4 Manual

3.8.13. User Accounts in HTCondor on Unix Platforms 446

submitting user. If the user does not exist in the execute machine’s password file andSOFT_UID_DOMAINis True,
then the job will run under the submitting user’s UID anyway (as defined in the submitting machine’s password file).
If SOFT_UID_DOMAINis False, andUID_DOMAINmatches, and the user is not in the execute machine’s password
file, then the job execution attempt will be aborted.

Running HTCondor as Non-Root

While we strongly recommend starting up the HTCondor daemons asroot , we understand that it is not always
possible to do so. The main problems of not running HTCondor daemons asroot appear when one HTCondor
installation is shared by many users on a single machine, or if machines are set up to only execute HTCondor jobs.
With a submit-only installation for a single user, there is no need for or benefit from running asroot .

The effects of HTCondor of running both with and without rootaccess are classified for each daemon:

condor_startdAn HTCondor machine set up to execute jobs where thecondor_startdis not started asroot relies
on the good will of the HTCondor users to agree to the policy configured for thecondor_startdto enforce
for starting, suspending, vacating, and killing HTCondor jobs. When thecondor_startdis started asroot ,
however, these policies may be enforced regardless of malicious users. By running asroot , the HTCondor
daemons run with a different UID than the HTCondor job. The user’s job is started as either the UID of the user
who submitted it, or as usernobody , depending on theUID_DOMAINsettings. Therefore, the HTCondor job
cannot do anything to the HTCondor daemons. Without starting the daemons asroot , all processes started by
HTCondor, including the user’s job, run with the same UID. Only root can switch UIDs. Therefore, a user’s
job could kill thecondor_startdandcondor_starter. By doing so, the user’s job avoids getting suspended or
vacated. This is nice for the job, as it obtains unlimited access to the machine, but it is awful for the machine
owner or administrator. If there is trust of the users submitting jobs to HTCondor, this might not be a concern.
However, to ensure that the policy chosen is enforced by HTCondor, thecondor_startdshould be started as
root .

In addition, some system information cannot be obtained withoutroot access on some platforms. As a result,
when running withoutroot access, thecondor_startdmust call other programs such asuptime, to get this
information. This is much less efficient than getting the information directly from the kernel, as is done when
running asroot . On Linux, this information is available without root access, so it is not a concern on those
platforms.

If all of HTCondor cannot be run asroot , at least consider installing thecondor_startdas setuid root. That
would solve both problems. Barring that, install it as a setgid sys or kmem program, depending on whatever
group has read access to/dev/kmem on the system. That would solve the system information problem.

condor_scheddThe biggest problem with running thecondor_scheddwithout root access is that thecon-
dor_shadowprocesses which it spawns are stuck with the same UID that thecondor_scheddhas. This requires
users to go out of their way to grant write access to user or group that thecondor_scheddis run as for any files
or directories their jobs write or create. Similarly, read access must be granted to their input files.

Consider installingcondor_submitas a setgidcondor program so that at least thestdout , stderr and job
event log files get created with the right permissions. Ifcondor_submitis a setgid program, it will automatically
set its umask to 002 and create group-writable files. This way, the simple case of a job that only writes to
stdout andstderr will work. If users have programs that open their own files, they will need to know and
set the proper permissions on the directories they submit from.

HTCondor Version 8.6.4 Manual

3.8.13. User Accounts in HTCondor on Unix Platforms 447

condor_masterThecondor_masterspawns both thecondor_startdand thecondor_schedd. To have both running as
root , have thecondor_masterrun asroot . This happens automatically if thecondor_masteris started from
boot scripts.

condor_negotiatorand condor_collectorThere is no need to have either of these daemons running asroot .

condor_kbddOn platforms that need thecondor_kbdd, thecondor_kbddmust run asroot . If it is started as any other
user, it will not work. Consider installing this program as asetuid root binary if thecondor_masterwill not be
run asroot . Without thecondor_kbdd, the condor_startdhas no way to monitor USB mouse or keyboard
activity, although it will notice keyboard activity on ttyssuch as xterms and remote logins.

If HTCondor is not run as root, then choose almost any user name. A common choice is to set up and use the
condor user; this simplifies the setup, because HTCondor will look for its configuration files in thecondor user’s
directory. Ifcondor is not selected, then the configuration must be placed properly such that HTCondor can find its
configuration files.

If users will be submitting jobs as a user different than the user HTCondor is running as (perhaps you are running as
thecondor user and users are submitting as themselves), then users have to be careful to only have file permissions
properly set up to be accessible by the user HTCondor is using. In practice, this means creating world-writable
directories for output from HTCondor jobs. This creates a potential security risk, in that any user on the machine
where the job is submitted can alter the data, remove it, or doother undesirable things. It is only acceptable in an
environment where users can trust other users.

Normally, users withoutroot access who wish to use HTCondor on their machines create acondor home
directory somewhere within their own accounts and start up the daemons (to run with the UID of the user). As in the
case where the daemons run as usercondor , there is no ability to switch UIDs or GIDs. The daemons run asthe
UID and GID of the user who started them. On a machine where jobs are submitted, thecondor_shadowdaemons all
run as this same user. But, if other users are using HTCondor on the machine in this environment, thecondor_shadow
daemons for these other users’ jobs execute with the UID of the user who started the daemons. This is a security risk,
since the HTCondor job of the other user has access to all the files and directories of the user who started the daemons.
Some installations have this level of trust, but others do not. Where this level of trust does not exist, it is best to set up
a condor account and group, or to have each user start up their own Personal HTCondor submit installation.

When a machine is an execution site for an HTCondor job, the HTCondor job executes with the UID of the user
who started thecondor_startddaemon. This is also potentially a security risk, which is why we do not recommend
starting up the execution site daemons as a regular user. Useeitherroot or a user such ascondor that exists only
to run HTCondor jobs.

Who Jobs Run As

Under Unix, HTCondor runs jobs as one of

• the user callednobody

Running jobs as thenobody user is the least preferable. HTCondor uses usernobody if the value
of the UID_DOMAIN configuration variable of the submitting and executing machines are different, or

HTCondor Version 8.6.4 Manual

3.8.13. User Accounts in HTCondor on Unix Platforms 448

if configuration variableSTARTER_ALLOW_RUNAS_OWNERis False , or if the job ClassAd contains
RunAsOwner=False .

When HTCondor cleans up after executing a vanilla universe job, it does the best that it can by deleting all of
the processes started by the job. During the life of the job, it also does its best to track the CPU usage of all
processes created by the job. There are a variety of mechanisms used by HTCondor to detect all such processes,
but, in general, the only foolproof mechanism is for the job to run under a dedicated execution account (as it does
under Windows by default). With all other mechanisms, it is possible to fool HTCondor, and leave processes
behind after HTCondor has cleaned up. In the case of a shared account, such as the Unix usernobody , it is
possible for the job to leave a lurker process lying in wait for the next job run asnobody . The lurker process
may prey maliciously on the nextnobody user job, wreaking havoc.

HTCondor could prevent this problem by simply killing all processes run by thenobody user, but this would
annoy many system administrators. Thenobody user is often used for non-HTCondor system processes. It
may also be used by other HTCondor jobs running on the same machine, if it is a multi-processor machine.

• dedicated accounts called slot users set up for the purposeof running HTCondor jobs

Better than thenobody user will be to create user accounts for HTCondor to use. These can be low-privilege
accounts, just as thenobody user is. Create one of these accounts for each job execution slot per computer, so
that distinct user names can be used for concurrently running jobs. This prevents malicious or naive behavior
from one slot to affect another slot. For a sample machine with two compute slots, create two users that are
intended only to be used by HTCondor. As an example, call themcndrusr1 andcndrusr2 . Configuration
identifies these users with theSLOT<N>_USERconfiguration variable, where<N> is replaced with the slot
number. Here is configuration for this example:

SLOT1_USER = cndrusr1
SLOT2_USER = cndrusr2

Also tell HTCondor that these accounts are intended only to be used by HTCondor, so HTCondor
can kill all the processes belonging to these users upon job completion. The configuration variable
DEDICATED_EXECUTE_ACCOUNT_REGEXPis introduced and set to a regular expression that matches the
account names just created:

DEDICATED_EXECUTE_ACCOUNT_REGEXP = cndrusr[0-9]+

Finally, tell HTCondor not to run jobs as the job owner:

STARTER_ALLOW_RUNAS_OWNER = False

• the user that submitted the jobs

Four conditions must be set correctly to run jobs as the user that submitted the job.

1. In the configuration, the value of variableSTARTER_ALLOW_RUNAS_OWNERmust beTrue on the
machine that will run the job. Its default value isTrue on Unix platforms andFalse on Windows
platforms.

HTCondor Version 8.6.4 Manual

3.8.13. User Accounts in HTCondor on Unix Platforms 449

2. The job’s ClassAd must have attributeRunAsOwner set toTrue . This can be set up for all users by
adding an attribute to configuration variableSUBMIT_ATTRS. If this were the only attribute to be added
to all job ClassAds, it would be set up with

SUBMIT_ATTRS = RunAsOwner
RunAsOwner = True

3. The value of configuration variableUID_DOMAINmust be the same for both thecondor_startdandcon-
dor_schedddaemons.

4. The UID_DOMAIN must be trusted. For example, if thecondor_starterdaemon does a reverse DNS
lookup on thecondor_schedddaemon, and finds that the result isnot the same as defined for configuration
variableUID_DOMAIN, then it is not trusted. To correct this, set in the configuration for thecondor_starter

TRUST_UID_DOMAIN = True

Notes:

1. Currently, none of these configuration settings apply to standard universe jobs. Normally, standard universe jobs
do not create additional processes.

2. Under Windows, HTCondor by default runs jobs under a dynamically created local account that exists
for the duration of the job, but it can optionally run the job as the user account that owns the job if
STARTER_ALLOW_RUNAS_OWNERis True and the job containsRunAsOwner=True.

SLOT<N>_USERwill only work if the credential of the specified user is stored on the execute machine using
condor_store_cred. for details of this command. However, the default behaviorin Windows is to run jobs
under a dynamically created dedicated execution account, so just using the default behavior is sufficient to avoid
problems with lurker processes. See section 7.2.4, 7.2.5, and thecondor_store_credmanual page at section 11
for details.

3. Thecondor_starterlogs a line similar to

Tracking process family by login "cndrusr1"

when it treats the account as a dedicated account.

Working Directories for Jobs

Every executing process has a notion of its current working directory. This is the directory that acts as the base for all
file system access. There are two current working directories for any HTCondor job: one where the job is submitted
and a second where the job executes. When a user submits a job,the submit-side current working directory is the
same as for the user when thecondor_submitcommand is issued. Theinitialdir submit command may change this,
thereby allowing different jobs to have different working directories. This is useful when submitting large numbers
of jobs. This submit-side current working directory remains unchanged for the entire life of a job. The submit-side
current working directory is also the working directory of thecondor_shadowdaemon. This is particularly relevant
for standard universe jobs, since file system access for the job goes through thecondor_shadowdaemon, and therefore
all accesses behave as if they were executing without HTCondor.

HTCondor Version 8.6.4 Manual

3.9. Networking (includes sections on Port Usage and CCB) 450

There is also an execute-side current working directory. For standard universe jobs, it is set to theexecute
subdirectory of HTCondor’s home directory. This directoryis world-writable, since an HTCondor job usually runs
as usernobody . Normally, standard universe jobs would never access this directory, since all I/O system calls are
passed back to thecondor_shadowdaemon on the submit machine. In the event, however, that a job crashes and
creates a core dump file, the execute-side current working directory needs to be accessible by the job so that it can
write the core file. The core file is moved back to the submit machine, and thecondor_shadowdaemon is informed.
Thecondor_shadowdaemon sends e-mail to the job owner announcing the core file,and provides a pointer to where
the core file resides in the submit-side current working directory.

3.9 Networking (includes sections on Port Usage and CCB)

This section on network communication in HTCondor discusses which network ports are used, how HTCondor be-
haves on machines with multiple network interfaces and IP addresses, and how to facilitate functionality in a pool that
spans firewalls and private networks.

The security section of the manual contains some information that is relevant to the discussion of network com-
munication which will not be duplicated here, so please see section 3.8 as well.

Firewalls, private networks, and network address translation (NAT) pose special problems for HTCondor. There
are currently two main mechanisms for dealing with firewallswithin HTCondor:

1. Restrict HTCondor to use a specific range of port numbers, and allow connections through the firewall that use
any port within the range.

2. UseHTCondor Connection Brokering(CCB).

Each method has its own advantages and disadvantages, as described below.

3.9.1 Port Usage in HTCondor

IPv4 Port Specification

The general form for IPv4 port specification is

<IP:port?param1name=value1¶m2name=value2¶m3 name=value3&...>

These parameters and values are URL-encoded. This means anyspecial character is encoded with %, followed by
two hexadecimal digits specifying the ASCII value. Specialcharacters are any non-alphanumeric character.

HTCondor currently recognizes the following parameters with an IPv4 port specification:

CCBID Provides contact information for forming a CCB connection to a daemon, or a space separated list, if the
daemon is registered with more than one CCB server. Each contact information is specified in the form of
IP:port#ID . Note that spaces between list items will be URL encoded by%20.

HTCondor Version 8.6.4 Manual

3.9.1. Port Usage in HTCondor 451

PrivNet Provides the name of the daemon’s private network. This value is specified in the configuration with
PRIVATE_NETWORK_NAME.

sock Provides the name ofcondor_shared_portdaemon named socket.

PrivAddr Provides the daemon’s private address in form ofIP:port .

Default Port Usage

Every HTCondor daemon listens on a network port for incomingcommands. (Usingcondor_shared_port, this port
may be shared between multiple daemons.) Most daemons listen on a dynamically assigned port. In order to send a
message, HTCondor daemons and tools locate the correct portto use by querying thecondor_collector, extracting the
port number from the ClassAd. One of the attributes includedin every daemon’s ClassAd is the full IP address and
port number upon which the daemon is listening.

To access thecondor_collectoritself, all HTCondor daemons and tools must know the port number where the
condor_collectoris listening. Thecondor_collectoris the only daemon with a well-known, fixed port. By default,
HTCondor uses port 9618 for thecondor_collectordaemon. However, this port number can be changed (see below).

As an optimization for daemons and tools communicating withanother daemon that is running on the same host,
each HTCondor daemon can be configured to write its IP addressand port number into a well-known file. The file
names are controlled using the<SUBSYS>_ADDRESS_FILEconfiguration variables, as described in section 3.5.4
on page 243.

NOTE: In the 6.6 stable series, and HTCondor versions earlier than 6.7.5, thecondor_negotiatoralso listened
on a fixed, well-known port (the default was 9614). However, beginning with version 6.7.5, thecondor_negotiator
behaves like all other HTCondor daemons, and publishes its own ClassAd to thecondor_collectorwhich includes
the dynamically assigned port thecondor_negotiatoris listening on. All HTCondor tools and daemons that need
to communicate with thecondor_negotiatorwill either use theNEGOTIATOR_ADDRESS_FILEor will query the
condor_collectorfor thecondor_negotiator’s ClassAd.

Sites that configure any checkpoint servers will introduce other fixed ports into their network. Eachcon-
dor_ckpt_serverwill listen to 4 fixed ports: 5651, 5652, 5653, and 5654. Thereis currently no way to configure
alternative values for any of these ports.

Using a Non Standard, Fixed Port for thecondor_collector

By default, HTCondor uses port 9618 for thecondor_collectordaemon. To use a different port number for this
daemon, the configuration variables that tell HTCondor these communication details are modified. Instead of

CONDOR_HOST = machX.cs.wisc.edu
COLLECTOR_HOST = $(CONDOR_HOST)

the configuration might be

HTCondor Version 8.6.4 Manual

3.9.1. Port Usage in HTCondor 452

CONDOR_HOST = machX.cs.wisc.edu
COLLECTOR_HOST = $(CONDOR_HOST):9650

If a non standard port is defined, the same value ofCOLLECTOR_HOST(including the port) must be used for
all machines in the HTCondor pool. Therefore, this setting should be modified in the global configuration file
(condor_config file), or the value must be duplicated across all configuration files in the pool if a single con-
figuration file is not being shared.

When querying thecondor_collectorfor a remote pool that is running on a non standard port, any HTCondor tool
that accepts the-pool argument can optionally be given a port number. For example:

% condor_status -pool foo.bar.org:1234

Using a Dynamically Assigned Port for thecondor_collector

On single machine pools, it is permitted to configure thecondor_collectordaemon to use a dynamically assigned
port, as given out by the operating system. This prevents port conflicts with other services on the same machine.
However, a dynamically assigned port is only to be used on single machine HTCondor pools, and only if the
COLLECTOR_ADDRESS_FILEconfiguration variable has also been defined. This mechanismallows all of the HT-
Condor daemons and tools running on the same machine to find the port upon which thecondor_collectordaemon is
listening, even when this port is not defined in the configuration file and is not known in advance.

To enable thecondor_collectordaemon to use a dynamically assigned port, the port number isset to 0 in the
COLLECTOR_HOSTvariable. TheCOLLECTOR_ADDRESS_FILEconfiguration variable must also be defined, as it
provides a known file where the IP address and port information will be stored. All HTCondor clients know to look at
the information stored in this file. For example:

COLLECTOR_HOST = $(CONDOR_HOST):0
COLLECTOR_ADDRESS_FILE = $(LOG)/.collector_address

Configuration definition of COLLECTOR_ADDRESS_FILEis in section 3.5.4 on page 243, and
COLLECTOR_HOSTis in section 3.5.2 on page 224.

Restricting Port Usage to Operate with Firewalls

If an HTCondor pool is completely behind a firewall, then no special consideration or port usage is needed. However,
if there is a firewall between the machines within an HTCondorpool, then configuration variables may be set to force
the usage of specific ports, and to utilize a specific range of ports.

By default, HTCondor uses port 9618 for thecondor_collectordaemon, and dynamic (apparently random) ports
for everything else. See section 3.9.1, if a dynamically assigned port is desired for thecondor_collectordaemon.

All of the HTCondor daemons on a machine may be configured to share a single port. See section 3.5.32 for more
information.

The configuration variablesHIGHPORTandLOWPORTfacilitate setting a restricted range of ports that HTCondor
will use. This may be useful when some machines are behind a firewall. The configuration macrosHIGHPORT

HTCondor Version 8.6.4 Manual

3.9.1. Port Usage in HTCondor 453

and LOWPORTwill restrict dynamic ports to the range specified. The configuration variables are fully defined in
section 3.5.5. All of these ports must be greater than 0 and less than 65,536. Note that bothHIGHPORTandLOWPORT
must be at least 1024 for HTCondor version 6.6.8. In general,use ports greater than 1024, in order to avoid port
conflicts with standard services on the machine. Another reason for using ports greater than 1024 is that daemons and
tools are often not run asroot , and onlyroot may listen to a port lower than 1024. Also, the range must include
enough ports that are not in use, or HTCondor cannot work.

The range of ports assigned may be restricted based on incoming (listening) and outgoing (connect) ports with the
configuration variablesIN_HIGHPORT, IN_LOWPORT, OUT_HIGHPORT, andOUT_LOWPORT. See section 3.5.5
for complete definitions of these configuration variables. Arange of ports lower than 1024 for daemons running as
root is appropriate for incoming ports, but not for outgoing ports. The use of ports below 1024 (versus above 1024)
has security implications; therefore, it is inappropriateto assign a range that crosses the 1024 boundary.

NOTE: SettingHIGHPORTandLOWPORTwill not automatically force thecondor_collectorto bind to a port
within the range. The only way to control what port thecondor_collectoruses is by setting theCOLLECTOR_HOST
(as described above).

The total number of ports needed depends on the size of the pool, the usage of the machines within the pool (which
machines run which daemons), and the number of jobs that may execute at one time. Here we discuss how many ports
are used by each participant in the system. This assumes thatcondor_shared_portis not being used. If itis being
used, then all daemons can share a single incoming port.

The central manager of the pool needs5 + NEGOTIATOR_SOCKET_CACHE_SIZEports for daemon com-
munication, whereNEGOTIATOR_SOCKET_CACHE_SIZEis specified in the configuration or defaults to the value
16.

Each execute machine (those machines running acondor_startd daemon) requires
5 + (5 * number of slots advertised by that machine) ports. By default, the number

of slots advertised will equal the number of physical CPUs inthat machine.

Submit machines (those machines running a condor_schedd daemon) require
5 + (5 * MAX_JOBS_RUNNING)ports. The configuration variableMAX_JOBS_RUNNINGlimits (on a

per-machine basis, if desired) the maximum number of jobs. Without this configuration macro, the maximum number
of jobs that could be simultaneously executing at one time isa function of the number of reachable execute machines.

Also be aware thatHIGHPORTandLOWPORTonly impact dynamic port selection used by the HTCondor system,
and they do not impact port selection used by jobs submitted to HTCondor. Thus, jobs submitted to HTCondor that
may create network connections may not work in a port restricted environment. For this reason, specifyingHIGHPORT
andLOWPORTis not going to produce the expected results if a user submitsMPI applications to be executed under the
parallel universe.

Where desired, a local configuration for machinesnot behind a firewall can override the usage ofHIGHPORTand
LOWPORT, such that the ports used for these machines are not restricted. This can be accomplished by adding the
following to the local configuration file of those machinesnot behind a firewall:

HIGHPORT = UNDEFINED
LOWPORT = UNDEFINED

If the maximum number of ports allocated usingHIGHPORTandLOWPORTis too few, socket binding errors of

HTCondor Version 8.6.4 Manual

3.9.2. Reducing Port Usage with thecondor_shared_portDaemon 454

the form

failed to bind any port within <$LOWPORT> - <$HIGHPORT>

are likely to appear repeatedly in log files.

Multiple Collectors

This section has not yet been written

Port Conflicts

This section has not yet been written

3.9.2 Reducing Port Usage with thecondor_shared_portDaemon

The condor_shared_portis an optional daemon responsible for creating a TCP listener port shared by all of the
HTCondor daemons.

The main purpose of thecondor_shared_portdaemon is to reduce the number of ports that must be opened. This
is desirable when HTCondor daemons need to be accessible through a firewall. This has a greater security benefit
than simply reducing the number of open ports. Without thecondor_shared_portdaemon, HTCondor can use a range
of ports, but since some HTCondor daemons are created dynamically, this full range of ports will not be in use by
HTCondor at all times. This implies that other non-HTCondorprocesses not intended to be exposed to the outside
network could unintentionally bind to ports in the range intended for HTCondor, unless additional steps are taken to
control access to those ports. While thecondor_shared_portdaemon is running, it is exclusively bound to its port,
which means that other non-HTCondor processes cannot accidentally bind to that port.

A second benefit of thecondor_shared_portdaemon is that it helps address the scalability issues of a submit
machine. Without thecondor_shared_portdaemon, more than 2 ephemeral ports per running job are oftenrequired,
depending on the rate of job completion. There are only 64K ports in total, and most standard Unix installations
only allocate a subset of these as ephemeral ports. Therefore, with long running jobs, and with between 11K and
14K simultaneously running jobs, port exhaustion has been observed in typical Linux installations. After increasing
the ephemeral port range to its maximum, port exhaustion occurred between 20K and 25K running jobs. Using the
condor_shared_portdaemon dramatically reduces the required number of ephemeral ports on the submit node where
the submit node connects directly to the execute node. If thesubmit node connects via CCB to the execute node,no
ports are required per running job; only the one port allocated to thecondor_shared_portdaemon is used.

When CCB is enabled, thecondor_shared_portdaemon registers with the CCB server on behalf of all daemons
sharing the port. This means that it is not possible to individually enable or disable CCB connectivity to daemons that
are using the shared port; they all effectively share the same setting, and thecondor_shared_portdaemon handles all
CCB connection requests on their behalf.

HTCondor Version 8.6.4 Manual

3.9.3. Configuring HTCondor for Machines With Multiple Network Interfaces 455

HTCondor’s authentication and authorization steps are unchanged by the use of a shared port. Each HTCondor
daemon continues to operate according to its configured policy. Requests for connections to the shared port are not
authenticated or restricted by thecondor_shared_portdaemon. They are simply passed to the requested daemon,
which is then responsible for enforcing the security policy.

When thecondor_masteris configured to use the shared port by setting the configuration variable

USE_SHARED_PORT = True

the condor_shared_portdaemon is treated specially.SHARED_PORTis automatically added toDAEMON_LIST.
A command such ascondor_off, which shuts down all daemons except for thecondor_master, will also leave the
condor_shared_portrunning. This prevents thecondor_masterfrom getting into a state where it can no longer receive
commands.

Also when USE_SHARED_PORT = True, thecondor_collectorneeds to be configured to use a shared port,
so that connections to the shared port that are destined for thecondor_collectorcan be forwarded. As an example, the
shared port socket name of thecondor_collectorwith shared port number 11000 is

COLLECTOR_HOST = cm.host.name:11000?sock=collector

This example assumes that the socket name used by thecondor_collectoris collector , and it runs on
cm.host.name . This configuration causes thecondor_collectorto automatically choose this socket name. If multi-
plecondor_collectordaemons are started on the same machine, the socket name can be explicitly set in the daemon’s
invocation arguments, as in the example:

COLLECTOR_ARGS = -sock collector

When thecondor_collectoraddress is a shared port, TCP updates will be automatically used instead of UDP,
because thecondor_shared_portdaemon does not work with UDP messages. Under Unix, this means that thecon-
dor_collectordaemon should be configured to have enough file descriptors. See section 3.9.5 for more information on
using TCP within HTCondor.

SOAP commands cannot be sent through thecondor_shared_portdaemon. However, a daemon may
be configured to open a fixed, non-shared port, in addition to using a shared port. This is done
both by setting USE_SHARED_PORT = Trueand by specifying a fixed port for the daemon using
<SUBSYS>_ARGS = -p <portnum>.

The TCP connections required to manage standard universe jobs do not make use of shared ports. Therefore, if the
firewall is configured to only allow connections through the shared port, standard universe jobs will not be able to run.

3.9.3 Configuring HTCondor for Machines With Multiple Netwo rk Interfaces

HTCondor can run on machines with multiple network interfaces. Starting with HTCondor version 6.7.13 (and there-
fore all HTCondor 6.8 and more recent versions), new functionality is available that allows even better support for

HTCondor Version 8.6.4 Manual

3.9.3. Configuring HTCondor for Machines With Multiple Network Interfaces 456

multi-homed machines, using the configuration variableBIND_ALL_INTERFACES. A multi-homed machine is one
that has more than one NIC (Network Interface Card). Furtherimprovements to this new functionality will remove the
need for any special configuration in the common case. For now, care must still be given to machines with multiple
NICs, even when using this new configuration variable.

Using BIND_ALL_INTERFACES

Machines can be configured such that whenever HTCondor daemons or tools callbind() , the daemons or tools use
all network interfaces on the machine. This means that outbound connections will always use the appropriate network
interface to connect to a remote host, instead of being forced to use an interface that might not have a route to the given
destination. Furthermore, sockets upon which a daemon listens for incoming connections will be bound to all network
interfaces on the machine. This means that so long as remote clients know the right port, they can use any IP address
on the machine and still contact a given HTCondor daemon.

This functionality is on by default. To disable this functionality, the boolean configuration variable
BIND_ALL_INTERFACESis defined and set toFalse :

BIND_ALL_INTERFACES = FALSE

This functionality has limitations. Here are descriptionsof the limitations.

Using all network interfaces does not work with Kerberos. Every Kerberos ticket contains a specific IP address
within it. Authentication over a socket (using Kerberos) requires the socket to also specify that same specific
IP address. Use ofBIND_ALL_INTERFACEScauses outbound connections from a multi-homed machine to
originate over any of the interfaces. Therefore, the IP address of the outbound connection and the IP address in
the Kerberos ticket will not necessarily match, causing theauthentication to fail. Sites using Kerberos authen-
tication on multi-homed machines are strongly encouraged not to enableBIND_ALL_INTERFACES, at least
until HTCondor’s Kerberos functionality supports using multiple Kerberos tickets together with finding the right
one to match the IP address a given socket is bound to.

There is a potential security risk. Consider the following example of a security risk. A multi-homed machine is at
a network boundary. One interface is on the public Internet,while the other connects to a private network. Both
the multi-homed machine and the private network machines comprise an HTCondor pool. If the multi-homed
machine enablesBIND_ALL_INTERFACES, then it is at risk from hackers trying to compromise the security
of the pool. Should this multi-homed machine be compromised, the entire pool is vulnerable. Most sites in
this situation would run ansshdon the multi-homed machine so that remote users who wanted toaccess the
pool could log in securely and use the HTCondor tools directly. In this case, remote clients do not need to use
HTCondor tools running on machines in the public network to access the HTCondor daemons on the multi-
homed machine. Therefore, there is no reason to have HTCondor daemons listening on ports on the public
Internet, causing a potential security threat.

Up to two IP addresses will be advertised.At present, even though a given HTCondor daemon will be listening to
ports on multiple interfaces, each with their own IP address, there is currently no mechanism for that daemon
to advertise all of the possible IP addresses where it can be contacted. Therefore, HTCondor clients (other

HTCondor Version 8.6.4 Manual

3.9.3. Configuring HTCondor for Machines With Multiple Network Interfaces 457

HTCondor daemons or tools) will not necessarily able to locate and communicate with a given daemon running
on a multi-homed machine whereBIND_ALL_INTERFACEShas been enabled.

Currently, HTCondor daemons can only advertise two IP addresses in the ClassAd they send to theircon-
dor_collector. One is the public IP address and the other is the private IP address. HTCondor tools and other
daemons that wish to connect to the daemon will use the private IP address if they are configured with the same
private network name, and they will use the public IP addressotherwise. So, even if the daemon is listening
on 3 or more different interfaces, each with a separate IP, the daemon must choose which two IP addresses to
advertise so that other daemons and tools can connect to it.

By default, HTCondor advertises the IP address of the network interface used to contact thecon-
dor_collector as its public address, since this is the most likely to be accessible to other processes that
query the samecondor_collector. The NETWORK_INTERFACEconfiguration variable can be used to spec-
ify the public IP address HTCondor should advertise, andPRIVATE_NETWORK_INTERFACE, along with
PRIVATE_NETWORK_NAMEcan be used to specify the private IP address to advertise.

Sites that make heavy use of private networks and multi-homed machines should consider if using the HTCondor
Connection Broker, CCB, is right for them. More informationabout CCB and HTCondor can be found in section 3.9.4
on page 459.

Central Manager with Two or More NICs

Often users of HTCondor wish to set up compute farms where there is one machine with two network interface cards
(one for the public Internet, and one for the private net). Itis convenient to set up the head node as a central manager
in most cases and so here are the instructions required to do so.

Setting up the central manager on a machine with more than oneNIC can be a little confusing because there are
a few external variables that could make the process difficult. One of the biggest mistakes in getting this to work is
that either one of the separate interfaces is not active, or the host/domain names associated with the interfaces are
incorrectly configured.

Given that the interfaces are up and functioning, and they have good host/domain names associated with them here
is how to configure HTCondor:

In this example,farm-server.farm.org maps to the private interface. In the central manager’s global (to
the cluster) configuration file:

CONDOR_HOST = farm-server.farm.org

In the central manager’s local configuration file:

NETWORK_INTERFACE = <IP address of farm-server.farm.org>
NEGOTIATOR = $(SBIN)/condor_negotiator
COLLECTOR = $(SBIN)/condor_collector
DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, SCHEDD, STARTD

HTCondor Version 8.6.4 Manual

3.9.3. Configuring HTCondor for Machines With Multiple Network Interfaces 458

If the central manager and farm machines are all NT, then onlyvanilla universe will work now. However, if this is
set up for Unix, then at this point, standard universe jobs should be able to function in the pool. But, ifUID_DOMAIN
is not configured to be homogeneous across the farm machines,the standard universe jobs will run asnobody on the
farm machines.

In order to get vanilla jobs and file server load balancing forstandard universe jobs working (under Unix), do some
more work both in the cluster you have put together and in HTCondor to make everything work. First, you need a
file server (which could also be the central manager) to servefiles to all of the farm machines. This could be NFS
or AFS, and it does not really matter to HTCondor. The mount point of the directories you wish your users to use
must be the same across all of the farm machines. Now, configureUID_DOMAINandFILESYSTEM_DOMAINto be
homogeneous across the farm machines and the central manager. Inform HTCondor that an NFS or AFS file system
exists and that is done in this manner. In the global (to the farm) configuration file:

If you have NFS
USE_NFS = True
If you have AFS
HAS_AFS = True
USE_AFS = True
if you want both NFS and AFS, then enable both sets above

Now, if the cluster is set up so that it is possible for a machine name to never have a domain name (for example,
there is machine name but no fully qualified domain name in/etc/hosts), configureDEFAULT_DOMAIN_NAME
to be the domain that is to be added on to the end of the host name.

A Client Machine with Multiple Interfaces

If client machine has two or more NICs, then there might be a specific network interface on which the client machine
desires to communicate with the rest of the HTCondor pool. Inthis case, the local configuration file for the client
should have

NETWORK_INTERFACE = <IP address of desired interface>

A Checkpoint Server on a Machine with Multiple NICs

If a checkpoint server is on a machine with multiple interfaces, then 2 items must be correct to get things to work:

1. The different interfaces have different host names associated with them.

2. In the global configuration file, set configuration variable CKPT_SERVER_HOSTto the host name that corre-
sponds with the IP address desired for the pool. Configuration variableNETWORK_INTERFACEmust still be
specified in the local configuration file for the checkpoint server.

HTCondor Version 8.6.4 Manual

3.9.4. HTCondor Connection Brokering (CCB) 459

3.9.4 HTCondor Connection Brokering (CCB)

HTCondor Connection Brokering, or CCB, is a way of allowing HTCondor components to communicate with each
other when one side is in a private network or behind a firewall. Specifically, CCB allows communication across a
private network boundary in the following scenario: an HTCondor tool or daemon (process A) needs to connect to an
HTCondor daemon (process B), but the network does not allow aTCP connection to be created from A to B; it only
allows connections from B to A. In this case, B may be configured to register itself with a CCB server that both A and
B can connect to. Then when A needs to connect to B, it can send arequest to the CCB server, which will instruct B
to connect to A so that the two can communicate.

As an example, consider an HTCondor execute node that is within a private network. This execute node’scon-
dor_startd is process B. This execute node cannot normally run jobs submitted from a machine that is outside of
that private network, because bi-directional connectivity between the submit node and the execute node is normally
required. However, if both execute and submit machine can connect to the CCB server, if both are authorized by the
CCB server, and if it is possible for the execute node within the private network to connect to the submit node, then it
is possible for the submit node to run jobs on the execute node.

To effect this CCB solution, the execute node’scondor_startdwithin the private network registers itself with the
CCB server by setting the configuration variableCCB_ADDRESS. The submit node’scondor_scheddcommunicates
with the CCB server, requesting that the execute node’scondor_startdopen the TCP connection. The CCB server
forwards this request to the execute node’scondor_startd, which opens the TCP connection. Once the connection is
open, bi-directional communication is enabled.

If the location of the execute and submit nodes is reversed with respect to the private network, the same idea
applies: the submit node within the private network registers itself with a CCB server, such that when a job is running
and the execute node needs to connect back to the submit node (for example, to transfer output files), the execute node
can connect by going through CCB to request a connection.

If both A and B are in separate private networks, then CCB alone cannot provide connectivity. However, if an in-
coming port or port range can be opened in one of the private networks, then the situation becomes equivalent to one of
the scenarios described above and CCB can provide bi-directional communication given only one-directional connec-
tivity. See section for information on opening port ranges.Also note that CCB works nicely withcondor_shared_port.

Unfortunately at this time, CCB does not support standard universe jobs.

Any condor_collectormay be used as a CCB server. There is no requirement that thecondor_collectoracting
as the CCB server be the samecondor_collectorthat a daemon advertises itself to (as withCOLLECTOR_HOST).
However, this is often a convenient choice.

Example Configuration

This example assumes that there is a pool of machines in a private network that need to be made accessible from
the outside, and that thecondor_collector(and therefore CCB server) used by these machines is accessible from the
outside. Accessibility might be achieved by a special firewall rule for the condor_collectorport, or by being on a
dual-homed machine in both networks.

The configuration of variableCCB_ADDRESSon machines in the private network causes registration withthe

HTCondor Version 8.6.4 Manual

3.9.4. HTCondor Connection Brokering (CCB) 460

CCB server as in the example:

CCB_ADDRESS = $(COLLECTOR_HOST)
PRIVATE_NETWORK_NAME = cs.wisc.edu

The definition ofPRIVATE_NETWORK_NAMEensures that all communication between nodes within the pri-
vate network continues to happen as normal, and without going through the CCB server. The name chosen for
PRIVATE_NETWORK_NAMEshould be different from the private network name chosen forany HTCondor instal-
lations that will be communicating with this pool.

Under Unix, and with large HTCondor pools, it is also necessary to give thecondor_collectoracting as the
CCB server a large enough limit of file descriptors. This may be accomplished with the configuration variable
MAX_FILE_DESCRIPTORSor an equivalent. Each HTCondor process configured to use CCBwith CCB_ADDRESS
requires one persistent TCP connection to the CCB server. A typical execute node requires one connection for the
condor_master, one for thecondor_startd, and one for each running job, as represented by acondor_starter. A typ-
ical submit machine requires one connection for thecondor_master, one for thecondor_schedd, and one for each
running job, as represented by acondor_shadow. If there will be no administrative commands required to be sent to
thecondor_masterfrom outside of the private network, then CCB may be disabledin thecondor_masterby assigning
MASTER.CCB_ADDRESSto nothing:

MASTER.CCB_ADDRESS =

Completing the count of TCP connections in this example: suppose the pool consists of 500 8-slot execute nodes
and CCB is not disabled in the configuration of thecondor_masterprocesses. In this case, the count of needed file
descriptors plus some extra for other transient connections to the collector is 500*(1+1+8)=5000. Be generous, and
give it twice as many descriptors as needed by CCB alone:

COLLECTOR.MAX_FILE_DESCRIPTORS = 10000

Security and CCB

The CCB server authorizes all daemons that register themselves with it (usingCCB_ADDRESS) at the DAEMON
authorization level (these are playing the role of process Ain the above description). It authorizes all connection
requests (from process B) at the READ authorization level. As usual, whether process B authorizes process A to do
whatever it is trying to do is up to the security policy for process B; from the HTCondor security model’s point of
view, it is as if process A connected to process B, even thoughat the network layer, the reverse is true.

Troubleshooting CCB

Errors registering with CCB or requesting connections via CCB are logged at levelD_ALWAYSin the debugging log.
These errors may be identified by searching for "CCB" in the log message. Command-line tools require the argument
-debug for this information to be visible. To see details of the CCB protocol addD_FULLDEBUGto the debugging

HTCondor Version 8.6.4 Manual

3.9.5. Using TCP to Send Updates to thecondor_collector 461

options for the particular HTCondor subsystem of interest.Or, addD_FULLDEBUGto ALL_DEBUGto get extra
debugging from all HTCondor components.

A daemon that has successfully registered itself with CCB will advertise this fact in its address in its ClassAd. The
ClassAd attributeMyAddress will contain information about its"CCBID" .

Scalability and CCB

Any number of CCB servers may be used to serve a pool of HTCondor daemons. For example, half of the pool could
use one CCB server and half could use another. Or for redundancy, all daemons could use both CCB servers and then
CCB connection requests will load-balance across them. Typically, the limit of how many daemons may be registered
with a single CCB server depends on the authentication method used by thecondor_collectorfor DAEMON-level and
READ-level access, and on the amount of memory available to the CCB server. We are not able to provide specific
recommendations at this time, but to give a very rough idea, aserver class machine should be able to handle CCB
service plus normalcondor_collectorservice for a pool containing a few thousand slots without much trouble.

3.9.5 Using TCP to Send Updates to thecondor_collector

TCP sockets are reliable, connection-based sockets that guarantee the delivery of any data sent. However, TCP sockets
are fairly expensive to establish, and there is more networkoverhead involved in sending and receiving messages.

UDP sockets are datagrams, and are not reliable. There is very little overhead in establishing or using a UDP
socket, but there is also no guarantee that the data will be delivered. The lack of guaranteed delivery of UDP will
negatively affect some pools, particularly ones comprisedof machines across a wide area network (WAN) or highly-
congested network links, where UDP packets are frequently dropped.

By default, HTCondor daemons will use TCP to send updates to thecondor_collector, with the exception of the
condor_collectorforwarding updates to anycondor_collectordaemons specified inCONDOR_VIEW_HOST, where
UDP is used. These configuration variables control the protocol used:

UPDATE_COLLECTOR_WITH_TCP When set toFalse , the HTCondor daemons will use UDP to update thecon-
dor_collector, instead of the default TCP. Defaults toTrue .

UPDATE_VIEW_COLLECTOR_WITH_TCP When set toTrue , the HTCondor collector will use TCP to forward
updates tocondor_collectordaemons specified byCONDOR_VIEW_HOST, instead of the default UDP. Defaults
to False .

TCP_UPDATE_COLLECTORS A list of condor_collectordaemons which will be updated with TCP instead of UDP,
whenUPDATE_COLLECTOR_WITH_TCPor UPDATE_VIEW_COLLECTOR_WITH_TCPis set toFalse .

When there are sufficient file descriptors, thecondor_collectorleaves established TCP sockets open, facilitating
better performance. Subsequent updates can reuse an already open socket.

Each HTCondor daemon that sends updates to thecondor_collectorwill have 1 socket open to it. So, in a pool with
N machines, each of them running acondor_master, condor_schedd, andcondor_startd, thecondor_collectorwould

HTCondor Version 8.6.4 Manual

3.9.6. Running HTCondor on an IPv6 Network Stack 462

need at least 3*N file descriptors. If thecondor_collectoris also acting as a CCB server, it will require an additional
file descriptor for each registered daemon. In the default configuration, the number of file descriptors available to the
condor_collectoris 10240. For very large pools, the number of descriptor can be modified with the configuration:

COLLECTOR_MAX_FILE_DESCRIPTORS = 40960

If there are insufficient file descriptors for all of the daemons sending updates to thecondor_collector, a warning
will be printed in thecondor_collectorlog file. The string"file descriptor safety level exceeded"
identifies this warning.

3.9.6 Running HTCondor on an IPv6 Network Stack

HTCondor supports using IPv4, IPv6, or both. By default, HTCondor will look at a machine’s interfaces, and on that
machine, enable each protocol for which it finds at least one interface with an address of that procol.

To require IPv4, you may setENABLE_IPV4 to true; if the machine does not have an interface with an IPv4
address, HTCondor will not start. Likewise, to require IPv6, you may setENABLE_IPV6 to true.

If you setENABLE_IPV4 to false, HTCondor will not use IPv4, even if it is available;likewise forENABLE_IPV6
and IPv6.

The default setting forENABLE_IPV4 andENABLE_IPV6 is auto , which uses the corresponding protocol if
and only HTCondor finds an interface with an address of that protocol.

If both IPv4 and IPv6 networking are enabled, HTCondor runs in mixed mode. In mixed mode, HTCondor
daemons have at least one IPv4 address and at least one IPv6 address. Other daemons and the command-line tools
choose between these addresses based on which protocols areenabled for them; if both are, they will prefer the first
address listed by that daemon.

A daemon may be listening on one, some, or all of its machine’saddresses. (SeeNETWORK_INTERFACE.)
Daemons may presently list at most two addresses, one IPv6 and one IPv4. Each address is the “most public” address
of its protocol; by default, the IPv6 address is listed first.HTCondor selects the “most public” address heuristically.

Nonetheless, there are two cases in which HTCondor may not use an IPv6 address when one is available:

• When given a literal IP address, HTCondor will use that IP address.

• When looking up a host name using DNS, HTCondor will use the first address whose protocol is enabled for
the tool or daemon doing the look up.

You may force HTCondor to prefer IPv4 in all three of these situations by setting the macroPREFER_IPV4 to
true; this is the default. WithPREFER_IPV4set, HTCondor daemons will list their “most public” IPv4 address first;
prefer the IPv4 address when choosing from another’s daemonlist; and prefer the IPv4 address when looking up a
host name in DNS.

In practice, both an HTCondor pool’s central manager and anysubmit machines within a mixed mode pool must
have both IPv4 and IPv6 addresses for both IPv4-only and IPv6-only condor_startddaemons to function properly.

HTCondor Version 8.6.4 Manual

3.9.6. Running HTCondor on an IPv6 Network Stack 463

IPv6 and Host-Based Security

You may freely intermix IPv6 and IPv4 address literals. You may also specify IPv6 netmasks as a legal IPv6 address
followed by a slash followed by the number of bits in the mask;or as the prefix of a legal IPv6 address followed by
two colons followed by an asterisk. The latter is entirely equivalent to the former, except that it only allows you to
(implicitly) specify mask bits in groups of sixteen. For example,fe8f:1234::/60 andfe8f:1234:: * specify
the same network mask.

The HTCondor security subsystem resolves names in the ALLOWand DENY lists and uses all of the resulting
IP addresses. Thus, to allow or deny IPv6 addresses, the names must have IPv6 DNS entries (AAAA records), or
NO_DNSmust be enabled.

IPv6 Address Literals

When you specify an IPv6 address and a port number simultaneously, you must separate the IPv6 address from the
port number by placing square brackets around the address. For instance:

COLLECTOR_HOST = [2607:f388:1086:0:21e:68ff:fe0f:6462]:5332

If you do not (or may not) specify a port, do not use the square brackets. For instance:

NETWORK_INTERFACE = 1234:5678::90ab

IPv6 without DNS

When using the configuration variableNO_DNS, IPv6 addresses are turned into host names by taking the IPv6address,
changing colons to dashes, and appending$(DEFAULT_DOMAIN_NAME). So,

2607:f388:1086:0:21b:24ff:fedf:b520

becomes

2607-f388-1086-0-21b-24ff-fedf-b520.example.com

assuming

DEFAULT_DOMAIN_NAME=example.com

HTCondor Version 8.6.4 Manual

3.10. The Checkpoint Server 464

3.10 The Checkpoint Server

A Checkpoint Server maintains a repository for checkpoint files. Within HTCondor, checkpoints may be produced only
for standard universe jobs. Using checkpoint servers reduces the disk requirements of submitting machines in the pool,
since the submitting machines no longer need to store checkpoint files locally. Checkpoint server machines should
have a large amount of disk space available, and they should have a fast connection to machines in the HTCondor
pool.

If the spool directories are on a network file system, then checkpoint files will make two trips over the network:
one between the submitting machine and the execution machine, and a second between the submitting machine and
the network file server. A checkpoint server configured to usethe server’s local disk means that the checkpoint file
will travel only once over the network, between the execution machine and the checkpoint server. The pool may also
obtain checkpointing network performance benefits by usingmultiple checkpoint servers, as discussed below.

Note that it is a good idea to pick very stable machines for thecheckpoint servers. If individual checkpoint servers
crash, the HTCondor system will continue to operate, although poorly. While the HTCondor system will recover from
a checkpoint server crash as best it can, there are two problems that can and will occur:

1. A checkpoint cannot be sent to a checkpoint server that is not functioning. Jobs will keep trying to contact the
checkpoint server, backing off exponentially in the time they wait between attempts. Normally, jobs only have
a limited time to checkpoint before they are kicked off the machine. So, if the checkpoint server is down for a
long period of time, chances are that a lot of work will be lostby jobs being killed without writing a checkpoint.

2. If a checkpoint is not available from the checkpoint server, a job cannot be retrieved, and it will either have to be
restarted from the beginning, or the job will wait for the server to come back on line. This behavior is controlled
with theMAX_DISCARDED_RUN_TIMEconfiguration variable. This variable represents the maximum amount
of CPU time the job is willing to discard, by starting a job over from its beginning if the checkpoint server is not
responding to requests.

3.10.1 Preparing to Install a Checkpoint Server

The location of checkpoint files changes upon the installation of a checkpoint server. A configuration change will
cause currently queued jobs with checkpoints to not be able to find their checkpoints. This results in the jobs with
checkpoints remaining indefinitely queued, due to the lack of finding their checkpoints. It is therefore best to either
remove jobs from the queues or let them complete before installing a checkpoint server. It is advisable to shut the pool
down before doing any maintenance on the checkpoint server.See section 3.2.5 for details on shutting down the pool.

A graduated installation of the checkpoint server may be accomplished by configuring submit machines as their
queues empty.

3.10.2 Installing the Checkpoint Server Module

The files relevant to a checkpoint server are

HTCondor Version 8.6.4 Manual

3.10.2. Installing the Checkpoint Server Module 465

sbin/condor_ckpt_server
etc/examples/condor_config.local.ckpt.server

condor_ckpt_server is the checkpoint server binary.condor_condor_config.local.ckpt.server
is an example configuration for a checkpoint server. The settings embodied in this file must be customized with
site-specific information.

There are three steps necessary towards running a checkpoint server:

1. Configure the checkpoint server.

2. Start the checkpoint server.

3. Configure the pool to use the checkpoint server.

Configure the Checkpoint Server Place settings in the local configuration file of the checkpoint server. The file
etc/examples/condor_config.local.ckpt.server contains a template for the needed configu-
ration. Insert these into the local configuration file of the checkpoint server machine.

The value ofCKPT_SERVER_DIRmust be customized. This variable defines the location of checkpoint files.
It is better if this location is within a very fast local file system, and preferably a RAID. The speed of this
file system will have a direct impact on the speed at which checkpoint files can be retrieved from the remote
machines.

The other optional variables are:

DAEMON_LIST Described in section 3.5.8. To have the checkpoint server managed by thecondor_master, the
DAEMON_LISTvariable’s value must list bothMASTERandCKPT_SERVER. Also addSTARTDto allow
jobs to run on the checkpoint server machine. Similarly, addSCHEDDto permit the submission of jobs
from the checkpoint server machine.

The remainder of these variables are the checkpoint server-specific versions of the HTCondor logging entries,
as described in section 3.5.3 on page 236.

CKPT_SERVER_LOG The location of the checkpoint server log.

MAX_CKPT_SERVER_LOG Sets the maximum size of the checkpoint server log, before itis saved and the log
file restarted.

CKPT_SERVER_DEBUG Regulates the amount of information printed in the log file. Currently, the only debug
level supported isD_ALWAYS.

Start the Checkpoint Server To start the newly configured checkpoint server, restart HTCondor on that host to en-
able thecondor_masterto notice the new configuration. Do this by sending acondor_restartcommand from any
machine with administrator access to the pool. See section 3.8.9 on page 439 for full details about IP/host-based
security in HTCondor.

Note that when thecondor_ckpt_serverstarts up, it will immediately inspect any checkpoint files in the location
described by theCKPT_SERVER_DIRvariable, and determine if any of them are stale. Stale checkpoint files
will be removed.

HTCondor Version 8.6.4 Manual

3.10.3. Configuring the Pool to Use Multiple Checkpoint Servers 466

Configure the Pool to Use the Checkpoint ServerAfter the checkpoint server is running, modify a few configura-
tion variables to let the other machines in the pool know about the new server:

USE_CKPT_SERVER A boolean value that should be set toTrue to enable the use of the checkpoint server.

CKPT_SERVER_HOST Provides the full host name of the machine that is now runningthe checkpoint server.

It is most convenient to set these variables in the pool’s global configuration file, so that they affect all submission
machines. However, it is permitted to configure each submission machine separately (using local configuration
files), for example if it is desired that not all submission machines begin using the checkpoint server at one time.
If the variableUSE_CKPT_SERVERis set toFalse , the submission machine will not use a checkpoint server.

Once these variables are in place, send the commandcondor_reconfigto all machines in the pool, so the changes
take effect. This is described in section 3.2.6 on page 184.

3.10.3 Configuring the Pool to Use Multiple Checkpoint Servers

An HTCondor pool may use multiple checkpoint servers. The deployment of checkpoint servers across the network
improves the performance of checkpoint production. In thiscase, HTCondor machines are configured to send check-
points to thenearestcheckpoint server. There are two main performance benefits to deploying multiple checkpoint
servers:

• Checkpoint-related network traffic is localized by intelligent placement of checkpoint servers.

• Better performance implies that jobs spend less time dealing with checkpoints, and more time doing useful
work, leading to jobs having a higher success rate before returning a machine to its owner, and workstation
owners see HTCondor jobs leave their machines quicker.

With multiple checkpoint servers running in the pool, the following configuration changes are required to make
them active.

SetUSE_CKPT_SERVERto True (the default) on all submitting machines where HTCondor jobs should use a
checkpoint server. Additionally, variableSTARTER_CHOOSES_CKPT_SERVERshould be set toTrue (the default)
on these submitting machines. WhenTrue , this variable specifies that the checkpoint server specified by the machine
running the job should be used instead of the checkpoint server specified by the submitting machine. See section 3.5.7
on page 255 for more details. This allows the job to use the checkpoint server closest to the machine on which it is
running, instead of the server closest to the submitting machine. For convenience, set these parameters in the global
configuration file.

Second, setCKPT_SERVER_HOSTon each machine. This identifies the full host name of the checkpoint server
machine, and should be the host name of the nearest server to the machine. In the case of multiple checkpoint servers,
set this in the local configuration file.

Third, send acondor_reconfigcommand to all machines in the pool, so that the changes take effect. This is
described in section 3.2.6 on page 184.

After completing these three steps, the jobs in the pool willsend their checkpoints to the nearest checkpoint server.
On restart, a job will remember where its checkpoint was stored and retrieve it from the appropriate server. After a job
successfully writes a checkpoint to a new server, it will remove any previous checkpoints left on other servers.

HTCondor Version 8.6.4 Manual

3.10.4. Checkpoint Server Domains 467

Note that if the configured checkpoint server is unavailable, the job will keep trying to contact that server. It will
not use alternate checkpoint servers. This may change in future versions of HTCondor.

3.10.4 Checkpoint Server Domains

The configuration described in the previous section ensuresthat jobs will always write checkpoints to their nearest
checkpoint server. In some circumstances, it is also usefulto configure HTCondor to localize checkpoint read transfers,
which occur when the job restarts from its last checkpoint ona new machine. To localize these transfers, it is desired
to schedule the job on a machine which is near the checkpoint server on which the job’s checkpoint is stored.

In terminology, all of the machines configured to use checkpoint serverA are incheckpoint server domain A. To
localize checkpoint transfers, jobs which run on machines in a given checkpoint server domain should continue running
on machines in that domain, thereby transferring checkpoint files in a single local area of the network. There are two
possible configurations which specify what a job should do when there are no available machines in its checkpoint
server domain:

• The job can remain idle until a workstation in its checkpoint server domain becomes available.

• The job can try to immediately begin executing on a machine in another checkpoint server domain. In this case,
the job transfers to a new checkpoint server domain.

These two configurations are described below.

The first step in implementing checkpoint server domains is to include the name of the nearest checkpoint server
in the machine ClassAd, so this information can be used in jobscheduling decisions. To do this, add the following
configuration to each machine:

CkptServer = "$(CKPT_SERVER_HOST)"
STARTD_ATTRS = $(STARTD_ATTRS), CkptServer

For convenience, set these variables in the global configuration file. Note that this example assumes that
STARTD_ATTRSis previously defined in the configuration. If not, then use the following configuration instead:

CkptServer = "$(CKPT_SERVER_HOST)"
STARTD_ATTRS = CkptServer

With this configuration, all machine ClassAds will include aCkptServer attribute, which is the name of the check-
point server closest to this machine. So, theCkptServer attribute defines the checkpoint server domain of each
machine.

To restrict jobs to one checkpoint server domain, modify thejobs’ Requirements expression as follows:

Requirements = ((LastCkptServer == TARGET.CkptServer) || (LastCkptServer =?= UNDEFINED))

HTCondor Version 8.6.4 Manual

3.11. DaemonCore 468

This Requirements expression uses theLastCkptServer attribute in the job’s ClassAd, which specifies
where the job last wrote a checkpoint, and theCkptServer attribute in the machine ClassAd, which specifies
the checkpoint server domain. If the job has not yet written acheckpoint, theLastCkptServer attribute will be
Undefined , and the job will be able to execute in any checkpoint server domain. However, once the job performs a
checkpoint,LastCkptServer will be defined and the job will be restricted to the checkpoint server domain where
it started running.

To instead allow jobs to transfer to other checkpoint serverdomains when there are no available machines in the
current checkpoint server domain, modify the jobs’Rank expression as follows:

Rank = ((LastCkptServer == TARGET.CkptServer) || (LastCkp tServer =?= UNDEFINED))

ThisRank expression will evaluate to 1 for machines in the job’s checkpoint server domain and 0 for other machines.
So, the job will prefer to run on machines in its checkpoint server domain, but if no such machines are available, the
job will run in a new checkpoint server domain.

The checkpoint server domainRequirements or Rank expressions can be automatically appended to all
standard universe jobs submitted in the pool using the configuration variablesAPPEND_REQ_STANDARDor
APPEND_RANK_STANDARD. See section 3.5.13 on page 301 for more details.

3.11 DaemonCore

This section is a brief description ofDaemonCore. DaemonCore is a library that is shared among most of the HTCon-
dor daemons which provides common functionality. Currently, the following daemons use DaemonCore:

• condor_master

• condor_startd

• condor_schedd

• condor_collector

• condor_negotiator

• condor_kbdd

• condor_gridmanager

• condor_credd

• condor_had

• condor_replication

• condor_transferer

• condor_job_router

HTCondor Version 8.6.4 Manual

3.11.1. DaemonCore and Unix signals 469

• condor_lease_manager

• condor_rooster

• condor_shared_port

• condor_defrag

• condor_c-gahp

• condor_c-gahp_worker_thread

• condor_dagman

• condor_ft-gahp

• condor_rooster

• condor_shadow

• condor_shared_port

• condor_transferd

• condor_vm-gahp

• condor_vm-gahp-vmware

Most of DaemonCore’s details are not interesting for administrators. However, DaemonCore does provide a uni-
form interface for the daemons to various Unix signals, and provides a common set of command-line options that can
be used to start up each daemon.

3.11.1 DaemonCore and Unix signals

One of the most visible features that DaemonCore provides for administrators is that all daemons which use it behave
the same way on certain Unix signals. The signals and the behavior DaemonCore provides are listed below:

SIGHUP Causes the daemon to reconfigure itself.

SIGTERM Causes the daemon to gracefully shutdown.

SIGQUIT Causes the daemon to quickly shutdown.

Exactly what gracefully and quickly means varies from daemon to daemon. For daemons with little or no state
(thecondor_kbdd, condor_collectorandcondor_negotiator) there is no difference, and bothSIGTERMandSIGQUIT
signals result in the daemon shutting itself down quickly. For thecondor_master, a graceful shutdown causes thecon-
dor_masterto ask all of its children to perform their own graceful shutdown methods. The quick shutdown causes
the condor_masterto ask all of its children to perform their own quick shutdownmethods. In both cases, thecon-
dor_masterexits after all its children have exited. In thecondor_startd, if the machine is not claimed and running a

HTCondor Version 8.6.4 Manual

3.11.2. DaemonCore and Command-line Arguments 470

job, both theSIGTERMandSIGQUIT signals result in an immediate exit. However, if thecondor_startdis running a
job, a graceful shutdown results in that job writing a checkpoint, while a fast shutdown does not. In thecondor_schedd,
if there are no jobs currently running, there will be nocondor_shadowprocesses, and both signals result in an imme-
diate exit. However, with jobs running, a graceful shutdowncauses thecondor_scheddto ask eachcondor_shadowto
gracefully vacate the job it is serving, while a quick shutdown results in a hard kill of everycondor_shadow, with no
chance to write a checkpoint.

For all daemons, a reconfigure results in the daemon re-reading its configuration file(s), causing any settings that
have changed to take effect. See section??on page??, Configuring HTCondor for full details on what settings are in
the configuration files and what they do.

3.11.2 DaemonCore and Command-line Arguments

The second visible feature that DaemonCore provides to administrators is a common set of command-line arguments
that all daemons understand. These arguments and what they do are described below:

-a string Append a period character ('.') concatenated withstring to the file name of the log for this daemon, as
specified in the configuration file.

-b Causes the daemon to start up in the background. When a DaemonCore process starts up with this option, it
disassociates itself from the terminal and forks itself, sothat it runs in the background. This is the default
behavior for HTCondor daemons.

-c filename Causes the daemon to use the specifiedfilenameas a full path and file name as its global configuration file.
This overrides theCONDOR_CONFIGenvironment variable and the regular locations that HTCondor checks for
its configuration file.

-d Use dynamic directories. The$(LOG) , $(SPOOL) , and$(EXECUTE) directories are all created by the daemon
at run time, and they are named by appending the parent’s IP address and PID to the value in the configuration
file. These values are then inherited by all children of the daemon invoked with this-d argument. For the
condor_master, all HTCondor processes will use the new directories. If acondor_scheddis invoked with the
-d argument, then only thecondor_schedddaemon and anycondor_shadowdaemons it spawns will use the
dynamic directories (named with thecondor_schedddaemon’s PID).

Note that by using a dynamically-created spool directory named by the IP address and PID, upon restarting
daemons, jobs submitted to the originalcondor_schedddaemon that were stored in the old spool directory will
not be noticed by the newcondor_schedddaemon, unless you manually specify the old, dynamically-generated
SPOOLdirectory path in the configuration of the newcondor_schedddaemon.

-f Causes the daemon to start up in the foreground. Instead of forking, the daemon runs in the foreground.

NOTE: When thecondor_masterstarts up daemons, it does so with the-f option, as it has already forked
a process for the new daemon. There will be a-f in the argument list for all HTCondor daemons that the
condor_masterspawns.

-k filename For non-Windows operating systems, causes the daemon to read out a PID from the specifiedfilename,
and send a SIGTERM to that process. The daemon started with this optional argument waits until the daemon it
is attempting to kill has exited.

HTCondor Version 8.6.4 Manual

3.12. Monitoring 471

-l directory Overrides the value ofLOGas specified in the configuration files. Primarily, this option is used with the
condor_kbddwhen it needs to run as the individual user logged into the machine, instead of running as root.
Regular users would not normally have permission to write files into HTCondor’s log directory. Using this
option, they can override the value ofLOGand have thecondor_kbddwrite its log file into a directory that the
user has permission to write to.

-local-name nameSpecify a local name for this instance of the daemon. This local name will be used to look up
configuration parameters. Section 3.5.1 contains details on how this local name will be used in the configuration.

-p port Causes the daemon to bind to the specified port as its command socket. Thecondor_masterdaemon uses this
option to ensure that thecondor_collectorandcondor_negotiatorstart up using well-known ports that the rest
of HTCondor depends upon them using.

-pidfile filename Causes the daemon to write out its PID (process id number) to the specifiedfilename. This file can
be used to help shutdown the daemon without first searching through the output of the Unixpscommand.

Since daemons run with their current working directory set to the value ofLOG, if a full path (one that begins
with a slash character,/) is not specified, the file will be placed in theLOGdirectory.

-q Quiet output; write less verbose error messages tostderr when something goes wrong, and before regular
logging can be initialized.

-r minutes Causes the daemon to set a timer, upon expiration of which, itsends itself a SIGTERM for graceful
shutdown.

-t Causes the daemon to print out its error message tostderr instead of its specified log file. This option forces the
-f option.

-v Causes the daemon to print out version information and exit.

3.12 Monitoring

Information that thecondor_collectorcollects can be used to monitor a pool. Thecondor_statuscommand can be
used to display snapshot of the current state of the pool. Monitoring systems can be set up to track the state over time,
and they might go further, to alert the system administratorabout exceptional conditions.

3.12.1 Ganglia

Support for the Ganglia monitoring system (http://ganglia.info/) is integral to HTCondor. Nagios
(http://www.nagios.org/) is often used to provide alerts based on data from the Ganglia monitoring system. The
condor_gangliaddaemon provides an efficient way to take information from an HTCondor pool and supply it to the
Ganglia monitoring system.

Thecondor_gangliadgathers up data as specified by its configuration, and it streamlines getting that data to the
Ganglia monitoring system. Updates sent to Ganglia are doneusing the Ganglia shared libraries for efficiency.

HTCondor Version 8.6.4 Manual

http://ganglia.info/
http://www.nagios.org/

3.12.1. Ganglia 472

If Ganglia is already deployed in the pool, the monitoring ofHTCondor is enabled by running thecondor_gangliad
daemon on a single machine within the pool. If the machine chosen is the one running Ganglia’sgmetad, then the
HTCondor configuration consists of addingGANGLIADto the definition of configuration variableDAEMON_LIST
on that machine. It may be advantageous to run thecondor_gangliaddaemon on the same machine as is running the
condor_collectordaemon, because on a large pool with many ClassAds, there is likely to be less network traffic. If the
condor_gangliaddaemon is to run on a different machine than the one running Ganglia’sgmetad, modify configuration
variableGANGLIA_GSTAT_COMMANDto get the list of monitored hosts from the mastergmondprogram.

If the pool does not use Ganglia, the pool can still be monitored by a separate server running Ganglia.

By default, thecondor_gangliadwill only propagate metrics to hosts that are already monitored by Ganglia. Set
configuration variableGANGLIA_SEND_DATA_FOR_ALL_HOSTSto True to set up a Ganglia host to monitor a
pool not monitored by Ganglia or have a heterogeneous pool where some hosts are not monitored. In this case, default
graphs that Ganglia provides will not be present. However, the HTCondor metrics will appear.

On large pools, setting configuration variableGANGLIAD_PER_EXECUTE_NODE_METRICSto False will
reduce the amount of data sent to Ganglia. The execute node data is the least important to monitor. One can also limit
the amount of data by setting configuration variableGANGLIAD_REQUIREMENTS. Be aware that aggregate sums
over the entire pool will not be accurate if this variable limits the ClassAds queried.

Metrics to be sent to Ganglia are specified in all files within the directory specified by configuration variable
GANGLIAD_METRICS_CONFIG_DIR. Each file in the directory is read, and the format within eachfile is that of
New ClassAds. Here is an example of a single metric definitiongiven as a New ClassAd:

[
Name = "JobsSubmitted";
Desc = "Number of jobs submitted";
Units = "jobs";
TargetType = "Scheduler";

]

A nice set of default metrics is in file:$(GANGLIAD_METRICS_CONFIG_DIR)/00_default_metrics .

Recognized metric attribute names and their use:

Name The name of this metric, which corresponds to the ClassAd attribute name. Metrics published for the same
machine must have unique names.

Value A ClassAd expression that produces the value when evaluated. The default value is the value in the daemon
ClassAd of the attribute with the same name as this metric.

Desc A brief description of the metric. This string is displayed when the user holds the mouse over the Ganglia graph
for the metric.

Verbosity The integer verbosity level of this metric. Metrics with a higher verbosity level than that specified by
configuration variableGANGLIA_VERBOSITYwill not be published.

HTCondor Version 8.6.4 Manual

3.12.1. Ganglia 473

TargetType A string containing a comma-separated list of daemon ClassAd types that this metric monitors. The
specified values should match the value ofMyType of the daemon ClassAd. In addition, there are special
values that may be included."Machine_slot1" may be specified to monitor the machine ClassAd for slot
1 only. This is useful when monitoring machine-wide attributes. The special value"ANY" matches any type of
ClassAd.

Requirements A boolean expression that may restrict how this metric is incorporated. It defaults toTrue , which
places no restrictions on the collection of this ClassAd metric.

Title The graph title used for this metric. The default is the metric name.

Group A string specifying the name of this metric’s group. Metricsare arranged by group within a Ganglia web page.
The default is determined by the daemon type. Metrics in different groups must have unique names.

Cluster A string specifying the cluster name for this metric. The default cluster name is taken from the configuration
variableGANGLIAD_DEFAULT_CLUSTER.

Units A string describing the units of this metric.

Scale A scaling factor that is multiplied by the value of theValue attribute. The scale factor is used when the value is
not in the basic unit or a human-interpretable unit. For example, duty cycle is commonly expressed as a percent,
but the HTCondor value ranges from 0 to 1. So, duty cycle is scaled by 100. Some metrics are reported in KiB.
Scaling by 1024 allows Ganglia to pick the appropriate units, such as number of bytes rather than number of
KiB. When scaling by large values, converting to the"float" type is recommended.

Derivative A boolean value that specifies if Ganglia should graph the derivative of this metric. Ganglia versions prior
to 3.4 do not support this.

Type A string specifying the type of the metric. Possible values are "double" , "float" , "int32" , "uint32" ,
"int16" , "uint16" , "int8" , "uint8" , and"string" . The default is"string" for string values,
the default is"int32" for integer values, the default is"float" for real values, and the default is"int8"
for boolean values. Integer values can be coerced to"float" or "double" . This is especially important for
values stored internally as 64-bit values.

Regex This string value specifies a regular expression that matches attributes to be monitored by this metric. This is
useful for dynamic attributes that cannot be enumerated in advance, because their names depend on dynamic
information such as the users who are currently running jobs. When this is specified, one metric per matching
attribute is created. The default metric name is the name of the matched attribute, and the default value is the
value of that attribute. As usual, theValue expression may be used when the raw attribute value needs to be
manipulated before publication. However, since the name ofthe attribute is not known in advance, a special
ClassAd attribute in the daemon ClassAd is provided to allowtheValue expression to refer to it. This special
attribute is namedRegex . Another special feature is the ability to refer to text matched by regular expression
groups defined by parentheses within the regular expression. These may be substituted into the values of other
string attributes such asNameandDesc . This is done by putting macros in the string values."\\1" is replaced
by the first group,"\\2" by the second group, and so on.

Aggregate This string value specifies an aggregation function to apply, instead of publishing individual metrics for
each daemon ClassAd. Possible values are"sum" , "avg" , "max" , and"min" .

HTCondor Version 8.6.4 Manual

3.12.2. Absent ClassAds 474

AggregateGroup When an aggregate function has been specified, this string value specifies which aggregation group
the current daemon ClassAd belongs to. The default is the metric Name. This feature works like GROUP BY
in SQL. The aggregation function produces one result per value of AggregateGroup . A single aggregate
group would therefore be appropriate for a pool-wide metric. As an example, to publish the sum of an attribute
across different types of slot ClassAds, make the metric name an expression that is unique to each type. The
defaultAggregateGroup would be set accordingly. Note that the assumption is still that the result is a pool-
wide metric, so by default it is associated with thecondor_collectordaemon’s host. To group by machine and
publish the result into the Ganglia page associated with each machine, make theAggregateGroup contain
the machine name and override the defaultMachine attribute to be the daemon’s machine name, rather than
thecondor_collectordaemon’s machine name.

Machine The name of the host associated with this metric. If configuration variable
GANGLIAD_DEFAULT_MACHINEis not specified, the default is taken from theMachine attribute of
the daemon ClassAd. If the daemon name is of the formname@hostname, this may indicate that there are
multiple instances of HTCondor running on the same machine.To avoid the metrics from these instances
overwriting each other, the default machine name is set to the daemon name in this case. For aggregate metrics,
the default value ofMachine will be the name of thecondor_collectorhost.

IP A string containing the IP address of the host associated with this metric. IfGANGLIAD_DEFAULT_IPis not
specified, the default is extracted from theMyAddress attribute of the daemon ClassAd. This value must be
unique for each machine published to Ganglia. It need not be avalid IP address. If the value ofMachine
contains an"@" sign, the default IP value will be set to the same value asMachine in order to make the IP
value unique to each instance of HTCondor running on the samehost.

3.12.2 Absent ClassAds

By default, HTCondor assumes that resources are transient:the condor_collectorwill discard ClassAds older than
CLASSAD_LIFETIME seconds. Its default configuration value is 15 minutes, and as such, the default value for
UPDATE_INTERVALwill pass three times before HTCondor forgets about a resource. In some pools, especially
those with dedicated resources, this approach may make it unnecessarily difficult to determine what the composition
of the pool ought to be, in the sense of knowing which machineswould be in the pool, if HTCondor were properly
functioning on all of them.

This assumption of transient machines can be modified by the use of absent ClassAds. When a machine ClassAd
would otherwise expire, thecondor_collectorevaluates the configuration variableABSENT_REQUIREMENTSagainst
the machine ClassAd. IfTrue , the machine ClassAd will be saved in a persistent manner andbe marked as absent;
this causes the machine to appear in the output ofcondor_status -absent . When the machine returns to the
pool, its first update to thecondor_collectorwill invalidate the absent machine ClassAd.

Absent ClassAds, like offline ClassAds, are stored to disk toensure that they are remembered, even acrosscon-
dor_collectorcrashes. The configuration variableCOLLECTOR_PERSISTENT_AD_LOGdefines the file in which
the ClassAds are stored, and replaces the no longer used variableOFFLINE_LOG. Absent ClassAds are retained
on disk as maintained by thecondor_collectorfor a length of time in seconds defined by the configuration variable
ABSENT_EXPIRE_ADS_AFTER. A value of 0 for this variable means that the ClassAds are never discarded, and the
default value is thirty days.

HTCondor Version 8.6.4 Manual

3.13. The High Availability of Daemons 475

Absent ClassAds are only returned by thecondor_collectorand displayed when the-absent option to con-
dor_statusis specified, or when the absent machine ClassAd attribute ismentioned on thecondor_statuscommand
line. This renders absent ClassAds invisible to the rest of the HTCondor infrastructure.

A daemon may inform thecondor_collectorthat the daemon’s ClassAd should not expire, but should be removed
right away; the daemon asks for its ClassAd to be invalidated. It may be useful to place an invalidated ClassAd
in the absent state, instead of having it removed as an invalidated ClassAd. An example of a ClassAd that could
benefit from being absent is a system with an uninterruptiblepower supply that shuts down cleanly but unexpect-
edly as a result of a power outage. To cause all invalidated ClassAds to become absent instead of invalidated, set
EXPIRE_INVALIDATED_ADSto True . Invalidated ClassAds will instead be treated as if they expired, including
when evaluatingABSENT_REQUIREMENTS.

3.13 The High Availability of Daemons

In the case that a key machine no longer functions, HTCondor can be configured such that another machine takes on the
key functions. This is calledHigh Availability. While high availability is generally applicable, there are currently two
specialized cases for its use: when the central manager (running thecondor_negotiatorandcondor_collectordaemons)
becomes unavailable, and when the machine running thecondor_schedddaemon (maintaining the job queue) becomes
unavailable.

3.13.1 High Availability of the Job Queue

For a pool where all jobs are submitted through a single machine in the pool, and there are lots of jobs, this machine
becoming nonfunctional means that jobs stop running. Thecondor_schedddaemon maintains the job queue. No
job queue due to having a nonfunctional machine implies thatno jobs can be run. This situation is worsened by
using one machine as the single submission point. For each HTCondor job (taken from the queue) that is executed,
a condor_shadowprocess runs on the machine where submitted to handle input/output functionality. If this machine
becomes nonfunctional, none of the jobs can continue. The entire pool stops running jobs.

The goal ofHigh Availability in this special case is to transfer thecondor_schedddaemon to run on another
designated machine. Jobs caused to stop without finishing can be restarted from the beginning, or can continue
execution using the most recent checkpoint. New jobs can enter the job queue. WithoutHigh Availability, the job
queue would remain intact, but further progress on jobs would wait until the machine running thecondor_schedd
daemon became available (after fixing whatever caused it to become unavailable).

HTCondor uses its flexible configuration mechanisms to allowthe transfer of thecondor_schedddaemon from
one machine to another. The configuration specifies which machines are chosen to run thecondor_schedddaemon.
To prevent multiplecondor_schedddaemons from running at the same time, a lock (semaphore-like) is held over the
job queue. This synchronizes the situation in which controlis transferred to a secondary machine, and the primary
machine returns to functionality. Configuration variablesalso determine time intervals at which the lock expires, and
periods of time that pass between polling to check for expired locks.

To specify a single machine that would take over, if the machine running thecondor_schedddaemon stops work-
ing, the following additions are made to the local configuration of any and all machines that are able to run the

HTCondor Version 8.6.4 Manual

3.13.1. High Availability of the Job Queue 476

condor_schedddaemon (becoming the single pool submission point):

MASTER_HA_LIST = SCHEDD
SPOOL = /share/spool
HA_LOCK_URL = file:/share/spool
VALID_SPOOL_FILES = $(VALID_SPOOL_FILES) SCHEDD.lock

Configuration macroMASTER_HA_LISTidentifies thecondor_schedddaemon as the daemon that is to be
watched to make sure that it is running. Each machine with this configuration must have access to the lock (the
job queue) which synchronizes which single machine does runthe condor_schedddaemon. This lock and the job
queue must both be located in a shared file space, and is currently specified only with a file URL. The configuration
specifies the shared space (SPOOL), and the URL of the lock.condor_preenis not currently aware of the lock file and
will delete it if it is placed in theSPOOLdirectory, so be sure to add fileSCHEDD.lock to VALID_SPOOL_FILES.

As HTCondor starts on machines that are configured to run the singlecondor_schedddaemon, thecondor_master
daemon of the first machine that looks at (polls) the lock and notices that no lock is held. This implies that nocon-
dor_schedddaemon is running. Thiscondor_masterdaemon acquires the lock and runs thecondor_schedddaemon.
Other machines with this same capability to run thecondor_schedddaemon look at (poll) the lock, but do not run the
daemon, as the lock is held. The machine running thecondor_schedddaemon renews the lock periodically.

If the machine running thecondor_schedddaemon fails to renew the lock (because the machine is not functioning),
the lock times out (becomes stale). The lock is released by the condor_masterdaemon ifcondor_offor condor_off
-scheddis executed, or when thecondor_masterdaemon knows that thecondor_schedddaemon is no longer running.
As other machines capable of running thecondor_schedddaemon look at the lock (poll), one machine will be the
first to notice that the lock has timed out or been released. This machine (correctly) interprets this situation as the
condor_schedddaemon is no longer running. This machine’scondor_masterdaemon then acquires the lock and runs
thecondor_schedddaemon.

See section 3.5.8, in the section oncondor_masterConfiguration File Macros for details relating to the configura-
tion variables used to set timing and polling intervals.

Working with Remote Job Submission

Remote job submission requires identification of the job queue, submitting with a command similar to:

% condor_submit -remote condor@example.com myjob.submit

This implies the identification of a singlecondor_schedddaemon, running on a single machine. With the high avail-
ability of the job queue, there are multiplecondor_schedddaemons, of which only one at a time is acting as the single
submission point. To make remote submission of jobs work properly, set the configuration variableSCHEDD_NAME
in the local configuration to have the same value for each potentially runningcondor_schedddaemon. In addition,
the value chosen for the variableSCHEDD_NAMEwill need to include the at symbol (@), such that HTCondor will
not modify the value set for this variable. See the description of MASTER_NAMEin section 3.5.8 on page 260 for
defaults and composition of valid values forSCHEDD_NAME. As an example, include in each local configuration a
value similar to:

SCHEDD_NAME = had-schedd@

HTCondor Version 8.6.4 Manual

3.13.2. High Availability of the Central Manager 477

Then, with this sample configuration, the submit command appears as:

% condor_submit -remote had-schedd@ myjob.submit

3.13.2 High Availability of the Central Manager

Interaction with Flocking

The HTCondor high availability mechanisms discussed in this section currently do not work well in configurations
involving flocking. The individual problems listed listed below interact to make the situation worse. Because of these
problems, we advise against the use of flocking to pools with high availability mechanisms enabled.

• Thecondor_scheddhas a hard configured list ofcondor_collectorandcondor_negotiatordaemons, and does
not query redundant collectors to get the currentcondor_negotiator, as it does when communicating with its
local pool. As a result, if the defaultcondor_negotiatorfails, thecondor_schedddoes not learn of the failure,
and thus, talk to the newcondor_negotiator.

• When thecondor_negotiatoris unable to communicate with acondor_collector, it utilizes the nextcon-
dor_collectorwithin the list. Unfortunately, it does not start over at thetop of the list. When combined with the
previous problem, a backupcondor_negotiatorwill never get jobs from a flockedcondor_schedd.

Introduction

The condor_negotiatorand condor_collectordaemons are the heart of the HTCondor matchmaking system. The
availability of these daemons is critical to an HTCondor pool’s functionality. Both daemons usually run on the same
machine, most often known as the central manager. The failure of a central manager machine prevents HTCondor from
matching new jobs and allocating new resources. High availability of the condor_negotiatorandcondor_collector
daemons eliminates this problem.

Configuration allows one of multiple machines within the pool to function as the central manager. While there
are may be many activecondor_collectordaemons, only a single, activecondor_negotiatordaemon will be running.
The machine with thecondor_negotiatordaemon running is the active central manager. The other potential central
managers each have acondor_collectordaemon running; these are the idle central managers.

All submit and execute machines are configured to report to all potential central manager machines.

Each potential central manager machine runs the high availability daemon,condor_had. These daemons commu-
nicate with each other, constantly monitoring the pool to ensure that one active central manager is available. If the
active central manager machine crashes or is shut down, these daemons detect the failure, and they agree on which of
the idle central managers is to become the active one. A protocol determines this.

In the case of a network partition, idlecondor_haddaemons within each partition detect (by the lack of communi-
cation) a partitioning, and then use the protocol to chose anactive central manager. As long as the partition remains,
and there exists an idle central manager within the partition, there will be one active central manager within each
partition. When the network is repaired, the protocol returns to having one central manager.

HTCondor Version 8.6.4 Manual

3.13.2. High Availability of the Central Manager 478

Through configuration, a specific central manager machine may act as the primary central manager. While this
machine is up and running, it functions as the central manager. After a failure of this primary central manager, another
idle central manager becomes the active one. When the primary recovers, it again becomes the central manager. This
is a recommended configuration, if one of the central managers is a reliable machine, which is expected to have very
short periods of instability. An alternative configurationallows the promoted active central manager (in the case that
the central manager fails) to stay active after the failed central manager machine returns.

This high availability mechanism operates by monitoring communication between machines. Note that there is a
significant difference in communications between machineswhen

1. a machine is down

2. a specific daemon (thecondor_haddaemon in this case) is not running, yet the machine is functioning

The high availability mechanism distinguishes between these two, and it operates based only on first (when a central
manager machine is down). A lack of executing daemons doesnot cause the protocol to choose or use a new active
central manager.

The central manager machine contains state information, and this includes information about user priorities. The
information is kept in a single file, and is used by the centralmanager machine. Should the primary central manager
fail, a pool with high availability enabled would lose this information (and continue operation, but with re-initialized
priorities). Therefore, thecondor_replicationdaemon exists to replicate this file on all potential centralmanager
machines. This daemon promulgates the file in a way that is safe from error, and more secure than dependence on a
shared file system copy.

The condor_replicationdaemon runs on each potential central manager machine as well as on the active cen-
tral manager machine. There is a unidirectional communication between thecondor_haddaemon and thecon-
dor_replicationdaemon on each machine. To properly do its job, thecondor_replicationdaemon must transfer state
files. When it needs to transfer a file, thecondor_replicationdaemons at both the sending and receiving ends of the
transfer invoke thecondor_transfererdaemon. These short lived daemons do the task of file transferand then exit. Do
not placeTRANSFERERinto DAEMON_LIST, as it is not a daemon that thecondor_mastershould invoke or watch
over.

Configuration

The high availability of central manager machines is enabled through configuration. It is disabled by default. All
machines in a pool must be configured appropriately in order to make the high availability mechanism work. See
section 3.5.27, for definitions of these configuration variables.

Thecondor_hadandcondor_replicationdaemons use thecondor_shared_portdaemon by default. If you want to
use more than onecondor_hador condor_replicationdaemon with thecondor_shared_portdaemon under the same
master, you must configure those additional daemons to use nondefault socket names. (Set the-sock option in
<NAME>_ARGS.) Because thecondor_haddaemon must know thecondor_replicationdaemon’s address a priori, you
will also need to set<NAME>.REPLICATION_SOCKET_NAMEappropriately.

The stabilization period is the time it takes for thecondor_haddaemons to detect a change in the pool state such
as an active central manager failure or network partition, and recover from this change. It may be computed using the
following formula:

HTCondor Version 8.6.4 Manual

3.13.2. High Availability of the Central Manager 479

stabilization period = 12 * (number of central managers) *
$(HAD_CONNECTION_TIMEOUT)

To disable the high availability of central managers mechanism, it is sufficient to removeHAD, REPLICATION,
and NEGOTIATORfrom the DAEMON_LISTconfiguration variable on all machines, leaving only onecon-
dor_negotiatorin the pool.

To shut down a currently operating high availability mechanism, follow the given steps. All commands must be
invoked from a host which has administrative permissions onall central managers. The first three commands kill all
condor_had, condor_replication, and all runningcondor_negotiatordaemons. The last command is invoked on the
host where the singlecondor_negotiatordaemon is to run.

1. condor_off -all -neg

2. condor_off -all -subsystem -replication

3. condor_off -all -subsystem -had

4. condor_on -neg

When configuringcondor_hadto control thecondor_negotiator, if the default backoff constant value is too small,
it can result in a churning of thecondor_negotiator, especially in cases in which the primary negotiator is unable to
run due to misconfiguration. In these cases, thecondor_masterwill kill the condor_hadafter thecondor_negotiator
exists, wait a short period, then restartcondor_had. Thecondor_hadwill then win the election, so the secondary
condor_negotiatorwill be killed, and the primary will be restarted, only to exit again. If this happens too quickly,
neithercondor_negotiatorwill run long enough to complete a negotiation cycle, resulting in no jobs getting started.
Increasing this value viaMASTER_HAD_BACKOFF_CONSTANTto be larger than a typical negotiation cycle can help
solve this problem.

To run a high availability pool without the replication feature, do the following operations:

1. Set theHAD_USE_REPLICATIONconfiguration variable toFalse , and thus disable the replication on con-
figuration level.

2. RemoveREPLICATION from bothDAEMON_LISTandDC_DAEMON_LISTin the configuration file.

Sample Configuration

This section provides sample configurations for high availability.

We begin with a sample configuration using shared port, and then include a sample configuration for not using
shared port. Both samples relate to the high availability ofcentral managers.

Each sample is split into two parts: the configuration for thecentral manager machines, and the configuration for
the machines that willnot be central managers.

The following shared-port configuration is for the central manager machines.

HTCondor Version 8.6.4 Manual

3.13.2. High Availability of the Central Manager 480

THE FOLLOWING MUST BE IDENTICAL ON ALL CENTRAL MANAGERS

CENTRAL_MANAGER1 = cm1.domain.name
CENTRAL_MANAGER2 = cm2.domain.name
CONDOR_HOST = $(CENTRAL_MANAGER1), $(CENTRAL_MANAGER2)

Since we're using shared port, we set the port number to the s hared
port daemon's port number. NOTE: this assumes that each mac hine in
the list is using the same port number for shared port. While this
will be true by default, if you've changed it in configurati on any-
where, you need to reflect that change here.

HAD_USE_SHARED_PORT = TRUE
HAD_LIST = \
$(CENTRAL_MANAGER1):$(SHARED_PORT_PORT), \
$(CENTRAL_MANAGER2):$(SHARED_PORT_PORT)

REPLICATION_USE_SHARED_PORT = TRUE
REPLICATION_LIST = \
$(CENTRAL_MANAGER1):$(SHARED_PORT_PORT), \
$(CENTRAL_MANAGER2):$(SHARED_PORT_PORT)

The recommended setting.
HAD_USE_PRIMARY = TRUE

If you change which daemon(s) you're making highly-availa ble, you must
change both of these values.
HAD_CONTROLLEE = NEGOTIATOR
MASTER_NEGOTIATOR_CONTROLLER = HAD

THE FOLLOWING MAY DIFFER BETWEEN CENTRAL MANAGERS

The daemon list may contain additional entries.
DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, HAD, REPLICATION

Using replication is optional.
HAD_USE_REPLICATION = TRUE

This is the default location for the state file.
STATE_FILE = $(SPOOL)/Accountantnew.log

See note above the length of the negotiation cycle.
MASTER_HAD_BACKOFF_CONSTANT = 360

The following shared-port configuration is for the machineswhich that willnot be central managers.

CENTRAL_MANAGER1 = cm1.domain.name
CENTRAL_MANAGER2 = cm2.domain.name
CONDOR_HOST = $(CENTRAL_MANAGER1), $(CENTRAL_MANAGER2)

The following configuration sets fixed port numbers for the central manager machines.

#######################
A sample configuration file for central managers, to enabl e the
the high availability mechanism.
#######################

HTCondor Version 8.6.4 Manual

3.13.2. High Availability of the Central Manager 481

######################
THE FOLLOWING MUST BE IDENTICAL ON ALL POTENTIAL CENTRAL MANAGERS.
######################
For simplicity in writing other expressions, define a var iable
for each potential central manager in the pool.
These are samples.
CENTRAL_MANAGER1 = cm1.domain.name
CENTRAL_MANAGER2 = cm2.domain.name
A list of all potential central managers in the pool.
CONDOR_HOST = $(CENTRAL_MANAGER1),$(CENTRAL_MANAGER2)

Define the port number on which the condor_had daemon will
listen. The port must match the port number used
for when defining HAD_LIST. This port number is
arbitrary; make sure that there is no port number collisio n
with other applications.
HAD_PORT = 51450
HAD_ARGS = -f -p $(HAD_PORT)

The following macro defines the port number condor_repli cation will listen
on on this machine. This port should match the port number s pecified
for that replication daemon in the REPLICATION_LIST
Port number is arbitrary (make sure no collision with othe r applications)
This is a sample port number
REPLICATION_PORT = 41450
REPLICATION_ARGS = -p $(REPLICATION_PORT)

The following list must contain the same addresses in the s ame order
as CONDOR_HOST. In addition, for each hostname, it should specify
the port number of condor_had daemon running on that host.
The first machine in the list will be the PRIMARY central ma nager
machine, in case HAD_USE_PRIMARY is set to true.
HAD_LIST = \
$(CENTRAL_MANAGER1):$(HAD_PORT), \
$(CENTRAL_MANAGER2):$(HAD_PORT)

The following list must contain the same addresses
as HAD_LIST. In addition, for each hostname, it should spe cify
the port number of condor_replication daemon running on t hat host.
This parameter is mandatory and has no default value
REPLICATION_LIST = \
$(CENTRAL_MANAGER1):$(REPLICATION_PORT), \
$(CENTRAL_MANAGER2):$(REPLICATION_PORT)

The following is the name of the daemon that the HAD control s.
This must match the name of a daemon in the master's DAEMON_ LIST.
The default is NEGOTIATOR, but can be any daemon that the ma ster
controls.
HAD_CONTROLLEE = NEGOTIATOR

HAD connection time.
Recommended value is 2 if the central managers are on the sa me subnet.
Recommended value is 5 if Condor security is enabled.
Recommended value is 10 if the network is very slow, or
to reduce the sensitivity of HA daemons to network failure s.
HAD_CONNECTION_TIMEOUT = 2

HTCondor Version 8.6.4 Manual

3.13.2. High Availability of the Central Manager 482

##If true, the first central manager in HAD_LIST is a primary .
HAD_USE_PRIMARY = true

################
THE PARAMETERS BELOW ARE ALLOWED TO BE DIFFERENT ON EACH
CENTRAL MANAGER
THESE ARE MASTER SPECIFIC PARAMETERS
################

the master should start at least these four daemons
DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, HAD, REPLICATION

Enables/disables the replication feature of HAD daemon
Default: false
HAD_USE_REPLICATION = true

Name of the file from the SPOOL directory that will be repli cated
Default: $(SPOOL)/Accountantnew.log
STATE_FILE = $(SPOOL)/Accountantnew.log

Period of time between two successive awakenings of the re plication daemon
Default: 300
REPLICATION_INTERVAL = 300

Period of time, in which transferer daemons have to accomp lish the
downloading/uploading process
Default: 300
MAX_TRANSFER_LIFETIME = 300

Period of time between two successive sends of classads to the collector by HAD
Default: 300
HAD_UPDATE_INTERVAL = 300

The HAD controls the negotiator, and should have a larger
backoff constant
MASTER_NEGOTIATOR_CONTROLLER = HAD
MASTER_HAD_BACKOFF_CONSTANT = 360

The configuration for machines that willnot be central managers is identical for the fixed- and shared- port cases.

#######################
Sample configuration relating to high availability for ma chines
that DO NOT run the condor_had daemon.
#######################

For simplicity define a variable for each potential centr al manager
in the pool.
CENTRAL_MANAGER1 = cm1.domain.name
CENTRAL_MANAGER2 = cm2.domain.name
List of all potential central managers in the pool
CONDOR_HOST = $(CENTRAL_MANAGER1),$(CENTRAL_MANAGER2)

HTCondor Version 8.6.4 Manual

3.14. Setting Up for Special Environments 483

3.14 Setting Up for Special Environments

The following sections describe how to set up HTCondor for use in special environments or configurations.

3.14.1 Using HTCondor with AFS

Configuration variables that allow machines to interact with and use a shared file system are given at section 3.5.6.

Limitations with AFS occur because HTCondor does not currently have a way to authenticate itself to AFS. This
is true of the HTCondor daemons that would like to authenticate as the AFS usercondor , and of thecondor_shadow
which would like to authenticate as the user who submitted the job it is serving. Since neither of these things can
happen yet, there are special things to do when interacting with AFS. Some of this must be done by the administrator(s)
installing HTCondor. Other things must be done by HTCondor users who submit jobs.

AFS and HTCondor for Administrators

The largest result from the lack of authentication with AFS is that the directory defined by the configuration variable
LOCAL_DIRand its subdirectorieslog andspool on each machine must be either writable to unauthenticated users,
or must not be on AFS. Making these directories writable averybad security hole, so it isnota viable solution. Placing
LOCAL_DIRonto NFS is acceptable. To avoid AFS, place the directory defined forLOCAL_DIRon a local partition
on each machine in the pool. This implies runningcondor_configureto install the release directory and configure the
pool, setting theLOCAL_DIRvariable to a local partition. When that is complete, log into each machine in the pool,
and runcondor_initto set up the local HTCondor directory.

The directory defined byRELEASE_DIR, which holds all the HTCondor binaries, libraries, and scripts, can be
on AFS. None of the HTCondor daemons need to write to these files. They only need to read them. So, the directory
defined byRELEASE_DIRonly needs to be world readable in order to let HTCondor function. This makes it easier
to upgrade the binaries to a newer version at a later date, andmeans that users can find the HTCondor tools in a
consistent location on all the machines in the pool. Also, the HTCondor configuration files may be placed in a
centralized location. This is what we do for the UW-Madison’s CS department HTCondor pool, and it works quite
well.

Finally, consider setting up some targeted AFS groups to help users deal with HTCondor and AFS better. This is
discussed in the following manual subsection. In short, create an AFS group that contains all users, authenticated or
not, but which is restricted to a given host or subnet. These should be made as host-based ACLs with AFS, but here
at UW-Madison, we have had some trouble getting that working. Instead, we have a special group for all machines in
our department. The users here are required to make their output directories on AFS writable to any process running
on any of our machines, instead of any process on any machine with AFS on the Internet.

AFS and HTCondor for Users

The condor_shadowdaemon runs on the machine where jobs are submitted. It performs all file system access on
behalf of the jobs. Because thecondor_shadowdaemon is not authenticated to AFS as the user who submitted the job,

HTCondor Version 8.6.4 Manual

3.14.2. Enabling the Transfer of Files Specified by a URL 484

thecondor_shadowdaemon will not normally be able to write any output. Therefore the directories in which the job
will be creating output files will need to be world writable; they need to be writable by non-authenticated AFS users.
In addition, the program’sstdout , stderr , log file, and any file the program explicitly opens will need to be in a
directory that is world-writable.

An administrator may be able to set up special AFS groups thatcan make unauthenticated access to the program’s
files less scary. For example, there is supposed to be a way forAFS to grant access to any unauthenticated process
on a given host. If set up, write access need only be granted tounauthenticated processes on the submit machine, as
opposed to any unauthenticated process on the Internet. Similarly, unauthenticated read access could be granted only
to processes running on the submit machine.

A solution to this problem is to not use AFS for output files. Ifdisk space on the submit machine is available
in a partition not on AFS, submit the jobs from there. While the condor_shadowdaemon is not authenticated to
AFS, it does run with the effective UID of the user who submitted the jobs. So, on a local (or NFS) file system, the
condor_shadowdaemon will be able to access the files, and no special permissions need be granted to anyone other
than the job submitter. If the HTCondor daemons are not invoked as root however, thecondor_shadowdaemon will
not be able to run with the submitter’s effective UID, leading to a similar problem as with files on AFS.

3.14.2 Enabling the Transfer of Files Specified by a URL

Because staging data on the submit machine is not always efficient, HTCondor permits input files to be transferred
from a location specified by a URL; likewise, output files may be transferred to a location specified by a URL. All
transfers (both input and output) are accomplished by invoking aplug-in, an executable or shell script that handles the
task of file transfer.

For transferring input files, URL specification is limited tojobs running under the vanilla universe and to a vm
universe VM image file. The execute machine retrieves the files. This differs from the normal file transfer mechanism,
in which transfers are from the machine where the job is submitted to the machine where the job is executed. Each
file to be transferred by specifying a URL, causing a plug-in to be invoked, is specified separately in the job submit
description file with the commandtransfer_input_files; see section 2.5.9 for details.

For transferring output files, either the entire output sandbox, which are all files produced or modified by the job
as it executes, or a subset of these files, as specified by the submit description file commandtransfer_output_files
are transferred to the directory specified by the URL. The URLitself is specified in the separate submit description
file commandoutput_destination; see section 2.5.9 for details. The plug-in is invoked once for each output file to be
transferred.

Configuration identifies the availability of the one or more plug-in(s). The plug-ins must be installed and available
on every execute machine that may run a job which might specify a URL, either for input or for output.

URL transfers are enabled by default in the configuration of execute machines. Disabling URL transfers is accom-
plished by setting

ENABLE_URL_TRANSFERS = FALSE

A comma separated list giving the absolute path and name of all available plug-ins is specified as in the example:

FILETRANSFER_PLUGINS = /opt/condor/plugins/wget-plugi n, \

HTCondor Version 8.6.4 Manual

3.14.2. Enabling the Transfer of Files Specified by a URL 485

/opt/condor/plugins/hdfs-plugin, \
/opt/condor/plugins/custom-plugin

The condor_starterinvokes all listed plug-ins to determine their capabilities. Each may handle one or more
protocols (scheme names). The plug-in’s response to invocation identifies which protocols it can handle. When a URL
transfer is specified by a job, thecondor_starterinvokes the proper one to do the transfer. If more than one plugin
is capable of handling a particular protocol, then the last one within the list given byFILETRANSFER_PLUGINSis
used.

HTCondor assumes that all plug-ins will respond in specific ways. To determine the capabilities of the plug-ins as
to which protocols they handle, thecondor_starterdaemon invokes each plug-in giving it the command line argument
-classad. In response to invocation with this command line argument,the plug-in must respond with an output of three
ClassAd attributes. The first two are fixed:

PluginVersion = "0.1"
PluginType = "FileTransfer"

The third ClassAd attribute isSupportedMethods . This attribute is a string containing a comma separated list
of the protocols that the plug-in handles. So, for example

SupportedMethods = "http,ftp,file"

would identify that the three protocols described byhttp , ftp , andfile are supported. These strings will match
the protocol specification as given within a URL in atransfer_input_files command or within a URL in anout-
put_destinationcommand in a submit description file for a job.

When a job specifies a URL transfer, the plug-in is invoked, without the command line argument-classad. It will
instead be given two other command line arguments. For the transfer of input file(s), the first will be the URL of the
file to retrieve and the second will be the absolute path identifying where to place the transferred file. For the transfer
of output file(s), the first will be the absolute path on the local machine of the file to transfer, and the second will be
the URL of the directory and file name at the destination.

The plug-in is expected to do the transfer, exiting with status 0 if the transfer was successful, and a non-zero
status if the transfer wasnot successful. Whennot successful, the job is placed on hold, and the job ClassAd attribute
HoldReason will be set as appropriate for the job. The job ClassAd attributeHoldReasonSubCode will be set
to the exit status of the plug-in.

As an example of the transfer of a subset of output files, assume that the submit description file contains

output_destination = url://server/some/directory/
transfer_output_files = foo, bar, qux

HTCondor invokes the plug-in that handles theurl protocol three times. The directory delimiter (/ on Unix, and\
on Windows) is appended to the destination URL, such that thethree (Unix) invocations of the plug-in will appear
similar to

url_plugin /path/to/local/copy/of/foo url://server/so me/directory//foo
url_plugin /path/to/local/copy/of/bar url://server/so me/directory//bar
url_plugin /path/to/local/copy/of/qux url://server/so me/directory//qux

HTCondor Version 8.6.4 Manual

3.14.3. Configuring HTCondor for Multiple Platforms 486

Note that this functionality is not limited to a predefined set of protocols. New ones can be invented. As an
invented example, thezkm transfer type writes random bytes to a file. The plug-in that handleszkm transfers would
respond to invocation with the-classadcommand line argument with:

PluginVersion = "0.1"
PluginType = "FileTransfer"
SupportedMethods = "zkm"

And, then when a job requested that this plug-in be invoked, for the invented example:

transfer_input_files = zkm://128/r-data

the plug-in will be invoked with a first command line argumentof zkm://128/r-data and a second command
line argument giving the full path along with the file namer-data as the location for the plug-in to write 128 bytes
of random data.

The transfer of output files in this manner was introduced in HTCondor version 7.6.0. Incompatibility and inability
to function will result if the executables for thecondor_starterandcondor_shadoware versions earlier than HTCondor
version 7.6.0. Here is the expected behavior for these casesthat cannot be backward compatible.

• If the condor_starterversion is earlier than 7.6.0, then regardless of thecondor_shadowversion, transfer of
output files, as identified in the submit description file withthe commandoutput_destination is ignored. The
files are transferred back to the submit machine.

• If the condor_starterversion is 7.6.0 or later, but thecondor_shadowversion is earlier than 7.6.0, then the
condor_starterwill attempt to send the command to thecondor_shadow, but thecondor_shadowwill ignore
the command. No files will be transferred, and the job will be placed on hold.

3.14.3 Configuring HTCondor for Multiple Platforms

A single, initial configuration file may be used for all platforms in an HTCondor pool, with platform-specific settings
placed in separate files. This greatly simplifies administration of a heterogeneous pool by allowing specification of
platform-independent, global settings in one place, instead of separately for each platform. This is made possible by
treating theLOCAL_CONFIG_FILEconfiguration variable as a list of files, instead of a single file. Of course, this
only helps when using a shared file system for the machines in the pool, so that multiple machines can actually share
a single set of configuration files.

With multiple platforms, put all platform-independent settings (the vast majority) into the single initial configura-
tion file, which will be shared by all platforms. Then, set theLOCAL_CONFIG_FILEconfiguration variable from that
global configuration file to specify both a platform-specificconfiguration file and optionally, a local, machine-specific
configuration file.

The name of platform-specific configuration files may be specified by using$(ARCH) and$(OPSYS) , as defined
automatically by HTCondor. For example, for 32-bit Intel Windows 7 machines and 64-bit Intel Linux machines, the
files ought to be named:

HTCondor Version 8.6.4 Manual

3.14.3. Configuring HTCondor for Multiple Platforms 487

condor_config.INTEL.WINDOWS
condor_config.X86_64.LINUX

Then, assuming these files are in the directory defined by theETCconfiguration variable, and machine-specific
configuration files are in the same directory, named by each machine’s host name,LOCAL_CONFIG_FILEbecomes:

LOCAL_CONFIG_FILE = $(ETC)/condor_config.$(ARCH).$(OP SYS), \
$(ETC)/$(HOSTNAME).local

Alternatively, when using AFS, an@sys link may be used to specify the platform-specific configuration
file, which lets AFS resolve this link based on platform name.For example, consider a soft link named
condor_config.platform that points tocondor_config.@sys . In this case, the files might be named:

condor_config.i386_linux2
condor_config.platform -> condor_config.@sys

and theLOCAL_CONFIG_FILEconfiguration variable would be set to

LOCAL_CONFIG_FILE = $(ETC)/condor_config.platform, \
$(ETC)/$(HOSTNAME).local

Platform-Specific Configuration File Settings

The configuration variables that are truly platform-specific are:

RELEASE_DIR Full path to to the installed HTCondor binaries. While the configuration files may be shared among
different platforms, the binaries certainly cannot. Therefore, maintain separate release directories for each
platform in the pool.

MAIL The full path to the mail program.

CONSOLE_DEVICES Which devices in/dev should be treated as console devices.

DAEMON_LIST Which daemons thecondor_mastershould start up. The reason this setting is platform-specific is to
distinguish thecondor_kbdd. It is needed on many Linux and Windows machines, and it is notneeded on other
platforms.

Reasonable defaults for all of these configuration variables will be found in the default configuration files in-
side a given platform’s binary distribution (except theRELEASE_DIR, since the location of the HTCondor binaries
and libraries is installation specific). With multiple platforms, use one of thecondor_config files from either
runningcondor_configureor from the$(RELEASE_DIR)/etc/examples/condor_config.generic file,
take these settings out, save them into a platform-specific file, and install the resulting platform-independent file as the
global configuration file. Then, find the same settings from the configuration files for any other platforms to be set up,

HTCondor Version 8.6.4 Manual

3.14.4. Full Installation of condor_compile 488

and put them in their own platform-specific files. Finally, set theLOCAL_CONFIG_FILEconfiguration variable to
point to the appropriate platform-specific file, as described above.

Not even all of these configuration variables are necessarily going to be different. For example, if an installed mail
program understands the-soption in/usr/local/bin/mail on all platforms, theMAIL macro may be set to that
in the global configuration file, and not define it anywhere else. For a pool with only Linux or Windows machines, the
DAEMON_LISTwill be the same for each, so there is no reason not to put that in the global configuration file.

Other Uses for Platform-Specific Configuration Files

It is certainly possible that an installation may want otherconfiguration variables to be platform-specific as well.
Perhaps a different policy is desired for one of the platforms. Perhaps different people should get the e-mail about
problems with the different platforms. There is nothing hard-coded about any of this. What is shared and what should
not shared is entirely configurable.

Since theLOCAL_CONFIG_FILEmacro can be an arbitrary list of files, an installation can even break up the
global, platform-independent settings into separate files. In fact, the global configuration file might only contain a
definition forLOCAL_CONFIG_FILE, and all other configuration variables would be placed in separate files.

Different people may be given different permissions to change different HTCondor settings. For example, if a user
is to be able to change certain settings, but nothing else, those settings may be placed in a file which was early in the
LOCAL_CONFIG_FILElist, to give that user write permission on that file. Then, include all the other files after that
one. In this way, if the user was attempting to change settings that the user should not be permitted to change, the
settings would be overridden.

This mechanism is quite flexible and powerful. For very specific configuration needs, they can probably be met by
using file permissions, theLOCAL_CONFIG_FILEconfiguration variable, and imagination.

3.14.4 Full Installation of condor_compile

In order to take advantage of two major HTCondor features: checkpointing and remote system calls, users need
to relink their binaries. Programs that are not relinked forHTCondor can run under HTCondor’s vanilla universe.
However, these jobs cannot take checkpoints and migrate.

To relink programs with HTCondor, we provide thecondor_compiletool. As installed by default,condor_compile
works with the following commands:gcc, g++ , g77, cc, acc, c89, CC, f77, fort77, ld. See thecondor_compile(1) man
page for details on usingcondor_compile.

condor_compilecan work transparently with all commands on the system, includingmake. The basic idea here
is to replace the system linker (ld) with the HTCondor linker. Then, when a program is to be linked, the HTCondor
linker figures out whether this binary will be for HTCondor, or for a normal binary. If it is to be a normal compile,
the oldld is called. If this binary is to be linked for HTCondor, the script performs the necessary operations in order
to prepare a binary that can be used with HTCondor. In order todifferentiate between normal builds and HTCondor
builds, the user simply placescondor_compilebefore their build command, which sets the appropriate environment
variable that lets the HTCondor linker script know it needs to do its magic.

HTCondor Version 8.6.4 Manual

3.14.5. Thecondor_kbdd 489

In order to perform this full installation ofcondor_compile, the following steps need to be taken:

1. Rename the system linker fromld to ld.real.

2. Copy the HTCondor linker to the location of the previousld.

3. Set the owner of the linker toroot .

4. Set the permissions on the new linker to 755.

The actual commands to execute depend upon the platform. Thelocation of the system linker (ld), is as follows:

Operating System Location of ld (ld-path)
Linux /usr/bin

On these platforms, issue the following commands (asroot), whereld-pathis replaced by the path to the system’s
ld.

mv /[ld-path]/ld /<ld-path>/ld.real
cp /usr/local/condor/lib/ld /<ld-path>/ld
chown root /<ld-path>/ld
chmod 755 /<ld-path>/ld

If you remove HTCondor from your system later on, linking will continue to work, since the HTCondor linker will
always default to compiling normal binaries and simply callthe realld. In the interest of simplicity, it is recommended
that you reverse the above changes by moving yourld.real linker back to its former position asld, overwriting the
HTCondor linker.

NOTE: If you ever upgrade your operating system after performinga full installation ofcondor_compile, you
will probably have to re-do all the steps outlined above. Generally speaking, new versions or patches of an operating
system might replace the systemld binary, which would undo the full installation ofcondor_compile.

3.14.5 Thecondor_kbdd

The HTCondor keyboard daemon,condor_kbdd, monitors X events on machines where the operating system does
not provide a way of monitoring the idle time of the keyboard or mouse. On Linux platforms, it is needed to detect
USB keyboard activity. Otherwise, it is not needed. On Windows platforms, thecondor_kbddis the primary way of
monitoring the idle time of both the keyboard and mouse.

The condor_kbddon Windows Platforms

Windows platforms need to use thecondor_kbddto monitor the idle time of both the keyboard and mouse. By adding
KBDDto configuration variableDAEMON_LIST, thecondor_masterdaemon invokes thecondor_kbdd, which then
does the right thing to monitor activity given the version ofWindows running.

HTCondor Version 8.6.4 Manual

3.14.5. Thecondor_kbdd 490

With Windows Vista and more recent version of Windows, user sessions are moved out of session 0. Therefore,
thecondor_startdservice is no longer able to listen to keyboard and mouse events. Thecondor_kbddwill run in an
invisible window and should not be noticeable by the user, except for a listing in the task manager. When the user logs
out, the program is terminated by Windows. This implementation also appears in versions of Windows that predate
Vista, because it adds the capability of monitoring keyboard activity from multiple users.

To achieve the auto-start with user login, the HTCondor installer adds a condor_kbdd en-
try to the registry key at HKLM\Software\Microsoft\Windows\CurrentVersion\Run .
On 64-bit versions of Vista and more recent Windows versions, the entry is actually placed in
HKLM\Software\Wow6432Node\Microsoft\Windows\Current Version\Run .

In instances where thecondor_kbddis unable to connect to thecondor_startd, it is likely because an exception
was not properly added to the Windows firewall.

The condor_kbddon Linux Platforms

On Linux platforms, great measures have been taken to make thecondor_kbddas robust as possible, but the X window
system was not designed to facilitate such a need, and thus isnot as efficient on machines where many users frequently
log in and out on the console.

In order to work with X authority, which is the system by whichX authorizes processes to connect to X servers,
thecondor_kbddneeds to run with super user privileges. Currently, thecondor_kbddassumes that X uses theHOME
environment variable in order to locate a file named.Xauthority . This file contains keys necessary to connect to an
X server. The keyboard daemon attempts to setHOMEto various users’ home directories in order to gain a connection
to the X server and monitor events. This may fail to work if thekeyboard daemon is not allowed to attach to the X
server, and the state of a machine may be incorrectly set to idle when a user is, in fact, using the machine.

In some environments, thecondor_kbddwill not be able to connect to the X server because the user currently
logged into the system keeps their authentication token forusing the X server in a place that no local user on the
current machine can get to. This may be the case for files on AFS, because the user’s.Xauthority file is in an
AFS home directory.

There may also be cases where thecondor_kbddmay not be run with super user privileges because of political
reasons, but it is still desired to be able to monitor X activity. In these cases, change the XDM configuration in order
to start up thecondor_kbddwith the permissions of the logged in user. If running X11R6.3, the files to edit will
probably be in/usr/X11R6/lib/X11/xdm . The .xsession file should start up thecondor_kbddat the end,
and the.Xreset file should shut down thecondor_kbdd. The-l option can be used to write the daemon’s log file
to a place where the user running the daemon has permission towrite a file. The file’s recommended location will be
similar to$HOME/.kbdd.log , since this is a place where every user can write, and the file will not get in the way.
The-pidfile and-k options allow for easy shut down of thecondor_kbddby storing the process ID in a file. It will be
necessary to add lines to the XDM configuration similar to

condor_kbdd -l $HOME/.kbdd.log -pidfile $HOME/.kbdd.pid

This will start thecondor_kbddas the user who is currently logged in and write the log to a filein the directory
$HOME/.kbdd.log/ . This will also save the process ID of the daemon to˜/.kbdd.pid , so that when the user

HTCondor Version 8.6.4 Manual

3.14.6. Configuring The HTCondorView Server 491

logs out, XDM can do:

condor_kbdd -k $HOME/.kbdd.pid

This will shut down the process recorded in file˜/.kbdd.pid and exit.

To see how well the keyboard daemon is working, review the logfor the daemon and look for successful connec-
tions to the X server. If there are none, thecondor_kbddis unable to connect to the machine’s X server.

3.14.6 Configuring The HTCondorView Server

The HTCondorView server is an alternate use of thecondor_collectorthat logs information on disk, providing a
persistent, historical database of pool state. This includes machine state, as well as the state of jobs submitted by
users.

An existingcondor_collectormay act as the HTCondorView collector through configuration. This is the simplest
situation, because the only change needed is to turn on the logging of historical information. The alternative of
configuring a newcondor_collectorto act as the HTCondorView collector is slightly more complicated, while it
offers the advantage that the same HTCondorView collector may be used for several pools as desired, to aggregate
information into one place.

The following sections describe how to configure a machine torun a HTCondorView server and to configure a
pool to send updates to it.

Configuring a Machine to be a HTCondorView Server

To configure the HTCondorView collector, a few configurationvariables are added or modified for thecon-
dor_collectorchosen to act as the HTCondorView collector. These configuration variables are described in sec-
tion 3.5.15 on page 304. Here are brief explanations of the entries that must be customized:

POOL_HISTORY_DIR The directory where historical data will be stored. This directory must be writable by
whatever user the HTCondorView collector is running as (usually the usercondor). There is a config-
urable limit to the maximum space required for all the files created by the HTCondorView server called
(POOL_HISTORY_MAX_STORAGE).

NOTE: This directory should be separate and different from thespool or log directories already set up for
HTCondor. There are a few problems putting these files into either of those directories.

KEEP_POOL_HISTORY A boolean value that determines if the HTCondorView collector should store the historical
information. It isFalse by default, and must be specified asTrue in the local configuration file to enable data
collection.

Once these settings are in place in the configuration file for the HTCondorView server host, create the directory
specified inPOOL_HISTORY_DIRand make it writable by the user the HTCondorView collector is running as. This
is the same user that owns theCollectorLog file in the log directory. The user is usuallycondor .

HTCondor Version 8.6.4 Manual

3.14.6. Configuring The HTCondorView Server 492

If using the existingcondor_collectoras the HTCondorView collector, no further configuration is needed. To run
a differentcondor_collectorto act as the HTCondorView collector, configure HTCondor to automatically start it.

If using a separate host for the HTCondorView collector, to start it, add the valueCOLLECTORto DAEMON_LIST,
and restart HTCondor on that host. To run the HTCondorView collector on the same host as anothercondor_collector,
ensure that the twocondor_collectordaemons use different network ports. Here is an example configuration in which
the maincondor_collectorand the HTCondorView collector are started up by the samecondor_masterdaemon on the
same machine. In this example, the HTCondorView collector uses port 12345.

VIEW_SERVER = $(COLLECTOR)
VIEW_SERVER_ARGS = -f -p 12345
VIEW_SERVER_ENVIRONMENT = "_CONDOR_COLLECTOR_LOG=$(LOG)/ViewServerLog"
DAEMON_LIST = MASTER, NEGOTIATOR, COLLECTOR, VIEW_SERVER

For this change to take effect, restart thecondor_masteron this host. This may be accomplished with thecon-
dor_restartcommand, if the command is run with administrator access to the pool.

Configuring a Pool to Report to the HTCondorView Server

For the HTCondorView server to function, configure the existing collector to forward ClassAd updates to it. This con-
figuration is only necessary if the HTCondorView collector is a different collector from the existingcondor_collector
for the pool. All the HTCondor daemons in the pool send their ClassAd updates to the regularcondor_collector, which
in turn will forward them on to the HTCondorView server.

Define the following configuration variable:

CONDOR_VIEW_HOST = full.hostname[:portnumber]

wherefull.hostname is the full host name of the machine running the HTCondorViewcollector. The full host
name is optionally followed by a colon and port number. This is only necessary if the HTCondorView collector is
configured to use a port number other than the default.

Place this setting in the configuration file used by the existing condor_collector. It is acceptable to place it in the
global configuration file. The HTCondorView collector will ignore this setting (as it should) as it notices that it is
being asked to forward ClassAds to itself.

Once the HTCondorView server is running with this change, send acondor_reconfigcommand to the maincon-
dor_collector for the change to take effect, so it will begin forwarding updates. A query to the HTCondorView
collector will verify that it is working. A query example:

condor_status -pool condor.view.host[:portnumber]

A condor_collectormay also be configured to report to multiple HTCondorView servers. The configuration vari-
ableCONDOR_VIEW_HOSTcan be given as a list of HTCondorView servers separated by commas and/or spaces.

The following demonstrates an example configuration for twoHTCondorView servers, where both HTCondorView
servers (and thecondor_collector) are running on the same machine, localhost.localdomain:

HTCondor Version 8.6.4 Manual

3.14.7. Running HTCondor Jobs within a Virtual Machine 493

VIEWSERV01 = $(COLLECTOR)
VIEWSERV01_ARGS = -f -p 12345 -local-name VIEWSERV01
VIEWSERV01_ENVIRONMENT = "_CONDOR_COLLECTOR_LOG=$(LOG)/ViewServerLog01"
VIEWSERV01.POOL_HISTORY_DIR = $(LOCAL_DIR)/poolhist01
VIEWSERV01.KEEP_POOL_HISTORY = TRUE
VIEWSERV01.CONDOR_VIEW_HOST =

VIEWSERV02 = $(COLLECTOR)
VIEWSERV02_ARGS = -f -p 24680 -local-name VIEWSERV02
VIEWSERV02_ENVIRONMENT = "_CONDOR_COLLECTOR_LOG=$(LOG)/ViewServerLog02"
VIEWSERV02.POOL_HISTORY_DIR = $(LOCAL_DIR)/poolhist02
VIEWSERV02.KEEP_POOL_HISTORY = TRUE
VIEWSERV02.CONDOR_VIEW_HOST =

CONDOR_VIEW_HOST = localhost.localdomain:12345 localho st.localdomain:24680
DAEMON_LIST = $(DAEMON_LIST) VIEWSERV01 VIEWSERV02

Note that the value ofCONDOR_VIEW_HOSTfor VIEWSERV01 and VIEWSERV02 is unset, to prevent them
from inheriting the global value ofCONDOR_VIEW_HOSTand attempting to report to themselves or each other. If the
HTCondorView servers are running on different machines where there is no global value forCONDOR_VIEW_HOST,
this precaution is not required.

3.14.7 Running HTCondor Jobs within a Virtual Machine

HTCondor jobs are formed from executables that are compiledto execute on specific platforms. This in turn restricts
the machines within an HTCondor pool where a job may be executed. An HTCondor job may now be executed on a
virtual machine running VMware, Xen, or KVM. This allows Windows executables to run on a Linux machine, and
Linux executables to run on a Windows machine.

In older versions of HTCondor, other parts of the system werealso referred to asvirtual machines, but in all cases,
those are now known asslots. A virtual machine here describes the environment in which the outside operating system
(called the host) emulates an inner operating system (called the inner virtual machine), such that an executable appears
to run directly on the inner virtual machine. In other parts of HTCondor, aslot (formerly known asvirtual machine)
refers to the multiple cores of a multi-core machine. Also, be careful not to confuse the virtual machines discussed
here with the Java Virtual Machine (JVM) referenced in otherparts of this manual. Targeting an HTCondor job to run
on an inner virtual machine is also different than using thevm universe. Thevm universe lands and starts up a virtual
machine instance, which is the HTCondor job, on an execute machine.

HTCondor has the flexibility to run a job on either the host or the inner virtual machine, hence two platforms
appear to exist on a single machine. Since two platforms are an illusion, HTCondor understands the illusion, allowing
an HTCondor job to be executed on only one at a time.

Installation and Configuration

HTCondor must be separately installed, separately configured, and separately running on both the host and the inner
virtual machine.

HTCondor Version 8.6.4 Manual

3.14.8. HTCondor’s Dedicated Scheduling 494

The configuration for the host specifiesVMP_VM_LIST. This specifies host names or IP addresses of all inner
virtual machines running on this host. An example configuration on the host machine:

VMP_VM_LIST = vmware1.domain.com, vmware2.domain.com

The configuration for each separate inner virtual machine specifiesVMP_HOST_MACHINE. This specifies the host
for the inner virtual machine. An example configuration on aninner virtual machine:

VMP_HOST_MACHINE = host.domain.com

Given this configuration, as well as communication between HTCondor daemons running on the host and on the
inner virtual machine, the policy for when jobs may execute is set by HTCondor. While the host is executing an
HTCondor job, theSTARTpolicy on the inner virtual machine is overridden withFalse , so no HTCondor jobs will
be started on the inner virtual machine. Conversely, while the inner virtual machine is executing an HTCondor job,
theSTARTpolicy on the host is overridden withFalse , so no HTCondor jobs will be started on the host.

The inner virtual machine is further provided with a new syntax for referring to the machine ClassAd attributes
of its host. Any machine ClassAd attribute with a prefix of thestringHOST_explicitly refers to the host’s ClassAd
attributes. TheSTARTpolicy on the inner virtual machine ought to use this syntax to avoid starting jobs when its host
is too busy processing other items. An example configurationfor STARTon an inner virtual machine:

START = ((KeyboardIdle > 150) && (HOST_KeyboardIdle > 150) \
&& (LoadAvg <= 0.3) && (HOST_TotalLoadAvg <= 0.3))

3.14.8 HTCondor’s Dedicated Scheduling

The dedicated scheduler is a part of thecondor_scheddthat handles the scheduling of parallel jobs that require more
than one machine concurrently running per job. MPI applications are a common use for the dedicated scheduler,
but parallel applications which do not require MPI can also be run with the dedicated scheduler. All jobs which
use the parallel universe are routed to the dedicated scheduler within thecondor_scheddthey were submitted to. A
default HTCondor installation does not configure a dedicated scheduler; the administrator must designate one or more
condor_schedddaemons to perform as dedicated scheduler.

Selecting and Setting Up a Dedicated Scheduler

We recommend that you select a single machine within an HTCondor pool to act as the dedicated scheduler. This be-
comes the machine from upon which all users submit their parallel universe jobs. The perfect choice for the dedicated
scheduler is the single, front-end machine for a dedicated cluster of compute nodes. For the pool without an obvious
choice for a submit machine, choose a machine that all users can log into, as well as one that is likely to be up and
running all the time. All of HTCondor’s other resource requirements for a submit machine apply to this machine, such
as having enough disk space in the spool directory to hold jobs. See section 3.2.2 on page 163 for details on these
issues.

HTCondor Version 8.6.4 Manual

3.14.8. HTCondor’s Dedicated Scheduling 495

Configuration Examples for Dedicated Resources

Each execute machine may have its own policy for the execution of jobs, as set by configuration. Each
machine with aspects of its configuration that are dedicatedidentifies the dedicated scheduler. And,
the ClassAd representing a job to be executed on one or more ofthese dedicated machines includes
an identifying attribute. An example configuration file withthe following various policy settings is
/etc/examples/condor_config.local.dedicated.resourc e.

Each execute machine defines the configuration variableDedicatedScheduler , which identifies the dedicated
scheduler it is managed by. The local configuration file contains a modified form of

DedicatedScheduler = "DedicatedScheduler@full.host.na me"
STARTD_ATTRS = $(STARTD_ATTRS), DedicatedScheduler

Substitute the host name of the dedicated scheduler machinefor the string "full.host.name ".

If running personal HTCondor, the name of the scheduler includes the user name it was started as, so the configu-
ration appears as:

DedicatedScheduler = "DedicatedScheduler@username@ful l.host.name"
STARTD_ATTRS = $(STARTD_ATTRS), DedicatedScheduler

All dedicated execute machines must have policy expressions which allow for jobs to always run, but not be
preempted. The resource must also be configured to prefer jobs from the dedicated scheduler over all other jobs.
Therefore, configuration gives the dedicated scheduler of choice the highest rank. It is worth noting that HTCondor
puts no other requirements on a resource for it to be considered dedicated.

Job ClassAds from the dedicated scheduler contain the attributeScheduler . The attribute is defined by a string
of the form

Scheduler = "DedicatedScheduler@full.host.name"

The host name of the dedicated scheduler substitutes for thestringfull.host.name .

Different resources in the pool may have different dedicated policies by varying the local configuration.

Policy Scenario: Machine Runs Only Jobs That Require Dedicated ResourcesOne possible scenario for the use
of a dedicated resource is to only run jobs that require the dedicated resource. To enact this policy, configure the
following expressions:

START = Scheduler =?= $(DedicatedScheduler)
SUSPEND = False
CONTINUE = True
PREEMPT = False

HTCondor Version 8.6.4 Manual

3.14.8. HTCondor’s Dedicated Scheduling 496

KILL = False
WANT_SUSPEND = False
WANT_VACATE = False
RANK = Scheduler =?= $(DedicatedScheduler)

TheSTARTexpression specifies that a job with theScheduler attribute must match the string corresponding
DedicatedScheduler attribute in the machine ClassAd. TheRANKexpression specifies that this same job
(with the Scheduler attribute) has the highest rank. This prevents other jobs from preempting it based on
user priorities. The rest of the expressions disable any other of thecondor_startddaemon’s pool-wide policies,
such as those for evicting jobs when keyboard and CPU activity is discovered on the machine.

Policy Scenario: Run Both Jobs That Do and Do Not Require Dedicated ResourcesWhile the first example
works nicely for jobs requiring dedicated resources, it canlead to poor utilization of the dedicated machines. A
more sophisticated strategy allows the machines to run other jobs, when no jobs that require dedicated resources
exist. The machine is configured to prefer jobs that require dedicated resources, but not prevent others from
running.

To implement this, configure the machine as a dedicated resource as above, modifying only theSTARTexpres-
sion:

START = True

Policy Scenario: Adding Desktop Resources To The MixA third policy example allows all jobs. These desktop
machines use a preexistingSTARTexpression that takes the machine owner’s usage into account for some jobs.
The machine does not preempt jobs that must run on dedicated resources, while it may preempt other jobs as
defined by policy. So, the default pool policy is used for starting and stopping jobs, while jobs that require a
dedicated resource always start and are not preempted.

TheSTART, SUSPEND, PREEMPT, andRANKpolicies are set in the global configuration. Locally, the config-
uration is modified to this hybrid policy by adding a second case.

SUSPEND = Scheduler =!= $(DedicatedScheduler) && ($(SUSPE ND))
PREEMPT = Scheduler =!= $(DedicatedScheduler) && ($(PREEM PT))
RANK_FACTOR = 1000000
RANK = (Scheduler =?= $(DedicatedScheduler) * $(RANK_FACTOR)) \

+ $(RANK)
START = (Scheduler =?= $(DedicatedScheduler)) || ($(START))

DefineRANK_FACTORto be a larger value than the maximum value possible for the existing rank expression.
RANKis a floating point value, so there is no harm in assigning a very large value.

Preemption with Dedicated Jobs

The dedicated scheduler can be configured to preempt runningparallel universe jobs in favor of higher priority parallel
universe jobs. Note that this is different from preemption in other universes, and parallel universe jobs cannot be
preempted either by a machine’s user pressing a key or by other means.

HTCondor Version 8.6.4 Manual

3.14.8. HTCondor’s Dedicated Scheduling 497

By default, the dedicated scheduler will never preempt running parallel universe jobs. Two configura-
tion variables control preemption of these dedicated resources: SCHEDD_PREEMPTION_REQUIREMENTSand
SCHEDD_PREEMPTION_RANK. These variables have no default value, so if either are not defined, preemption will
never occur.SCHEDD_PREEMPTION_REQUIREMENTSmust evaluate toTrue for a machine to be a candidate for
this kind of preemption. If more machines are candidates forpreemption than needed to satisfy a higher priority job,
the machines are sorted bySCHEDD_PREEMPTION_RANK, and only the highest ranked machines are taken.

Note that preempting one node of a running parallel universejob requires killing the entire job on all of its nodes.
So, when preemption occurs, it may end up freeing more machines than are needed for the new job. Also, as HT-
Condor does not produce checkpoints for parallel universe jobs, preempted jobs will be re-run, starting again from the
beginning. Thus, the administrator should be careful when enabling preemption of these dedicated resources. Enable
dedicated preemption with the configuration:

STARTD_JOB_EXPRS = JobPrio
SCHEDD_PREEMPTION_REQUIREMENTS = (My.JobPrio < Target.J obPrio)
SCHEDD_PREEMPTION_RANK = 0.0

In this example, preemption is enabled by user-defined job priority. If a set of machines is running a job at user
priority 5, and the user submits a new job at user priority 10,the running job will be preempted for the new job. The
old job is put back in the queue, and will begin again from the beginning when assigned to a newly acquired set of
machines.

Grouping Dedicated Nodes into Parallel Scheduling Groups

In some parallel environments, machines are divided into groups, and jobs should not cross groups of machines. That
is, all the nodes of a parallel job should be allocated to machines within the same group. The most common example
is a pool of machine using InfiniBand switches. For example, each switch might connect 16 machines, and a pool
might have 160 machines on 10 switches. If the InfiniBand switches are not routed to each other, each job must run on
machines connected to the same switch. The dedicated scheduler’s Parallel Scheduling Groupsfeature supports this
operation.

Eachcondor_startdmust define which group it belongs to by setting theParallelSchedulingGroup vari-
able in the configuration file, and advertising it into the machine ClassAd. The value of this variable is a string,
which should be the same for allcondor_startddaemons within a given group. The property must be advertised in
the condor_startdClassAd by appendingParallelSchedulingGroup to theSTARTD_ATTRSconfiguration
variable.

The submit description file for a parallel universe job whichmust not cross group boundaries contains

+WantParallelSchedulingGroups = True

The dedicated scheduler enforces the allocation to within agroup.

HTCondor Version 8.6.4 Manual

3.14.9. Configuring HTCondor for Running Backfill Jobs 498

3.14.9 Configuring HTCondor for Running Backfill Jobs

HTCondor can be configured to run backfill jobs whenever thecondor_startdhas no other work to perform. These
jobs are considered the lowest possible priority, but when machines would otherwise be idle, the resources can be put
to good use.

Currently, HTCondor only supports using the Berkeley Open Infrastructure for Network Computing (BOINC) to
provide the backfill jobs. More information about BOINC is available at http://boinc.berkeley.edu.

The rest of this section provides an overview of how backfill jobs work in HTCondor, details for configuring the
policy for when backfill jobs are started or killed, and details on how to configure HTCondor to spawn the BOINC
client to perform the work.

Overview of Backfill jobs in HTCondor

Whenever a resource controlled by HTCondor is in the Unclaimed/Idle state, it is totally idle; neither the interactive
user nor an HTCondor job is performing any work. Machines in this state can be configured to enter theBackfillstate,
which allows the resource to attempt a background computation to keep itself busy until other work arrives (either a
user returning to use the machine interactively, or a normalHTCondor job). Once a resource enters the Backfill state,
thecondor_startdwill attempt to spawn another program, called abackfill client, to launch and manage the backfill
computation. When other work arrives, thecondor_startdwill kill the backfill client and clean up any processes it has
spawned, freeing the machine resources for the new, higher priority task. More details about the different states an
HTCondor resource can enter and all of the possible transitions between them are described in section 3.7 beginning
on page 370, especially sections 3.7.1, 3.7.1, and 3.7.1.

At this point, the only backfill system supported by HTCondoris BOINC. Thecondor_startdhas the ability to start
and stop the BOINC client program at the appropriate times, but otherwise provides no additional services to configure
the BOINC computations themselves. Future versions of HTCondor might provide additional functionality to make it
easier to manage BOINC computations from within HTCondor. For now, the BOINC client must be manually installed
and configured outside of HTCondor on each backfill-enabled machine.

Defining the Backfill Policy

There are a small set of policy expressions that determine ifa condor_startdwill attempt to spawn a backfill client at
all, and if so, to control the transitions in to and out of the Backfill state. This section briefly lists these expressions.
More detail can be found in section 3.5.9 on page 262.

ENABLE_BACKFILL A boolean value to determine if any backfill functionality should be used. The default value is
False .

BACKFILL_SYSTEM A string that defines what backfill system to use for spawning and managing backfill compu-
tations. Currently, the only supported string is"BOINC" .

START_BACKFILL A boolean expression to control if an HTCondor resource should start a backfill client. This
expression is only evaluated when the machine is in the Unclaimed/Idle state and theENABLE_BACKFILL

HTCondor Version 8.6.4 Manual

http://boinc.berkeley.edu

3.14.9. Configuring HTCondor for Running Backfill Jobs 499

expression isTrue .

EVICT_BACKFILL A boolean expression that is evaluated whenever an HTCondorresource is in the Backfill state.
A value of True indicates the machine should immediately kill the currently running backfill client and any
other spawned processes, and return to the Owner state.

The following example shows a possible configuration to enable backfill:

Turn on backfill functionality, and use BOINC
ENABLE_BACKFILL = TRUE
BACKFILL_SYSTEM = BOINC

Spawn a backfill job if we've been Unclaimed for more than 5
minutes
START_BACKFILL = $(StateTimer) > (5 * $(MINUTE))

Evict a backfill job if the machine is busy (based on keyboar d
activity or cpu load)
EVICT_BACKFILL = $(MachineBusy)

Overview of the BOINC system

The BOINC system is a distributed computing environment forsolving large scale scientific problems. A detailed
explanation of this system is beyond the scope of this manual. Thorough documentation about BOINC is available
at their website: http://boinc.berkeley.edu. However, a brief overview is provided here for sites interested in using
BOINC with HTCondor to manage backfill jobs.

BOINC grew out of the relatively famous SETI@home computation, where volunteers installed special client
software, in the form of a screen saver, that contacted a centralized server to download work units. Each work unit
contained a set of radio telescope data and the computation tried to find patterns in the data, a sign of intelligent life
elsewhere in the universe, hence the name: "Search for ExtraTerrestrial Intelligence at home". BOINC is developed
by the Space Sciences Lab at the University of California, Berkeley, by the same people who created SETI@home.
However, instead of being tied to the specific radio telescope application, BOINC is a generic infrastructure by which
many different kinds of scientific computations can be solved. The current generation of SETI@home now runs on
top of BOINC, along with various physics, biology, climatology, and other applications.

The basic computational model for BOINC and the original SETI@home is the same: volunteers install BOINC
client software, called theboinc_client, which runs whenever the machine would otherwise be idle. However, the
BOINC installation on any given machine must be configured sothat it knows what computations to work for instead
of always working on a hard coded computation. The BOINC terminology for a computation is aproject. A given
BOINC client can be configured to donate all of its cycles to a single project, or to split the cycles between projects so
that, on average, the desired percentage of the computational power is allocated to each project. Once theboinc_client
starts running, it attempts to contact a centralized serverfor each project it has been configured to work for. The
BOINC software downloads the appropriate platform-specific application binary and some work units from the central
server for each project. Whenever the client software completes a given work unit, it once again attempts to connect
to that project’s central server to upload the results and download more work.

HTCondor Version 8.6.4 Manual

http://boinc.berkeley.edu

3.14.9. Configuring HTCondor for Running Backfill Jobs 500

BOINC participants must register at the centralized serverfor each project they wish to donate cycles to. The
process produces a unique identifier so that the work performed by a given client can be credited to a specific user.
BOINC keeps track of the work units completed by each user, sothat users providing the most cycles get the highest
rankings, and therefore, bragging rights.

Because BOINC already handles the problems of distributingthe application binaries for each scientific computa-
tion, the work units, and compiling the results, it is a perfect system for managing backfill computations in HTCondor.
Many of the applications that run on top of BOINC produce their own application-specific checkpoints, so even if the
boinc_clientis killed, for example, when an HTCondor job arrives at a machine, or if the interactive user returns, an
entire work unit will not necessarily be lost.

Installing the BOINC client software

In HTCondor Version 8.6.4, theboinc_clientmust be manually downloaded, installed and configured outside of HT-
Condor. Download theboinc_clientexecutables at http://boinc.berkeley.edu/download.php.

Once the BOINC client software has been downloaded, theboinc_clientbinary should be placed in a location
where the HTCondor daemons can use it. The path will be specified with the HTCondor configuration variable
BOINC_Executable .

Additionally, a local directory on each machine should be created where the BOINC system can write files it
needs. This directory must not be shared by multiple instances of the BOINC software. This is the same restriction
as placed on thespool or execute directories used by HTCondor. The location of this directory is defined by
BOINC_InitialDir . The directory must be writable by whatever user theboinc_clientwill run as. This user is
either the same as the user the HTCondor daemons are running as, if HTCondor is not running as root, or a user defined
via theBOINC_Owner configuration variable.

Finally, HTCondor administrators wishing to use BOINC for backfill jobs must create accounts at the various
BOINC projects they want to donate cycles to. The details of this process vary from project to project. Beware that this
step must be done manually, as theboinc_clientcan not automatically register a user at a given project, unlike the more
fancy GUI version of the BOINC client software which many users run as a screen saver. For example, to configure
machines to perform work for the Einstein@home project (a physics experiment run by the University of Wisconsin
at Milwaukee), HTCondor administrators should go to http://einstein.phys.uwm.edu/create_account_form.php, fill in
the web form, and generate a new Einstein@home identity. This identity takes the form of a project URL (such as
http://einstein.phys.uwm.edu) followed by anaccount key, which is a long string of letters and numbers that is used as
a unique identifier. This URL and account key will be needed when configuring HTCondor to use BOINC for backfill
computations.

Configuring the BOINC client under HTCondor

After theboinc_clienthas been installed on a given machine, the BOINC projects to join have been selected, and a
unique project account key has been created for each project, the HTCondor configuration needs to be modified.

Whenever thecondor_startddecides to spawn theboinc_clientto perform backfill computations, it will spawn
a condor_starterto directly launch and monitor theboinc_clientprogram. Thiscondor_starteris just like the one

HTCondor Version 8.6.4 Manual

http://boinc.berkeley.edu/download.php
http://einstein.phys.uwm.edu/create_account_form.php

3.14.9. Configuring HTCondor for Running Backfill Jobs 501

used to invoke any other HTCondor jobs. In fact, the argv[0] of the boinc_clientwill be renamed tocondor_exec, as
described in section 2.15.1 on page 157.

Thiscondor_starterreads values out of the HTCondor configuration files to define the job it should run, as opposed
to getting these values from a job ClassAd in the case of a normal HTCondor job. All of the configuration variables
names for variables to control things such as the path to theboinc_clientbinary to use, the command-line arguments,
and the initial working directory, are prefixed with the string"BOINC_" . Each of these variables is described as either
a required or an optional configuration variable.

Required configuration variables:

BOINC_Executable The full path and executable name of theboinc_clientbinary to use.

BOINC_InitialDir The full path to the local directory where BOINC should run.

BOINC_Universe The HTCondor universe used for running theboinc_clientprogram. Thismust be set to
vanilla for BOINC to work under HTCondor.

BOINC_Owner What user theboinc_clientprogram should be run as. This variable is only used if the HTCondor
daemons are running as root. In this case, thecondor_startermust be told what user identity to switch to before
invoking theboinc_client. This can be any valid user on the local system, but it must have write permission in
whatever directory is specified byBOINC_InitialDir .

Optional configuration variables:

BOINC_Arguments Command-line arguments that should be passed to theboinc_clientprogram. For example,
one way to specify the BOINC project to join is to use the–attach_projectargument to specify a project URL
and account key. For example:

BOINC_Arguments = --attach_project http://einstein.phy s.uwm.edu [account_key]

BOINC_Environment Environment variables that should be set for theboinc_client.

BOINC_Output Full path to the file wherestdout from theboinc_clientshould be written. If this variable is not
defined,stdout will be discarded.

BOINC_Error Full path to the file wherestderr from theboinc_clientshould be written. If this macro is not
defined,stderr will be discarded.

The following example shows one possible usage of these settings:

Define a shared macro that can be used to define other settin gs.
This directory must be manually created before attempting to run
any backfill jobs.
BOINC_HOME = $(LOCAL_DIR)/boinc

Path to the boinc_client to use, and required universe sett ing
BOINC_Executable = /usr/local/bin/boinc_client

HTCondor Version 8.6.4 Manual

3.14.9. Configuring HTCondor for Running Backfill Jobs 502

BOINC_Universe = vanilla

What initial working directory should BOINC use?
BOINC_InitialDir = $(BOINC_HOME)

Where to place stdout and stderr
BOINC_Output = $(BOINC_HOME)/boinc.out
BOINC_Error = $(BOINC_HOME)/boinc.err

If the HTCondor daemons reading this configuration are running as root, an additional variable must be defined:

Specify the user that the boinc_client should run as:
BOINC_Owner = nobody

In this case, HTCondor would spawn theboinc_clientasnobody , so the directory specified in$(BOINC_HOME)
would have to be writable by thenobody user.

A better choice would probably be to create a separate user account just for running BOINC jobs, so that the local
BOINC installation is not writable by other processes running asnobody . Alternatively, theBOINC_Owner could
be set todaemon.

Attaching to a specific BOINC project

There are a few ways to attach an HTCondor/BOINC installation to a given BOINC project:

• Use the–attach_projectargument to theboinc_clientprogram, defined via theBOINC_Arguments variable.
Theboinc_clientwill only accept a single–attach_projectargument, so this method can only be used to attach
to one project.

• Theboinc_cmdcommand-line tool can perform various BOINC administrative tasks, including attaching to a
BOINC project. Usingboinc_cmd, the appropriate argument to use is called–project_attach. Unfortunately,
theboinc_clientmust be running forboinc_cmdto work, so this method can only be used once the HTCondor
resource has entered the Backfill state and has spawned theboinc_client.

• Manually create account files in the local BOINC directory.Upon start up, theboinc_clientwill scan its local
directory (the directory specified withBOINC_InitialDir) for files of the formaccount_[URL].xml ,
for example,account_einstein.phys.uwm.edu.xml . Any files with a name that matches this conven-
tion will be read and processed. The contents of the file definethe project URL and the authentication key. The
format is:

<account>
<master_url>[URL]</master_url>
<authenticator>[key]</authenticator>

</account>

For example:

<account>
<master_url>http://einstein.phys.uwm.edu</master_ur l>
<authenticator>aaaa1111bbbb2222cccc3333</authentica tor>

</account>

HTCondor Version 8.6.4 Manual

3.14.9. Configuring HTCondor for Running Backfill Jobs 503

Of course, the<authenticator> tag would use the real authentication key returned when the account was
created at a given project.

These account files can be copied to the local BOINC directoryon all machines in an HTCondor pool, so
administrators can either distribute them manually, or usesymbolic links to point to a shared file system.

In the two cases of using command-line arguments forboinc_clientor running theboinc_cmdtool, BOINC will
write out the resulting account file to the local BOINC directory on the machine, and then future invocations of the
boinc_clientwill already be attached to the appropriate project(s).

BOINC on Windows

The Windows version of BOINC has multiple installation methods. The preferred method of installation for use with
HTCondor is the Shared Installation method. Using this method gives all users access to the executables. During the
installation process

1. Deselect the option which makes BOINC the default screen saver

2. Deselect the option which runs BOINC on start up.

3. Do not launch BOINC at the conclusion of the installation.

There are three major differences from the Unix version to keep in mind when dealing with the Windows installa-
tion:

1. The Windows executables have different names from the Unix versions. The Windows client is calledboinc.exe.
Therefore, the configuration variableBOINC_Executable is written:

BOINC_Executable = C:\PROGRA~1\BOINC\boinc.exe

The Unix administrative toolboinc_cmdis calledboinccmd.exeon Windows.

2. When using BOINC on Windows, the configuration variableBOINC_InitialDir will not be respected fully.
To work around this difficulty, pass the BOINC home directorydirectly to the BOINC application via the
BOINC_Arguments configuration variable. For Windows, rewrite the argument line as:

BOINC_Arguments = --dir $(BOINC_HOME) \
--attach_project http://einstein.phys.uwm.edu [accoun t_key]

As a consequence of setting the BOINC home directory, some projects may fail with the authentication error:

Scheduler request failed: Peer
certificate cannot be authenticated
with known CA certificates.

To resolve this issue, copy theca-bundle.crt file from the BOINC installation directory to
$(BOINC_HOME). This file appears to be project and machine independent, andit can therefore be distributed
as part of an automated HTCondor installation.

HTCondor Version 8.6.4 Manual

3.14.10. Per Job PID Namespaces 504

3. TheBOINC_Ownerconfiguration variable behaves differently on Windows thanit does on Unix. Its value may
take one of two forms:

• domain\user

• user This form assumes that the user exists in the local domain (that is, on the computer itself).

Setting this option causes the addition of the job attribute

RunAsUser = True

to the backfill client. This further implies that the configuration variableSTARTER_ALLOW_RUNAS_OWNER
be set to True to insure that the localcondor_starter be able to run jobs in this manner. For
more information on theRunAsUser attribute, see section 7.2.4. For more information on the the
STARTER_ALLOW_RUNAS_OWNERconfiguration variable, see section 3.5.6.

3.14.10 Per Job PID Namespaces

Per job PID namespaces provide enhanced isolation of one process tree from another through kernel level process ID
namespaces. HTCondor may enable the use of per job PID namespaces for Linux RHEL 6, Debian 6, and more recent
kernels.

Read about per job PID namespaces http://lwn.net/Articles/531419/.

The needed isolation of jobs from the same user that execute on the same machine as each other is already provided
by the implementation of slot users as described in section 3.8.13. This is the recommended way to implement the
prevention of interference between more than one job submitted by a single user. However, the use of a shared file
system by slot users presents issues in the ownership of fileswritten by the jobs.

The per job PID namespace provides a way to handle the ownership of files produced by jobs within a shared file
system. It also isolates the processes of a job within its PIDnamespace. As a side effect and benefit, the clean up
of processes for a job within a PID namespace is enhanced. When the process with PID = 1 is killed, the operating
system takes care of killing all child processes.

To enable the use of per job PID namespaces, set the configuration to include

USE_PID_NAMESPACES = True

This configuration variable defaults toFalse , thus the use of per job PID namespaces is disabled by default.

3.14.11 Group ID-Based Process Tracking

One function that HTCondor often must perform is keeping track of all processes created by a job. This is done so
that HTCondor can provide resource usage statistics about jobs, and also so that HTCondor can properly clean up any
processes that jobs leave behind when they exit.

HTCondor Version 8.6.4 Manual

http://lwn.net/Articles/531419/

3.14.12. Cgroup-Based Process Tracking 505

In general, tracking process families is difficult to do reliably. By default HTCondor uses a combination of process
parent-child relationships, process groups, and information that HTCondor places in a job’s environment to track
process families on a best-effort basis. This usually workswell, but it can falter for certain applications or for jobs that
try to evade detection.

Jobs that run with a user account dedicated for HTCondor’s use can be reliably tracked, since all HTCondor needs
to do is look for all processes running using the given account. Administrators must specify in HTCondor’s configu-
ration what accounts can be considered dedicated via theDEDICATED_EXECUTE_ACCOUNT_REGEXPsetting. See
Section 3.8.13 for further details.

Ideally, jobs can be reliably tracked regardless of the useraccount they execute under. This can be accomplished
with group ID-based tracking. This method of tracking requires that a range of dedicatedgroupIDs (GID) be set aside
for HTCondor’s use. The number of GIDs that must be set aside for an execute machine is equal to its number of
execution slots. GID-based tracking is only available on Linux, and it requires that HTCondor daemons run asroot .

GID-based tracking works by placing a dedicated GID in the supplementary group list of a job’s initial process.
Since modifying the supplementary group ID list requiresroot privilege, the job will not be able to create processes
that go unnoticed by HTCondor.

Once a suitable GID range has been set aside for process tracking, GID-based tracking can be enabled via the
USE_GID_PROCESS_TRACKINGparameter. The minimum and maximum GIDs included in the range are specified
with theMIN_TRACKING_GIDandMAX_TRACKING_GIDsettings. For example, the following would enable GID-
based tracking for an execute machine with 8 slots.

USE_GID_PROCESS_TRACKING = True
MIN_TRACKING_GID = 750
MAX_TRACKING_GID = 757

If the defined range is too small, such that there is not a GID available when starting a job, then thecondor_starter
will fail as it tries to start the job. An error message will belogged stating that there are no more tracking GIDs.

GID-based process tracking requires use of thecondor_procd. If USE_GID_PROCESS_TRACKINGis true,
the condor_procdwill be used regardless of theUSE_PROCDsetting. Changes toMIN_TRACKING_GIDand
MAX_TRACKING_GIDrequire a full restart of HTCondor.

3.14.12 Cgroup-Based Process Tracking

A new feature in Linux version 2.6.24 allows HTCondor to moreaccurately and safely manage jobs composed
of sets of processes. This Linux feature is called Control Groups, or cgroups for short, and it is available start-
ing with RHEL 6, Debian 6, and related distributions. Documentation about Linux kernel support for cgroups
can be found in the Documentation directory in the kernel source code distribution. Another good reference is
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html
Even if cgroup support is built into the kernel, many distributions do not install the cgroup tools by default.

The interface between the kernel cgroup functionality is via a (virtual) file system. When the condor_master starts
on a Linux system with cgroup support in the kernel, it checksto see if cgroups are mounted, and if not, it will try to
mount the cgroup virtual filesystem onto the directory /cgroup.

HTCondor Version 8.6.4 Manual

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html

3.14.13. Limiting Resource Usage with a User Job Wrapper 506

If your Linux distribution usessystemd, it will mount the cgroup file system, and the only remaining item is to set
configuration variableBASE_CGROUP, as described below.

On Debian based systems, the memory cgroup controller is often not on by default, and needs to be enabled with
a boot time option.

This setting needs to be inherited down to the per-job cgroupwith the following commands inrc.local :

/usr/sbin/cgconfigparser -l /etc/cgconfig.conf
/bin/echo 1 > /sys/fs/cgroup/htcondor/cgroup.clone_chi ldren

When cgroups are correctly configured and running, the virtual file system mounted on/cgroup should have
several subdirectories under it, and there should anhtcondor subdirectory under the directory/cgroup/cpu .

Thecondor_starterdaemon uses cgroups by default on Linux systems to accurately track all the processes started
by a job, even when quickly-exiting parent processes spawn many child processes. As with the GID-based tracking,
this is only implemented when acondor_procddaemon is running.

Kernel cgroups are named in a virtual file system hierarchy. HTCondor will put each running job
on the execute node in a distinct cgroup. The name of this cgroup is the name of the execute di-
rectory for that condor_starter, with slashes replaced by underscores, followed by the nameand number
of the slot. So, for the memory controller, a job running on slot1 would have its cgroup located at
/cgroup/memory/htcondor/condor_var_lib_condor_execu te_slot1/ . Thetasks file in this di-
rectory will contain a list of all the processes in this cgroup, and many other files in this directory have useful infor-
mation about resource usage of this cgroup. See the kernel documentation for full details.

Once cgroup-based tracking is configured, usage should be invisible to the user and administrator. Thecon-
dor_procdlog, as defined by configuration variablePROCD_LOG, will mention that it is using this method, but no
user visible changes should occur, other than the impossibility of a quickly-forking process escaping from the control
of thecondor_starter, and the more accurate reporting of memory usage.

3.14.13 Limiting Resource Usage with a User Job Wrapper

An administrator can strictly limit the usage of system resources by jobs for any job that may be wrapped using the
script defined by the configuration variableUSER_JOB_WRAPPER. These are jobs within universes that are controlled
by thecondor_starterdaemon, and they include thevanilla, standard, java, local, andparallel universes.

The job’s ClassAd is written by thecondor_starterdaemon. It will need to contain attributes that the script defined
by USER_JOB_WRAPPERcan use to implement platform specific resource limiting actions. Examples of resources
that may be referred to for limiting purposes are RAM, swap space, file descriptors, stack size, and core file size.

An initial sample of a USER_JOB_WRAPPERscript is provided in the installation at
$(LIBEXEC)/condor_limits_wrapper.sh . Here is the contents of that file:

#!/bin/bash
Copyright 2008 Red Hat, Inc.

HTCondor Version 8.6.4 Manual

3.14.13. Limiting Resource Usage with a User Job Wrapper 507

#
Licensed under the Apache License, Version 2.0 (the "Licen se");
you may not use this file except in compliance with the Licen se.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, s oftware
distributed under the License is distributed on an "AS IS" B ASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permis sions and
limitations under the License.

if [[$_CONDOR_MACHINE_AD != ""]]; then
mem_limit=$((`egrep '^Memory' $_CONDOR_MACHINE_AD | cut -d ' ' -f 3` * 1024))
disk_limit=`egrep '^Disk' $_CONDOR_MACHINE_AD | cut -d ' ' -f 3`

ulimit -d $mem_limit
if [[$? != 0]] || [[$mem_limit = ""]]; then

echo "Failed to set Memory Resource Limit" > $_CONDOR_WRAPP ER_ERROR_FILE
exit 1

fi
ulimit -f $disk_limit
if [[$? != 0]] || [[$disk_limit = ""]]; then

echo "Failed to set Disk Resource Limit" > $_CONDOR_WRAPPER _ERROR_FILE
exit 1

fi
fi

exec "$@"
error=$?
echo "Failed to exec($error): $@" > $_CONDOR_WRAPPER_ERRO R_FILE
exit 1

If used in an unmodified form, this script sets the job’s limits on a per slot basis for memory and disk usage, with
the limits defined by the values in the machine ClassAd. This example file will need to be modified and merged for
use with a preexistingUSER_JOB_WRAPPERscript.

If additional functionality is added to the script, an administrator is likely to use theUSER_JOB_WRAPPERscript
in conjunction withSUBMIT_ATTRSor SUBMIT_EXPRSto force the job ClassAd to contain attributes that the
USER_JOB_WRAPPERscript expects to have defined.

The following variables are set in the environment of the theUSER_JOB_WRAPPERscript by thecondor_starter
daemon, when theUSER_JOB_WRAPPERis defined.

_CONDOR_MACHINE_AD The full path and file name of the file containing the machine ClassAd.

_CONDOR_JOB_AD The full path and file name of the file containing the job ClassAd.

_CONDOR_WRAPPER_ERROR_FILE The full path and file name of the file that theUSER_JOB_WRAPPERscript
should create, if there is an error. The text in this file will be included in any HTCondor failure messages.

HTCondor Version 8.6.4 Manual

3.14.14. Limiting Resource Usage Using Cgroups 508

3.14.14 Limiting Resource Usage Using Cgroups

While the method described to limit a job’s resource usage isportable, and it should run on any Linux or BSD or
Unix system, it suffers from one large flaw. The flaw is that resource limits imposed are per process, not per job. An
HTCondor job is often composed of many Unix processes. If themethod of limiting resource usage with a user job
wrapper is used to impose a 2 Gigabyte memory limit, that limit applies to each process in the job individually. If a job
created 100 processes, each using just under 2 Gigabytes, the job would continue without the resource limits kicking
in. Clearly, this is not what the machine owner intends. Moreover, the memory limit only applies to the virtual memory
size, not the physical memory size, or the resident set size.This can be a problem for jobs that use themmapsystem
call to map in a large chunk of virtual memory, but only need a small amount of memory at one time. Typically, the
resource the administrator would like to control is physical memory, because when that is in short supply, the machine
starts paging, and can become unresponsive very quickly.

Thecondor_startercan, using the Linux cgroup capability, apply resource limits collectively to sets of jobs, and
apply limits to the physical memory used by a set of processes. The main downside of this technique is that it is only
available on relatively new Unix distributions such as RHEL6 and Debian 6. This technique also may require editing
of system configuration files.

To enable cgroup-based limits, first ensure that cgroup-based tracking is enabled, as it is by default on supported
systems, as described in section 3.14.12. Once set, thecondor_starterwill create a cgroup for each job, and set
two attributes in that cgroup which control resource usage therein. These two attributes are the cpu.shares attribute
in the cpu controller, and one of two attributes in the memorycontroller, either memory.limit_in_bytes, or mem-
ory.soft_limit_in_bytes. The configuration variableCGROUP_MEMORY_LIMIT_POLICYcontrols whether the hard
limit (the former) or the soft limit will be used. IfCGROUP_MEMORY_LIMIT_POLICYis set to the stringhard ,
the hard limit will be used. If set tosoft , the soft limit will be used. Otherwise, no limit will be set if the value is
none . The default isnone . If the hard limit is in force, then the total amount of physical memory used by the sum
of all processes in this job will not be allowed to exceed the limit. If the processes try to allocate more memory, the
allocation will succeed, and virtual memory will be allocated, but no additional physical memory will be allocated.
The system will keep the amount of physical memory constant by swapping some page from that job out of memory.
However, if the soft limit is in place, the job will be allowedto go over the limit if there is free memory available
on the system. Only when there is contention between other processes for physical memory will the system force
physical memory into swap and push the physical memory used towards the assigned limit. The memory size used in
both cases is the machine ClassAd attributeMemory. Note thatMemory is a static amount when using static slots,
but it is dynamic when partitionable slots are used. That is,the limit is whatever the "Mem" column of condor_status
reports for that slot. If the job exceeds both the physical memory and swap space, the job will be killed by the Linux
Out-of-Memory killer, and HTCondor will put the job on hold with an appropriate message.

If CGROUP_MEMORY_LIMIT_POLICYis set, HTCondor will also also use cgroups to limit the amount of swap
space used by each job. By default, the maximum amount of swapspace used by each slot is the total amount of
Virtual Memory in the slot, minus the amount of physical memory. Note that HTCondor measures virtual memory in
kbytes, and physical memory in megabytes. To prevent jobs with high memory usage from thrashing and excessive
paging, and force HTCondor to put them on hold instead, you can set a lower limit on the amount of swap space they
are allowed to use. With partitionable slots, this is done inthe per slot definition, and must be a percentage of the total
swap space on the system. For example,

NUM_SLOTS_TYPE_1 = 1

HTCondor Version 8.6.4 Manual

3.14.15. Concurrency Limits 509

SLOT_TYPE_1_PARTITIONABLE = true
SLOT_TYPE_1 = cpus=100%,swap=10%

Optionally, if the administrator sets the config file settingPROPORTIONAL_SWAP_ASSSIGNMENT= true, the
maximum amount of swap space per slot will be set to the same proportion of the total swap as as the proportion of
physical memory. That is, if a slot (static or dyanmic) has half of the physical memory of the machine, it will be given
half of the swap space.

In addition to memory, thecondor_startercan also control the total amount of CPU used by all processeswithin a
job. To do this, it writes a value to the cpu.shares attributeof the cgroup cpu controller. The value it writes is copied
from theCpus attribute of the machine slot ClassAd multiplied by 100. Again, like theMemory attribute, this value
is fixed for static slots, but dynamic under partitionable slots. This tells the operating system to assign cpu usage
proportionally to the number of cpus in the slot. Unlike memory, there is no concept ofsoft or hard , so this limit
only applies when there is contention for the cpu. That is, onan eight core machine, with only a single, one-core slot
running, and otherwise idle, the job running in the one slot could consume all eight cpus concurrently with this limit
in play, if it is the only thing running. If, however, all eight slots where running jobs, with each configured for one cpu,
the cpu usage would be assigned equally to each job, regardless of the number of processes or threads in each job.

3.14.15 Concurrency Limits

Concurrency limitsallow an administrator to limit the number of concurrently running jobs that declare that they use
some pool-wide resource. This limit is applied globally to all jobs submitted from all schedulers across one HTCondor
pool; the limits arenotapplied to scheduler, local, or grid universe jobs. This is useful in the case of a shared resource,
such as an NFS or database server that some jobs use, where theadministrator needs to limit the number of jobs
accessing the server.

The administrator must predefine the names and capacities ofthe resources to be limited in the negotiator’s con-
figuration file. The job submitter must declare in the submit description file which resources the job consumes.

The administrator chooses a name for the limit. Concurrencylimit names are case-insensitive. The names are
formed from the alphabet letters ’A’ to ’Z’ and ’a’ to ’z’, thenumerical digits 0 to 9, the underscore character ’_’ , and
at most one period character. The names cannot start with a numerical digit.

For example, assume that there are 3 licenses for the X software, so HTCondor should constrain the number of
running jobs which need the X software to 3. The administrator picks XSW as the name of the resource and sets the
configuration

XSW_LIMIT = 3

whereXSWis the invented name of this resource, and this name is appended with the string_LIMIT . With this limit,
a maximum of 3 jobs declaring that they need this resource maybe executed concurrently.

In addition to named limits, such as in the example named limit XSW, configuration may specify a con-
currency limit for all resources that are not covered by specifically-named limits. The configuration variable
CONCURRENCY_LIMIT_DEFAULTsets this value. For example,

HTCondor Version 8.6.4 Manual

3.14.15. Concurrency Limits 510

CONCURRENCY_LIMIT_DEFAULT = 1

will enforce a limit of at most 1 running job that declares a usage of an unnamed resource. If
CONCURRENCY_LIMIT_DEFAULTis omitted from the configuration, then no limits are placed on the number of
concurrently executing jobs for which there is no specifically-named concurrency limit.

The job must declare its need for a resource by placing a command in its submit description file or adding an
attribute to the job ClassAd. In the submit description file,an example job that requires the X software adds:

concurrency_limits = XSW

This results in the job ClassAd attribute

ConcurrencyLimits = "XSW"

Jobs may declare that they need more than one type of resource. In this case, specify a comma-separated list of
resources:

concurrency_limits = XSW, DATABASE, FILESERVER

The units of these limits are arbitrary. This job consumes one unit of each resource. Jobs can declare that they
use more than one unit with syntax that follows the resource name by a colon character and the integer number of
resources. For example, if the above job uses three units of the file server resource, it is declared with

concurrency_limits = XSW, DATABASE, FILESERVER:3

If there are sets of resources which have the same capacity for each member of the set, the configuration may
become tedious, as it defines each member of the set individually. A shortcut defines a name for a set. For example,
define the sets calledLARGEandSMALL:

CONCURRENCY_LIMIT_DEFAULT = 5
CONCURRENCY_LIMIT_DEFAULT_LARGE = 100
CONCURRENCY_LIMIT_DEFAULT_SMALL = 25

To use the set name in a concurrency limit, the syntax followsthe set name with a period and then the set member’s
name. Continuing this example, there may be a concurrency limit namedLARGE.SWLICENSE, which gets the
capacity of the default defined for theLARGEset, which is 100. A concurrency limit namedLARGE.DBSESSION
will also have a limit of 100. A concurrency limit namedOTHER.LICENSEwill receive the default limit of 5, as
there is no set namedOTHER.

A concurrency limit may be evaluated against the attributesof a matched machine. This allows a job to vary what
concurrency limits it requires based on the machine to whichit is matched. To implement this, the job uses submit
commandconcurrency_limits_exprinstead ofconcurrency_limits. Consider an example in which execute machines

HTCondor Version 8.6.4 Manual

3.14.15. Concurrency Limits 511

are located on one of two local networks. The administrator sets a concurrency limit to limit the number of network
intensive jobs on each network to 10. Configuration of each execute machine advertises which local network it is on.
A machine on"NETWORK_A"configures

NETWORK = "NETWORK_A"
STARTD_ATTRS = $(STARTD_ATTRS) NETWORK

and a machine on"NETWORK_B"configures

NETWORK = "NETWORK_B"
STARTD_ATTRS = $(STARTD_ATTRS) NETWORK

The configuration for the negotiator sets the concurrency limits:

NETWORK_A_LIMIT = 10
NETWORK_B_LIMIT = 10

Each network intensive job identifies itself by specifying the limit within the submit description file:

concurrency_limits_expr = TARGET.NETWORK

The concurrency limit is applied based on the network of the matched machine.

An extension of this example applies two concurrency limits. One limit is the same as in the example, such that it
is based on an attribute of the matched machine. The other limit is of a specialized application called"SWX" in this
example. The negotiator configuration is extended to also include

SWX_LIMIT = 15

The network intensive job that also uses two units of theSWXapplication identifies the needed resources in the
single submit command:

concurrency_limits_expr = strcat("SWX:2 ", TARGET.NETWO RK)

Submit commandconcurrency_limits_expr may not be used together with submit commandconcur-
rency_limits.

Note that it is possible, under unusual circumstances, for more jobs to be started than should be allowed by the
concurrency limits feature. In the presence of preemption and dropped updates from thecondor_startddaemon to the
condor_collectordaemon, it is possible for the limit to be exceeded. If the limits are exceeded, HTCondor will not
kill any job to reduce the number of running jobs to meet the limit.

HTCondor Version 8.6.4 Manual

3.15. Java Support Installation 512

3.15 Java Support Installation

Compiled Java programs may be executed (under HTCondor) on any execution site with a Java Virtual Machine
(JVM). To do this, HTCondor must be informed of some details of the JVM installation.

Begin by installing a Java distribution according to the vendor’s instructions. Your machine may have been deliv-
ered with a JVM already installed – installed code is frequently found in /usr/bin/java .

HTCondor’s configuration includes the location of the installed JVM. Edit the configuration file. Modify theJAVA
entry to point to the JVM binary, typically/usr/bin/java . Restart thecondor_startddaemon on that host. For
example,

% condor_restart -startd bluejay

Thecondor_startddaemon takes a few moments to exercise the Java capabilitiesof thecondor_starter, query its
properties, and then advertise the machine to the pool as Java-capable. If the set up succeeded, thencondor_status
will tell you the host is now Java-capable by printing the Java vendor and the version number:

% condor_status -java bluejay

After a suitable amount of time, if this command does not giveany output, then thecondor_starteris having
difficulty executing the JVM. The exact cause of the problem depends on the details of the JVM, the local installation,
and a variety of other factors. We can offer only limited advice on these matters, but here is an approach to solving the
problem.

To reproduce the test that thecondor_starteris attempting, try running the Javacondor_starterdirectly. To find
where thecondor_starteris installed, run this command:

% condor_config_val STARTER

This command prints out the path to thecondor_starter, perhaps something like this:

/usr/condor/sbin/condor_starter

Use this path to execute thecondor_starterdirectly with the-classadargument. This tells the starter to run its tests
and display its properties.

/usr/condor/sbin/condor_starter -classad

This command will display a short list of cryptic properties, such as:

HTCondor Version 8.6.4 Manual

3.16. Setting Up the VM and Docker Universes 513

IsDaemonCore = True
HasFileTransfer = True
HasMPI = True
CondorVersion = "$CondorVersion: 7.1.0 Mar 26 2008 BuildID : 80210 $"

If the Java configuration is correct, there will also be a short list of Java properties, such as:

JavaVendor = "Sun Microsystems Inc."
JavaVersion = "1.2.2"
JavaMFlops = 9.279696
HasJava = True

If the Java installation is incorrect, then any error messages from the shell or Java will be printed on the error
stream instead.

Many implementations of the JVM set a value of the Java maximum heap size that is too small for particular
applications. HTCondor uses this value. The administratorcan change this value through configuration by setting a
different value forJAVA_EXTRA_ARGUMENTS.

JAVA_EXTRA_ARGUMENTS = -Xmx1024m

Note that if a specific job sets the value in the submit description file, using the submit commandjava_vm_args, the
job’s value takes precedence over a configured value.

3.16 Setting Up the VM and Docker Universes

3.16.1 The VM Universe

vm universe jobs may be executed on any execution site with VMware, Xen (vialibvirt), or KVM. To do this, HT-
Condor must be informed of some details of the virtual machine installation, and the execution machines must be
configured correctly.

What follows is not a comprehensive list of the options that help set up to use thevm universe; rather, it is intended
to serve as a starting point for those users interested in getting vm universe jobs up and running quickly. Details of
configuration variables are in section 3.5.26.

Begin by installing the virtualization package on all execute machines, according to the vendor’s instructions. We
have successfully used VMware, Xen, and KVM. If consideringrunning on a Windows system, aPerl distribution will
also need to be installed; we have successfully usedActivePerl.

For VMware,VMware Server 1must be installed and running on the execute machine. HTCondor also supports
usingVMware WorkstationandVMware Player, version 5. Earlier versions of these products may also work. HTCon-
dor will attempt to automatically discern which VMware product is installed. If usingPlayer, also install theVIX API,
which is freely available from VMware.

HTCondor Version 8.6.4 Manual

3.16.1. The VM Universe 514

For Xen, there are three things that must exist on an execute machine to fully supportvm universe jobs.

1. A Xen-enabled kernel must be running. This running Xen kernel acts as Dom0, in Xen terminology, under
which all VMs are started, called DomUs Xen terminology.

2. Thelibvirtd daemon must be available, andXendservices must be running.

3. Thepygrubprogram must be available, for execution of VMs whose disks contain the kernel they will run.

For KVM, there are two things that must exist on an execute machine to fully supportvm universe jobs.

1. The machine must have the KVM kernel module installed and running.

2. Thelibvirtd daemon must be installed and running.

Configuration is required to enable the execution ofvm universe jobs. The type of virtual machine that is installed
on the execute machine must be specified with theVM_TYPEvariable. For now, only one type can be utilized per
machine. For instance, the following tells HTCondor to use VMware:

VM_TYPE = vmware

The location of thecondor_vm-gahpand its log file must also be specified on the execute machine. On a Windows
installation, these options would look like this:

VM_GAHP_SERVER = $(SBIN)/condor_vm-gahp.exe
VM_GAHP_LOG = $(LOG)/VMGahpLog

VMware-Specific Configuration

To use VMware, identify the location of thePerl executable on the execute machine. In most cases, the default value
should suffice:

VMWARE_PERL = perl

This, of course, assumes thePerl executable is in the path of thecondor_masterdaemon. If this is not the case,
then a full path to thePerl executable will be required.

If using VMware Player, which does not support snapshots, configure theSTARTexpression to reject jobs which
require snapshots. These are jobs that do not havevmware_snapshot_diskset toFalse . Here is an example
modification to theSTARTexpression.

START = ($(START)) && (!(TARGET.VMPARAM_VMware_Snapshot Disk =?= TRUE))

HTCondor Version 8.6.4 Manual

3.16.1. The VM Universe 515

The final required configuration is the location of the VMwarecontrol script used by thecondor_vm-gahpon the
execute machine to talk to the virtual machine hypervisor. It is located in HTCondor’ssbin directory:

VMWARE_SCRIPT = $(SBIN)/condor_vm_vmware

Note that an execute machine’sEXECUTEvariable should not contain any symbolic links in its path, if the machine
is configured to run VMwarevm universe jobs. Strange behavior has been noted when HTCondor tries to run avm
universe VMware job using a path to a VMX file that contains a symbolic link. An example of an error message that
may appear in such a job’s event log:

Error from starter on master_vmuniverse_strtd@nostos.cs .wisc
.edu: register(/scratch/gquinn/condor/git/CONDOR_SRC /src/con
dor_tests/31426/31426vmuniverse/execute/dir_31534/v mN3hylp_c
ondor.vmx) = 1/Error: Command failed: A file was not found/(
ERROR) Can't create snapshot for vm(/scratch/gquinn/cond or/g
it/CONDOR_SRC/src/condor_tests/31426/31426vmunivers e/execute
/dir_31534/vmN3hylp_condor.vmx)

To work around this problem:

• If using file transfer (the submit description file containsvmware_should_transfer_files = true), then modify
any configuration variableEXECUTEvalues on all execute machines, such that they do not containsymbolic
link path components.

• If using a shared file system, ensure that the submit description file commandvmware_dir does not use symbolic
link path name components.

Xen-Specific and KVM-Specific Configuration

Once the configuration options have been set, restart thecondor_startddaemon on that host. For example:

> condor_restart -startd leovinus

Thecondor_startddaemon takes a few moments to exercise the VM capabilities ofthecondor_vm-gahp, query
its properties, and then advertise the machine to the pool asVM-capable. If the set up succeeded, thencondor_status
will reveal that the host is now VM-capable by printing the VMtype and the version number:

> condor_status -vm leovinus

After a suitable amount of time, if this command does not giveany output, then thecondor_vm-gahpis having
difficulty executing the VM software. The exact cause of the problem depends on the details of the VM, the local
installation, and a variety of other factors. We can offer only limited advice on these matters:

HTCondor Version 8.6.4 Manual

3.16.2. The Docker Universe 516

For Xen and KVM, thevm universe is only available whenroot starts HTCondor. This is a restriction currently
imposed because root privileges are required to create a virtual machine on top of a Xen-enabled kernel. Specifically,
root is needed to properly use thelibvirt utility that controls creation and management of Xen and KVMguest virtual
machines. This restriction may be lifted in future versions, depending on features provided by the underlying tool
libvirt .

When a vm Universe Job Fails to Start

If a vm universe job should fail to launch, HTCondor will attempt to distinguish between a problem with the user’s
job description, and a problem with the virtual machine infrastructure of the matched machine. If the problem is with
the job, the job will go on hold with a reason explaining the problem. If the problem is with the virtual machine
infrastructure, HTCondor will reschedule the job, and it will modify the machine ClassAd to prevent any other vm
universe job from matching. vm universe configuration is notslot-specific, so this change is applied to all slots.

When the problem is with the virtual machine infrastructure, these machine ClassAd attributes are changed:

• HasVMwill be set toFalse

• VMOfflineReason will be set to a somewhat explanatory string

• VMOfflineTime will be set to the time of the failure

• OfflineUniverses will be adjusted to include"VM" and13

Sincecondor_submitaddsHasVM == True to a vm universe job’s requirements, no further vm universe jobs
will match.

Once any problems with the infrastructure are fixed, to change the machine ClassAd attributes such that the ma-
chine will once again match to vm universe jobs, an administrator has three options. All have the same effect of setting
the machine ClassAd attributes to the correct values such that the machine will not reject matches for vm universe jobs.

1. Restart thecondor_startddaemon.

2. Submit a vm universe job that explicitly matches the machine. When the job runs, the code detects the running
job and causes the attributes related to the vm universe to beset indicating that vm universe jobs can match with
this machine.

3. Run the command line toolcondor_update_machine_adto set machine ClassAd attributeHasVMto True , and
this will cause the other attributes related to the vm universe to be set indicating that vm universe jobs can match
with this machine. See thecondor_update_machine_admanual page for examples and details.

3.16.2 The Docker Universe

The execution of a docker universe job causes the instantiation of a Docker container on an execute host.

HTCondor Version 8.6.4 Manual

3.16.2. The Docker Universe 517

The docker universe job is mapped to a vanilla universe job, and the submit description file must specify the submit
commanddocker_imageto identify the Docker image. The job’srequirement ClassAd attribute is automatically
appended, such that the job will only match with an execute machine that has Docker installed.

The Docker service must be pre-installed on each execute machine that can execute a docker universe job. Upon
start up of thecondor_startddaemon, the capability of the execute machine to run docker universe jobs is probed, and
the machine ClassAd attributeHasDocker is advertised for a machine that is capable of running Dockeruniverse
jobs.

When a docker universe job is matched with a Docker-capable execute machine, HTCondor invokes the Docker
CLI to instantiate the image-specific container. The job’s scratch directory tree is mounted as a Docker volume. When
the job completes, is put on hold, or is evicted, the container is removed.

An administrator of a machine can optionally make additional directories on the host machine readable and
writable by a running container. To do this, the admin must first give an HTCondor name to each directory with
the DOCKER_VOLUMES parameter. Then, each volume must be configured with the path on the host OS with the
DOCKER_VOLUME_DIR_XXX parameter. Finally, the parameterDOCKER_MOUNT_VOLUMES tells HTCon-
dor which of these directories to always mount onto containers running on this machine.

For example,

DOCKER_VOLUMES = SOME_DIR, ANOTHER_DIR
DOCKER_VOLUME_DIR_SOME_DIR = /path1
DOCKER_VOLUME_DIR_ANOTHER_DIR = /path/to/no2
DOCKER_MOUNT_VOLUMES = SOME_DIR, ANOTHER_DIR

Thecondor_startdwill advertise which docker volumes it has available for mounting with the machine attributes
HasDockerVolumeSOME_NAME = true so that jobs can match to machines with volumes they need.

In addition to installing the Docker service, the single configuration variableDOCKERmust be set. It defines the
location of the Docker CLI and can also specify that thecondor_starterdaemon has been given a password-less sudo
permission to start the container as root. Details of theDOCKERconfiguration variable are in section 3.5.9.

Docker may be installed asroot on a RedHat Linux machine these ordered steps.

1. Acquire and install the docker software:

yum install docker-io

Note that thedockerpackage, which manages the window manager’s dock, may need to be uninstalled, if it
conflicts with thisdocker-iopackage.

2. Set up the groups:

useradd -G docker condor

3. Invoke the docker software:

HTCondor Version 8.6.4 Manual

3.17. Singularity Support 518

service docker start

4. Reconfigure the execute machine, such that it can set the machine ClassAd attributeHasDocker :

condor_reconfig

5. Check that the execute machine properly advertises that it is docker-capable with:

condor_status -l | grep -i docker

The output of this command line for a correctly-installed and docker-capable execute host will be similar to

HasDocker = true
DockerVersion = "Docker Version 1.6.0, build xxxxx/1.6.0"

By default, HTCondor will keep the 20 most recently used Docker images on the local machine. This number may
be controlled with the configuration variableDOCKER_IMAGE_CACHE_SIZE, to increase or decrease the number of
images, and the corresponding disk space, used by Docker.

By default, Docker containers will be run with all rootly capabilties dropped, and with setuid and setgid binaries
disabled, for security reasons. If you need to run containers with root privilige, you may set the configuration parameter
DOCKER_DROP_ALL_CAPABILITIESto an expression that evalutes to false. This expression is evaluted in the
context of the machine ad (my) and the job ad (target).

3.17 Singularity Support

Note: This documentation is very basic and needs improvement!

Here’s an example configuration file:

Only set if singularity is not in $PATH.
#SINGULARITY = /opt/singularity/bin/singularity

Forces _all_ jobs to run inside singularity.
SINGULARITY_JOB = true

Forces all jobs to use the CernVM-based image.
SINGULARITY_IMAGE_EXPR = "/cvmfs/cernvm-prod.cern.ch/ cvm3"

Maps $_CONDOR_SCRATCH_DIR on the host to /srv inside the im age.
SINGULARITY_TARGET_DIR = /srv

Writable scratch directories inside the image. Auto-dele ted after the job exits.
MOUNT_UNDER_SCRATCH = /tmp, /var/tmp

HTCondor Version 8.6.4 Manual

3.18. Power Management 519

This provides the user with no opportunity to select a specific image. Here are some changes to the above example
to allow the user to specify an image path:

SINGULARITY_JOB = !isUndefined(TARGET.SingularityImag e)
SINGULARITY_IMAGE_EXPR = TARGET.SingularityImage

Then, users could add the following to their submit file (notethe quoting):

+SingularityImage = "/cvmfs/cernvm-prod.cern.ch/cvm3"

Finally, let’s pick an image based on the OS – not the filename:

SINGULARITY_JOB = (TARGET.DESIRED_OS isnt MY.OpSysAndVe r) && ((TARGET.DESIRED_OS is "CentOS6")
SINGULARITY_IMAGE_EXPR = (TARGET.DESIRED_OS is "CentOS6") ? "/cvmfs/cernvm-prod.cern.ch/cvm3"

Then, the user adds to their submit file:

+DESIRED_OS="CentOS6"

That would cause the job to run on the native host for CentOS6 hosts and inside a CentOS6 Singularity container
on CentOS7 hosts.

3.18 Power Management

HTCondor supports placing machines in low power states. A machine in the low power state is identified as being
offline. Power setting decisions are based upon HTCondor configuration.

Power conservation is relevant when machines are not in heavy use, or when there are known periods of low
activity within the pool.

3.18.1 Entering a Low Power State

By default, HTCondor does not do power management. When desired, the ability to place a machine into a low power
state is accomplished through configuration. This occurs when all slots on a machine agree that a low power state is
desired.

A slot’s readiness to hibernate is determined by the evaluating theHIBERNATEconfiguration variable (see sec-
tion 3.5.9 on page 276) within the context of the slot. Readiness is evaluated at fixed intervals, as determined by
the HIBERNATE_CHECK_INTERVALconfiguration variable. A non-zero value of this variable enables the power

HTCondor Version 8.6.4 Manual

3.18.1. Entering a Low Power State 520

management facility. It is an integer value representing seconds, and it need not be a small value. There is a trade off
between the extra time not at a low power state and the unnecessary computation of readiness.

To put the machine in a low power state rapidly after it has become idle, consider checking each slot’s state
frequently, as in the example configuration:

HIBERNATE_CHECK_INTERVAL = 20

This checks each slot’s readiness every 20 seconds. A more common value for frequency of checks is 300 (5
minutes). A value of 300 loses some degree of granularity, but it is more reasonable as machines are likely to be put
in to a low power state after a few hours, rather than minutes.

A slot’s readiness or willingness to enter a low power state is determined by theHIBERNATEexpression. Because
this expression is evaluated in the context of each slot, andnot on the machine as a whole, any one slot can veto a
change of power state. TheHIBERNATEexpression may reference a wide array of variables. Possibilities include the
change in power state if none of the slots are claimed, or if the slots are not in the Owner state.

Here is a concrete example. Assume that theSTARTexpression is not set to always beTrue . This permits an
easy determination whether or not the machine is in an Unclaimed state through the use of an auxiliary macro called
ShouldHibernate .

TimeToWait = (2 * $(HOUR))
ShouldHibernate = ((KeyboardIdle > $(StartIdleTime)) \

&& $(CPUIdle) \
&& ($(StateTimer) > $(TimeToWait)))

This macro evaluates toTrue if the following are allTrue :

• The keyboard has been idle long enough.

• The CPU is idle.

• The slot has been Unclaimed for more than 2 hours.

The sampleHIBERNATEexpression that enters the power state called"RAM", if ShouldHibernate evaluates
to True , and remains in its current state otherwise is

HibernateState = "RAM"
HIBERNATE = ifThenElse($(ShouldHibernate), $(Hibernate State), "NONE")

If any slot returns"NONE", that slot vetoes the decision to enter a low power state. Only when values returned by
all slots are all non-zero is there a decision to enter a low power state. If all agree to enter the low power state, but
differ in which state to enter, then the largest magnitude value is chosen.

HTCondor Version 8.6.4 Manual

3.18.2. Returning From a Low Power State 521

3.18.2 Returning From a Low Power State

The HTCondor command line toolcondor_powermay wake a machine from a low power state by sending a UDP
Wake On LAN (WOL) packet. See thecondor_powermanual page on page 835.

To automatically callcondor_powerunder specific conditions,condor_roostermay be used. The configuration
options forcondor_roosterare described in section 3.5.31.

3.18.3 Keeping a ClassAd for a Hibernating Machine

A pool’s condor_collectordaemon can be configured to keep a persistent ClassAd entry for each machine, once it has
entered hibernation. This is required bycondor_roosterso that it can evaluate theUNHIBERNATEexpression of the
offline machines.

To do this, define a log file using theOFFLINE_LOGconfiguration variable. See section 3.5.9 on page 278 for the
definition. An optional expiration time for each ClassAd canbe specified withOFFLINE_EXPIRE_ADS_AFTER.
The timing begins from the time the hibernating machine’s ClassAd enters thecondor_collectordaemon. See sec-
tion 3.5.9 on page 278 for the definition.

3.18.4 Linux Platform Details

Depending on the Linux distribution and version, there are three methods for controlling a machine’s power state. The
methods:

1. pm-utilsis a set of command line tools which can be used to detect and switch power states. In HTCondor, this
is defined by the string"pm-utils" .

2. The directory in the virtual file system/sys/power contains virtual files that can be used to detect and set the
power states. In HTCondor, this is defined by the string"/sys" .

3. The directory in the virtual file system/proc/acpi contains virtual files that can be used to detect and set the
power states. In HTCondor, this is defined by the string"/proc" .

By default, the HTCondor attempts to detect the method to usein the order shown. The first method detected as
usable on the system is chosen.

This ordered detection may be bypassed, to use a specified method instead by setting the configuration vari-
ableLINUX_HIBERNATION_METHODwith one of the defined strings. This variable is defined in section 3.5.9 on
page 277. If no usable methods are detected or the method specified by LINUX_HIBERNATION_METHODis either
not detected or invalid, hibernation is disabled.

The details of this selection process, and the final method selected can be logged via enablingD_FULLDEBUGin
the relevant subsystem’s log configuration.

HTCondor Version 8.6.4 Manual

3.18.5. Windows Platform Details 522

3.18.5 Windows Platform Details

If after a suitable amount of time, a Windows machine has not entered the expected power state, then HTCondor
is having difficulty exercising the operating system’s low power capabilities. While the cause will be specific to
the machine’s hardware, it may also be due to improperly configured software. For hardware difficulties, the likely
culprit is the configuration within the machine’s BIOS, for which HTCondor can offer little guidance. For operating
system difficulties, thepowercfgtool can be used to discover the available power states on themachine. The following
command demonstrates how to list all of the supported power states of the machine:

> powercfg -A
The following sleep states are available on this system:
Standby (S3) Hibernate Hybrid Sleep
The following sleep states are not available on this system:
Standby (S1)

The system firmware does not support this standby state.
Standby (S2)

The system firmware does not support this standby state.

Note that theHIBERNATEexpression is written in terms of the Sn state, wheren is the value evaluated from the
expression.

This tool can also be used to enable and disable other sleep states. This example turns hibernation on.

> powercfg -h on

If this tool is insufficient for configuring the machine in themanner required, thePower Optionscontrol panel
application offers the full extent of the machine’s power management abilities. Windows 2000 and XP lack the
powercfgprogram, so all configuration must be done via thePower Optionscontrol panel application.

HTCondor Version 8.6.4 Manual

CHAPTER

FOUR

Miscellaneous Concepts

This chapter contains sections describing a variety of key HTCondor concepts that do not belong in other chapters.

ClassAds and the ClassAd language are presented.

Details of checkpoints are presented.

Description and usage of COD (Computing on Demand) extensions to HTCondor are presented.

The various hooks that HTCondor implements are described.

The many varieties of logs used by HTCondor are listed and described.

4.1 HTCondor’s ClassAd Mechanism

ClassAds are a flexible mechanism for representing the characteristics and constraints of machines and jobs in the
HTCondor system. ClassAds are used extensively in the HTCondor system to represent jobs, resources, submitters
and other HTCondor daemons. An understanding of this mechanism is required to harness the full flexibility of the
HTCondor system.

A ClassAd is is a set of uniquely named expressions. Each named expression is called anattribute. Figure 4.1
shows ten attributes, a portion of an example ClassAd.

ClassAd expressions look very much like expressions in C, and are composed of literals and attribute references
composed with operators and functions. The difference between ClassAd expressions and C expressions arise from
the fact that ClassAd expressions operate in a much more dynamic environment. For example, an expression from a
machine’s ClassAd may refer to an attribute in a job’s ClassAd, such asTARGET.Owner in the above example. The
value and type of the attribute is not known until the expression is evaluated in an environment which pairs a specific

523

4.1.1. ClassAds: Old and New 524

MyType = "Machine"
TargetType = "Job"
Machine = "froth.cs.wisc.edu"
Arch = "INTEL"
OpSys = "LINUX"
Disk = 35882
Memory = 128
KeyboardIdle = 173
LoadAvg = 0.1000
Requirements = TARGET.Owner=="smith" || LoadAvg<=0.3 && K eyboardIdle>15 * 60

Figure 4.1: An example ClassAd

job ClassAd with the machine ClassAd.

ClassAd expressions handle these uncertainties by definingall operators to betotal operators, which means that
they have well defined behavior regardless of supplied operands. This functionality is provided through two dis-
tinguished values,UNDEFINEDand ERROR, and defining all operators so that they can operate on all possible
values in the ClassAd system. For example, the multiplication operator which usually only operates on numbers,
has a well defined behavior if supplied with values which are not meaningful to multiply. Thus, the expression
10 * "A string" evaluates to the valueERROR. Most operators arestrict with respect toERROR, which means
that they evaluate toERRORif any of their operands areERROR. Similarly, most operators are strict with respect to
UNDEFINED.

4.1.1 ClassAds: Old and New

ClassAds have existed for quite some time in two forms: Old and New. Old ClassAds were the original form and were
used in HTCondor until HTCondor version 7.5.0. They were heavily tied to the HTCondor development libraries. New
ClassAds added new features and were designed as a stand-alone library that could be used apart from HTCondor.

In HTCondor version 7.5.1, HTCondor switched the internal usage of ClassAds from Old to New. All user inter-
action with tools (such ascondor_q) as well as output of tools is still done as Old ClassAds. Before HTCondor version
7.5.1, New ClassAds were used in just a few places within HTCondor, for example, in the Job Router. There are some
syntax and behavior differences between Old and New ClassAds, all of which will remain invisible to users of HTCon-
dor for this version. A complete description of New ClassAdscan be found at http://htcondor.org/classad/classad.html,
and in the ClassAd Language Reference Manual found on that web page.

Some of the features of New ClassAds that arenot in Old ClassAds are lists, nested ClassAds, time values, and
matching groups of ClassAds. HTCondor has avoided using these features, as using them makes it difficult to interact
with older versions of HTCondor. But, users can start using them if they do not need to interact with versions of
HTCondor older than 7.5.1.

The syntax varies slightly between Old and New ClassAds. Here is an example ClassAd presented in both forms.
The Old form:

Foo = 3
Bar = "ab\"cd\ef"

HTCondor Version 8.6.4 Manual

http://htcondor.org/classad/classad.html

4.1.2. Old ClassAd Syntax 525

Moo = Foo =!= Undefined

The New form:

[
Foo = 3;
Bar = "ab\"cd\\ef";
Moo = Foo isnt Undefined;
]

HTCondor will convert to and from Old ClassAd syntax as needed.

New ClassAd Attribute References

Expressions often refer to ClassAd attributes. These attribute references work differently in Old ClassAds as compared
with New ClassAds. In New ClassAds, an unscoped reference islooked for only in the local ClassAd. Anunscoped
referenceis an attribute that does not have aMY. or TARGET. prefix. The local ClassAdmay be described by
an example. Matchmaking uses two ClassAds: the job ClassAd and the machine ClassAd. The job ClassAd is
evaluated to see if it is a match for the machine ClassAd. The job ClassAd is the local ClassAd. Therefore, in the
Requirements attribute of the job ClassAd, any attribute without the prefix TARGET. is looked up only in the job
ClassAd. With New ClassAd evaluation, the use of the prefixMY. is eliminated, as an unscoped reference can only
refer to the local ClassAd.

The MY. andTARGET. scoping prefixes only apply when evaluating an expression within the context of two
ClassAds. Two examples that exemplify this are matchmakingand machine policy evaluation. When evaluating an
expression within the context of a single ClassAd,MY. andTARGET.are not defined. Using them within the context
of a single ClassAd will result in a value ofUndefined . Two examples that exemplify evaluating an expression
within the context of a single ClassAd are during user job policy evaluation, and with the-constraint option to
command-line tools.

New ClassAds have noCurrentTime attribute. If needed, use thetime() function instead. In order to mimic
Old ClassAd semantics in this HTCondor version 7.5.1 release, all ClassAds have an explicitCurrentTime attribute,
with a value oftime() .

In current versions of HTCondor, New ClassAds will mimic theevaluation behavior of Old ClassAds. No con-
figuration variables or submit description file contents should need to be changed. To eliminate this behavior and use
only the semantics of New ClassAds, set the configuration variable STRICT_CLASSAD_EVALUATIONto True .
This permits testing expressions to see if any adjustment isrequired, before a future version of HTCondor potentially
makes New ClassAds evaluation behavior the default or the only option.

4.1.2 Old ClassAd Syntax

ClassAd expressions are formed by composing literals, attribute references and other sub-expressions with operators
and functions.

HTCondor Version 8.6.4 Manual

4.1.2. Old ClassAd Syntax 526

Literals

Literals in the ClassAd language may be of integer, real, string, undefined or error types. The syntax of these literals
is as follows:

Integer A sequence of continuous digits (i.e.,[0-9]). Additionally, the keywordsTRUEandFALSE(case insensi-
tive) are syntactic representations of the integers 1 and 0 respectively.

Real Two sequences of continuous digits separated by a period (i.e.,[0-9]+.[0-9]+).

String A double quote character, followed by an list of characters terminated by a double quote character. A backslash
character inside the string causes the following characterto be considered as part of the string, irrespective of
what that character is.

Undefined The keywordUNDEFINED(case insensitive) represents theUNDEFINEDvalue.

Error The keywordERROR(case insensitive) represents theERRORvalue.

Attributes

Every expression in a ClassAd is named by anattribute name. Together, the (name,expression) pair is called an
attribute. An attribute may be referred to in other expressions through its attribute name.

Attribute names are sequences of alphabetic characters, digits and underscores, and may not begin with a digit.
All characters in the name are significant, but case isnot significant. Thus,Memory, memory andMeMoRyall refer
to the same attribute.

An attribute referenceconsists of the name of the attribute being referenced, and an optionalscope resolution
prefix. The prefixes that may be used areMY. andTARGET.. The case used for these prefixes isnot significant. The
semantics of supplying a prefix are discussed in Section 4.1.3.

Operators

The operators that may be used in ClassAd expressions are similar to those available in C. The available operators and
their relative precedence is shown in figure 4.2. The operator with the highest precedence is the unary minus operator.
The only operators which are unfamiliar are the=?= and=!= operators, which are discussed in Section 4.1.3.

Predefined Functions

Any ClassAd expression may utilize predefined functions. Function names are case insensitive. Parameters to func-
tions and a return value from a function may be typed (as given) or not. Nested or recursive function calls are allowed.

Here are descriptions of each of these predefined functions.The possible types are the same as itemized in Sec-
tion 4.1.2. Where the type may be any of these literal types, it is called out asAnyType . Where the type isInteger ,

HTCondor Version 8.6.4 Manual

4.1.2. Old ClassAd Syntax 527

- (unary negation) (high precedence)

* /
+ - (addition, subtraction)
< <= >= >
== != =?= =!=
&&
|| (low precedence)

Figure 4.2: Relative precedence of ClassAd expression operators

but only returns the value 1 or 0 (implyingTrue or False), it is called out asBoolean . The format of each function
is given as

ReturnType FunctionName(ParameterType parameter1, Para meterType parameter2, ...)

Optional parameters are given within square brackets.

AnyType eval(AnyType Expr) EvaluatesExpr as a string and then returns the result of evaluating the
contentsof the string as a ClassAd expression. This is useful when referring to an attribute such as
slotX_State whereX, the desired slot number is an expression, such asSlotID+10 . In such a case,
if attribute SlotID is 5, the value of the attributeslot15_State can be referenced using the expression
eval(strcat("slot", SlotID+10,"_State")) . Functionstrcat() calls functionstring()
on the second parameter, which evaluates the expression, and then converts the integer result 15 to the string
"15" . The concatenated string returned bystrcat() is "slot15_State" , and this string is then evalu-
ated.

Note that referring to attributes of a job from within the string passed toeval() in theRequirements or
Rank expressions could cause inaccuracies in HTCondor’s automatic auto-clustering of jobs into equivalent
groups for matchmaking purposes. This is because HTCondor needs to determine which ClassAd attributes are
significant for matchmaking purposes, and indirect references from within the string passed toeval() will not
be counted.

String unparse(Attribute attr) This function looks up the value of the provided attribute and returns
the unparsed version as a string. The attribute’s value is not evaluated. If the attribute’s value isx + 3 , then
the function would return the string"x + 3" . If the provided attribute cannot be found, an empty string is
returned.

This function returnsERRORif other than exactly 1 argument is given or the argument is not an attribute
reference.

AnyType ifThenElse(AnyType IfExpr,AnyType ThenExpr, AnyType ElseExpr) A condi-
tional expression is described byIfExpr . The following defines return values, whenIfExpr evaluates
to

• True . Evaluate and return the value as given byThenExpr .

• False . Evaluate and return the value as given byElseExpr .

HTCondor Version 8.6.4 Manual

4.1.2. Old ClassAd Syntax 528

• UNDEFINED. Return the valueUNDEFINED.

• ERROR. Return the valueERROR.

• 0.0 . Evaluate, and return the value as given byElseExpr .

• non-0.0 Real values. Evaluate, and return the value as given byThenExpr .

WhereIfExpr evaluates to give a value of typeString , the function returns the valueERROR. The imple-
mentation uses lazy evaluation, so expressions are only evaluated as defined.

This function returnsERRORif other than exactly 3 arguments are given.

Boolean isUndefined(AnyType Expr) ReturnsTrue , if Expr evaluates toUNDEFINED. ReturnsFalse
in all other cases.

This function returnsERRORif other than exactly 1 argument is given.

Boolean isError(AnyType Expr) ReturnsTrue , if Expr evaluates toERROR. ReturnsFalse in all other
cases.

This function returnsERRORif other than exactly 1 argument is given.

Boolean isString(AnyType Expr) ReturnsTrue , if the evaluation ofExpr gives a value of typeString .
ReturnsFalse in all other cases.

This function returnsERRORif other than exactly 1 argument is given.

Boolean isInteger(AnyType Expr) ReturnsTrue , if the evaluation ofExpr gives a value of type
Integer . ReturnsFalse in all other cases.

This function returnsERRORif other than exactly 1 argument is given.

Boolean isReal(AnyType Expr) ReturnsTrue , if the evaluation ofExpr gives a value of typeReal . Re-
turnsFalse in all other cases.

This function returnsERRORif other than exactly 1 argument is given.

Boolean isBoolean(AnyType Expr) ReturnsTrue , if the evaluation ofExpr gives the integer value 0 or
1. ReturnsFalse in all other cases.

This function returnsERRORif other than exactly 1 argument is given.

Integer int(AnyType Expr) Returns the integer value as defined byExpr . Where the type of the evaluated
Expr is Real , the value is truncated (round towards zero) to an integer. Where the type of the evaluatedExpr
is String , the string is converted to an integer using a C-likeatoi() function. When this result is not an
integer,ERRORis returned. Where the evaluatedExpr is ERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

Real real(AnyType Expr) Returns the real value as defined byExpr . Where the type of the evaluatedExpr
is Integer , the return value is the converted integer. Where the type ofthe evaluatedExpr is String , the
string is converted to a real value using a C-likeatof() function. When this result is not a real,ERRORis
returned. Where the evaluatedExpr is ERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

HTCondor Version 8.6.4 Manual

4.1.2. Old ClassAd Syntax 529

String string(AnyType Expr) Returns the string that results from the evaluation ofExpr . Converts a non-
string value to a string. Where the evaluatedExpr is ERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

Integer floor(AnyType Expr) Returns the integer that results from the evaluation ofExpr , where the
type of the evaluatedExpr is Integer . Where the type of the evaluatedExpr is not Integer , function
real(Expr) is called. Its return value is then used to return the largestmagnitude integer that is not larger
than the returned value. Wherereal(Expr) returnsERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

Integer ceiling(AnyType Expr) Returns the integer that results from the evaluation ofExpr , where the
type of the evaluatedExpr is Integer . Where the type of the evaluatedExpr is not Integer , function
real(Expr) is called. Its return value is then used to return the smallest magnitude integer that is not less
than the returned value. Wherereal(Expr) returnsERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

Integer pow(Integer base, Integer exponent)

OR Real pow(Integer base, Integer exponent)

OR Real pow(Real base, Real exponent) Calculatesbase raised to the power ofexponent . If
exponent is an integer value greater than or equal to 0, andbase is an integer, then an integer value is
returned. Ifexponent is an integer value less than 0, or if eitherbase or exponent is a real, then a real
value is returned. An invocation withexponent=0 or exponent=0.0 , for any value ofbase , including 0
or 0.0, returns the value 1 or 1.0, type appropriate.

Integer quantize(AnyType a, Integer b)

OR Real quantize(AnyType a, Real b)

OR AnyType quantize(AnyType a, AnyType list b) quantize() computes the quotient ofa/b ,
in order to further computeceiling(quotient) * b. This computes and returns an integral multiple of
b that is at least as large asa. So, whenb >= a , the return value will beb. The return type is the same as that
of b, whereb is an Integer or Real.

Whenb is a list,quantize() returns the first value in the list that is greater than or equal to a. When no value
in the list is greater than or equal toa, this computes and returns an integral multiple of the last member in the
list that is at least as large asa.

This function returnsERRORif a or b, or a member of the list that must be considered is not an Integer or Real.

Here are examples:

8 = quantize(3, 8)
4 = quantize(3, 2)
0 = quantize(0, 4)
6.8 = quantize(1.5, 6.8)
7.2 = quantize(6.8, 1.2)
10.2 = quantize(10, 5.1)

HTCondor Version 8.6.4 Manual

4.1.2. Old ClassAd Syntax 530

4 = quantize(0, {4})
2 = quantize(2, {1, 2, "A"})
3.0 = quantize(3, {1, 2, 0.5})
3.0 = quantize(2.7, {1, 2, 0.5})
ERROR = quantize(3, {1, 2, "A"})

Integer round(AnyType Expr) Returns the integer that results from the evaluation ofExpr , where the
type of the evaluatedExpr is Integer . Where the type of the evaluatedExpr is not Integer , function
real(Expr) is called. Its return value is then used to return the integerthat results from a round-to-nearest
rounding method. The nearest integer value to the return value is returned, except in the case of the value
at the exact midpoint between two integer values. In this case, the even valued integer is returned. Where
real(Expr) returnsERRORor UNDEFINED, or the integer value does not fit into 32 bits,ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

Integer random([AnyType Expr]) Where the optional argumentExpr evaluates to typeInteger
or type Real (and calledx), the return value is the integer or realr randomly chosen from the interval
0 <= r < x . With no argument, the return value is chosen withrandom(1.0) . ReturnsERRORin all
other cases.

This function returnsERRORif greater than 1 argument is given.

String strcat(AnyType Expr1 [, AnyType Expr2 . . .]) Returns the string which is the concate-
nation of all arguments, where all arguments are converted to typeString by functionstring(Expr) .
ReturnsERRORif any argument evaluates toUNDEFINEDor ERROR.

String join(String sep, AnyType Expr1 [, AnyType Expr2 . . .])

OR String join(String sep, List list

OR String join(List list Returns the string which is the concatenation of all arguments after the first one.
The first argument is the separator, and it is inserted between each of the other arguments during concatenation.
All arguments are converted to typeString by functionstring(Expr) before concatenation. When there
are exactly two arguments, If the second argument is a List, all members of the list are converted to strings and
then joined using the separator. When there is only one argument, and the argument is a List, all members of the
list are converted to strings and then concatenated.

ReturnsERRORif any argument evaluates toUNDEFINEDor ERROR.

For example:

"a, b, c" = join(", ", "a", "b", "c")
"abc" = join(split("a b c"))
"a;b;c" = join(";", split("a b c"))

String substr(String s, Integer offset [, Integer length]) Returns the substring ofs ,
from the position indicated byoffset , with (optional)length characters. The first character withins is at
offset 0. If the optionallength argument is not present, the substring extends to the end of the string. If
offset is negative, the value(length - offset) is used for the offset. Iflength is negative, an initial
substring is computed, from the offset to the end of the string. Then, the absolute value oflength characters

HTCondor Version 8.6.4 Manual

4.1.2. Old ClassAd Syntax 531

are deleted from the right end of the initial substring. Further, where characters of this resulting substring lie
outside the original string, the part that lies within the original string is returned. If the substring lies completely
outside of the original string, the null string is returned.

This function returnsERRORif greater than 3 or less than 2 arguments are given.

Integer strcmp(AnyType Expr1, AnyType Expr2) Both arguments are converted to typeString by
functionstring(Expr) . The return value is an integer that will be

• less than 0, ifExpr1 is lexicographically less thanExpr2

• equal to 0, ifExpr1 is lexicographically equal toExpr2

• greater than 0, ifExpr1 is lexicographically greater thanExpr2

Case is significant in the comparison. Where either argumentevaluates toERRORor UNDEFINED, ERRORis
returned.

This function returnsERRORif other than 2 arguments are given.

Integer stricmp(AnyType Expr1, AnyType Expr2) This function is the same asstrcmp , except that
letter case isnot significant.

String toUpper(AnyType Expr) The single argument is converted to typeString by function
string(Expr) . The return value is this string, with all lower case lettersconverted to upper case. If the
argument evaluates toERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

String toLower(AnyType Expr) The single argument is converted to typeString by function
string(Expr) . The return value is this string, with all upper case lettersconverted to lower case. If the
argument evaluates toERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

Integer size(AnyType Expr) Returns the number of characters in the string, after calling function
string(Expr) . If the argument evaluates toERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

List split(String s [, String tokens]) Returns a list of the substrings ofs that have been split
up by using any of the characters within stringtokens . If tokens is not specified, then all white space
characters are used to delimit the string.

List splitUserName(String Name) Returns a list of two strings. WhereName includes an@character,
the first string in the list will be the substring that comes before the@character, and the second string in the
list will be the substring that comes after. Thus, ifNameis "user@domain" , then the returned list will be
{"user", "domain"} . If there is no@character inName, then the first string in the list will beName, and
the second string in the list will be the empty string. Thus, if Nameis "username" , then the returned list will
be{"username", ""} .

List splitSlotName(String Name) Returns a list of two strings. WhereName includes an@character,
the first string in the list will be the substring that comes before the@character, and the second string in the
list will be the substring that comes after. Thus, ifNameis "slot1@machine" , then the returned list will

HTCondor Version 8.6.4 Manual

4.1.2. Old ClassAd Syntax 532

be {"slot1", "machine"} . If there is no@character inName, then the first string in the list will be the
empty string, and the second string in the list will beName, Thus, if Name is "machinename" , then the
returned list will be{"", "machinename"} .

Integer time() Returns the current coordinated universal time, which is the same as the ClassAd attribute
CurrentTime . This is the time, in seconds, since midnight of January 1, 1970.

String formatTime([Integer time] [, String format]) Returns a formatted string that is
a representation oftime . The argumenttime is interpreted as coordinated universal time in seconds, since
midnight of January 1, 1970. If not specified,time will default to the value of attributeCurrentTime .

The argumentformat is interpreted similarly to the format argument of the ANSI Cstrftime function. It
consists of arbitrary text plus placeholders for elements of the time. These placeholders are percent signs (%)
followed by a single letter. To have a percent sign in the output, use a double percent sign (%%). Ifformat is
not specified, it defaults to%c.

Because the implementation usesstrftime() to implement this, and some versions implement extra, non-
ANSI C options, the exact options available to an implementation may vary. An implementation is only required
to implement the ANSI C options, which are:

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c local date and time representation

%d day of the month (01-31)

%H hour in the 24-hour clock (0-23)

%I hour in the 12-hour clock (01-12)

%j day of the year (001-366)

%m month (01-12)

%M minute (00-59)

%p local equivalent of AM or PM

%S second (00-59)

%U week number of the year (Sunday as first day of week) (00-53)

%w weekday (0-6, Sunday is 0)

%W week number of the year (Monday as first day of week) (00-53)

%x local date representation

%X local time representation

%y year without century (00-99)

%Y year with century

%Z time zone name, if any

HTCondor Version 8.6.4 Manual

4.1.2. Old ClassAd Syntax 533

String interval(Integer seconds) Usesseconds to return a string of the formdays+hh:mm:ss .
This represents an interval of time. Leading values that arezero are omitted from the string. For example,
seconds of 67 becomes "1:07". A second example,seconds of 1472523 = 17*24*60*60 + 1*60*60 + 2*60
+ 3, results in the string "17+1:02:03".

AnyType debug(AnyType expression) This function evaluates its argument, and it returns the result. Thus,
it is a no-operation. However, a side-effect of the functionis that information about the evaluation is logged to
the evaluating program’s log file, at theD_FULLDEBUGdebug level. This is useful for determining why a
given ClassAd expression is evaluating the way it does. For example, if acondor_startdSTARTexpression
is unexpectedly evaluating toUNDEFINED, then wrapping the expression in thisdebug() function will log
information about each component of the expression to the log file, making it easier to understand the expression.

String envV1ToV2(String old_env) This function converts a set of environment variables from the old
HTCondor syntax to the new syntax. The single argument should evaluate to a string that represents a set of
environment variables using the old HTCondor syntax (usually stored in the job ClassAd attributeEnv). The
result is the same set of environment variables using the newHTCondor syntax (usually stored in the job ClassAd
attributeEnvironment). If the argument evaluates toUNDEFINED, then the result is alsoUNDEFINED.

String mergeEnvironment(String env1 [, String env2, ...]) This function merges mul-
tiple sets of environment variables into a single set. If multiple arguments include the same variable, the one
that appears last in the argument list is used. Each argumentshould evaluate to a string which represents a set of
environment variables using the new HTCondor syntax orUNDEFINED, which is treated like an empty string.
The result is a string that represents the merged set of environment variables using the new HTCondor syntax
(suitable for use as the value of the job ClassAd attributeEnvironment).

For the following functions, a delimiter is represented by astring. Each character within the delimiter string
delimits individual strings within a list of strings that isgiven by a single string. The default delimiter contains the
comma and space characters. A string within the list is ended(delimited) by one or more characters within the delimiter
string.

Integer stringListSize(String list [, String delimiter]) Returns the number of ele-
ments in the stringlist , as delimited by the optionaldelimiter string. ReturnsERRORif either argument
is not a string.

This function returnsERRORif other than 1 or 2 arguments are given.

Integer stringListSum(String list [, String delimiter])

OR Real stringListSum(String list [, String delimiter]) Sums and returns the sum of all
items in the stringlist , as delimited by the optionaldelimiter string. If all items in the list are integers,
the return value is also an integer. If any item in the list is areal value (noninteger), the return value is a real. If
any item does not represent an integer or real value, the return value isERROR.

Real stringListAvg(String list [, String delimiter]) Sums and returns the real-valued
average of all items in the stringlist , as delimited by the optionaldelimiter string. If any item does
not represent an integer or real value, the return value isERROR. A list with 0 items (the empty list) returns the
value 0.0.

Integer stringListMin(String list [, String delimiter])

HTCondor Version 8.6.4 Manual

4.1.2. Old ClassAd Syntax 534

OR Real stringListMin(String list [, String delimiter]) Finds and returns the minimum
value from all items in the stringlist , as delimited by the optionaldelimiter string. If all items in the list
are integers, the return value is also an integer. If any itemin the list is a real value (noninteger), the return value
is a real. If any item does not represent an integer or real value, the return value isERROR. A list with 0 items
(the empty list) returns the valueUNDEFINED.

Integer stringListMax(String list [, String delimiter])

OR Real stringListMax(String list [, String delimiter]) Finds and returns the maxi-
mum value from all items in the stringlist , as delimited by the optionaldelimiter string. If all items
in the list are integers, the return value is also an integer.If any item in the list is a real value (noninteger), the
return value is a real. If any item does not represent an integer or real value, the return value isERROR. A list
with 0 items (the empty list) returns the valueUNDEFINED.

Boolean stringListMember(String x, String list [, String delimiter]) Returns
TRUEif item x is in the stringlist , as delimited by the optionaldelimiter string. ReturnsFALSE if item
x is not in the stringlist . Comparison is done withstrcmp() . The return value isERROR, if any of the
arguments are not strings.

Boolean stringListIMember(String x, String list [, String delimiter]) Same as
stringListMember() , but comparison is done withstricmp() , so letter case is not relevant.

Integer stringListsIntersect(String list1, String list2 [, String delimiter])
ReturnsTRUEif the lists contain any matching elements, and returnsFALSE if the lists do not contain any
matching elements. ReturnsERRORif either argument is not a string or if an incorrect number ofarguments are
given.

The following three functions utilize regular expressionsas defined and supported by the PCRE library. See
http://www.pcre.org for complete documentation of regular expressions.

The options argument to these functions is a string of special characters that modify the use of the regular
expressions. Inclusion of characters other than these as options are ignored.

I or i Ignore letter case.

M or m Modifies the interpretation of the caret (^) and dollar sign ($) characters. The caret character matches the start
of a string, as well as after each newline character. The dollar sign character matches before a newline character.

S or s The period matches any character, including the newline character.

Boolean regexp(String pattern, String target [, String options]) Uses the descrip-
tion of a regular expression given by stringpattern to scan through the stringtarget . ReturnsTRUEwhen
target is a regular expression as described bypattern . ReturnsFALSEotherwise. If any argument is not
a string, or ifpattern does not describe a valid regular expression, returnsERROR.

String regexps (String pattern, String target, String substitute [, Strin g
options]) Uses the description of a regular expression given by stringpattern to scan through the
stringtarget . Whentarget is a regular expression as described bypattern , the stringsubstitute is
returned, with backslash expansion performed. If any argument is not a string, returnsERROR.

HTCondor Version 8.6.4 Manual

http://www.pcre.org

4.1.3. Old ClassAd Evaluation Semantics 535

Boolean stringList_regexpMember (String pattern, String list [, String
delimiter] [, String options]) Uses the description of a regular expression given by
stringpattern to scan through the list of strings inlist . ReturnsTRUEwhen one of the strings inlist is
a regular expression as described bypattern . The optionaldelimiter describes how the list is delimited,
and stringoptions modifies how the match is performed. ReturnsFALSE if pattern does not match any
entries inlist . The return value isERROR, if any of the arguments are not strings, or ifpattern is not a
valid regular expression.

String userHome(String userName [, String default]) Returns the home directory of the
given user as configured on the current system (determined using the getpwdnam() call). (Returnsdefault if
thedefault argument is passed and the home directory of the user is not defined.)

List userMap(String mapSetName, String userName) Map an input string using the given mapping
set. Returns a list of groups to which the user belongs.

String userMap(String mapSetName, String userName, String preferredGroup) Map
an input string using the given mapping set. Returns a string, which is the preferred group if the user is in that
group; otherwise it is the first group to which the user belongs, or undefined if the user belongs to no groups.

String userMap(String mapSetName, String userName, String preferredGroup, String defaultGroup)
Map an input string using the given mapping set. Returns a string, which is the preferred group if the user is
in that group; the first group to which the user belongs, if any; and the default group if the user belongs to no
groups.

The maps for the userMap() function are defined by the following configuration macros:
<SUBSYS>_CLASSAD_USER_MAP_NAMES(see 3.5.2),CLASSAD_USER_MAPFILE_<name> (see
3.5.2) andCLASSAD_USER_MAPDATA_<name> (see 3.5.2).

4.1.3 Old ClassAd Evaluation Semantics

The ClassAd mechanism’s primary purpose is for matching entities that supply constraints on candidate matches. The
mechanism is therefore defined to carry out expression evaluations in the context of two ClassAds that are testing
each other for a potential match. For example, thecondor_negotiatorevaluates theRequirements expressions of
machine and job ClassAds to test if they can be matched. The semantics of evaluating such constraints is defined
below.

Literals

Literals are self-evaluating, Thus, integer, string, real, undefined and error values evaluate to themselves.

Attribute References

Since the expression evaluation is being carried out in the context of two ClassAds, there is a potential for name
space ambiguities. The following rules define the semanticsof attribute references made by ClassAdA that is being
evaluated in a context with another ClassAdB:

HTCondor Version 8.6.4 Manual

4.1.3. Old ClassAd Evaluation Semantics 536

1. If the reference is prefixed by a scope resolution prefix,

• If the prefix isMY., the attribute is looked up in ClassAdA. If the named attribute does not exist inA, the
value of the reference isUNDEFINED. Otherwise, the value of the reference is the value of the expression
bound to the attribute name.

• Similarly, if the prefix isTARGET., the attribute is looked up in ClassAdB. If the named attribute does
not exist inB, the value of the reference isUNDEFINED. Otherwise, the value of the reference is the value
of the expression bound to the attribute name.

2. If the reference is not prefixed by a scope resolution prefix,

• If the attribute is defined inA, the value of the reference is the value of the expression bound to the attribute
name inA.

• Otherwise, if the attribute is defined inB, the value of the reference is the value of the expression bound
to the attribute name inB.

• Otherwise, if the attribute is defined in the ClassAd environment, the value from the environment is re-
turned. This is a special environment, to be distinguished from the Unix environment. Currently, the
only attribute of the environment isCurrentTime , which evaluates to the integer value returned by the
system calltime(2) .

• Otherwise, the value of the reference isUNDEFINED.

3. Finally, if the reference refers to an expression that is itself in the process of being evaluated, there is a circular
dependency in the evaluation. The value of the reference isERROR.

Operators

All operators in the ClassAd language aretotal, and thus have well defined behavior regardless of the supplied
operands. Furthermore, most operators arestrict with respect toERRORand UNDEFINED, and thus evaluate to
ERRORor UNDEFINEDif either of their operands have these exceptional values.

• Arithmetic operators:

1. The operators* , / , + and- operate arithmetically only on integers and reals.

2. Arithmetic is carried out in the same type as both operands, and type promotions from integers to reals are
performed if one operand is an integer and the other real.

3. The operators are strict with respect to bothUNDEFINEDandERROR.

4. If either operand is not a numerical type, the value of the operation isERROR.

• Comparison operators:

1. The comparison operators==, != , <=, <, >= and> operate on integers, reals and strings.

2. String comparisons are case insensitive for most operators. The only exceptions are the operators=?= and
=!= , which do case sensitive comparisons assuming both sides are strings.

HTCondor Version 8.6.4 Manual

4.1.3. Old ClassAd Evaluation Semantics 537

3. Comparisons are carried out in the same type as both operands, and type promotions from integers to reals
are performed if one operand is a real, and the other an integer. Strings may not be converted to any other
type, so comparing a string and an integer or a string and a real results inERROR.

4. The operators==, != , <=, < and>= > are strict with respect to bothUNDEFINEDandERROR.

5. In addition, the operators=?= and =!= behave similar to== and != , but are not strict. Semanti-
cally, the =?= tests if its operands are “identical,” i.e., have the same type and the same value. For
example,10 == UNDEFINEDandUNDEFINED == UNDEFINEDboth evaluate toUNDEFINED, but
10 =?= UNDEFINEDandUNDEFINED =?= UNDEFINEDevaluate toFALSEandTRUErespectively.
The=!= operator tests for the “is not identical to” condition.

• Logical operators:

1. The logical operators&&and|| operate on integers and reals. The zero value of these types are considered
FALSEand non-zero valuesTRUE.

2. The operators arenotstrict, and exploit the "don’t care" properties of the operators to squashUNDEFINED
and ERRORvalues when possible. For example,UNDEFINED && FALSEevaluates toFALSE, but
UNDEFINED || FALSE evaluates toUNDEFINED.

3. Any string operand is equivalent to anERRORoperand for a logical operator. In other words,
TRUE && "foobar" evaluates toERROR.

• The Ternary operator:

1. The Ternary operator (expr1 ? expr2 : expr3) operate with expressions. If all three expressions are
given, the operation is strict.

2. However, if the middle expression is missing, eg.expr1 ?: expr3 , then, when expr1 is defined, that
defined value is returned. Otherwise, when expr1 evaluated to UNDEFINED, the value of expr3 is evaluated
and returned. This can be a convenient shortcut for writing what would otherwise be a much longer classad
expression.

Expression Examples

The=?= operator is similar to the== operator. It checks if the left hand side operand is identical in both type and
value to the the right hand side operand, returningTRUEwhen they are identical.For strings, the comparison is
case-insensitive with the== operator and case-sensitive with the=?= operator. A key point in understanding
is that the=?= operator only produces evaluation results ofTRUEandFALSE, where the== operator may produce
evaluation resultsTRUE, FALSE, UNDEFINED, or ERROR. Table 4.1 presents examples that define the outcome of
the== operator. Table 4.2 presents examples that define the outcome of the=?= operator.

The=!= operator is similar to the!= operator. It checks if the left hand side operand isnot identical in both type
and value to the the right hand side operand, returningFALSEwhen they are identical.For strings, the comparison

HTCondor Version 8.6.4 Manual

4.1.4. Old ClassAds in the HTCondor System 538

expression evaluated result
(10 == 10) TRUE
(10 == 5) FALSE
(10 == "ABC") ERROR
"ABC" == "abc" TRUE
(10 == UNDEFINED) UNDEFINED
(UNDEFINED == UNDEFINED) UNDEFINED

Table 4.1: Evaluation examples for the== operator

expression evaluated result
(10 =?= 10) TRUE
(10 =?= 5) FALSE
(10 =?= "ABC") FALSE
"ABC" =?= "abc" FALSE
(10 =?= UNDEFINED) FALSE
(UNDEFINED =?= UNDEFINED) TRUE

Table 4.2: Evaluation examples for the=?= operator

is case-insensitive with the!= operator and case-sensitive with the=!= operator. A key point in understanding
is that the=!= operator only produces evaluation results ofTRUEandFALSE, where the!= operator may produce
evaluation resultsTRUE, FALSE, UNDEFINED, or ERROR. Table 4.3 presents examples that define the outcome of
the!= operator. Table 4.4 presents examples that define the outcome of the=!= operator.

expression evaluated result

(10 != 10) FALSE
(10 != 5) TRUE
(10 != "ABC") ERROR
"ABC" != "abc" FALSE
(10 != UNDEFINED) UNDEFINED
(UNDEFINED != UNDEFINED) UNDEFINED

Table 4.3: Evaluation examples for the!= operator

4.1.4 Old ClassAds in the HTCondor System

The simplicity and flexibility of ClassAds is heavily exploited in the HTCondor system. ClassAds are not only used
to represent machines and jobs in the HTCondor pool, but alsoother entities that exist in the pool such as checkpoint

HTCondor Version 8.6.4 Manual

4.1.4. Old ClassAds in the HTCondor System 539

expression evaluated result
(10 =!= 10) FALSE
(10 =!= 5) TRUE
(10 =!= "ABC") TRUE
"ABC" =!= "abc" TRUE
(10 =!= UNDEFINED) TRUE
(UNDEFINED =!= UNDEFINED) FALSE

Table 4.4: Evaluation examples for the=!= operator

servers, submitters of jobs and master daemons. Since arbitrary expressions may be supplied and evaluated over these
ClassAds, users have a uniform and powerful mechanism to specify constraints over these ClassAds. These constraints
can take the form ofRequirements expressions in resource and job ClassAds, or queries over other ClassAds.

Constraints and Preferences

The requirements and rank expressions within the submit description file are the mechanism by which users
specify the constraints and preferences of jobs. For machines, the configuration determines both constraints and
preferences of the machines.

For both machine and job, therank expression specifies the desirability of the match (where higher numbers
mean better matches). For example, a job ClassAd may containthe following expressions:

Requirements = (Arch == "INTEL") && (OpSys == "LINUX")
Rank = TARGET.Memory + TARGET.Mips

In this case, the job requires a 32-bit Intel processor running a Linux operating system. Among all such computers, the
customer prefers those with large physical memories and high MIPS ratings. Since theRank is a user-specified metric,
anyexpression may be used to specify the perceived desirability of the match. Thecondor_negotiatordaemon runs
algorithms to deliver the best resource (as defined by therank expression), while satisfying other required criteria.

Similarly, the machine may place constraints and preferences on the jobs that it will run by setting the machine’s
configuration. For example,

Friend = Owner == "tannenba" || Owner == "wright"
ResearchGroup = Owner == "jbasney" || Owner == "raman"
Trusted = Owner != "rival" && Owner != "riffraff"
START = Trusted && (ResearchGroup || LoadAvg < 0.3 &&

KeyboardIdle > 15 * 60)
RANK = Friend + ResearchGroup * 10

The above policy states that the computer will never run jobsowned by users rival and riffraff, while the computer
will always run a job submitted by members of the research group. Furthermore, jobs submitted by friends are
preferred to other foreign jobs, and jobs submitted by the research group are preferred to jobs submitted by friends.

Note: Because of the dynamic nature of ClassAd expressions, thereis noa priori notion of an integer-valued ex-
pression, a real-valued expression, etc. However, it is intuitive to think of theRequirements andRank expressions

HTCondor Version 8.6.4 Manual

4.1.4. Old ClassAds in the HTCondor System 540

as integer-valued and real-valued expressions, respectively. If the actual type of the expression is not of the expected
type, the value is assumed to be zero.

Querying with ClassAd Expressions

The flexibility of this system may also be used when querying ClassAds through thecondor_statusandcondor_qtools
which allow users to supply ClassAd constraint expressionsfrom the command line.

Needed syntax is different on Unix and Windows platforms, due to the interpretation of characters in forming
command-line arguments. The expression must be a single command-line argument, and the resulting examples
differ for the platforms. For Unix shells, single quote marks are used to delimit a single argument. For a Windows
command window, double quote marks are used to delimit a single argument. Within the argument, Unix escapes the
double quote mark by prepending a backslash to the double quote mark. Windows escapes the double quote mark by
prepending another double quote mark. There may not be spaces in between.

Here are several examples. To find all computers which have had their keyboards idle for more than 60 minutes
and have more than 4000 MB of memory, the desired ClassAd expression is

KeyboardIdle > 60 * 60 && Memory > 4000

On a Unix platform, the command appears as

% condor_status -const 'KeyboardIdle > 60 * 60 && Memory > 4000'

Name OpSys Arch State Activity LoadAv Mem ActvtyTime
100
slot1@altair.cs.wi LINUX X86_64 Owner Idle 0.000 8018 13+0 0:31:46
slot2@altair.cs.wi LINUX X86_64 Owner Idle 0.000 8018 13+0 0:31:47
...
...
slot1@athena.stat. LINUX X86_64 Unclaimed Idle 0.000 7946 0+00:25:04
slot2@athena.stat. LINUX X86_64 Unclaimed Idle 0.000 7946 0+00:25:05
...
...

The Windows equivalent command is

>condor_status -const "KeyboardIdle > 60 * 60 && Memory > 4000"

Here is an example for a Unix platform that utilizes a regularexpression ClassAd function to list specific infor-
mation. A file contains ClassAd information.condor_advertiseis used to inject this information, andcondor_status
constrains the search with an expression that contains a ClassAd function.

% cat ad
MyType = "Generic"
FauxType = "DBMS"
Name = "random-test"
Machine = "f05.cs.wisc.edu"

HTCondor Version 8.6.4 Manual

4.1.5. Extending ClassAds with User-written Functions 541

MyAddress = "<128.105.149.105:34000>"
DaemonStartTime = 1153192799
UpdateSequenceNumber = 1

% condor_advertise UPDATE_AD_GENERIC ad

% condor_status -any -constraint 'FauxType=="DBMS" &&
regexp("random. * ", Name, "i")'

MyType TargetType Name

Generic None random-test

The ClassAd expression describing a machine that advertises a Windows operating system:

OpSys == "WINDOWS"

Here are three equivalent ways on a Unix platform to list all machines advertising a Windows operating system. Spaces
appear in these examples to show where they are permitted.

% condor_status -constraint ' OpSys == "WINDOWS" '

% condor_status -constraint OpSys==\"WINDOWS\"

% condor_status -constraint "OpSys==\"WINDOWS\""

The equivalent command on a Windows platform to list all machines advertising a Windows operating system must
delimit the single argument with double quote marks, and then escape the needed double quote marks that identify the
string within the expression. Spaces appear in this examplewhere they are permitted.

>condor_status -constraint " OpSys == ""WINDOWS"" "

4.1.5 Extending ClassAds with User-written Functions

The ClassAd language provides a rich set of functions. It is possible to add new functions to the ClassAd language
without recompiling the HTCondor system or the ClassAd library. This requires implementing the new function in the
C++ programming language, compiling the code into a shared library, and telling HTCondor where in the file system
the shared library lives.

While the details of the ClassAd implementation are beyond the scope of this document, the ClassAd source
distribution ships with an example source file that extends ClassAds by adding two new functions, named
todays_date() anddouble() . This can be used as a model for users to implement their own functions. To
deploy this example extension, follow the following steps on Linux:

• Download the ClassAd source distribution from http://www.cs.wisc.edu/condor/classad.

HTCondor Version 8.6.4 Manual

http://www.cs.wisc.edu/condor/classad

4.2. HTCondor’s Checkpoint Mechanism 542

• Unpack the tarball.

• Inspect the source fileshared.cpp . This one file contains the whole extension.

• Build shared.cpp into a shared library. On Linux, the command line to do so is

$ g++ -DWANT_CLASSAD_NAMESPACE -I. -shared -o shared.so \
-Wl,-soname,shared.so -o shared.so -fPIC shared.cpp

• Copy the fileshared.so to a location that all of the HTCondor tools and daemons can read.

$ cp shared.so `condor_config_val LIBEXEC`

• Tell HTCondor to load the shared library into all tools and daemons, by setting theCLASSAD_USER_LIBS
configuration variable to the full name of the shared library. In this case,

CLASSAD_USER_LIBS = $(LIBEXEC)/shared.so

• Restart HTCondor.

• Test the new functions by running

$ condor_status -format "%s\n" todays_date()

4.2 HTCondor’s Checkpoint Mechanism

A checkpoint is a snapshot of the current state of a program, taken in such a way that the program can be restarted
from that state at a later time. Taking checkpoints gives theHTCondor scheduler the freedom to reconsider scheduling
decisions through preemptive-resume scheduling. If the scheduler decides to no longer allocate a machine to a job
(for example, when the owner of that machine returns), it cantake a checkpoint of the job and preempt the job without
losing the work the job has already accomplished. The job canbe resumed later when the scheduler allocates it a new
machine. Additionally, periodic checkpoints provides fault tolerance in HTCondor. Snapshots are taken periodically,
and after an interruption in service the program can continue from the most recent snapshot.

HTCondor provides checkpoint services to single process jobs on some Unix platforms. To enable the taking
of checkpoints, the user must link the program with the HTCondor system call library (libcondorsyscall.a),
using thecondor_compilecommand. This means that the user must have the object files orsource code of the program
to use HTCondor checkpoints. However, the checkpoint services provided by HTCondor are strictly optional. So,
while there are some classes of jobs for which HTCondor does not provide checkpoint services, these jobs may still
be submitted to HTCondor to take advantage of HTCondor’s resource management functionality. See section 2.4.1 on
page 13 for a description of the classes of jobs for which HTCondor does not provide checkpoint services.

The taking of process checkpoints is implemented in the HTCondor system call library as a signal handler. When
HTCondor sends a checkpoint signal to a process linked with this library, the provided signal handler writes the state
of the process out to a file or a network socket. This state includes the contents of the process stack and data segments,

HTCondor Version 8.6.4 Manual

4.2.1. Standalone Checkpoint Mechanism 543

all shared library code and data mapped into the process’s address space, the state of all open files, and any signal
handlers and pending signals. On restart, the process readsthis state from the file, restoring the stack, shared library
and data segments, file state, signal handlers, and pending signals. The checkpoint signal handler then returns to user
code, which continues from where it left off when the checkpoint signal arrived.

HTCondor processes for which the taking of checkpoints is enabled take a checkpoint when preempted from a
machine. When a suitable replacement execution machine is found of the same architecture and operating system, the
process is restored on this new machine using the checkpoint, and computation resumes from where it left off. Jobs
that can not take checkpoints are preempted and restarted from the beginning.

HTCondor’s taking of periodic checkpoints provides fault tolerance. Pools may be configured with the
PERIODIC_CHECKPOINTvariable, which controls when and how often jobs which can take and use checkpoints
do so periodically. Examples of when are never, and every three hours. When the time to take a periodic checkpoint
occurs, the job suspends processing, takes the checkpoint,and immediately continues from where it left off. There
is also acondor_ckptcommand which allows the user to request that an HTCondor jobimmediately take a periodic
checkpoint.

In all cases, HTCondor jobs continue execution from the mostrecent complete checkpoint. If service is interrupted
while a checkpoint is being taken, causing that checkpoint to fail, the process will restart from the previous checkpoint.
HTCondor uses a commit style algorithm for writing checkpoints: a previous checkpoint is deleted only after a new
complete checkpoint has been written successfully.

In certain cases, taking a checkpoint may be delayed until a more appropriate time. For example, an HTCondor
job will defer a checkpoint request if it is communicating with another process over the network. When the network
connection is closed, the checkpoint will be taken.

The HTCondor checkpoint feature can also be used for any Unixprocess outside of the HTCondor batch environ-
ment. Standalone checkpoints are described in section 4.2.1.

HTCondor can produce and use compressed checkpoints. Configuration variables (detailed in section 3.5.11 con-
trol whether compression is used. The default is to not compress.

By default, a checkpoint is written to a file on the local disk of the machine where the job was submitted. An
HTCondor pool can also be configured with a checkpoint serveror servers that serve as a repository for checkpoints,
as described in section 3.10 on page 464. When a host is configured to use a checkpoint server, jobs submitted on
that machine write and read checkpoints to and from the server, rather than the local disk of the submitting machine,
taking the burden of storing checkpoint files off of the submitting machines and placing it instead on server machines
(with disk space dedicated for the purpose of storing checkpoints).

4.2.1 Standalone Checkpoint Mechanism

Using the HTCondor checkpoint library without the remote system call functionality and outside of the HTCondor
system is known as the standalone mode checkpoint mechanism.

To prepare a program for taking standalone checkpoints, usethecondor_compileutility as for a standard HTCon-
dor job, but do not usecondor_submit. Run the program from the command line. The checkpoint library will print a
message to let you know that taking checkpoints is enabled and to inform you of the default name for the checkpoint

HTCondor Version 8.6.4 Manual

4.2.2. Checkpoint Safety 544

image. The message is of the form:

HTCondor: Notice: Will checkpoint to program_name.ckpt
HTCondor: Notice: Remote system calls disabled.

Platforms that use address space randomization will need a modified invocation of the program, as described in
section 7.1.1 on page 662. The invocation disables the address space randomization.

To force the program to write a checkpoint image and stop, send it the SIGTSTP signal or press control-Z. To force
the program to write a checkpoint image and continue executing, send it the SIGUSR2 signal.

To restart a program using a checkpoint, invoke the program with the command line argument-_condor_restart,
followed by the name of the checkpoint image file. As an example, if the program is calledP1 and the checkpoint is
calledP1.ckpt , use

P1 -_condor_restart P1.ckpt

Again, platforms that implement address space randomization will need a modified invocation, as described in sec-
tion 7.1.1.

By default, the program will restart in the same directory inwhich it originally ran, and the program will fail if it
can not change to that absolute path. To suppress this behavior, also pass the-_condor_relocatableargument to the
program. Not all programs will continue to work. Doing this may simplify moving standalone checkpoints between
machines. Continuing the example given above, the command would be

P1 -_condor_restart P1.ckpt -_condor_relocatable

4.2.2 Checkpoint Safety

Some programs have fundamental limitations that make them unsafe for taking checkpoints. For example, a program
that both reads and writes a single file may enter an unexpected state. Here is an example of the ordered events that
exhibit this issue.

1. Record a checkpoint image.

2. Read data from a file.

3. Write data to the same file.

4. Execution failure, so roll back to step 2.

In this example, the program would re-read data from the file,but instead of finding the original data, would see
data created in the future, and yield unexpected results.

To prevent this sort of accident, HTCondor displays a warning if a file is used for both reading and writing. You can
ignore or disable these warnings if you choose as described in section 4.2.3, but please understand that your program
may compute incorrect results.

HTCondor Version 8.6.4 Manual

4.2.3. Checkpoint Warnings 545

4.2.3 Checkpoint Warnings

HTCondor displays warning messages upon encountering unexpected behaviors in the program. For example, if filex
is opened for reading and writing, this message will be displayed:

HTCondor: Warning: READWRITE: File '/tmp/x' used for both r eading and writing.

Control how these messages are displayed with the-_condor_warning command line argument. This argu-
ment accepts a warning category and a mode. The category describes a certain class of messages, such as READ-
WRITE or ALL. The mode describes what to do with the category.It may be ON, OFF, or ONCE. If a category is ON,
it is always displayed. If a category is OFF, it is never displayed. If a category is ONCE, it is displayed only once. To
show all the available categories and modes, use-_condor_warning with no arguments.

For example, the additional command line argument to limit read/write warnings to one instance is

-_condor_warning READWRITE ONCE

To turn all ordinary notices off:

-_condor_warning NOTICE OFF

The same effect can be accomplished within a program by usingthe function_condor_warning_config() .

4.2.4 Checkpoint Library Interface

A program need not be rewritten to take advantage of checkpoints. However, the checkpoint library provides several
C entry points that allow for a program to control its own checkpoint behavior. These functions are provided.

• void init_image_with_file_name(char * ckpt_file_name)
This function explicitly sets a file name to use when producing or using a checkpoint. ckpt() or
ckpt_and_exit() must be called to produce the checkpoint, andrestart() must be called to perform
the actual restart.

• void init_image_with_file_descriptor(int fd)
This function explicitly sets a file descriptor to use when producing or using a checkpoint.ckpt() or
ckpt_and_exit() must be called to produce the checkpoint, andrestart() must be called to perform
the actual restart.

• void ckpt()
This function causes a checkpoint image to be written to disk. The program will continue to execute. This is
identical to sending the program a SIGUSR2 signal.

HTCondor Version 8.6.4 Manual

4.3. Computing On Demand (COD) 546

• void ckpt_and_exit()
This function causes a checkpoint image to be written to disk. The program will then exit. This is identical to
sending the program a SIGTSTP signal.

• void restart()
This function causes the program to read the checkpoint image and to resume execution of the program from
the point where the checkpoint was taken. This function doesnot return.

• void _condor_ckpt_disable()
This function temporarily disables the taking of checkpoints. This can be handy if the program does something
that is not checkpoint-safe. For example, if a program must not be interrupted while accessing a special file, call
_condor_ckpt_disable() , access the file, and then call_condor_ckpt_enable() . Some program
actions, such as opening a socket or a pipe, implicitly causethe taking of checkpoints to be disabled.

• void _condor_ckpt_enable()
This function re-enables the taking of checkpoints after a call to _condor_ckpt_disable() . If a
checkpoint signal arrived while the taking of checkpoints was disabled, the checkpoint will be taken when
this function is called. Disabling and enabling the taking of checkpoints must occur in matched pairs.
_condor_ckpt_enable() must be called once for every time that_condor_ckpt_disable() is
called.

• int _condor_warning_config(const char * kind, const char * mode)
This function controls what warnings are displayed by HTCondor. Thekind andmode arguments are the
same as for the-_condor_warning option described in section 4.2.3. This function returnstrue if the
arguments are understood and accepted. Otherwise, it returnsfalse .

• extern int condor_compress_ckpt
Setting this variable to 1 (one) causes checkpoint images tobe compressed. Setting it to 0 (zero) disables
compression.

4.3 Computing On Demand (COD)

Computing On Demand (COD) extends HTCondor’s high throughput computing abilities to include a method for
running short-term jobs on instantly-available resources.

The motivation for COD extends HTCondor’s job management toinclude interactive, compute-intensive jobs,
giving these jobs immediate access to the compute power theyneed over a relatively short period of time. COD
provides computing poweron demand, switching predefined resources from working on HTCondor jobs to working
on the COD jobs. These COD jobs (applications) cannot use thebatch scheduling functionality of HTCondor, since
the COD jobs require interactive response-time. Many of theapplications that are well-suited to HTCondor’s COD
capabilities involve a cycle: application blocked on user input, computation burst to compute results, block again on
user input, computation burst, etc. When the resources are not being used for the bursts of computation to service the
application, they should continue to execute long-runningbatch jobs.

Here are examples of applications that may benefit from COD capability:

HTCondor Version 8.6.4 Manual

4.3.1. Overview of How COD Works 547

• A giant spreadsheet with a large number of highly complex formulas which take a lot of compute power to
recalculate. The spreadsheet application (as a COD application) predefines a claim on resources within the
HTCondor pool. When the user presses arecalculate button, the predefined HTCondor resources (nodes)
work on the computation and send the results back to the master application providing the user interface and
displaying the data. Ideally, while the user is entering newdata or modifying formulas, these nodes work on
non-COD jobs.

• A graphics rendering application that waits for user inputto select an image to render. The rendering requires a
huge burst of computation to produce the image. Examples arevarious Computer-Aided Design (CAD) tools,
fractal rendering programs, and ray-tracing tools.

• Visualization tools for data mining.

The way HTCondor helps these kinds of applications is to provide an infrastructure to use HTCondor batch re-
sources for the types of compute nodes described above. HTCondor doesNOT provide tools to parallelize existing
GUI applications. The COD functionality is an interface to allow these compute nodes to interact with long-running
HTCondor batch jobs. The user provides both the compute nodeapplications and the interactive master application that
controls them. HTCondor only provides a mechanism to allow these interactive (and often parallelized) applications
to seamlessly interact with the HTCondor batch system.

4.3.1 Overview of How COD Works

The resources of an HTCondor pool (nodes) run jobs. When a high-priority COD job appears at a node, the lower-
priority (currently running) batch job is suspended. The COD job runs immediately, while the batch job remains
suspended. When the COD job completes, the batch job instantly resumes execution.

Administratively, an interactive COD application puts claims on nodes. While the COD application does not need
the nodes to run the COD jobs, the claims are suspended, allowing batch jobs to run.

4.3.2 Authorizing Users to Create and Manage COD Claims

Claims on nodes are assigned to users. A user with a claim on a resource can then suspend and resume a COD
job at will. This gives the user a great deal of power on the claimed resource, even if it is owned by another user.
Because of this, it is essential that users allowed to claim COD resources can be trusted not to abuse this power.
Users are authorized to have access to the privilege of creating and using a COD claim on a machine. This privilege is
granted when the HTCondor administrator places a given username in theVALID_COD_USERSlist in the HTCondor
configuration for the machine (usually in a local configuration file).

In addition, the tools to request and manage COD claims require that the user issuing the commands be authenti-
cated. Use one of the strong authentication methods described in section 3.8.1 on HTCondor’s Security Model. If one
of these methods cannot be used, then file system authentication may be used when directly logging in to that machine
(to be claimed) and issuing the command locally.

HTCondor Version 8.6.4 Manual

4.3.3. Defining a COD Application 548

4.3.3 Defining a COD Application

To run an application on a claimed COD resource, an authorized user defines characteristics of the application. Exam-
ples of characteristics are the executable or script to use,the directory in which to run the application, command-line
arguments, and files to use for standard input and output. CODusers specify a ClassAd that describes these character-
istics for their application. There are two ways for a user todefine a COD application’s ClassAd:

1. in the HTCondor configuration files of the COD resources

2. when they use thecondor_codcommand-line tool to launch the application itself

These two methods for defining the ClassAd can be used together. For example, the user can define some attributes
in the configuration file, and only provide a few dynamically defined attributes with thecondor_codtool.

Independent of how the COD application’s ClassAd is defined,the application’s executable and input data must be
pre-staged at the node. This is a current limitation of HTCondor’s support. There is no mechanism to transfer files for
a COD application, and all I/O must be handled locally or put onto a network file system that is accessible by a node.

The following three sections detail defining the attributes. The first lists the attributes that can be used to define a
COD application. The second describes how to define these attributes in an HTCondor configuration file. The third
explains how to define these attributes using thecondor_codtool.

COD Application Attributes

Attributes for a COD application are either required or optional. The following attributes arerequired:

Cmd This attribute defines the full path to the executable program to be run as a COD application. Since HTCondor
does not currently provide any mechanism to transfer files onbehalf of COD applications, this path should be
a valid path on the machine where the application will be run.It is a string attribute, and must therefore be
enclosed in quotation marks ("). There is no default.

Owner If the condor_startddaemon is executing as root on the resource where a COD application will run, the user
must also defineOwner to specify what user name the application will run as. On Windows, thecondor_startd
daemon always runs as an Administrator service, which is equivalent to running as root on Unix platforms. If
the user specifies any COD application attributes with thecondor_cod activatecommand-line tool, theOwner
attribute will be defined as the user name that rancondor_cod activate. However, if the user defines all attributes
of their COD application in the HTCondor configuration files,and does not define any attributes with thecon-
dor_cod activatecommand-line tool, there is no default, andOwner must be specified in the configuration file.
Owner must contain a valid user name on the given COD resource. It isa string attribute, and must therefore
be enclosed in quotation marks (").

RequestCpus Required when running on acondor_startdthat uses partitionable slots. It specifies the number of
CPU cores from the partitionable slot allocated for this job.

RequestDisk Required when running on acondor_startdthat uses partitionable slots. It specifies the disk space,
in Megabytes, from the partitionable slot allocated for this job.

HTCondor Version 8.6.4 Manual

4.3.3. Defining a COD Application 549

RequestMemory Required when running on acondor_startdthat uses partitionable slots. It specifies the memory,
in Megabytes, from the partitionable slot allocated for this job.

The following list of attributes areoptional:

JobUniverse This attribute defines what HTCondor job universe to use for the given COD application. The only
tested universes are vanilla and java. This attribute must be an integer, with vanilla using the value 5, and java
using the value 10.

IWD IWD is an acronym for Initial Working Directory. It defines the full path to the directory where a given COD
application are to be run. Unless the application changes its current working directory, any relative path names
used by the application will be relative to the IWD. If any other attributes that define file names (for example,
In , Out , and so on) do not contain a full path, theIWDwill automatically be pre-pended to those file names.
It is a string attribute, and must therefore be enclosed in quotation marks ("). If the IWD is not specified, the
temporary execution sandbox created by thecondor_starterwill be used as the initial working directory.

In This string defines the path to the file on the COD resource thatshould be used as standard input (stdin) for the
COD application. This file (and all parent directories) mustbe readable by whatever user the COD application
will run as. If not specified, the default is/dev/null . It is a string attribute, and must therefore be enclosed
in quotation marks (").

Out This string defines the path to the file on the COD resource thatshould be used as standard output (stdout) for
the COD application. This file must be writable (and all parent directories readable) by whatever user the COD
application will run as. If not specified, the default is/dev/null . It is a string attribute, and must therefore
be enclosed in quotation marks (").

Err This string defines the path to the file on the COD resource thatshould be used as standard error (stderr) for
the COD application. This file must be writable (and all parent directories readable) by whatever user the COD
application will run as. If not specified, the default is/dev/null . It is a string attribute, and must therefore
be enclosed in quotation marks (").

Env This string defines environment variables to set for a given COD application. Each environment vari-
able has the formNAME=value . Multiple variables are delimited with a semicolon. An example:
Env = "PATH=/usr/local/bin:/usr/bin;TERM=vt100" It is a string attribute, and must therefore
be enclosed in quotation marks (").

Args This string attribute defines the list of arguments to be supplied to the program on the command-line. The
arguments are delimited (separated) by space characters. There is no default. If theJobUniverse corresponds
to the Java universe, the first argument must be the name of theclass containingmain . It is a string attribute,
and must therefore be enclosed in quotation marks (").

JarFiles This string attribute is only used ifJobUniverse is 10 (the Java universe). If a given COD application
is a Java program, specify the JAR files that the program requires with this attribute. There is no default. It is
a string attribute, and must therefore be enclosed in quotation marks ("). Multiple file names may be delimited
with either commas or white space characters, and therefore, file names can not contain spaces.

KillSig This attribute specifies what signal should be sent wheneverthe HTCondor system needs to gracefully
shutdown the COD application. It can either be specified as a string containing the signal name (for example
KillSig = "SIGQUIT"), or as an integer (KillSig = 3) The default is to use SIGTERM.

HTCondor Version 8.6.4 Manual

4.3.3. Defining a COD Application 550

StarterUserLog This string specifies a file name for a log file that thecondor_starterdaemon can write with
entries for relevant events in the life of a given COD application. It is similar to the job event log file specified
for regular HTCondor jobs with theLog command in a submit description file. However, certain attributes that
are placed in a job event log do not make sense in the COD environment, and are therefore omitted. The default
is not to write this log file. It is a string attribute, and musttherefore be enclosed in quotation marks (").

StarterUserLogUseXML If the StarterUserLog attribute is defined, the default format is a human-readable
format. However, HTCondor can write out this log in an XML representation, instead. To enable the XML for-
mat for this job event log, theStarterUserLogUseXML boolean is set toTRUE. The default if not specified
is FALSE.

If any attribute that specifies a path (Cmd, In , Out ,Err , StarterUserLog) is not a full path name, HTCondor
automatically prepends the value ofIWD.

The final set of attributes define an identification for a COD application. The job ID is made up of both the
ClusterId andProcId attributes. This job ID is similar to the job ID that is created whenever a regular HTCondor
batch job is submitted. For regular HTCondor batch jobs, thejob ID is assigned automatically by thecondor_schedd
whenever a new job is submitted into the persistent job queue. However, since there is no persistent job queue for
COD, the usual mechanism to identify jobs does not exist. Moreover, commands that require the job ID for batch jobs
such ascondor_qandcondor_rmdo not exist for COD. Instead, the claim ID is the unique identifier for COD jobs
and COD-related commands.

When using COD, the job ID is only used to identify the job in various log messages and in the COD-specific output
of condor_status. The COD job ID is part of the information included in all events written to theStarterUserLog
regarding a given job. The COD job ID is also used in the HTCondor debugging logs described in section 3.5.3 on
page 236. For example, in thecondor_starterdaemon’s log file for COD jobs (calledStarterLog.cod by default)
or in thecondor_startddaemon’s log file (calledStartLog by default).

These COD job IDs are optional. The job ID is useful to define where it helps a user with the accounting or
debugging of their own application. In this case, it is the user’s responsibility to ensure uniqueness, if so desired.

ClusterId This integer defines the cluster identifier for a COD job. The default value is 1. TheClusterId can
also be defined with thecondor_cod activatecommand-line tool using the-cluster option.

ProcId This integer defines the process identifier (within a cluster) for a COD job. The default value is 0. The
ProcId can also be defined with thecondor_cod activatecommand-line tool using the-cluster option.

Note that theClusterId andProcId identifiers can also be specified as command-line arguments to thecon-
dor_cod activatewhen spawning a given COD application. See section 4.3.4 below for details on usingcondor_cod
activate.

Defining Attributes in the HTCondor Configuration Files

To define COD attributes in the HTCondor configuration file fora given application, the user selects a keyword to
uniquely name ClassAd attributes of the application. This case-insensitive keyword is used as a prefix for the various

HTCondor Version 8.6.4 Manual

4.3.3. Defining a COD Application 551

configuration file variable names. When a user wishes to spawna given application, the keyword is given as an
argument to thecondor_codtool, and the keyword is used at the remote COD resource to findattributes which define
the application.

Any of the ClassAd attributes described in the previous section can be specified in the configuration file with the
keyword prefix followed by an underscore character ("_").

For example, if the user’s keyword for a given fractal generation application isFractGen , the resulting entries in
the HTCondor configuration file may appear as:

FractGen_Cmd = "/usr/local/bin/fractgen"
FractGen_Iwd = "/tmp/cod-fractgen"
FractGen_Out = "/tmp/cod-fractgen/output"
FractGen_Err = "/tmp/cod-fractgen/error"
FractGen_Args = "mandelbrot -0.65865,-0.56254 -0.45865, -0.71254"

In this example, the executable may create other files. TheOut andErr attributes specified in the configuration
file are only for standard output and standard error redirection.

When the user wishes to spawn an instance of this application, the command linecondor_cod activate
appears with the-keyword FractGen option.

NOTE: If a user is defining all attributes of their COD applicationin the HTCondor configuration files, and the
condor_startddaemon on the COD resource they are using is running as root, the user must also defineOwner to be
the user that the COD application should run as.

Defining Attributes with the condor_codTool

COD users may define attributes dynamically (at the time theyspawn a COD application). In this case, the user writes
the ClassAd attributes into a file, and the file name is passed to thecondor_cod activatecommand using the-jobad
option. These attributes are read by thecondor_codtool and passed through the system to thecondor_starterdaemon,
which spawns the COD application. If the file name given is- , thecondor_codtool will read from standard input
(stdin).

Users should not add a keyword prefix when defining attributeswith condor_cod activate. The attribute names
can be used in the file directly.

WARNING: The current syntax for this file is not the same as the syntax in the file used withcondor_submit.

NOTE: Users should not define theOwner attribute when usingcondor_cod activateon the command line, since
HTCondor will automatically insert the correct value basedon what user runs thecondor_codcommand and how that
user authenticates to the COD resource. If a user defines an attribute that does not match the authenticated identity,
HTCondor treats this case as an error, and it will fail to launch the application.

HTCondor Version 8.6.4 Manual

4.3.4. Managing COD Resource Claims 552

4.3.4 Managing COD Resource Claims

Separate commands are provided by HTCondor to manage COD claims on batch resources. Once created, each
COD claim has a unique identifying string, called the claim ID. Most commands require a claim ID to specify which
claim you wish to act on. These commands are the means by whichCOD applications interact with the rest of the
HTCondor system. They should be issued by the controller application to manage its compute nodes. Here is a list of
the commands:

Request Create a new COD claim on a given resource.

Activate Spawn a specific application on a specific COD claim.

Suspend Suspend a running application within a specific COD claim.

Renew Renew the lease to a COD claim.

Resume Resume a suspended application on a specific COD claim.

Deactivate Shut down an application, but hold onto the COD claim for future use.

ReleaseDestroy a specific COD claim, and shut down any job that is currently running on it.

Delegate proxy Send an x509 proxy credential to the specific COD claim (optional, only required in rare cases like
using glexec to spawn thecondor_starterat the execute machine where the COD job is running).

To issue these commands, a user or application invokes thecondor_codtool. A command may be specified as the
first argument to this tool, as

condor_cod request -name c02.cs.wisc.edu

or thecondor_codtool can be installed in such a way that the same binary is usedfor a set of names, as

condor_cod_request -name c02.cs.wisc.edu

Other than the command name itself (which must be included infull) additional options supported by each tool
can be abbreviated to the shortest unambiguous value. For example,-namecan also be specified as-n. However, for
a command likecondor_cod_activatethat supports both-classadand-cluster, the user must use at least-cla or -clu.
If the user specifies an ambiguous option, thecondor_codtool will exit with an error message.

In addition, there is a-codoption tocondor_status.

The following sections describe each option in greater detail.

HTCondor Version 8.6.4 Manual

4.3.4. Managing COD Resource Claims 553

Request

A user must be granted authorization to create COD claims on aspecific machine. In addition, when the user uses
these COD claims, the application binary or script they wishto run (and any input data) must be pre-staged on the
machine. Therefore, a user cannot simply request a COD claimat random.

The user specifies the resource on which to make a COD claim. This is accomplished by specifying the name
of thecondor_startddaemon desired by invokingcondor_cod_requestwith the-nameoption and the resource name
(usually the host name). For example:

condor_cod_request -name c02.cs.wisc.edu

If the condor_startddaemon desired belongs to a different HTCondor pool than theone where executing the COD
commands, use the-pool option to provide the name of the central manager machine of the other pool. For example:

condor_cod_request -name c02.cs.wisc.edu -pool condor.c s.wisc.edu

An alternative is to provide the IP address and port number where thecondor_startddaemon is listening with the
-addr option. This information can be found in thecondor_startdClassAd as the attributeStartdIpAddr or by
reading the log file when thecondor_startdfirst starts up. For example:

condor_cod_request -addr "<128.105.146.102:40967>"

If neither -name or -addr are specified,condor_cod_requestattempts to connect to thecondor_startddaemon
running on the local machine (where the request command was issued).

If the condor_startddaemon to be used for the COD claim is an SMP machine and has multiple slots, specify
which resource on the machine to use for COD by providing the full name of the resource, not just the host name. For
example:

condor_cod_request -name slot2@c02.cs.wisc.edu

A constraint on what slot is desired may be provided, insteadof specifying it by name. For example, to run on
machine c02.cs.wisc.edu, not caring which slot is used, so long as it the machine is not currently running a job, use
something like:

condor_cod_request -name c02.cs.wisc.edu -requirements 'State!="Claimed"'

In general, be careful with shell quoting issues, so that your shell is not confused by the ClassAd expression syntax
(in particular if the expression includes a string). The safest method is to enclose any requirement expression within
single quote marks (as shown above).

Once a givencondor_startddaemon has been contacted to request a new COD claim, thecondor_startddaemon
checks for proper authorization of the user issuing the command. If the user has the authority, and thecondor_startd

HTCondor Version 8.6.4 Manual

4.3.4. Managing COD Resource Claims 554

daemon finds a resource that matches any given requirements,thecondor_startddaemon creates a new COD claim
and gives it a unique identifier, the claim ID. This ID is used to identify COD claims when using other commands.
If condor_cod_requestsucceeds, the claim ID for the new claim is printed out to the screen. All other commands to
manage this claim require the claim ID to be provided as a command-line option.

When thecondor_startddaemon assigns a COD claim, the ClassAd describing the resource is returned to the
user that requested the claim. This ClassAd is a snap-shot ofthe output ofcondor_status -long for the given
machine. Ifcondor_cod_requestis invoked with the-classadoption (which takes a file name as an argument), this
ClassAd will be written out to the given file. Otherwise, the ClassAd is printed to the screen. The only essential piece
of information in this ClassAd is the Claim ID, so that is printed to the screen, even if the whole ClassAd is also being
written to a file.

The claim ID as given after listing the machine ClassAd appears as this example:

ID of new claim is: "<128.105.121.21:49973>#1073352104#4 "

When using this claim ID in further commands, include the quote marks as well as all the characters in between the
quote marks.

NOTE: Once a COD claim is created, there is no persistent record ofit kept by thecondor_startddaemon. So,
if the condor_startddaemon is restarted for any reason, all existing COD claims will be destroyed and the new
condor_startddaemon will not recognize any attempts to use the previous claims.

Also note that it is your responsibility to ensure that the claim is eventually removed (see section 4.3.4). Failure
to remove the COD claim will result in thecondor_startdcontinuing to hold a record of the claim for as long as
condor_startdcontinues running. If a very large number of such claims are accumulated by thecondor_startd, this
can impact its performance. Even worse: if a COD claim is unintentionally left in an activated state, this results in the
suspension of any batch job running on the same resource for as long as the claim remains activated. For this reason,
an optional-leaseargument is supported bycondor_cod_request. This tells thecondor_startdto automatically release
the COD claim after the specified number of seconds unless thelease is renewed withcondor_cod_renew. The default
lease is infinitely long.

Activate

Once a user has created a valid COD claim and has the claim ID, the next step is to spawn a COD job using the claim.
The way to do this is to activate the claim, using thecondor_cod_activatecommand. Once a COD application is
active on a COD claim, the COD claim will move into theRunning state, and any batch HTCondor job on the same
resource will be suspended. Whenever the COD application isinactive (either suspended, removed from the machine,
or if it exits on its own), the state of the COD claim changes. The new state depends on why the application became
inactive. The batch HTCondor job then resumes.

To activate a COD claim, first define attributes about the job to be run in either the local configuration of the COD
resource, or in a separate file as described in this manual section. Invoke thecondor_cod_activatecommand to launch
a specific instance of the job on a given COD claim ID. The options given tocondor_cod_activatevary depending on
if the job attributes are defined in the configuration file or are passed via a file to thecondor_cod_activatetool itself.
However, the-id option is always required bycondor_cod_activate, and this option should be followed by a COD
claim ID that the user acquired viacondor_cod_request.

HTCondor Version 8.6.4 Manual

4.3.4. Managing COD Resource Claims 555

If the application is defined in the configuration files for theCOD resource, the user provides the keyword (de-
scribed in section 4.3.3) that uniquely identifies the application’s configuration attributes. To continue the example
from that section, the user would spawn their job by specifying -keyword FractGen , for example:

condor_cod_activate -id "<claim_id>" -keyword FractGen

Substitute the<claim_id> with the valid Cod Claim Id. Using the same example as given above, this example
would be:

condor_cod_activate -id "<128.105.121.21:49973>#10733 52104#4" -keyword FractGen

If the job attributes are placed into a file to be passed to thecondor_cod_activatetool, the user must pro-
vide the name of the file using the-jobad option. For example, if the job attributes were defined in a file named
cod-fractgen.txt , the user spawns the job using the command:

condor_cod_activate -id "<claim_id>" -jobad cod-fractge n.txt

Alternatively, if the filename specified with-jobad is - , the condor_cod_activatetool reads the job ClassAd from
standard input (stdin).

Regardless of how the job attributes are defined, there are other options thatcondor_cod_activateaccepts. These
options specify the job ID for the application to be run. The job ID can either be specified in the job’s ClassAd, or it
can be specified on the command line tocondor_cod_activate. These options are-cluster and-proc. For example, to
launch a COD job with keywordfoo as cluster 23, proc 5, or 23.5, the user invokes:

condor_cod_activate -id "<claim_id>" -key foo -cluster 23 -proc 5

The-cluster and-proc arguments are optional, since the job ID is not required for COD. If not specified, the job ID
defaults to1.0 .

Suspend

Once a COD application has been activated withcondor_cod_activateand is running on a COD resource, it may
be temporarily suspended usingcondor_cod_suspend. In this case, the claim state becomesSuspended . Once a
given COD job is suspended, if there are no other running COD jobs on the resource, an HTCondor batch job can
use the resource. By suspending the COD application, the batch job is allowed to run. If a resource is idle when
a COD application is first spawned, suspension of the COD job makes the batch resource available for use in the
HTCondor system. Therefore, whenever a COD application hasno work to perform, it should be suspended to prevent
the resource from being wasted.

The interface ofcondor_cod_suspendsupports the single option-id, to specify the COD claim ID to be suspended.
For example:

condor_cod_suspend -id "<claim_id>"

HTCondor Version 8.6.4 Manual

4.3.4. Managing COD Resource Claims 556

If the user attempts to suspend a COD job that is not running,condor_cod_suspendexits with an error message.
The COD job may not be running because it is already suspendedor because the job was never spawned on the given
COD claim in the first place.

Renew

This command tells thecondor_startdto renew the lease on the COD claim for the amount of lease timespecified
when the claim was created. See section 4.3.4 for more information on using leases.

Thecondor_cod_renewtool supports only the-id option to specify the COD claim ID the user wishes to renew.
For example:

condor_cod_renew -id "<claim_id>"

If the user attempts to renew a COD job that no longer exists,condor_cod_renewexits with an error message.

Resume

Once a COD application has been suspended withcondor_cod_suspend, it can be resumed usingcondor_cod_resume.
In this case, the claim state returns toRunning . If there is a regular batch job running on the same resource,it will
automatically be suspended if a COD application is resumed.

Thecondor_cod_resumetool supports only the-id option to specify the COD claim ID the user wishes to resume.
For example:

condor_cod_resume -id "<claim_id>"

If the user attempts to resume a COD job that is not suspended,condor_cod_resumeexits with an error message.

Deactivate

If a given COD application does not exit on its own and needs tobe removed manually, invoke thecon-
dor_cod_deactivatecommand to kill the job, but leave the COD claim ID valid for future COD jobs. The user must
specify the claim ID they wish to deactivate using the-id option. For example:

condor_cod_deactivate -id "<claim_id>"

By default,condor_cod_deactivateattempts to gracefully cleanup the COD application and giveit time to exit.
In this case the COD claim goes into theVacating state and thecondor_starterprocess controlling the job will
send it theKillSig defined for the job (SIGTERM by default). This allows the COD job to catch the signal and do
whatever final work is required to exit cleanly.

HTCondor Version 8.6.4 Manual

4.3.4. Managing COD Resource Claims 557

However, if the program is stuck or if the user does not want togive the application time to clean itself up, the user
may use the-fast option to tell thecondor_starterto quickly kill the job and all its descendants using SIGKILL. In
this case the COD claim goes into theKilling state. For example:

condor_cod_deactivate -id "<claim_id>" -fast

In either case, once the COD job has finally exited, the COD claim will go into theIdle state and will be available
for future COD applications. If there are no other active CODjobs on the same resource, the resource would become
available for batch HTCondor jobs. Whenever the user wishesto spawn another COD application, they can reuse this
idle COD claim by using the same claim ID, without having to gothrough the process of runningcondor_cod_request.

If the user attempts acondor_cod_deactivaterequest on a COD claim that is neitherRunning norSuspended ,
thecondor_codtool exits with an error message.

Release

If users no longer wish to use a given COD claim, they can release the claim with thecondor_cod_releasecommand.
If there is a COD job running on the claim, the job will first be shut down (as ifcondor_cod_deactivatewas used), and
then the claim itself is removed from the resource and the claim ID is destroyed. Further attempts to use the claim ID
for any COD commands will fail.

The condor_cod_releasecommand always prints out the state the COD claim was in when the request was re-
ceived. This way, users can know what state a given COD application was in when the claim was destroyed.

Like most COD commands,condor_cod_releaserequires the claim ID to be specified using-id. In addition,
condor_cod_releasesupports the-fast option (described above in the section aboutcondor_cod_deactivate). If there
is a job running or suspended on the claim when it is released with condor_cod_release -fast , the job will
be immediately killed. If-fast is not specified, the default behavior is to use a graceful shutdown, sending whatever
signal is specified in theKillSig attribute for the job (SIGTERM by default).

Delegate proxy

In some cases, a user will want to delegate a copy of their usercredentials (in the form of an x509 proxy) to the
machine where one of their COD jobs will run. For example, sites wishing to spawn thecondor_starterusing glexec
will need a copy of this credential before the claim can be activated. Therefore, beginning with HTCondor version
6.9.2, COD users have access to a the commanddelegate_proxy . If users do not specifically require this proxy
delegation, this command should not be used and the rest of this section can be skipped.

Thedelegate_proxy command optionally takes a-x509proxyargument to specify the path to the proxy file
to use. Otherwise, it uses the same discovery logic thatcondor_submituses to find the user’s currently active proxy.

Just like every other COD command (exceptrequest), this command requires a valid COD claim id (specified
with -id) to indicate what COD claim you wish to delegate the credentials to.

This command can only be sent to idle COD claims, so it should be done beforeactivate is run for the first
time. However, once a proxy has been delegated, it can be reused by successive claim activations, so normally this

HTCondor Version 8.6.4 Manual

4.3.5. Limitations of COD Support in HTCondor 558

step only has to happen once, not before every activate. If a proxy is going to expire, and a new one should be sent,
this should only happen after the existing COD claim has beendeactivated.

4.3.5 Limitations of COD Support in HTCondor

HTCondor’s support for COD has a few limitations:

• Applications and data must be pre-staged at a given machine.

• There is no way to define limits for how long a given COD claim can be active and how often it is run.

• There is no accounting done for applications run under COD claims. Therefore, use of a lot of COD resources
in a given HTCondor pool does not adversely affect user priority.

• COD claims are not persistent on a givencondor_startddaemon.

• HTCondor does not provide a mechanism to parallelize a graphic application to take advantage of COD. The
HTCondor Team is not in the business of developing applications, we only provide mechanisms to execute them.

4.4 Hooks

A hookis an external program or script invoked by HTCondor.

Job hooks that fetch work allow sites to write their own programs or scripts, and allow HTCondor to invoke these
hooks at the right moments to accomplish the desired outcome. This eliminates the expense of the matchmaking and
scheduling provided by thecondor_scheddand thecondor_negotiator, although at the price of the flexibility they offer.
Therefore, job hooks that fetch work allow HTCondor to more easily and directly interface with external scheduling
systems.

Hooks may also behave as a Job Router.

The Daemon ClassAd hooks permit thecondor_startdand thecondor_schedddaemons to execute hooks once or
on a periodic basis.

Note that standard universe jobs execute differentcondor_starterandcondor_shadowdaemons that do not imple-
ment any hook mechanisms.

4.4.1 Job Hooks That Fetch Work

In the past, HTCondor has always sent work to the execute machines by pushing jobs to thecondor_startddaemon,
either from thecondor_schedddaemon or viacondor_cod. Beginning with the HTCondor version 7.1.0, thecon-
dor_startddaemon now has the ability to pull work by fetching jobs via a system of plug-ins or hooks. Any site can
configure a set of hooks to fetch work, completely outside of the usual HTCondor matchmaking system.

HTCondor Version 8.6.4 Manual

4.4.1. Job Hooks That Fetch Work 559

A projected use of the hook mechanism implements what might be termed aglide-in factory, especially where
the factory is behind a firewall. Without using the hook mechanism to fetch work, a glide-incondor_startddaemon
behind a firewall depends on CCB to help it listen and eventually receive work pushed from elsewhere. With the hook
mechanism, a glide-incondor_startddaemon behind a firewall uses the hook to pull work. The hook needs only an
outbound network connection to complete its task, thereby being able to operate from behind the firewall, without the
intervention of CCB.

Periodically, each execution slot managed by acondor_startdwill invoke a hook to see if there is any work that
can be fetched. Whenever this hook returns a valid job, thecondor_startdwill evaluate the current state of the slot and
decide if it should start executing the fetched work. If the slot is unclaimed and theStart expression evaluates to
True , a new claim will be created for the fetched job. If the slot isclaimed, thecondor_startdwill evaluate theRank
expression relative to the fetched job, compare it to the value ofRank for the currently running job, and decide if the
existing job should be preempted due to the fetched job having a higher rank. If the slot is unavailable for whatever
reason, thecondor_startdwill refuse the fetched job and ignore it. Either way, once the condor_startddecides what
it should do with the fetched job, it will invoke another hookto reply to the attempt to fetch work, so that the external
system knows what happened to that work unit.

If the job is accepted, a claim is created for it and the slot moves into the Claimed state. As soon as this happens,
thecondor_startdwill spawn acondor_starterto manage the execution of the job. At this point, from the perspective
of thecondor_startd, this claim is just like any other. The usual policy expressions are evaluated, and if the job needs
to be suspended or evicted, it will be. If a higher-ranked jobbeing managed by acondor_scheddis matched with the
slot, that job will preempt the fetched work.

Thecondor_starteritself can optionally invoke additional hooks to help manage the execution of the specific job.
There are hooks to prepare the execution environment for thejob, periodically update information about the job as it
runs, notify when the job exits, and to take special actions when the job is being evicted.

Assuming there are no interruptions, the job completes, andthecondor_starterexits, thecondor_startdwill invoke
the hook to fetch work again. If another job is available, theexisting claim will be reused and a newcondor_starteris
spawned. If the hook returns that there is no more work to perform, the claim will be evicted, and the slot will return
to the Owner state.

Work Fetching Hooks Invoked by HTCondor

There are a handful of hooks invoked by HTCondor related to fetching work, some of which are called by thecon-
dor_startdand others by thecondor_starter. Each hook is described, including when it is invoked, what task it is
supposed to accomplish, what data is passed to the hook, whatoutput is expected, and, when relevant, the exit status
expected.

Hook: Fetch Work The hook defined by the configuration variable <Keyword>_HOOK_FETCH_WORKis invoked whenever the
condor_startdwants to see if there is any work to fetch. There is a related configuration variable called
FetchWorkDelay which determines how long thecondor_startdwill wait between attempts to fetch work,
which is described in detail in within section 4.4.1 on page 563. <Keyword>_HOOK_FETCH_WORKis the
most important hook in the whole system, and is the only hook that must be defined for any of the othercon-
dor_startdhooks to operate.

The job ClassAd returned by the hook needs to contain enough information for thecondor_starterto eventually

HTCondor Version 8.6.4 Manual

4.4.1. Job Hooks That Fetch Work 560

spawn the work. The required and optional attributes in thisClassAd are identical to the ones described for
Computing on Demand (COD) jobs in section 4.3.3 on COD Application Attributes, page 548.

Command-line arguments passed to the hookNone.

Standard input given to the hook ClassAd of the slot that is looking for work.

Expected standard output from the hook ClassAd of a job that can be run. If there is no work, the hook
should return no output.

User id that the hook runs as The <Keyword>_HOOK_FETCH_WORKhook runs with the same privileges
as thecondor_startd. When Condor was started asroot , this is usually thecondor user, or the user
specified in theCONDOR_IDSconfiguration variable.

Exit status of the hook Ignored.

Hook: Reply Fetch The hook defined by the configuration variable <Keyword>_HOOK_REPLY_FETCHis invoked whenever
<Keyword>_HOOK_FETCH_WORKreturns data and thecondor_startddecides if it is going to accept the
fetched job or not.

Thecondor_startdwill not wait for this hook to return before taking other actions, and it ignores all output. The
hook is simply advisory, and it has no impact on the behavior of the condor_startd.

Command-line arguments passed to the hookEither the stringaccept or reject .

Standard input given to the hook A copy of the job ClassAd and the slot ClassAd (separated by the string
----- and a new line).

Expected standard output from the hook None.

User id that the hook runs as The<Keyword>_HOOK_REPLY_FETCHhook runs with the same privileges
as thecondor_startd. When Condor was started asroot , this is usually thecondor user, or the user
specified in theCONDOR_IDSconfiguration variable.

Exit status of the hook Ignored.

Hook: Evict Claim The hook defined by the configuration variable <Keyword>_HOOK_EVICT_CLAIM is invoked whenever the
condor_startdneeds to evict a claim representing fetched work.

Thecondor_startdwill not wait for this hook to return before taking other actions, and ignores all output. The
hook is simply advisory, and has no impact on the behavior of thecondor_startd.

Command-line arguments passed to the hookNone.

Standard input given to the hook A copy of the job ClassAd and the slot ClassAd (separated by the string
----- and a new line).

Expected standard output from the hook None.

User id that the hook runs as The<Keyword>_HOOK_EVICT_CLAIMhook runs with the same privileges
as thecondor_startd. When Condor was started asroot , this is usually thecondor user, or the user
specified in theCONDOR_IDSconfiguration variable.

Exit status of the hook Ignored.

HTCondor Version 8.6.4 Manual

4.4.1. Job Hooks That Fetch Work 561

Hook: Prepare Job The hook defined by the configuration variable <Keyword>_HOOK_PREPARE_JOBis invoked by thecon-
dor_starterbefore a job is going to be run. This hook provides a chance to execute commands to set up the job
environment, for example, to transfer input files.

The condor_starterwaits until this hook returns before attempting to execute the job. If the hook returns a
non-zero exit status, thecondor_starterwill assume an error was reached while attempting to set up the job
environment and abort the job.

Command-line arguments passed to the hookNone.

Standard input given to the hook A copy of the job ClassAd.

Expected standard output from the hook A set of attributes to insert or update into the job ad. For example,
changing theCmdattribute to a quoted string changes the executable to be run.

User id that the hook runs as The<Keyword>_HOOK_PREPARE_JOBhook runs with the same privileges
as the job itself. If slot users are defined, the hook runs as the slot user, just as the job does.

Exit status of the hook 0 for success preparing the job, any non-zero value on failure.

Hook: Update Job Info The hook defined by the configuration variable<Keyword>_HOOK_UPDATE_JOB_INFOis invoked period-
ically during the life of the job to update information aboutthe status of the job. When the job is first spawned,
thecondor_starterwill invoke this hook afterSTARTER_INITIAL_UPDATE_INTERVAL seconds (defaults
to 8). Thereafter, thecondor_starterwill invoke the hook everySTARTER_UPDATE_INTERVALseconds
(defaults to 300, which is 5 minutes).

Thecondor_starterwill not wait for this hook to return before taking other actions, and ignores all output. The
hook is simply advisory, and has no impact on the behavior of thecondor_starter.

Command-line arguments passed to the hookNone.

Standard input given to the hook A copy of the job ClassAd that has been augmented with additional at-
tributes describing the current status and execution behavior of the job.

The additional attributes included inside the job ClassAd are:

JobState The current state of the job. Can be either"Running" or "Suspended" .

JobPid The process identifier for the initial job directly spawned by thecondor_starter.

NumPids The number of processes that the job has currently spawned.

JobStartDate The epoch time when the job was first spawned by thecondor_starter.

RemoteSysCpu The total number of seconds of system CPU time (the time spentat system calls) the
job has used.

RemoteUserCpu The total number of seconds of user CPU time the job has used.

ImageSize The memory image size of the job in Kbytes.

Expected standard output from the hook None.

User id that the hook runs as The<Keyword>_HOOK_UPDATE_JOB_INFOhook runs with the same priv-
ileges as the job itself.

Exit status of the hook Ignored.

HTCondor Version 8.6.4 Manual

4.4.1. Job Hooks That Fetch Work 562

Hook: Job Exit The hook defined by the configuration variable<Keyword>_HOOK_JOB_EXIT is invoked by thecon-
dor_starterwhenever a job exits, either on its own or when being evicted from an execution slot.

Thecondor_starterwill wait for this hook to return before taking any other actions. In the case of jobs that are
being managed by acondor_shadow, this hook is invoked before thecondor_starterdoes its own optional file
transfer back to the submission machine, writes to the localjob event log file, or notifies thecondor_shadow
that the job has exited.

Command-line arguments passed to the hookA string describing how the job exited:

– exit The job exited or died with a signal on its own.

– remove The job was removed withcondor_rmor as the result of user job policy expressions (for
example,PeriodicRemove).

– hold The job was held withcondor_hold or the user job policy expressions (for example,
PeriodicHold).

– evict The job was evicted from the execution slot for any other reason (PREEMPTevaluated to
TRUE in thecondor_startd, condor_vacate, condor_off, etc).

Standard input given to the hook A copy of the job ClassAd that has been augmented with additional at-
tributes describing the execution behavior of the job and its final results.

The job ClassAd passed to this hook contains all of the extra attributes described above for
<Keyword>_HOOK_UPDATE_JOB_INFO, and the following additional attributes that are only present
once a job exits:

ExitReason A human-readable string describing why the job exited.

ExitBySignal A boolean indicating if the job exited due to being killed by asignal, or if it exited with
an exit status.

ExitSignal If ExitBySignal is true, the signal number that killed the job.

ExitCode If ExitBySignal is false, the integer exit code of the job.

JobDuration The number of seconds that the job ran during this invocation.

Expected standard output from the hook None.

User id that the hook runs as The <Keyword>_HOOK_JOB_EXIT hook runs with the same privileges as
the job itself.

Exit status of the hook Ignored.

Keywords to Define Job Fetch Hooks in the HTCondor Configuration files

Hooks are defined in the HTCondor configuration files by prefixing the name of the hook with a keyword. This way,
a given machine can have multiple sets of hooks, each set identified by a specific keyword.

Each slot on the machine can define a separate keyword for the set of hooks that should be
used with SLOT<N>_JOB_HOOK_KEYWORD. For example, on slot 1, the variable name will be called
SLOT1_JOB_HOOK_KEYWORD. If the slot-specific keyword is not defined, thecondor_startdwill use a global key-
word as defined bySTARTD_JOB_HOOK_KEYWORD.

HTCondor Version 8.6.4 Manual

4.4.1. Job Hooks That Fetch Work 563

Once a job is fetched via<Keyword>_HOOK_FETCH_WORK, thecondor_startdwill insert the keyword used to
fetch that job into the job ClassAd asHookKeyword . This way, the same keyword will be used to select the hooks in-
voked by thecondor_starterduring the actual execution of the job. However, theSTARTER_JOB_HOOK_KEYWORD
can be defined to force thecondor_starterto always use a given keyword for its own hooks, instead of looking the job
ClassAd for aHookKeyword attribute.

For example, the following configuration defines two sets of hooks, and on a machine with 4 slots, 3 of the slots
use the global keyword for running work from a database-driven system, and one of the slots uses a custom keyword
to handle work fetched from a web service.

Most slots fetch and run work from the database system.
STARTD_JOB_HOOK_KEYWORD = DATABASE

Slot4 fetches and runs work from a web service.
SLOT4_JOB_HOOK_KEYWORD = WEB

The database system needs to both provide work and know the r eply
for each attempted claim.
DATABASE_HOOK_DIR = /usr/local/condor/fetch/database
DATABASE_HOOK_FETCH_WORK = $(DATABASE_HOOK_DIR)/fetch_work.php
DATABASE_HOOK_REPLY_FETCH = $(DATABASE_HOOK_DIR)/reply_fetch.php

The web system only needs to fetch work.
WEB_HOOK_DIR = /usr/local/condor/fetch/web
WEB_HOOK_FETCH_WORK = $(WEB_HOOK_DIR)/fetch_work.php

The keywords"DATABASE" and "WEB" are completely arbitrary, so each site is encouraged to use different
(more specific) names as appropriate for their own needs.

Defining the FetchWorkDelay Expression

There are two events that trigger thecondor_startdto attempt to fetch new work:

• thecondor_startdevaluates its own state

• thecondor_starterexits after completing some fetched work

Even if a given compute slot is already busy running other work, it is possible that if it fetched new work, the
condor_startdwould prefer this newly fetched work (via theRank expression) over the work it is currently running.
However, thecondor_startdfrequently evaluates its own state, especially when a slot is claimed. Therefore, admin-
istrators can define a configuration variable which controlshow long thecondor_startdwill wait between attempts to
fetch new work. This variable is calledFetchWorkDelay .

TheFetchWorkDelay expression must evaluate to an integer, which defines the number of seconds since the last
fetch attempt completed before thecondor_startdwill attempt to fetch more work. However, as a ClassAd expression
(evaluated in the context of the ClassAd of the slot considering if it should fetch more work, and the ClassAd of the
currently running job, if any), the length of the delay can bebased on the current state the slot and even the currently
running job.

HTCondor Version 8.6.4 Manual

4.4.1. Job Hooks That Fetch Work 564

For example, a common configuration would be to always wait 5 minutes (300 seconds) between attempts to fetch
work, unless the slot is Claimed/Idle, in which case thecondor_startdshould fetch immediately:

FetchWorkDelay = ifThenElse(State == "Claimed" && Activit y == "Idle", 0, 300)

If the condor_startdwants to fetch work, but the time since the last attempted fetch is shorter than the current
value of the delay expression, thecondor_startdwill set a timer to fetch as soon as the delay expires.

If this expression is not defined, thecondor_startdwill default to a five minute (300 second) delay between all
attempts to fetch work.

Example Hook: Specifying the Executable at Execution Time

The availability of multiple versions of an application leads to the need to specify one of the versions. As an example,
consider that the java universe utilizes a single, fixed JVM.There may be multiple JVMs available, and the HTCondor
job may need to make the choice of JVM version. The use of a job hook solves this problem. The job does not
use the java universe, and instead uses the vanilla universein combination with a prepare job hook to overwrite the
Cmdattribute of the job ClassAd. This attribute is the name of the executable thecondor_starterdaemon will invoke,
thereby selecting the specific JVM installation.

In the configuration of the execute machine:

JAVA5_HOOK_PREPARE_JOB = $(LIBEXEC)/java5_prepare_hoo k

With this configuration, a job that sets theHookKeyword attribute with

+HookKeyword = "JAVA5"

in the submit description file causes thecondor_starter will run the hook specified by
JAVA5_HOOK_PREPARE_JOBbefore running this job. Note that the double quote marks arerequired to
correctly define the attribute. Any output from this hook is an update to the job ClassAd. Therefore, the hook that
changes the executable may be

#!/bin/sh

Read and discard the job ClassAd
cat > /dev/null
echo 'Cmd = "/usr/java/java5/bin/java"'

If some machines in your pool have this hook and others do not,this fact should be advertised. Add to the
configuration of every execute machine that has the hook:

HTCondor Version 8.6.4 Manual

4.4.2. Hooks for a Job Router 565

HasJava5PrepareHook = True
STARTD_ATTRS = HasJava5PrepareHook $(STARTD_ATTRS)

The submit description file for this example job may be

universe = vanilla
executable = /usr/bin/java
arguments = Hello
match with a machine that has the hook
requirements = HasJava5PrepareHook

should_transfer_files = always
when_to_transfer_output = on_exit
transfer_input_files = Hello.class

output = hello.out
error = hello.err
log = hello.log

+HookKeyword="JAVA5"
queue

Note that the requirements command ensures that this job matches with a machine that has
JAVA5_HOOK_PREPARE_JOBdefined.

4.4.2 Hooks for a Job Router

Job Router Hooks allow for an alternate transformation and/or monitoring than thecondor_job_routerdaemon imple-
ments. Routing is still managed by thecondor_job_routerdaemon, but if the Job Router Hooks are specified, then
these hooks will be used to transform and monitor the job instead.

Job Router Hooks are similar in concept to Fetch Work Hooks, but they are limited in their scope. A hook is an
external program or script invoked by thecondor_job_routerdaemon at various points during the life cycle of a routed
job.

The following sections describe how and when these hooks areused, what hooks are invoked at various stages of
the job’s life, and how to configure HTCondor to use these Hooks.

Hooks Invoked for Job Routing

The Job Router Hooks allow for replacement of the transformation engine used by HTCondor for routing a job. Since
the external transformation engine is not controlled by HTCondor, additional hooks provide a means to update the job’s
status in HTCondor, and to clean up upon exit or failure cases. This allows one job to be transformed to just about any
other type of job that HTCondor supports, as well as to use execution nodes not normally available to HTCondor.

It is important to note that if the Job Router Hooks are utilized, then HTCondor will not ignore or work around a
failure in any hook execution. If a hook is configured, then HTCondor assumes its invocation is required and will not

HTCondor Version 8.6.4 Manual

4.4.2. Hooks for a Job Router 566

continue by falling back to a part of its internal engine. Forexample, if there is a problem transforming the job using
the hooks, HTCondor will not fall back on its transformationaccomplished without the hook to process the job.

There are 2 ways in which the Job Router Hooks may be enabled. Ajob’s submit description file may cause the
hooks to be invoked with

+HookKeyword = "HOOKNAME"

Adding this attribute to the job’s ClassAd causes thecondor_job_routerdaemon on the submit machine to invoke
hooks prefixed with the defined keyword.HOOKNAMEis a string chosen as an example; any string may be used.

The job’s ClassAd attribute definition ofHookKeyword takes precedence, but if not present, hooks may be
enabled by defining on the submit machine the configuration variable

JOB_ROUTER_HOOK_KEYWORD = HOOKNAME

Like the example attribute above,HOOKNAMErepresents a chosen name for the hook, replaced as desired orappropri-
ate.

There are 4 hooks that the Job Router can be configured to use. Each hook will be described below along with data
passed to the hook and expected output. All hooks must exit successfully.

Hook: Translate The hook defined by the configuration variable <Keyword>_HOOK_TRANSLATE_JOBis invoked when the
Job Router has determined that a job meets the definition for aroute. This hook is responsible for doing the
transformation of the job and configuring any resources thatare external to HTCondor if applicable.

Command-line arguments passed to the hookNone.

Standard input given to the hook The first line will be the route that the job matched as defined in HTCon-
dor’s configuration files followed by the job ClassAd, separated by the string"------" and a new line.

Expected standard output from the hook The transformed job.

Exit status of the hook 0 for success, any non-zero value on failure.

Hook: Update Job Info The hook defined by the configuration variable<Keyword>_HOOK_UPDATE_JOB_INFOis invoked to pro-
vide status on the specified routed job when the Job Router polls the status of routed jobs at intervals set by
JOB_ROUTER_POLLING_PERIOD.

Command-line arguments passed to the hookNone.

Standard input given to the hook The routed job ClassAd that is to be updated.

Expected standard output from the hook The job attributes to be updated in the routed job, or nothing, if
there was no update. To prevent clashing with HTCondor’s management of job attributes, only attributes
that are not managed by HTCondor should be output from this hook.

Exit status of the hook 0 for success, any non-zero value on failure.

Hook: Job Finalize The hook defined by the configuration variable <Keyword>_HOOK_JOB_FINALIZE is invoked when the
Job Router has found that the job has completed. Any output from the hook is treated as an update to the source
job.

HTCondor Version 8.6.4 Manual

4.4.3. Daemon ClassAd Hooks 567

Command-line arguments passed to the hookNone.

Standard input given to the hook The source job ClassAd, followed by the routed copy Classad that com-
pleted, separated by the string"------" and a new line.

Expected standard output from the hook An updated source job ClassAd, or nothing if there was no update.

Exit status of the hook 0 for success, any non-zero value on failure.

Hook: Job Cleanup The hook defined by the configuration variable <Keyword>_HOOK_JOB_CLEANUPis invoked when the Job
Router finishes managing the job. This hook will be invoked regardless of whether the job completes success-
fully or not, and must exit successfully.

Command-line arguments passed to the hookNone.

Standard input given to the hook The job ClassAd that the Job Router is done managing.

Expected standard output from the hook None.

Exit status of the hook 0 for success, any non-zero value on failure.

4.4.3 Daemon ClassAd Hooks

Overview

TheDaemon ClassAd Hookmechanism is used to run executables (called jobs) directlyfrom thecondor_startd
andcondor_schedddaemons. The output from these jobs is incorporated into themachine ClassAd generated by the
respective daemon. This mechanism and associated jobs havebeen identified by various names, including theStartd
Cron, dynamic attributes, and a distribution of executables collectively known asHawkeye.

Pool management tasks can be enhanced by using a daemon’s ability to periodically run executables. The executa-
bles are expected to generate ClassAd attributes as their output; these ClassAds are then incorporated into the machine
ClassAd. Policy expressions can then reference dynamic attributes (created by the ClassAd hook jobs) in the machine
ClassAd.

Job output

The output of the job is incorporated into one or more ClassAds when the job exits. When the job outputs the
special line:

- update:true

the output of the job is merged into all proper ClassAds, and an update goes to thecondor_collectordaemon.

As of version 8.3.0, it is possible for aStartd Cronjob (but not aSchedd Cronjob) to define multiple ClassAds,
using the mechanism defined below:

HTCondor Version 8.6.4 Manual

4.4.3. Daemon ClassAd Hooks 568

• An output line starting with’-’ has always indicated end-of-ClassAd. The’-’ can now be followed by a
uniqueness tag to indicate the name of the ad that should be replaced by the new ad. This name is joined to the
name of theStartd Cronjob to produced a full name for the ad. This allows a singleStartd Cronjob to return
multiple ads by giving each a unique name, and to replace multiple ads by using the same unique name as a pre-
vious invocation. The optional uniqueness tag can also be followed by the optional keywordupdate:<bool> ,
which can be used to override theStartd Cronconfiguration and suppress or force immediate updates.

In other words, the syntax is:

- [name] [update: bool]

• Each ad can contain one of four possible attributes to control what slot ads the ad is merged into when the
condor_startdsends updates to the collector. These attributes are, in order of highest to lower priority (in other
words, ifSlotMergeConstraint matches, the other attributes are not considered, and so on):

– SlotMergeConstraintexpression: the current ad is merged into all slot ads for which this expression is
true. The expression is evaluated with the slot ad as the TARGET ad.

– SlotName|Namestring: the current ad is merged into all slots whoseNameattributes match the value of
SlotName up to the length ofSlotName .

– SlotTypeId integer: the current ad is merged into all ads that have the same valuefor theirSlotTypeId
attribute.

– SlotId integer: the current ad is merged into all ads that have the same valuefor theirSlotId attribute.

For example, if theStartd Cronjob returns:

Value=1
SlotId=1
-s1
Value=2
SlotId=2
-s2
Value=10
- update:true

it will set Value=10 for all slots except slot1 and slot2. On those slots it will set Value=1 andValue=2
respectively. It will also send updates to the collector immediately.

Configuration

Configuration variables related to Daemon ClassAd Hooks aredefined in section 3.5.34.

Here is a complete configuration example. It defines all threeof the available types of jobs: ones that use the
condor_startd, benchmark jobs, and ones that use thecondor_schedd.

#
Startd Cron Stuff

HTCondor Version 8.6.4 Manual

4.4.3. Daemon ClassAd Hooks 569

#
auxiliary variable to use in identifying locations of file s
MODULES = $(ROOT)/modules

STARTD_CRON_CONFIG_VAL = $(RELEASE_DIR)/bin/condor_co nfig_val
STARTD_CRON_MAX_JOB_LOAD = 0.2
STARTD_CRON_JOBLIST =

Test job
STARTD_CRON_JOBLIST = $(STARTD_CRON_JOBLIST) test
STARTD_CRON_TEST_MODE = OneShot
STARTD_CRON_TEST_RECONFIG_RERUN = True
STARTD_CRON_TEST_PREFIX = test_
STARTD_CRON_TEST_EXECUTABLE = $(MODULES)/test
STARTD_CRON_TEST_KILL = True
STARTD_CRON_TEST_ARGS = abc 123
STARTD_CRON_TEST_SLOTS = 1
STARTD_CRON_TEST_JOB_LOAD = 0.01

job 'date'
STARTD_CRON_JOBLIST = $(STARTD_CRON_JOBLIST) date
STARTD_CRON_DATE_MODE = Periodic
STARTD_CRON_DATE_EXECUTABLE = $(MODULES)/date
STARTD_CRON_DATE_PERIOD = 15s
STARTD_CRON_DATE_JOB_LOAD = 0.01

Job 'foo'
STARTD_CRON_JOBLIST = $(STARTD_CRON_JOBLIST) foo
STARTD_CRON_FOO_EXECUTABLE = $(MODULES)/foo
STARTD_CRON_FOO_PREFIX = Foo
STARTD_CRON_FOO_MODE = Periodic
STARTD_CRON_FOO_PERIOD = 10m
STARTD_CRON_FOO_JOB_LOAD = 0.2

#
Benchmark Stuff
#
BENCHMARKS_JOBLIST = mips kflops

MIPS benchmark
BENCHMARKS_MIPS_EXECUTABLE = $(LIBEXEC)/condor_mips
BENCHMARKS_MIPS_JOB_LOAD = 1.0

KFLOPS benchmark
BENCHMARKS_KFLOPS_EXECUTABLE = $(LIBEXEC)/condor_kflo ps
BENCHMARKS_KFLOPS_JOB_LOAD = 1.0

#
Schedd Cron Stuff
#
SCHEDD_CRON_CONFIG_VAL = $(RELEASE_DIR)/bin/condor_co nfig_val
SCHEDD_CRON_JOBLIST =

Test job
SCHEDD_CRON_JOBLIST = $(SCHEDD_CRON_JOBLIST) test
SCHEDD_CRON_TEST_MODE = OneShot
SCHEDD_CRON_TEST_RECONFIG_RERUN = True
SCHEDD_CRON_TEST_PREFIX = test_

HTCondor Version 8.6.4 Manual

4.5. Logging in HTCondor 570

SCHEDD_CRON_TEST_EXECUTABLE = $(MODULES)/test
SCHEDD_CRON_TEST_PERIOD = 5m
SCHEDD_CRON_TEST_KILL = True
SCHEDD_CRON_TEST_ARGS = abc 123

4.5 Logging in HTCondor

HTCondor records many types of information in a variety of logs. Administration may require locating and using the
contents of a log to debug issues. Listed here are details of the logs, to aid in identification.

4.5.1 Job and Daemon Logs

job event log The job event log is an optional, chronological list of events that occur as a job runs. The job event
log is written on the submit machine. The submit descriptionfile for the job requests a job event log with the
submit commandlog. The log is created and remains on the submit machine. Contents of the log are detailed
in section 2.6.7. Examples of events are that the job is running, that the job is placed on hold, or that the job
completed.

daemon logsEach daemon configured to have a log writes events relevant tothat daemon. Each event written
consists of a timestamp and message. The name of the log file isset by the value of configuration variable
<SUBSYS>_LOG, where<SUBSYS>is replaced by the name of the daemon. The log is not permittedto grow
without bound; log rotation takes place after a configurablemaximum size or length of time is encountered.
This maximum is specified by configuration variableMAX_<SUBSYS>_LOG.

Which events are logged for a particular daemon are determined by the value of configuration variable
<SUBSYS>_DEBUG. The possible values for<SUBSYS>_DEBUGcategorize events, such that it is possible
to control the level and quantity of events written to the daemon’s log.

Configuration variables that affect daemon logs are

MAX_NUM_<SUBSYS>_LOG

TRUNC_<SUBSYS>_LOG_ON_OPEN

<SUBSYS>_LOG_KEEP_OPEN

<SUBSYS>_LOCK

FILE_LOCK_VIA_MUTEX

TOUCH_LOG_INTERVAL

LOGS_USE_TIMESTAMP

Daemon logs are often investigated to accomplish administrative debugging.condor_config_valcan be used to
determine the location and file name of the daemon log. For example, to display the location of the log for the
condor_collectordaemon, use

condor_config_val COLLECTOR_LOG

HTCondor Version 8.6.4 Manual

4.5.1. Job and Daemon Logs 571

job queue log The job queue log is a transactional representation of the current job queue. If thecondor_schedd
crashes, the job queue can be rebuilt using this log. The file name is set by configuration variable
JOB_QUEUE_LOG, and defaults to$(SPOOL)/job_queue.log .

Within the log, each transaction is identified with an integer value and followed where appropriate with other
values relevant to the transaction. To reduce the size of thelog and remove any transactions that are no longer
relevant, a copy of the log is kept by renaming the log at each time interval defined by configuration variable
QUEUE_CLEAN_INTERVAL, and then a new log is written with only current and relevant transactions.

Configuration variables that affect the job queue log are

SCHEDD_BACKUP_SPOOL

ROTATE_HISTORY_DAILY

ROTATE_HISTORY_MONTHLY

QUEUE_CLEAN_INTERVAL

MAX_JOB_QUEUE_LOG_ROTATIONS

condor_scheddaudit log The optionalcondor_scheddaudit log records user-initiated events that modify the job
queue, such as invocations ofcondor_submit, condor_rm, condor_holdandcondor_release. Each event has
a time stamp and a message that describes details of the event.

This log exists to help administrators track the activitiesof pool users.

The file name is set by configuration variableSCHEDD_AUDIT_LOG.

Configuration variables that affect the audit log are

MAX_SCHEDD_AUDIT_LOG

MAX_NUM_SCHEDD_AUDIT_LOG

condor_shared_portaudit log The optionalcondor_shared_portaudit log records connections made through the
DAEMON_SOCKET_DIR. Each record includes the source address, the socket file name, and the target pro-
cess’s PID, UID, GID, executable path, and command line.

This log exists to help administrators track the activitiesof pool users.

The file name is set by configuration variableSHARED_PORT_AUDIT_LOG.

Configuration variables that affect the audit log are

MAX_SHARED_PORT_AUDIT_LOG

MAX_NUM_SHARED_PORT_AUDIT_LOG

event log The event log is an optional, chronological list of events that occur for all jobs and all users. The events
logged are the same as those that would go into a job event log.The file name is set by configuration variable
EVENT_LOG. The log is created only if this configuration variable is set.

Configuration variables that affect the event log, setting details such as the maximum size to which this log may
grow and details of file rotation and locking are

EVENT_LOG_MAX_SIZE

EVENT_LOG_MAX_ROTATIONS

HTCondor Version 8.6.4 Manual

4.5.2. DAGMan Logs 572

EVENT_LOG_LOCKING

EVENT_LOG_FSYNC

EVENT_LOG_ROTATION_LOCK

EVENT_LOG_JOB_AD_INFORMATION_ATTRS

EVENT_LOG_USE_XML

accountant log The accountant log is a transactional representation of thecondor_negotiatordaemon’s database
of accounting information, which are user priorities. The file name of the accountant log is
$(SPOOL)/Accountantnew.log . Within the log, users are identified byusername@uid_domain .

To reduce the size and remove information that is no longer relevant, a copy of the log is made when its size
hits the number of bytes defined by configuration variableMAX_ACCOUNTANT_DATABASE_SIZE, and then
a new log is written in a more compact form.

Administrators can change user priorities kept in this log by using the command line toolcondor_userprio.

negotiator match log The negotiator match log is a second daemon log from thecondor_negotiatordaemon. Events
written to this log are those with debug level ofD_MATCH. The file name is set by configuration variable
NEGOTIATOR_MATCH_LOG, and defaults to$(LOG)/MatchLog .

history log This optional log contains information about all jobs that have been completed. It is written by the
condor_schedddaemon. The file name is$(SPOOL)/history .

Administrators can change view this historical information by using the command line toolcondor_history.

Configuration variables that affect the history log, setting details such as the maximum size to which this log
may grow are

ENABLE_HISTORY_ROTATION

MAX_HISTORY_LOG

MAX_HISTORY_ROTATIONS

4.5.2 DAGMan Logs

default node log A job event log of all node jobs within a single DAG. It is used to enforce the dependencies of the
DAG.

The file name is set by configuration variableDAGMAN_DEFAULT_NODE_LOG, and the full path name of this
file must be unique while any and all submitted DAGs and other jobs from the submit host run. The syntax
used in the definition of this configuration variable is different to enable the setting of a unique file name. See
section 3.5.24 for the complete definition.

Configuration variables that affect this log are

DAGMAN_ALWAYS_USE_NODE_LOG

the .dagman.out file A log created or appended to for each DAG submitted with timestamped events and ex-
tra information about the configuration applied to the DAG. The name of this log is formed by appending
.dagman.out to the name of the DAG input file. The file remains after the DAG completes.

HTCondor Version 8.6.4 Manual

4.5.2. DAGMan Logs 573

This log may be helpful in debugging what has happened in the execution of a DAG, as well as help to determine
the final state of the DAG.

Configuration variables that affect this log are

DAGMAN_VERBOSITY

DAGMAN_PENDING_REPORT_INTERVAL

the jobstate.log file This optional, machine-readable log enables automated monitoring of DAG. Sec-
tion 2.10.14 details this log.

HTCondor Version 8.6.4 Manual

CHAPTER

FIVE

Grid Computing

5.1 Introduction

A goal of grid computing is to allow the utilization of resources that span many administrative domains. An HTCondor
pool often includes resources owned and controlled by many different people. Yet collaborating researchers from
different organizations may not find it feasible to combine all of their computers into a single, large HTCondor pool.
HTCondor shines in grid computing, continuing to evolve with the field.

Due to the field’s rapid evolution, HTCondor has its own native mechanisms for grid computing as well as devel-
oping interactions with other grid systems.

Flockingis a native mechanism that allows HTCondor jobs submitted from within one pool to execute on another,
separate HTCondor pool. Flocking is enabled by configuration within each of the pools. An advantage to flocking
is that jobs migrate from one pool to another based on the availability of machines to execute jobs. When the local
HTCondor pool is not able to run the job (due to a lack of currently available machines), the job flocks to another
pool. A second advantage to using flocking is that the user (who submits the job) does not need to be concerned with
any aspects of the job. The user’s submit description file (and the job’suniverse) are independent of the flocking
mechanism.

Other forms of grid computing are enabled by using thegrid universe and further specified with thegrid_type.
For any HTCondor job, the job is submitted on a machine in the local HTCondor pool. The location where it is
executed is identified as the remote machine or remote resource. These various grid computing mechanisms offered
by HTCondor are distinguished by the software running on theremote resource.

When HTCondor is running on the remote resource, and the desired grid computing mechanism is to move the job
from the local pool’s job queue to the remote pool’s job queue, it is called HTCondor-C. The job is submitted using
thegrid universe, and thegrid_type is condor. HTCondor-C jobs have the advantage that once the job has moved
to the remote pool’s job queue, a network partition does not affect the execution of the job. A further advantage of

574

5.2. Connecting HTCondor Pools with Flocking 575

HTCondor-C jobs is that theuniverseof the job at the remote resource is not restricted.

When other middleware is running on the remote resource, such as Globus, HTCondor can still submit and manage
jobs to be executed on remote resources. Agrid universe job, with agrid_type of gt2 or gt5 calls on Globus software
to execute the job on a remote resource. Like HTCondor-C jobs, a network partition does not affect the execution of
the job. The remote resource must have Globus software running.

HTCondor permits the temporary addition of a Globus-controlled resource to a local pool. This is calledglidein.
Globus software is utilized to execute HTCondor daemons on the remote resource. The remote resource appears to
have joined the local HTCondor pool. A user submitting a job may then explicitly specify the remote resource as the
execution site of a job.

Starting with HTCondor Version 6.7.0, thegrid universe replaces theglobusuniverse. Further specification of a
grid universe job is done within thegrid_resourcecommand in a submit description file.

5.2 Connecting HTCondor Pools with Flocking

Flocking is HTCondor’s way of allowing jobs that cannot immediately run within the pool of machines where the job
was submitted to instead run on a different HTCondor pool. Ifa machine within HTCondor pool A can send jobs to
be run on HTCondor pool B, then we say that jobs from machine A flock to pool B. Flocking can occur in a one way
manner, such as jobs from machine A flocking to pool B, or it canbe set up to flock in both directions. Configuration
variables allow thecondor_schedddaemon (which runs on each machine that may submit jobs) to implement flocking.

NOTE: Flocking to pools which use HTCondor’s high availability mechanisms is not advised. See section 3.13.2
for a discussion of the issues.

5.2.1 Flocking Configuration

The simplest flocking configuration sets a few configuration variables. If jobs from machine A are to flock to pool B,
then in machine A’s configuration, set the following configuration variables:

FLOCK_TO is a comma separated list of the central manager machines of the pools that jobs from machine A may
flock to.

FLOCK_COLLECTOR_HOSTS is the list ofcondor_collectordaemons within the pools that jobs from machine A
may flock to. In most cases, it is the same asFLOCK_TO, and it would be defined with

FLOCK_COLLECTOR_HOSTS = $(FLOCK_TO)

FLOCK_NEGOTIATOR_HOSTS is the list ofcondor_negotiatordaemons within the pools that jobs from machine A
may flock to. In most cases, it is the same asFLOCK_TO, and it would be defined with

FLOCK_NEGOTIATOR_HOSTS = $(FLOCK_TO)

HTCondor Version 8.6.4 Manual

5.2.2. Job Considerations 576

HOSTALLOW_NEGOTIATOR_SCHEDD provides an access level and authorization list for thecondor_schedddae-
mon to allow negotiation (for security reasons) with the machines within the pools that jobs from machine A
may flock to. This configuration variable will not likely needto change from its default value as given in the
sample configuration:

Now, with flocking we need to let the SCHEDD trust the other
negotiators we are flocking with as well. You should norma lly
not have to change this either.

ALLOW_NEGOTIATOR_SCHEDD = $(CONDOR_HOST), $(FLOCK_NEGOTIATOR_HOSTS), $(IP_ADDRESS)

This example configuration presumes that thecondor_collectorandcondor_negotiatordaemons are running on
the same machine. See section 3.8.7 on page 433 for a discussion of security macros and their use.

The configuration macros that must be set in pool B are ones that authorize jobs from machine A to flock to pool
B.

The configuration variables are more easily set by introducing a list of machines where the jobs may flock from.
FLOCK_FROMis a comma separated list of machines, and it is used in the default configuration setting of the security
macros that do authorization:

ALLOW_WRITE_COLLECTOR = $(ALLOW_WRITE), $(FLOCK_FROM)
ALLOW_WRITE_STARTD = $(ALLOW_WRITE), $(FLOCK_FROM)
ALLOW_READ_COLLECTOR = $(ALLOW_READ), $(FLOCK_FROM)
ALLOW_READ_STARTD = $(ALLOW_READ), $(FLOCK_FROM)

Wild cards may be used when setting theFLOCK_FROMconfiguration variable. For example,* .cs.wisc.edu
specifies all hosts from thecs.wisc.edu domain.

Further, if using Kerberos or GSI authentication, then the setting becomes:

ALLOW_NEGOTIATOR = condor@$(UID_DOMAIN)/$(COLLECTOR_HOST)

To enable flocking in both directions, consider each direction separately, following the guidelines given.

5.2.2 Job Considerations

A particular job will only flock to another pool when it cannotcurrently run in the current pool.

The submission of jobs other than standard universe jobs must consider the location of input, output and error
files. The common case will be that machines within separate pools do not have a shared file system. Therefore, when
submitting jobs, the user will need to enable file transfer mechanisms. These mechanisms are discussed in section 2.5.9
on page 32.

HTCondor Version 8.6.4 Manual

5.3. The Grid Universe 577

5.3 The Grid Universe

5.3.1 HTCondor-C, The condor Grid Type

HTCondor-C allows jobs in one machine’s job queue to be movedto another machine’s job queue. These machines
may be far removed from each other, providing powerful grid computation mechanisms, while requiring only HTCon-
dor software and its configuration.

HTCondor-C is highly resistant to network disconnections and machine failures on both the submission and remote
sides. An expected usage sets up Personal HTCondor on a laptop, submits some jobs that are sent to an HTCondor
pool, waits until the jobs are staged on the pool, then turns off the laptop. When the laptop reconnects at a later time,
any results can be pulled back.

HTCondor-C scales gracefully when compared with HTCondor’s flocking mechanism. The machine upon which
jobs are submitted maintains a single process and network connection to a remote machine, without regard to the
number of jobs queued or running.

HTCondor-C Configuration

There are two aspects to configuration to enable the submission and execution of HTCondor-C jobs. These two aspects
correspond to the endpoints of the communication: there is the machine from which jobs are submitted, and there is
the remote machine upon which the jobs are placed in the queue(executed).

Configuration of a machine from which jobs are submitted requires a few extra configuration variables:

CONDOR_GAHP = $(SBIN)/condor_c-gahp
C_GAHP_LOG = /tmp/CGAHPLog.$(USERNAME)
C_GAHP_WORKER_THREAD_LOG = /tmp/CGAHPWorkerLog.$(USERNAME)
C_GAHP_WORKER_THREAD_LOCK = /tmp/CGAHPWorkerLock.$(USERNAME)

The acronym GAHP stands for Grid ASCII Helper Protocol. A GAHP server provides grid-related services for a
variety of underlying middle-ware systems. The configuration variableCONDOR_GAHPgives a full path to the GAHP
server utilized by HTCondor-C. The configuration variableC_GAHP_LOGdefines the location of the log that the
HTCondor GAHP server writes. The log for the HTCondor GAHP iswritten as the user on whose behalf it is running;
thus theC_GAHP_LOGconfiguration variable must point to a location the end user can write to.

A submit machine must also have acondor_collectordaemon to which thecondor_schedddaemon can submit a
query. The query is for the location (IP address and port) of the intended remote machine’scondor_schedddaemon.
This facilitates communication between the two machines. This condor_collectordoes not need to be the same
collector that the localcondor_schedddaemon reports to.

The machine upon which jobs are executed must also be configured correctly. This machine must be running a
condor_schedddaemon. Unless specified explicitly in a submit file,CONDOR_HOSTmust point to acondor_collector
daemon that it can write to, and the machine upon which jobs are submitted can read from. This facilitates communi-
cation between the two machines.

HTCondor Version 8.6.4 Manual

5.3.1. HTCondor-C, The condor Grid Type 578

An important aspect of configuration is the security configuration relating to authentication. HTCondor-C on
the remote machine relies on an authentication protocol to know the identity of the user under which to run a job.
The following is a working example of the security configuration for authentication. This authentication method,
CLAIMTOBE, trusts the identity claimed by a host or IP address.

SEC_DEFAULT_NEGOTIATION = OPTIONAL
SEC_DEFAULT_AUTHENTICATION_METHODS = CLAIMTOBE

Other working authentication methods are GSI, SSL, KERBEROS, and FS.

HTCondor-C Job Submission

Job submission of HTCondor-C jobs is the same as for any HTCondor job. Theuniverse is grid . The submit com-
mandgrid_resourcespecifies the remotecondor_schedddaemon to which the job should be submitted, and its value
consists of three fields. The first field is the grid type, whichis condor. The second field is the name of the remote
condor_schedddaemon. Its value is the same as thecondor_scheddClassAd attributeNameon the remote machine.
The third field is the name of the remote pool’scondor_collector.

The following represents a minimal submit description file for a job.

minimal submit description file for an HTCondor-C job
universe = grid
executable = myjob
output = myoutput
error = myerror
log = mylog

grid_resource = condor joe@remotemachine.example.com re motecentralmanager.example.com
+remote_jobuniverse = 5
+remote_requirements = True
+remote_ShouldTransferFiles = "YES"
+remote_WhenToTransferOutput = "ON_EXIT"
queue

The remote machine needs to understand the attributes of thejob. These are specified in the submit description
file using the ’+’ syntax, followed by the stringremote_. At a minimum, this will be the job’suniverseand the job’s
requirements. It is likely that other attributes specific to the job’suniverse(on the remote pool) will also be necessary.
Note that attributes set with ’+’ are inserted directly intothe job’s ClassAd. Specify attributes as they must appear in
the job’s ClassAd, not the submit description file. For example, theuniverse is specified using an integer assigned for
a job ClassAdJobUniverse . Similarly, place quotation marks around string expressions. As an example, a submit
description file would ordinarily contain

when_to_transfer_output = ON_EXIT

This must appear in the HTCondor-C job submit description file as

+remote_WhenToTransferOutput = "ON_EXIT"

HTCondor Version 8.6.4 Manual

5.3.1. HTCondor-C, The condor Grid Type 579

For convenience, the specific entries ofuniverse, remote_grid_resource, globus_rsl, andglobus_xml may be
specified asremote_commands without the leading ’+’. Instead of

+remote_universe = 5

the submit description file command may appear as

remote_universe = vanilla

Similarly, the command

+remote_gridresource = "condor schedd.example.com cm.ex ample.com"

may be given as

remote_grid_resource = condor schedd.example.com cm.exa mple.com

For the given example, the job is to be run as avanilla universe job at the remote pool. The (remote pool’s)
condor_schedddaemon is likely to place its job queue data on a local disk andexecute the job on another machine
within the pool of machines. This implies that the file systems for the resulting submit machine (the machine specified
by remote_schedd) and the execute machine (the machine that runs the job) willnotbe shared. Thus, the two inserted
ClassAd attributes

+remote_ShouldTransferFiles = "YES"
+remote_WhenToTransferOutput = "ON_EXIT"

are used to invoke HTCondor’s file transfer mechanism.

For communication betweencondor_schedddaemons on the submit and remote machines, the location of the
remotecondor_schedddaemon is needed. This information resides in thecondor_collectorof the remote machine’s
pool. The third field of thegrid_resourcecommand in the submit description file says whichcondor_collectorshould
be queried for the remotecondor_schedddaemon’s location. An example of this submit command is

grid_resource = condor schedd.example.com machine1.exam ple.com

If the remotecondor_collectoris not listening on the standard port (9618), then the port itis listening on needs to be
specified:

grid_resource = condor schedd.example.comd machine1.exa mple.com:12345

File transfer of a job’s executable,stdin , stdout , andstderr are automatic. When other files need to be
transferred using HTCondor’s file transfer mechanism (see section 2.5.9 on page 32), the mechanism is applied based
on the resulting job universe on the remote machine.

HTCondor Version 8.6.4 Manual

5.3.2. HTCondor-G, the gt2, and gt5 Grid Types 580

HTCondor-C Jobs Between Differing Platforms

HTCondor-C jobs given to a remote machine running Windows must specify the Windows domain of the remote
machine. This is accomplished by defining a ClassAd attribute for the job. Where the Windows domain is different at
the submit machine from the remote machine, the submit description file defines the Windows domain of the remote
machine with

+remote_NTDomain = "DomainAtRemoteMachine"

A Windows machine not part of a domain defines the Windows domain as the machine name.

5.3.2 HTCondor-G, the gt2, and gt5 Grid Types

HTCondor-G is the name given to HTCondor whengrid universe jobs are sent to grid resources utilizing Globus
software for job execution. The Globus Toolkit provides a framework for building grid systems and applications. See
the Globus Alliance web page at http://www.globus.org for descriptions and details of the Globus software.

HTCondor provides the same job management capabilities forHTCondor-G jobs as for other jobs. From HTCon-
dor, a user may effectively submit jobs, manage jobs, and have jobs execute on widely distributed machines.

It may appear that HTCondor-G is a simple replacement for theGlobus Toolkit’sglobusruncommand. However,
HTCondor-G does much more. It allows the submission of many jobs at once, along with the monitoring of those jobs
with a convenient interface. There is notification when jobscomplete or fail and maintenance of Globus credentials
that may expire while a job is running. On top of this, HTCondor-G is a fault-tolerant system; if a machine crashes,
all of these functions are again available as the machine returns.

Globus Protocols and Terminology

The Globus software provides a well-defined set of protocolsthat allow authentication, data transfer, and remote job
execution. Authentication is a mechanism by which an identity is verified. Given proper authentication, authorization
to use a resource is required. Authorization is a policy thatdetermines who is allowed to do what.

HTCondor (and Globus) utilize the following protocols and terminology. The protocols allow HTCondor to inter-
act with grid machines toward the end result of executing jobs.

GSI The Globus Toolkit’s Grid Security Infrastructure (GSI) provides essential building blocks for other grid pro-
tocols and HTCondor-G. This authentication and authorization system makes it possible to authenticate a user
just once, using public key infrastructure (PKI) mechanisms to verify a user-supplied grid credential. GSI
then handles the mapping of the grid credential to the diverse local credentials and authentication/authorization
mechanisms that apply at each site.

GRAM The Grid Resource Allocation and Management (GRAM) protocol supports remote submission of a compu-
tational request (for example, to run a program) to a remote computational resource, and it supports subsequent
monitoring and control of the computation. GRAM is the Globus protocol that HTCondor-G uses to talk to
remote Globus jobmanagers.

HTCondor Version 8.6.4 Manual

http://www.globus.org

5.3.2. HTCondor-G, the gt2, and gt5 Grid Types 581

GASS The Globus Toolkit’s Global Access to Secondary Storage (GASS) service provides mechanisms for transfer-
ring data to and from a remote HTTP, FTP, or GASS server. GASS is used by HTCondor for thegt2 grid type
to transfer a job’s files to and from the machine where the job is submitted and the remote resource.

GridFTP GridFTP is an extension of FTP that provides strong securityand high-performance options for large data
transfers.

RSL RSL (Resource Specification Language) is the language GRAM accepts to specify job information.

gatekeeper A gatekeeper is a software daemon executing on a remote machine on the grid. It is relevant only to the
gt2 grid type, and this daemon handles the initial communication between HTCondor and a remote resource.

jobmanager A jobmanager is the Globus service that is initiated at a remote resource to submit, keep track of, and
manage grid I/O for jobs running on an underlying batch system. There is a specific jobmanager for each type
of batch system supported by Globus (examples are HTCondor,LSF, and PBS).

In its interaction with Globus software, HTCondor containsa GASS server, used to transfer the executable,stdin ,
stdout , andstderr to and from the remote job execution site. HTCondor uses the GRAM protocol to contact the
remote gatekeeper and request that a new jobmanager be started. The GRAM protocol is also used to when monitoring
the job’s progress. HTCondor detects and intelligently handles cases such as if the remote resource crashes.

There are now two different versions of the GRAM protocol in common usage:gt2 andgt5. HTCondor supports
both of them.

gt2 This initial GRAM protocol is used in Globus Toolkit versions 1 and 2. It is still used by many production
systems. Where available in the other, more recent versionsof the protocol,gt2 is referred to as the pre-web
services GRAM (or pre-WS GRAM) or GRAM2.

gt5 This latest GRAM protocol is an extension of GRAM2 that is intended to be more scalable and robust. It is
usually referred to as GRAM5.

The gt2 Grid Type

HTCondor-G supports submitting jobs to remote resources running the Globus Toolkit’s GRAM2 (or pre-WS GRAM)
service. This flavor of GRAM is the most common. These HTCondor-G jobs are submitted the same as any other
HTCondor job. Theuniverseis grid , and the pre-web services GRAM protocol is specified by setting the type of grid
asgt2 in thegrid_resourcecommand.

Under HTCondor, successful job submission to thegrid universe with gt2 requires credentials. An X.509 cer-
tificate is used to create a proxy, and an account, authorization, or allocation to use a grid resource is required. For
general information on proxies and certificates, please consult the Globus page at

http://www-unix.globus.org/toolkit/docs/4.0/security/key-index.html

Before submitting a job to HTCondor under thegrid universe, usegrid-proxy-init to create a proxy.

Here is a simple submit description file. The example specifies agt2 job to be run on an NCSA machine.

HTCondor Version 8.6.4 Manual

http://www-unix.globus.org/toolkit/docs/4.0/security/key-index.html

5.3.2. HTCondor-G, the gt2, and gt5 Grid Types 582

executable = test
universe = grid
grid_resource = gt2 modi4.ncsa.uiuc.edu/jobmanager
output = test.out
log = test.log
queue

Theexecutablefor this example is transferred from the local machine to theremote machine. By default, HTCon-
dor transfers the executable, as well as any files specified byan input command. Note that the executable must be
compiled for its intended platform.

The commandgrid_resourceis a required command for grid universe jobs. The second fieldspecifies the schedul-
ing software to be used on the remote resource. There is a specific jobmanager for each type of batch system supported
by Globus. The full syntax for this command line appears as

grid_resource = gt2 machinename[:port]/jobmanagername[:X.509 distinguished name]

The portions of this syntax specification enclosed within square brackets ([and]) are optional. On a machine where
the jobmanager is listening on a nonstandard port, include the port number. Thejobmanagername is a site-specific
string. The most common one isjobmanager-fork , but others are

jobmanager
jobmanager-condor
jobmanager-pbs
jobmanager-lsf
jobmanager-sge

The Globus software running on the remote resource uses thisstring to identify and select the correct service to
perform. Otherjobmanagername strings are used, where additional services are defined and implemented.

The job log file is maintained on the submit machine.

Example output fromcondor_qfor this submission looks like:

% condor_q

-- Submitter: wireless48.cs.wisc.edu : <128.105.48.148: 33012> : wireless48.cs.wi

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
7.0 smith 3/26 14:08 0+00:00:00 I 0 0.0 test

1 jobs; 1 idle, 0 running, 0 held

After a short time, the Globus resource accepts the job. Again runningcondor_qwill now result in

% condor_q

HTCondor Version 8.6.4 Manual

5.3.2. HTCondor-G, the gt2, and gt5 Grid Types 583

-- Submitter: wireless48.cs.wisc.edu : <128.105.48.148: 33012> : wireless48.cs.wi

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
7.0 smith 3/26 14:08 0+00:01:15 R 0 0.0 test

1 jobs; 0 idle, 1 running, 0 held

Then, very shortly after that, the queue will be empty again,because the job has finished:

% condor_q

-- Submitter: wireless48.cs.wisc.edu : <128.105.48.148: 33012> : wireless48.cs.wi

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

0 jobs; 0 idle, 0 running, 0 held

A second example of a submit description file runs the Unixls program on a different Globus resource.

executable = /bin/ls
transfer_executable = false
universe = grid
grid_resource = gt2 vulture.cs.wisc.edu/jobmanager
output = ls-test.out
log = ls-test.log
queue

In this example, the executable (the binary) has been pre-staged. The executable is on the remote machine, and it
is not to be transferred before execution. Note that the required grid_resourceanduniversecommands are present.
The command

transfer_executable = false

within the submit description file identifies the executableas being pre-staged. In this case, theexecutablecommand
gives the path to the executable on the remote machine.

A third example submits a Perl script to be run as a submitted HTCondor job. The Perl script both lists and
sets environment variables for a job. Save the following Perl script with the nameenv-test.pl , to be used as an
HTCondor job executable.

#!/usr/bin/env perl

foreach $key (sort keys(%ENV))
{

print "$key = $ENV{$key}\n"
}

exit 0;

HTCondor Version 8.6.4 Manual

5.3.2. HTCondor-G, the gt2, and gt5 Grid Types 584

Run the Unix command

chmod 755 env-test.pl

to make the Perl script executable.

Now create the following submit description file. Replaceexample.cs.wisc.edu/jobmanager with a
resource you are authorized to use.

executable = env-test.pl
universe = grid
grid_resource = gt2 example.cs.wisc.edu/jobmanager
environment = foo=bar; zot=qux
output = env-test.out
log = env-test.log
queue

When the job has completed, the output file,env-test.out , should contain something like this:

GLOBUS_GRAM_JOB_CONTACT = https://example.cs.wisc.edu :36213/30905/1020633947/
GLOBUS_GRAM_MYJOB_CONTACT = URLx-nexus://example.cs.w isc.edu:36214
GLOBUS_LOCATION = /usr/local/globus
GLOBUS_REMOTE_IO_URL = /home/smith/.globus/.gass_cach e/globus_gass_cache_1020633948
HOME = /home/smith
LANG = en_US
LOGNAME = smith
X509_USER_PROXY = /home/smith/.globus/.gass_cache/glo bus_gass_cache_1020633951
foo = bar
zot = qux

Of particular interest is theGLOBUS_REMOTE_IO_URLenvironment variable. HTCondor-G automatically starts
up a GASS remote I/O server on the submit machine. Because of the potential for either side of the connec-
tion to fail, the URL for the server cannot be passed directlyto the job. Instead, it is placed into a file, and the
GLOBUS_REMOTE_IO_URLenvironment variable points to this file. Remote jobs can read this file and use the URL
it contains to access the remote GASS server running inside HTCondor-G. If the location of the GASS server changes
(for example, if HTCondor-G restarts), HTCondor-G will contact the Globus gatekeeper and update this file on the
machine where the job is running. It is therefore important that all accesses to the remote GASS server check this file
for the latest location.

The following example is a Perl script that uses the GASS server in HTCondor-G to copy input files to the execute
machine. In this example, the remote job counts the number oflines in a file.

#!/usr/bin/env perl
use FileHandle;
use Cwd;

STDOUT->autoflush();
$gassUrl = `cat $ENV{GLOBUS_REMOTE_IO_URL}`;
chomp $gassUrl;

HTCondor Version 8.6.4 Manual

5.3.2. HTCondor-G, the gt2, and gt5 Grid Types 585

$ENV{LD_LIBRARY_PATH} = $ENV{GLOBUS_LOCATION}. "/lib";
$urlCopy = $ENV{GLOBUS_LOCATION}."/bin/globus-url-cop y";

globus-url-copy needs a full path name
$pwd = getcwd();
print "$urlCopy $gassUrl/etc/hosts file://$pwd/tempora ry.hosts\n\n";
`$urlCopy $gassUrl/etc/hosts file://$pwd/temporary.ho sts`;

open(file, "temporary.hosts");
while(<file>) {
print $_;
}

exit 0;

The submit description file used to submit the Perl script as an HTCondor job appears as:

executable = gass-example.pl
universe = grid
grid_resource = gt2 example.cs.wisc.edu/jobmanager
output = gass.out
log = gass.log
queue

There are two optional submit description file commands of note: x509userproxy and globus_rsl. The
x509userproxycommand specifies the path to an X.509 proxy. The command is ofthe form:

x509userproxy = /path/to/proxy

If this optional command is not present in the submit description file, then HTCondor-G checks the value of the
environment variableX509_USER_PROXYfor the location of the proxy. If this environment variable is not present,
then HTCondor-G looks for the proxy in the file/tmp/x509up_uXXXX , where the charactersXXXX in this file
name are replaced with the Unix user id.

The globus_rsl command is used to add additional attribute settings to a job’s RSL string. The format of the
globus_rslcommand is

globus_rsl = (name=value)(name=value)

Here is an example of this command from a submit description file:

globus_rsl = (project=Test_Project)

This example’s attribute name for the additional RSL isproject , and the value assigned isTest_Project .

The gt5 Grid Type

The Globus GRAM5 protocol works the same as the gt2 grid type.Its implementation differs from gt2 in the following
3 items:

HTCondor Version 8.6.4 Manual

5.3.2. HTCondor-G, the gt2, and gt5 Grid Types 586

• The Grid Monitor is disabled.

• Globus job managers are not stopped and restarted.

• The configuration variableGRIDMANAGER_MAX_JOBMANAGERS_PER_RESOURCEis not applied (for gt5
jobs).

Normally, HTCondor will automatically detect whether a service is GRAM2 or GRAM5 and interact with it
accordingly. It does not matter whether gt2 or gt5 is specified. Disable this detection by setting the configuration
variableGRAM_VERSION_DETECTIONto False . If disabled, each resource must be accurately identified aseither
gt2 or gt5 in thegrid_resourcesubmit command.

Credential Management withMyProxy

HTCondor-G can useMyProxysoftware to automatically renew GSI proxies forgrid universe jobs with grid type
gt2. MyProxyis a software component developed at NCSA and used widely throughout the grid community. For more
information see: http://grid.ncsa.illinois.edu/myproxy/

Difficulties with proxy expiration occur in two cases. The first case are long running jobs, which do not complete
before the proxy expires. The second case occurs when great numbers of jobs are submitted. Some of the jobs may not
yet be started or not yet completed before the proxy expires.One proposed solution to these difficulties is to generate
longer-lived proxies. This, however, presents a greater security problem. Remember that a GSI proxy is sent to the
remote Globus resource. If a proxy falls into the hands of a malicious user at the remote site, the malicious user can
impersonate the proxy owner for the duration of the proxy’s lifetime. The longer the proxy’s lifetime, the more time a
malicious user has to misuse the owner’s credentials. To minimize the window of opportunity of a malicious user, it is
recommended that proxies have a short lifetime (on the orderof several hours).

TheMyProxysoftware generates proxies using credentials (a user certificate or a long-lived proxy) located on a
secureMyProxyserver. HTCondor-G talks to the MyProxy server, renewing a proxy as it is about to expire. Another
advantage that this presents is it relieves the user from having to store a GSI user certificate and private key on the
machine where jobs are submitted. This may be particularly important if a shared HTCondor-G submit machine is
used by several users.

In the a typical case, the following steps occur:

1. The user creates a long-lived credential on a secureMyProxyserver, using themyproxy-initcommand. Each
organization generally has their ownMyProxyserver.

2. The user creates a short-lived proxy on a local submit machine, usinggrid-proxy-initor myproxy-get-delegation.

3. The user submits an HTCondor-G job, specifying:

MyProxyserver name (host:port)

MyProxycredential name (optional)

MyProxypassword

4. At the short-lived proxy expiration HTCondor-G talks to theMyProxyserver to refresh the proxy.

HTCondor Version 8.6.4 Manual

http://grid.ncsa.illinois.edu/myproxy/

5.3.2. HTCondor-G, the gt2, and gt5 Grid Types 587

HTCondor-G keeps track of the password to theMyProxyserver for credential renewal. Although HTCondor-G
tries to keep the password encrypted and secure, it is still possible (although highly unlikely) for the password to be
intercepted from the HTCondor-G machine (more precisely, from the machine that thecondor_schedddaemon that
manages the grid universe jobs runs on, which may be distinctfrom the machine from where jobs are submitted). The
following safeguard practices are recommended.

1. Provide time limits for credentials on theMyProxyserver. The default is one week, but you may want to make
it shorter.

2. Create several differentMyProxycredentials, maybe as many as one for each submitted job. Each credential has
a unique name, which is identified with theMyProxyCredentialName command in the submit description
file.

3. Use the following options when initializing the credential on theMyProxyserver:

myproxy-init -s <host> -x -r <cert subject> -k <cred name>

The option-x -r <cert subject>essentially tells theMyProxyserver to require two forms of authentication:

(a) a password (initially set withmyproxy-init)

(b) an existing proxy (the proxy to be renewed)

4. A submit description file may include the password. An example contains commands of the form:

executable = /usr/bin/my-executable
universe = grid
grid_resource = gt2 condor-unsup-7
MyProxyHost = example.cs.wisc.edu:7512
MyProxyServerDN = /O=doesciencegrid.org/OU=People/CN= Jane Doe 25900
MyProxyPassword = password
MyProxyCredentialName = my_executable_run
queue

Note that placing the password within the submit description file is not really secure, as it relies upon security
provided by the file system. This may still be better than option 5.

5. Use the-p option tocondor_submit. The submit command appears as

condor_submit -p mypassword /home/user/myjob.submit

The argument list forcondor_submitdefaults to being publicly available. An attacker with a login on that local
machine could generate a simple shell script to watch for thepassword.

Currently, HTCondor-G calls themyproxy-get-delegationcommand-line tool, passing it the necessary ar-
guments. The location of themyproxy-get-delegationexecutable is determined by the configuration variable
MYPROXY_GET_DELEGATIONin the configuration file on the HTCondor-G machine. This variable is read
by the condor_gridmanager. If myproxy-get-delegationis a dynamically-linked executable (verify this with
ldd myproxy-get-delegation), point MYPROXY_GET_DELEGATIONto a wrapper shell script that sets
LD_LIBRARY_PATH to the correctMyProxy library or Globus library directory and then callsmyproxy-get-
delegation. Here is an example of such a wrapper script:

HTCondor Version 8.6.4 Manual

5.3.3. The nordugrid Grid Type 588

#!/bin/sh
export LD_LIBRARY_PATH=/opt/myglobus/lib
exec /opt/myglobus/bin/myproxy-get-delegation $@

The Grid Monitor

HTCondor’s Grid Monitor is designed to improve the scalability of machines running the Globus Toolkit’s GRAM2
gatekeeper. Normally, this service runs a jobmanager process for every job submitted to the gatekeeper. This includes
both currently running jobs and jobs waiting in the queue. Each jobmanager runs a Perl script at frequent intervals
(every 10 seconds) to poll the state of its job in the local batch system. For example, with 400 jobs submitted to a
gatekeeper, there will be 400 jobmanagers running, each regularly starting a Perl script. When a large number of jobs
have been submitted to a single gatekeeper, this frequent polling can heavily load the gatekeeper. When the gatekeeper
is under heavy load, the system can become non-responsive, and a variety of problems can occur.

HTCondor’s Grid Monitor temporarily replaces these jobmanagers. It is named the Grid Monitor, because it
replaces the monitoring (polling) duties previously done by jobmanagers. When the Grid Monitor runs, HTCondor
attempts to start a single process to poll all of a user’s jobsat a given gatekeeper. While a job is waiting in the
queue, but not yet running, HTCondor shuts down the associated jobmanager, and instead relies on the Grid Monitor
to report changes in status. The jobmanager started to add the job to the remote batch system queue is shut down. The
jobmanager restarts when the job begins running.

The Grid Monitor requires that the gatekeeper support the fork jobmanager with the namejobmanager-fork. If
the gatekeeper does not support the fork jobmanager, the Grid Monitor will not be used for that site. Thecon-
dor_gridmanagerlog file reports any problems using the Grid Monitor.

The Grid Monitor is enabled by default, and the configurationmacroGRID_MONITORidentifies the location of
the executable.

Limitations of HTCondor-G

Submitting jobs to run under the grid universe has not yet been perfected. The following is a list of known limitations:

1. No checkpoints.

2. No job exit codes are available when usinggt2.

3. Limited platform availability. Windows support is not available.

5.3.3 The nordugrid Grid Type

NorduGrid is a project to develop free grid middleware namedthe Advanced Resource Connector (ARC). See the
NorduGrid web page (http://www.nordugrid.org) for more information about NorduGrid software.

HTCondor jobs may be submitted to NorduGrid resources usingthegrid universe. Thegrid_resourcecommand
specifies the name of the NorduGrid resource as follows:

HTCondor Version 8.6.4 Manual

http://www.nordugrid.org

5.3.4. The unicore Grid Type 589

grid_resource = nordugrid ng.example.com

NorduGrid uses X.509 credentials for authentication, usually in the form a proxy certificate.condor_submitlooks
in default locations for the proxy. The submit description file commandx509userproxymay be used to give the full
path name to the directory containing the proxy, when the proxy is not in a default location. If this optional com-
mand is not present in the submit description file, then the value of the environment variableX509_USER_PROXY
is checked for the location of the proxy. If this environmentvariable is not present, then the proxy in the file
/tmp/x509up_uXXXX is used, where the charactersXXXXin this file name are replaced with the Unix user id.

NorduGrid uses RSL syntax to describe jobs. The submit description file commandnordugrid_rsl adds additional
attributes to the job RSL that HTCondor constructs. The format this submit description file command is

nordugrid_rsl = (name=value)(name=value)

5.3.4 The unicore Grid Type

Unicore is a Java-based grid scheduling system. See http://www.unicore.eu/ for more information about Unicore.

HTCondor jobs may be submitted to Unicore resources using the grid universe. Thegrid_resource command
specifies the name of the Unicore resource as follows:

grid_resource = unicore usite.example.com vsite

usite.example.comis the host name of the Unicore gateway machine to which the HTCondor job is to be submitted.
vsite is the name of the Unicore virtual resource to which the HTCondor job is to be submitted.

Unicore uses certificates stored in a Java keystore file for authentication. The following submit description file
commands are required to properly use the keystore file.

keystore_file Specifies the complete path and file name of the Java keystore file to use.

keystore_aliasA string that specifies which certificate in the Java keystorefile to use.

keystore_passphrase_fileSpecifies the complete path and file name of the file containingthe passphrase protecting
the certificate in the Java keystore file.

5.3.5 The batch Grid Type (for PBS, LSF, SGE, and SLURM)

Thebatch grid type is used to submit to a local PBS, LSF, SGE, or SLURM system using thegrid universe and the
grid_resourcecommand by placing a variant of the following into the submitdescription file.

grid_resource = batch pbs

HTCondor Version 8.6.4 Manual

http://www.unicore.eu/

5.3.5. The batch Grid Type (for PBS, LSF, SGE, and SLURM) 590

The second argument on the right hand side will be one ofpbs , lsf , sge , or slurm .

Any of these batch grid types requires two variables to be setin the HTCondor configuration file.BATCH_GAHP
is the path to the GAHP server binary that is to be used to submit one of these batch jobs.GLITE_LOCATION
is the path to the directory containing the GAHP’s configuration file and auxiliary binaries. In the HT-
Condor distribution, these files are located in$(LIB)/glite . The batch GAHP’s configuration file is in
$(GLITE_LOCATION)/etc/batch_gahp.config . The batch GAHP’s auxiliary binaries are to be in the di-
rectory$(GLITE_LOCATION)/bin . The HTCondor configuration file appears

GLITE_LOCATION = $(LIB)/glite
BATCH_GAHP = $(GLITE_LOCATION)/bin/batch_gahp

The batch GAHP’s configuration file has variables that must bemodified to tell it where to find

PBS on the local system.pbs_binpath is the directory that contains the PBS binaries.pbs_spoolpath is the
PBS spool directory.

LSF on the local system.lsf_binpath is the directory that contains the LSF binaries.lsf_confpath is the
location of the LSF configuration file.

The popular PBS (Portable Batch System) can be found at http://www.pbsworks.com/, and Torque is at
(http://www.adaptivecomputing.com/products/open-source/torque/).

As an alternative to the submission details given above, HTCondor jobs may be submitted to a local PBS system
using thegrid universe and thegrid_resourcecommand by placing the following into the submit description file.

grid_resource = pbs

HTCondor jobs may be submitted to the Platform LSF batch system. Find the Platform product from the page
http://www.platform.com/Products/ for more informationabout Platform LSF.

As an alternative to the submission details given above, HTCondor jobs may be submitted to a local Platform LSF
system using thegrid universe and thegrid_resourcecommand by placing the following into the submit description
file.

grid_resource = lsf

The popular Grid Engine batch system (formerly known as Sun Grid Engine and abbreviated SGE) is available
in two varieties: Oracle Grid Engine (http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html) and
Univa Grid Engine (http://www.univa.com/?gclid=CLXg6-OEy6wCFWICQAodl0lm9Q).

As an alternative to the submission details given above, HTCondor jobs may be submitted to a local SGE system
using thegrid universe and adding thegrid_resourcecommand by placing into the submit description file:

grid_resource = sge

Thecondor_qsubcommand line tool will take PBS/SGE style batch files or command line arguments and submit
the job to HTCondor instead. See thecondor_qsubmanual page at 11 for details.

HTCondor Version 8.6.4 Manual

http://www.pbsworks.com/
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.platform.com/Products/
http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
http://www.univa.com/?gclid=CLXg6-OEy6wCFWICQAodl0lm9Q

5.3.6. The EC2 Grid Type 591

5.3.6 The EC2 Grid Type

HTCondor jobs may be submitted to clouds supporting Amazon’s Elastic Compute Cloud (EC2) interface. The EC2
interface permits on-line commercial services that provide the rental of computers by the hour to run computational
applications. They run virtual machine images that have been uploaded to Amazon’s online storage service (S3 or
EBS). More information about Amazon’s EC2 service is available at http://aws.amazon.com/ec2.

Theec2grid type uses the EC2 Query API, also called the EC2 REST API.

EC2 Job Submission

HTCondor jobs are submitted to an EC2 service with thegrid universe, setting thegrid_resourcecommand toec2,
followed by the service’s URL. For example, partial contents of the submit description file may be

grid_resource = ec2 https://ec2.amazonaws.com/

Since the job is a virtual machine image, most of the submit description file commands specifying input or output
files are not applicable. Theexecutablecommand is still required, but its value is ignored. It can beused to identify
different jobs in the output ofcondor_q.

The VM image for the job must already reside in one of Amazon’sstorage service (S3 or EBS) and be registered
with EC2. In the submit description file, provide the identifier for the image usingec2_ami_id.

This grid type requires access to user authentication information, in the form of path names to files containing the
appropriate keys.

Theec2grid type has two different authentication methods. The first authentication method uses the EC2 API’s
built-in authentication. Specify the service with expected http:// or https:// URL, and set the EC2 access key
and secret access key as follows:

ec2_access_key_id = /path/to/access.key
ec2_secret_access_key = /path/to/secret.key

Theeuca3:// andeuca3s:// protocols must use this authentication method. These protocols exist to work
correctly when the resources do not support theInstanceInitiatedShutdownBehavior parameter.

The second authentication method for the EC2 grid type is X.509. Specify the service with anx509:// URL,
even if the URL was given in another form. Useec2_access_key_idto specify the path to the X.509 public key
(certificate), which is not the same as the built-in authentication’s access key.ec2_secret_access_keyspecifies the
path to the X.509 private key, which is not the same as the built-in authentication’s secret key. The following example
illustrates the specification for X.509 authentication:

grid_resource = ec2 x509://service.example
ec2_access_key_id = /path/to/x.509/public.key
ec2_secret_access_key = /path/to/x.509/private.key

HTCondor Version 8.6.4 Manual

http://aws.amazon.com/ec2

5.3.6. The EC2 Grid Type 592

If using an X.509 proxy, specify the proxy in both places.

HTCondor can use the EC2 API to create an SSH key pair that allows secure log in to the virtual machine once it
is running. If the commandec2_keypair_fileis set in the submit description file, HTCondor will write an SSH private
key into the indicated file. The key can be used to log into the virtual machine. Note that modification will also be
needed of the firewall rules for the job to incoming SSH connections.

An EC2 service uses a firewall to restrict network access to the virtual machine instances it runs. Typically, no
incoming connections are allowed. One can define sets of firewall rules and give them names. The EC2 API calls
these security groups. If utilized, tell HTCondor what set of security groups should be applied to each VM using the
ec2_security_groupssubmit description file command. If not provided, HTCondor uses the security groupdefault.
This command specifies security group names; to specify IDs,useec2_security_ids. This may be necessary when
specifying a Virtual Private Cloud (VPC) instance.

To run an instance in a VPC, setec2_vpc_subnetto the the desired VPC’s specification string. The instance’s IP
address may also be specified by settingec2_vpc_id.

The EC2 API allows the choice of different hardware configurations for instances to run on. Select which config-
uration to use for theec2grid type with theec2_instance_typesubmit description file command. HTCondor provides
no default.

Certain instance types provide additional block devices whose names must be mapped to kernel device names
in order to be used. Theec2_block_device_mappingsubmit description file command allows specification of these
maps. A map is a device name followed by a colon, followed by kernel name; maps are separated by a commas, and/or
spaces. For example, to specify that the first ephemeral device should be/dev/sdb and the second/dev/sdc :

ec2_block_device_mapping = ephemeral0:/dev/sdb, epheme ral1:/dev/sdc

Each virtual machine instance can be given up to 16 KiB of unique data, accessible by the instance by connecting
to a well-known address. This makes it easy for many instances to share the same VM image, but perform different
work. This data can be specified to HTCondor in one of two ways.First, the data can be provided directly in the
submit description file using theec2_user_datacommand. Second, the data can be stored in a file, and the file name
is specified with theec2_user_data_filesubmit description file command. This second option allows the use of binary
data. If both options are used, the two blocks of data are concatenated, with the data fromec2_user_dataoccurring
first. HTCondor performs the base64 encoding that EC2 expects on the data.

Amazon also offers an Identity and Access Management (IAM) service. To specify an IAM (instance) profile for
an EC2 job, use submit commandsec2_iam_profile_nameor ec2_iam_profile_arn.

Termination of EC2 Jobs

A protocol defines the shutdown procedure for jobs running asEC2 instances. The service is told to shut down the
instance, and the service acknowledges. The service then advances the instance to a state in which the termination is
imminent, but the job is given time to shut down gracefully.

Once this state is reached, some services other than Amazon cannot be relied upon to actually terminate the job.

HTCondor Version 8.6.4 Manual

5.3.6. The EC2 Grid Type 593

Thus, HTCondor must check that the instance has terminated before removing the job from the queue. This avoids the
possibility of HTCondor losing track of a job while it is still accumulating charges on the service.

HTCondor checks after a fixed time interval that the job actually has terminated. If the job has not terminated after
a total of four checks, the job is placed on hold.

Using Spot Instances

EC2 jobs may also be submitted to clouds that support spot instances. A spot instance differs from a conventional,
or dedicated, instance in two primary ways. First, the instance price varies according to demand. Second, the cloud
provider may terminate the instance prematurely. To start aspot instance, the submitter specifies a bid, which rep-
resents the most the submitter is willing to pay per hour to run the VM. Within HTCondor, the submit command
ec2_spot_pricespecifies this floating point value. For example, to bid 1.1 cents per hour on Amazon:

ec2_spot_price = 0.011

Note that the EC2 API does not specify how the cloud provider should interpret the bid. Empirically, Amazon uses
fractional US dollars.

Other submission details for a spot instance are identical to those for a dedicated instance.

A spot instance will not necessarily begin immediately. Instead, it will begin as soon as the price drops below the
bid. Thus, spot instance jobs may remain in the idle state formuch longer than dedicated instance jobs, as they wait
for the price to drop. Furthermore, if the price rises above the bid, the cloud service will terminate the instance.

More information about Amazon’s spot instances is available at http://aws.amazon.com/ec2/spot-instances/.

Advanced Usage

Additional control of EC2 instances is available in the formof permitting the direct specification of instance creation
parameters. To set an instance creation parameter, first list its name in the submit commandec2_parameter_names, a
space or comma separated list. The parameter may need to be properly capitalized. Also tell HTCondor the parameter’s
value, by specifying it as a submit command whose name beginswith ec2_parameter_; dots within the parameter
name must be written as underscores in the submit command name.

For example, the submit description file commands to set parameterIamInstanceProfile.Name to value
ExampleProfile are

ec2_parameter_names = IamInstanceProfile.Name
ec2_parameter_IamInstanceProfile_Name = ExampleProfil e

HTCondor Version 8.6.4 Manual

http://aws.amazon.com/ec2/spot-instances/

5.3.6. The EC2 Grid Type 594

EC2 Configuration Variables

The configuration variablesEC2_GAHPand EC2_GAHP_LOGmust be set, and by default are equal to
$(SBIN)/ec2_gahp and/tmp/EC2GahpLog.$(USERNAME) , respectively.

The configuration variableEC2_GAHP_DEBUGis optional and defaults toD_PID; we recommend you keep
D_PID if you change the default, to disambiguate between the logs of different resources specified by the same user.

Communicating with an EC2 Service

Theec2grid type does not presently permit the explicit use of an HTTP proxy.

By default, HTCondor assumes that EC2 services are reliablyavailable. If an attempt to contact a service during
the normal course of operation fails, HTCondor makes a special attempt to contact the service. If this attempt fails, the
service is marked as down, and normal operation for that service is suspended until a subsequent special attempt suc-
ceeds. The jobs using that service do not go on hold. To place jobs on hold when their service becomes unavailable, set
configuration variableEC2_RESOURCE_TIMEOUTto the number of seconds to delay before placing the job on hold.
The default value of -1 for this variable implements an infinite delay, such that the job is never placed on hold. When
setting this value, consider the value of configuration variableGRIDMANAGER_RESOURCE_PROBE_INTERVAL,
which sets the number of seconds that HTCondor will wait after each special contact attempt before trying again.

By default, the EC2 GAHP enforces a 100 millisecond intervalbetween requests to the same service. This helps
ensure reliable service. You may configure this interval with the configuration variableEC2_GAHP_RATE_LIMIT,
which must be an integer number of milliseconds. Adjusting the interval may result in higher or lower throughput,
depending on the service. Too short of an interval may trigger rate-limiting by the service; while HTCondor will react
appropriately (by retrying with an exponential back-off),it may be more efficient to configure a longer interval.

Secure Communication with and EC2 Service

The specification of a service with anhttps:// , anx509:// , or aneuca3s:// URL validates that service’s
certificate, checking that a trusted certificate authority (CA) signed it. Commercial EC2 service providers generally
use certificates signed by widely-recognized CAs. These CAswill usually work without any additional configuration.
For other providers, a specification of trusted CAs may be needed. Without, errors such as the following will be in the
EC2 GAHP log:

06/13/13 15:16:16 curl_easy_perform() failed (60):
'Peer certificate cannot be authenticated with given CA cer tificates'.

Specify trusted CAs by including their certificates in a group of trusted CAs either in an on disk directory or
in a single file. Either of these alternatives may contain multiple certificates. Which is used will vary from system
to system, depending on the system’s SSL implementation. HTCondor useslibcurl; information about thelibcurl
specification of trusted CAs is available at

http://curl.haxx.se/libcurl/c/curl_easy_setopt.html

HTCondor Version 8.6.4 Manual

http://curl.haxx.se/libcurl/c/curl_easy_setopt.html

5.3.7. The GCE Grid Type 595

Versions of HTCondor with standard universe support ship with their ownlibcurl, which will be linked against
OpenSSL.

The behavior when specifying both a directory and a file is undefined, although the EC2 GAHP allows it.

The EC2 GAHP will set the CA file to whichever variable it finds first, checking these in the following order:

1. The environment variableX509_CERT_FILE , set when thecondor_masterstarts up.

2. The HTCondor configuration variableSOAP_SSL_CA_FILE.

The EC2 GAHP supplies no default value, if it does not find a CA file.

The EC2 GAHP will set the CA directory given whichever of these variables it finds first, checking in the following
order:

1. The HTCondor configuration variableGSI_DAEMON_TRUSTED_CA_DIR.

2. The environment variableX509_CERT_DIR, set when thecondor_masterstarts up.

3. The HTCondor configuration variableSOAP_SSL_CA_DIR.

The EC2 GAHP supplies no default value, if it does not find a CA directory.

EC2 GAHP Statistics

The EC2 GAHP tracks, and reports in the corresponding grid resource ad, statistics related to resource’s rate limit.

NumRequests: The total number of requests made by HTCondor to this resource.

NumDistinctRequests: The number of distinct requests made by HTCondor to this resource. The difference
between this and NumRequests is the total number of retries.Retries are not unusual.

NumRequestsExceedingLimit: The number of requests which exceeded the service’s rate limit. Each such
request will cause a retry, unless the maximum number of retries is exceeded, or if the retries have already taken
so long that the signature on the original request has expired.

NumExpiredSignatures: The number of requests which the EC2 GAHP did not even attemptto send to the
service because signature expired. Signatures should not,generally, expire; a request’s retries will usually –
eventually – succeed.

5.3.7 The GCE Grid Type

HTCondor jobs may be submitted to the Google Compute Engine (GCE) cloud service. GCE is an on-line commercial
service that provides the rental of computers by the hour to run computational applications. Its runs virtual machine
images that have been uploaded to Google’s servers. More information about Google Compute Engine is available at
http://cloud.google.com/Compute.

HTCondor Version 8.6.4 Manual

http://cloud.google.com/Compute

5.3.7. The GCE Grid Type 596

GCE Job Submission

HTCondor jobs are submitted to the GCE service with thegrid universe, setting thegrid_resourcecommand togce,
followed by the service’s URL, your GCE project, and the desired GCE zone to be used. The submit description file
command will be similar to:

grid_resource = gce https://www.googleapis.com/compute /v1 my_proj us-central1-a

Since the HTCondor job is a virtual machine image, most of thesubmit description file commands specifying
input or output files are not applicable. Theexecutablecommand is still required, but its value is ignored. It identifies
different jobs in the output ofcondor_q.

The VM image for the job must already reside in Google’s CloudStorage service and be registered with GCE. In
the submit description file, provide the identifier for the image using thegce_imagecommand.

This grid type requires granting HTCondor permission to useyour Google account. The easiest way to
do this is to use thegcloud command-line tool distributed by Google. Findgcloud and documentation for
it at https://cloud.google.com/compute/docs/gcloud-compute/. After installation ofgcloud, run gcloud auth lo-
gin and follow its directions. Once done with that step, the toolwill write authorization credentials to the file
.config/gcloud/credentials under your HOME directory.

Given an authorization file, specify its location in the submit description file using thegce_auth_filecommand, as
in the example:

gce_auth_file = /path/to/auth-file

GCE allows the choice of different hardware configurations for instances to run on. Select which configuration
to use for thegcegrid type with thegce_machine_typesubmit description file command. HTCondor provides no
default.

Each virtual machine instance can be given a unique set of metadata, which consists of name/value pairs, similar
to the environment variables of regular jobs. The instance can query its metadata via a well-known address. This
makes it easy for many instances to share the same VM image, but perform different work. This data can be specified
to HTCondor in one of two ways. First, the data can be provideddirectly in the submit description file using the
gce_metadatacommand. The value should be a comma-separated list of name=value settings, as the example:

gce_metadata = setting1=foo,setting2=bar

Second, the data can be stored in a file, and the file name is specified with thegce_metadata_filesubmit descrip-
tion file command. This second option allows a wider range of characters to be used in the metadata values. Each
name=value pair should be on its own line. No white space is removed from the lines, except for the newline that
separates entries.

Both options can be used at the same time, but do not use the same metadata name in both places.

HTCondor sets the following elements when describing the instance to the GCE server:machineType, name,
scheduling, disks, metadata, andnetworkInterfaces. You can provide additional elements to be included in the

HTCondor Version 8.6.4 Manual

https://cloud.google.com/compute/docs/gcloud-compute/

5.3.8. The cream Grid Type 597

instance description as a block of JSON. Write the additional elements to a file, and specify the filename in your
submit file with thegce_json_filecommand. The contents of the file are inserted into HTCondor’s JSON description
of the instance, between a comma and the closing brace.

Here’s a sample JSON file that sets two additional elements:

"canIpForward": True,
"description": "My first instance"

GCE Configuration Variables

The following configuration parameters are specific to thegce grid type. The values listed here are the defaults.
Different values may be specified in the HTCondor configuration files.

GCE_GAHP = $(SBIN)/gce_gahp
GCE_GAHP_LOG = /tmp/GceGahpLog.$(USERNAME)

5.3.8 The cream Grid Type

CREAM is a job submission interface being developed at INFN for the gLite software stack. The CREAM homepage
is http://grid.pd.infn.it/cream/. The protocol is based on web services.

The protocol requires an X.509 proxy for the job, so the submit description file commandx509userproxywill be
used.

A CREAM resource specification is of the form:

grid_resource = cream <web-services-address> <batch-sys tem> <queue-name>

The<web-services-address> appears the same for most servers, differing only in the hostname, as

<machinename[:port]>/ce-cream/services/CREAM2

Future versions of HTCondor may require only the host name, filling in other aspects of the web service for the user.

The<batch-system> is the name of the batch system that sits behind the CREAM server, into which it submits
the jobs. Normal values arepbs , lsf , andcondor .

The<queue-name> identifies which queue within the batch system should be used. Values for this will vary by
site, with no typical values.

A full example for the specification of a CREAMgrid_resourceis

grid_resource = cream https://cream-12.pd.infn.it:8443 /ce-cream/services/CREAM2
pbs cream_1

HTCondor Version 8.6.4 Manual

http://grid.pd.infn.it/cream/

5.3.9. The BOINC Grid Type 598

This is a single line within the submit description file, although it is shown here on two lines for formatting reasons.

CREAM uses ClassAd syntax to describe jobs, although the attributes used are different than those for HTCondor.
The submit description file commandcream_attributesadds additional attributes to the CREAM-style job ClassAd
that HTCondor constructs. The format for this submit description file command is

cream_attributes = name=value;name=value

5.3.9 The BOINC Grid Type

HTCondor jobs may be submitted to BOINC (Berkeley Open Infrastructure for Network Computing) servers.
BOINC is a software system for volunteer computing. More information about BOINC is available at
http://boinc.berkeley.edu/.

BOINC Job Submission

HTCondor jobs are submitted to a BOINC service with thegrid universe, setting thegrid_resource command to
boinc, followed by the service’s URL.

To use this grid type, you must have an account on the BOINC server that is authorized to submit jobs. Provide
the authenticator string for that account for HTCondor to use. Write the authenticator string in a file and specify its
location in the submit description file using theboinc_authenticator_filecommand, as in the example:

boinc_authenticator_file = /path/to/auth-file

Before submitting BOINC jobs, register the application with the BOINC server. This includes describing the
application’s resource requirements and input and output files, and placing application files on the server. This is a
manual process that is done on the BOINC server. See the BOINCdocumentation for details.

In the submit description file, theexecutablecommand gives the registered name of the application on the BOINC
server. Input and output files can be described as in the vanilla universe, but the file names must match the application
description on the BOINC server. Iftransfer_output_files is omitted, then all output files are transferred.

BOINC Configuration Variables

The following configuration variable is specific to theboinc grid type. The value listed here is the default. A different
value may be specified in the HTCondor configuration files.

BOINC_GAHP = $(SBIN)/boinc_gahp

HTCondor Version 8.6.4 Manual

http://boinc.berkeley.edu/

5.3.10. Matchmaking in the Grid Universe 599

5.3.10 Matchmaking in the Grid Universe

In a simple usage, the grid universe allows users to specify asingle grid site as a destination for jobs. This is sufficient
when a user knows exactly which grid site they wish to use, or ahigher-level resource broker (such as the European
Data Grid’s resource broker) has decided which grid site should be used.

When a user has a variety of grid sites to choose from, HTCondor allows matchmaking of grid universe jobs to
decide which grid resource a job should run on. Please note that this form of matchmaking is relatively new. There
are some rough edges as continual improvement occurs.

To facilitate HTCondor’s matching of jobs with grid resources, both the jobs and the grid resources are involved.
The job’s submit description file provides all commands needed to make the job work on a matched grid resource.
The grid resource identifies itself to HTCondor by advertising a ClassAd. This ClassAd specifies all necessary at-
tributes, such that HTCondor can properly make matches. Thegrid resource identification is accomplished by using
condor_advertiseto send a ClassAd representing the grid resource, which is then used by HTCondor to make matches.

Job Submission

To submit a grid universe job intended for a single, specificgt2 resource, the submit description file for the job
explicitly specifies the resource:

grid_resource = gt2 grid.example.com/jobmanager-pbs

If there were multiplegt2 resources that might be matched to the job, the submit description file changes:

grid_resource = $$(resource_name)
requirements = TARGET.resource_name =!= UNDEFINED

The grid_resource command uses a substitution macro. The substitution macro defines the value of
resource_name using attributes as specified by the matched grid resource. The requirements command fur-
ther restricts that the job may only run on a machine (grid resource) that definesgrid_resource . Note that this
attribute name is invented for this example. To make matchmaking work in this way, both the job (as used here within
the submit description file) and the grid resource (in its created and advertised ClassAd) must agree upon the name of
the attribute.

As a more complex example, consider a job that wants to run notonly on agt2 resource, but on one that has the
Bamboozle software installed. The complete submit description file might appear:

universe = grid
executable = analyze_bamboozle_data
output = aaa.$(Cluster).out
error = aaa.$(Cluster).err
log = aaa.log
grid_resource = $$(resource_name)
requirements = (TARGET.HaveBamboozle == True) && (TARGET. resource_name =!= UNDEFINED)
queue

HTCondor Version 8.6.4 Manual

5.3.10. Matchmaking in the Grid Universe 600

Any grid resource which has theHaveBamboozle attribute defined as well as set toTrue is further checked to
have theresource_name attribute defined. Where this occurs, a match may be made (from the job’s point of view).
A grid resource that has one of these attributes defined, but not the other results in no match being made.

Note that the entire value ofgrid_resourcecomes from the grid resource’s ad. This means that the job canbe
matched with a resource of any type, not justgt2.

Advertising Grid Resources to HTCondor

Any grid resource that wishes to be matched by HTCondor with ajob must advertise itself to HTCondor using a
ClassAd. To properly advertise, a ClassAd is sent periodically to thecondor_collectordaemon. A ClassAd is a list of
pairs, where each pair consists of an attribute name and value that describes an entity. There are two entities relevant
to HTCondor: a job, and a machine. A grid resource is a machine. The ClassAd describes the grid resource, as well
as identifying the capabilities of the grid resource. It mayalso state both requirements and preferences (calledrank)
for the jobs it will run. See Section 2.3 for an overview of theinteraction between matchmaking and ClassAds. A list
of common machine ClassAd attributes is given in the Appendix on page 1020.

To advertise a grid site, place the attributes in a file. Here is a sample ClassAd that describes a grid resource that is
capable of running agt2 job.

example grid resource ClassAd for a gt2 job
MyType = "Machine"
TargetType = "Job"
Name = "Example1_Gatekeeper"
Machine = "Example1_Gatekeeper"
resource_name = "gt2 grid.example.com/jobmanager-pbs"
UpdateSequenceNumber = 4
Requirements = (TARGET.JobUniverse == 9)
Rank = 0.000000
CurrentRank = 0.000000

Some attributes are defined as expressions, while others areintegers, floating point values, or strings. The type is
important, and must be correct for the ClassAd to be effective. The attributes

MyType = "Machine"
TargetType = "Job"

identify the grid resource as a machine, and that the machineis to be matched with a job. In HTCondor, machines
are matched with jobs, and jobs are matched with machines. These attributes are strings. Strings are surrounded by
double quote marks.

The attributesNameandMachine are likely to be defined to be the same string value as in the example:

Name = "Example1_Gatekeeper"
Machine = "Example1_Gatekeeper"

Both give the fully qualified host name for the resource. TheNamemay be different on an SMP machine, where

HTCondor Version 8.6.4 Manual

5.3.10. Matchmaking in the Grid Universe 601

the individual CPUs are given names that can be distinguished from each other. Each separate grid resource must have
a unique name.

Where the job depends on the resource to specify the value of the grid_resource command by the use of the
substitution macro, the ClassAd for the grid resource (machine) defines this value. The example given as

grid_resource = "gt2 grid.example.com/jobmanager-pbs"

defines this value. Note that the invented name of this variable must match the one utilized within the submit de-
scription file. To make the matchmaking work, both the job (asused within the submit description file) and the grid
resource (in this created and advertised ClassAd) must agree upon the name of the attribute.

A machine’s ClassAd information can be time sensitive, and may change over time. Therefore, ClassAds expire
and are thrown away. In addition, the communication method by which ClassAds are sent implies that entire ads may
be lost without notice or may arrive out of order. Out of orderarrival leads to the definition of an attribute which
provides an ordering. This positive integer value is given in the example ClassAd as

UpdateSequenceNumber = 4

This value must increase for each subsequent ClassAd. If state information for the ClassAd is kept in a file, a script
executed each time the ClassAd is to be sent may use a counter for this value. An alternative for a stateless implemen-
tation sends the current time in seconds (since the epoch, asgiven by the Ctime() function call).

The requirements that the grid resource sets for any job thatit will accept are given as

Requirements = (TARGET.JobUniverse == 9)

This set of requirements state that any job is required to be for thegrid universe.

The attributes

Rank = 0.000000
CurrentRank = 0.000000

are both necessary for HTCondor’s negotiation to proceed, but are not relevant to grid matchmaking. Set both to the
floating point value 0.0.

The example machine ClassAd becomes more complex for the case where the grid resource allows matches with
more than one job:

example grid resource ClassAd for a gt2 job
MyType = "Machine"
TargetType = "Job"
Name = "Example1_Gatekeeper"
Machine = "Example1_Gatekeeper"
resource_name = "gt2 grid.example.com/jobmanager-pbs"
UpdateSequenceNumber = 4
Requirements = (CurMatches < 10) && (TARGET.JobUniverse == 9)
Rank = 0.000000
CurrentRank = 0.000000
WantAdRevaluate = True
CurMatches = 1

HTCondor Version 8.6.4 Manual

5.3.10. Matchmaking in the Grid Universe 602

In this example, the two attributesWantAdRevaluate andCurMatches appear, and theRequirements
expression has changed.

WantAdRevaluate is a boolean value, and may be set to eitherTrue or False . WhenTrue in the ClassAd
and a match is made (of a job to the grid resource), the machine(grid resource) is not removed from the set of machines
to be considered for further matches. This implements the ability for a single grid resource to be matched to more
than one job at a time. Note that the spelling of this attribute is incorrect, and remains incorrect to maintain backward
compatibility.

To limit the number of matches made to the single grid resource, the resource must have the ability to keep track
of the number of HTCondor jobs it has. This integer value is given as theCurMatches attribute in the advertised
ClassAd. It is then compared in order to limit the number of jobs matched with the grid resource.

Requirements = (CurMatches < 10) && (TARGET.JobUniverse == 9)
CurMatches = 1

This example assumes that the grid resource already has one job, and is willing to accept a maximum of 9 jobs. If
CurMatches does not appear in the ClassAd, HTCondor uses a default valueof 0.

For multiple matching of a site ClassAd to work correctly, itis also necessary to add the following to the configu-
ration file read by thecondor_negotiator:

NEGOTIATOR_MATCHLIST_CACHING = False
NEGOTIATOR_IGNORE_USER_PRIORITIES = True

This ClassAd (likely in a file) is to be periodically sent to the condor_collectordaemon usingcondor_advertise.
A recommended implementation uses a script to create or modify the ClassAd together withcron to send the ClassAd
every five minutes. Thecondor_advertiseprogram must be installed on the machine sending the ClassAd, but the
remainder of HTCondor does not need to be installed. The required argument for thecondor_advertisecommand is
UPDATE_STARTD_AD.

Advanced usage

What if a job fails to run at a grid site due to an error? It will be returned to the queue, and HTCondor will attempt to
match it and re-run it at another site. HTCondor isn’t very clever about avoiding sites that may be bad, but you can
give it some assistance. Let’s say that you want to avoid running at the last grid site you ran at. You could add this to
your job description:

match_list_length = 1
Rank = TARGET.Name != LastMatchName0

This will prefer to run at a grid site that was not just tried, but it will allow the job to be run there if there is no
other option.

When you specifymatch_list_length, you provide an integer N, and HTCondor will keep track of thelast N
matches. The oldest match will be LastMatchName0, and next oldest will be LastMatchName1, and so on. (See the

HTCondor Version 8.6.4 Manual

5.3.10. Matchmaking in the Grid Universe 603

condor_submitmanual page for more details.) The Rank expression allows you to specify a numerical ranking for
different matches. When combined withmatch_list_length, you can prefer to avoid sites that you have already run at.

In addition,condor_submithas two options to help control grid universe job resubmissions and rematching. See
the definitions of the submit description file commandsglobus_resubmitandglobus_rematchat page 934 and page
934. These options are independent ofmatch_list_length.

There are some new attributes that will be added to the Job ClassAd, and may be useful to you when you write
your rank, requirements, globus_resubmit or globus_rematch option. Please refer to the Appendix on page 1002 to
see a list containing the following attributes:

• NumJobMatches

• NumGlobusSubmits

• NumSystemHolds

• HoldReason

• ReleaseReason

• EnteredCurrentStatus

• LastMatchTime

• LastRejMatchTime

• LastRejMatchReason

The following example of a command within the submit description file releases jobs 5 minutes after being held,
increasing the time between releases by 5 minutes each time.It will continue to retry up to 4 times per Globus
submission, plus 4. The plus 4 is necessary in case the job goes on hold before being submitted to Globus, although
this is unlikely.

periodic_release = (NumSystemHolds <= ((NumGlobusSubmit s * 4) + 4)) \
&& (NumGlobusSubmits < 4) && \
(HoldReason != "via condor_hold (by user $ENV(USER))") && \
((time() - EnteredCurrentStatus) > (NumSystemHolds * 60* 5))

The following example forces Globus resubmission after a job has been held 4 times per Globus submission.

globus_resubmit = NumSystemHolds == (NumGlobusSubmits + 1) * 4

If you are concerned about unknown or malicious grid sites reporting to yourcondor_collector, you should use
HTCondor’s security options, documented in Section 3.8.

HTCondor Version 8.6.4 Manual

5.4. The HTCondor Job Router 604

5.4 The HTCondor Job Router

The HTCondor Job Router is an add-on to thecondor_scheddthat transforms jobs from one type into another accord-
ing to a configurable policy. This process of transforming the jobs is calledjob routing.

One example of how the Job Router can be used is for the task of sending excess jobs to one or more remote grid
sites. The Job Router can transform the jobs such as vanilla universe jobs into grid universe jobs that use any of the
grid types supported by HTCondor. The rate at which jobs are routed can be matched roughly to the rate at which the
site is able to start running them. This makes it possible to balance a large work flow across multiple grid sites, a local
HTCondor pool, and any flocked HTCondor pools, without having to guess in advance how quickly jobs will run and
complete in each of the different sites.

Job Routing is most appropriate for high throughput work flows, where there are many more jobs than computers,
and the goal is to keep as many of the computers busy as possible. Job Routing is less suitable when there are a small
number of jobs, and the scheduler needs to choose the best place for each job, in order to finish them as quickly as
possible. The Job Router does not know which site will run thejobs faster, but it can decide whether to send more
jobs to a site, based on whether jobs already submitted to that site are sitting idle or not, as well as whether the site has
experienced recent job failures.

5.4.1 Routing Mechanism

Thecondor_job_routerdaemon and configuration determine a policy for which jobs may be transformed and sent to
grid sites. By default, a job is transformed into a grid universe job by making a copy of the original job ClassAd, and
modifying some attributes in this copy of the job. The copy iscalled the routed copy, and it shows up in the job queue
under a new job id.

Until the routed copy finishes or is removed, the original copy of the job passively mirrors the state of the routed
job. During this time, the original job is not available for matchmaking, because it is tied to the routed copy. The
original job also does not evaluate periodic expressions, such asPeriodicHold . Periodic expressions are evaluated
for the routed copy. When the routed copy completes, the original job ClassAd is updated such that it reflects the final
status of the job. If the routed copy is removed, the originaljob returns to the normal idle state, and is available for
matchmaking or rerouting. If, instead, the original job is removed or goes on hold, the routed copy is removed.

Although the default mode routes vanilla universe jobs to grid universe jobs, the routing rules may be configured
to do some other transformation of the job. It is also possible to edit the job in place rather than creating a new
transformed version of the job.

Thecondor_job_routerdaemon utilizes arouting table, in which a ClassAd describes each site to where jobs may
be sent. The routing table is given in the New ClassAd language, as currently used by HTCondor internally.

A good place to learn about the syntax of New ClassAds is the Informal Language Description in the C++ ClassAds
tutorial: http://htcondor.org/classad/c++tut.html. Two essential differences distinguish the New ClassAd language
from the current one. In the New ClassAd language, each ClassAd is surrounded by square brackets. And, in the
New ClassAd language, each assignment statement ends with asemicolon. When the New ClassAd is embedded in
an HTCondor configuration file, it may appear all on a single line, but the readability is often improved by inserting
line continuation characters after each assignment statement. This is done in the examples. Unfortunately, this makes

HTCondor Version 8.6.4 Manual

http://htcondor.org/classad/c++tut.html

5.4.2. Job Submission with Job Routing Capability 605

the insertion of comments into the configuration file awkward, because of the interaction between comments and
line continuation characters in configuration files. An alternative is to use C-style comments (/ * . . .* /). Another
alternative is to read in the routing table entries from a separate file, rather than embedding them in the HTCondor
configuration file.

5.4.2 Job Submission with Job Routing Capability

If Job Routing is set up, then the following items ought to be considered for jobs to have the necessary prerequisites
to be considered for routing.

• Jobs appropriate for routing to the grid must not rely on access to a shared file system, or other services that
are only available on the local pool. The job will use HTCondor’s file transfer mechanism, rather than relying
on a shared file system to access input files and write output files. In the submit description file, to enable file
transfer, there will be a set of commands similar to

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = input1, input2
transfer_output_files = output1, output2

Vanilla universe jobs and most types of grid universe jobs differ in the set of files transferred back when the job
completes. Vanilla universe jobs transfer back all files created or modified, while all grid universe jobs, except
for HTCondor-C, only transfer back theoutput file, as well as those explicitly listed withtransfer_output_files.
Therefore, when routing jobs to grid universes other than HTCondor-C, it is important to explicitly specify all
output files that must be transferred upon job completion.

An additional difference between the vanilla universe jobsandgt2 grid universe jobs is thatgt2 jobs do not
return any information about the job’s exit status. The exitstatus as reported in the job ClassAd and job event
log are always 0. Therefore, jobs that may be routed to agt2 grid site must not rely upon a non-zero job exit
status.

• One configuration for routed jobs requires the jobs to identify themselves as candidates for Job Routing. This
may be accomplished by inventing a ClassAd attribute that the configuration utilizes in setting the policy
for job identification, and the job defines this attribute to identify itself. If the invented attribute is called
WantJobRouter , then the job identifies itself as a job that may be routed by placing in the submit description
file:

+WantJobRouter = True

This implementation can be taken further, allowing the job to first be rejected within the local pool, before being
a candidate for Job Routing:

+WantJobRouter = LastRejMatchTime =!= UNDEFINED

• As appropriate to the potential grid site, create a grid proxy, and specify it in the submit description file:

HTCondor Version 8.6.4 Manual

5.4.2. Job Submission with Job Routing Capability 606

x509userproxy = /tmp/x509up_u275

This is not necessary if thecondor_job_routerdaemon is configured to add a grid proxy on behalf of jobs.

Job submission does not change for jobs that may be routed.

$ condor_submit job1.sub

wherejob1.sub might contain:

universe = vanilla
executable = my_executable
output = job1.stdout
error = job1.stderr
log = job1.ulog
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
+WantJobRouter = LastRejMatchTime =!= UNDEFINED
x509userproxy = /tmp/x509up_u275
queue

The status of the job may be observed as with any other HTCondor job, for example by looking in the job’s log
file. Before the job completes,condor_qshows the job’s status. Should the job become routed, a second job will enter
the job queue. This is the routed copy of the original job. Thecommandcondor_router_qshows a more specialized
view of routed jobs, as this example shows:

$ condor_router_q -S
JOBS ST Route GridResource

40 I Site1 site1.edu/jobmanager-condor
10 I Site2 site2.edu/jobmanager-pbs

2 R Site3 condor submit.site3.edu condor.site3.edu

condor_router_historysummarizes the history of routed jobs, as this example shows:

$ condor_router_history
Routed job history from 2007-06-27 23:38 to 2007-06-28 23:3 8

Site Hours Jobs Runs
Completed Aborted

--- ----
Site1 10 2 0
Site2 8 2 1
Site3 40 6 0
--- ----
TOTAL 58 10 1

HTCondor Version 8.6.4 Manual

5.4.3. An Example Configuration 607

5.4.3 An Example Configuration

The following sample configuration sets up potential job routing to three routes (grid sites). Definitions of the con-
figuration variables specific to the Job Router are in section3.5.20. One route is an HTCondor site accessed via the
Globus gt2 protocol. A second route is a PBS site, also accessed via Globus gt2. The third site is an HTCondor site
accessed by HTCondor-C. Thecondor_job_routerdaemon does not know which site will be best for a given job. The
policy implemented in this sample configuration stops sending more jobs to a site, if ten jobs that have already been
sent to that site are idle.

These configuration settings belong in the local configuration file of the machine where jobs are submitted. Check
that the machine can successfully submit grid jobs before setting up and using the Job Router. Typically, the sin-
gle required element that needs to be added for GSI authentication is an X.509 trusted certification authority direc-
tory, in a place recognized by HTCondor (for example,/etc/grid-security/certificates). The VDT
(http://vdt.cs.wisc.edu) project provides a convenient way to set up and install a trusted CA, if needed.

Note that, as of version 8.5.6, the configuration language supports multi-line values, as shown in the example
below (see section 3.3.5 for more details).

These settings become the default settings for all routes
JOB_ROUTER_DEFAULTS @=jrd

[
requirements=target.WantJobRouter is True;
MaxIdleJobs = 10;
MaxJobs = 200;

/ * now modify routed job attributes * /
/ * remove routed job if it goes on hold or stays idle for over 6 hou rs * /
set_PeriodicRemove = JobStatus == 5 ||

(JobStatus == 1 && (time() - QDate) > 3600 * 6);
delete_WantJobRouter = true;
set_requirements = true;

]
@jrd

This could be made an attribute of the job, rather than being hard-coded
ROUTED_JOB_MAX_TIME = 1440

Now we define each of the routes to send jobs on
JOB_ROUTER_ENTRIES @=jre

[GridResource = "gt2 site1.edu/jobmanager-condor";
name = "Site 1";

]
[GridResource = "gt2 site2.edu/jobmanager-pbs";

name = "Site 2";
set_GlobusRSL = "(maxwalltime=$(ROUTED_JOB_MAX_TIME)) (jobType=single)";

]
[GridResource = "condor submit.site3.edu condor.site3.e du";

name = "Site 3";
set_remote_jobuniverse = 5;

]
@jre

HTCondor Version 8.6.4 Manual

http://vdt.cs.wisc.edu

5.4.4. Routing Table Entry ClassAd Attributes 608

Reminder: you must restart HTCondor for changes to DAEMON_ LIST to take effect.
DAEMON_LIST = $(DAEMON_LIST) JOB_ROUTER

For testing, set this to a small value to speed things up.
Once you are running at large scale, set it to a higher value
to prevent the JobRouter from using too much cpu.
JOB_ROUTER_POLLING_PERIOD = 10

#It is good to save lots of schedd queue history
#for use with the router_history command.
MAX_HISTORY_ROTATIONS = 20

5.4.4 Routing Table Entry ClassAd Attributes

The conversion of a job to a routed copy may require the job ClassAd to be modified. The Routing Table specifies
attributes of the different possible routes and it may specify specific modifications that should be made to the job when
it is sent along a specific route. In addition to this mechanism for transforming the job, external programs may be
invoked to transform the job. For more information, see section 4.4.2.

The following attributes and instructions for modifying job attributes may appear in a Routing Table entry.

GridResource Specifies the value for theGridResource attribute that will be inserted into the routed copy of the
job’s ClassAd.

Name An optional identifier that will be used in log messages concerning this route. If no name is specified, the
default used will be the value ofGridResource . Thecondor_job_routerdistinguishes routes and advertises
statistics based on this attribute’s value.

Requirements A Requirements expression that identifies jobs that may be matched to the route. Note that,
as with all settings, requirements specified in the configuration variableJOB_ROUTER_ENTRIESover-
ride the setting ofJOB_ROUTER_DEFAULTS. To specify global requirements that are not overridden by
JOB_ROUTER_ENTRIES, useJOB_ROUTER_SOURCE_JOB_CONSTRAINT.

MaxJobs An integer maximum number of jobs permitted on the route at one time. The default is 100.

MaxIdleJobs An integer maximum number of routed jobs in the idle state. Ator above this value, no more jobs will
be sent to this site. This is intended to prevent too many jobsfrom being sent to sites which are too busy to run
them. If the value set for this attribute is too small, the rate of job submission to the site will slow, because the
condor_job_routerdaemon will submit jobs up to this limit, wait to see some of the jobs enter the running state,
and then submit more. The disadvantage of setting this attribute’s value too high is that a lot of jobs may be sent
to a site, only to site idle for hours or days. The default value is 50.

FailureRateThreshold A maximum tolerated rate of job failures. Failure is determined by the expression sets for
the attributeJobFailureTest expression. The default threshold is 0.03 jobs/second. If the threshold is
exceeded, submission of new jobs is throttled until jobs begin succeeding, such that the failure rate is less than
the threshold. This attribute implementsblack hole throttling, such that a site at which jobs are sent only to fail
(a black hole) receives fewer jobs.

HTCondor Version 8.6.4 Manual

5.4.4. Routing Table Entry ClassAd Attributes 609

JobFailureTest An expression evaluated for each job that finishes, to determine whether it was a failure. The default
value if no expression is defined assumes all jobs are successful. Routed jobs that are removed are consid-
ered to be failures. An example expression to treat all jobs running for less than 30 minutes as failures is
target.RemoteWallClockTime < 1800 . A more flexible expression might reference a property or
expression of the job that specifies a failure condition specific to the type of job.

TargetUniverse An integer value specifying the desired universe for the routed copy of the job. The default value is
9, which is thegrid universe.

UseSharedX509UserProxyA boolean expression that whenTrue causes the value ofSharedX509UserProxy
to be the X.509 user proxy for the routed job. Note that if thecondor_job_routerdaemon is running as root,
the copy of this file that is given to the job will have its ownership set to that of the user running the job. This
requires the trust of the user. It is therefore recommended to avoid this mechanism when possible. Instead,
require users to submit jobs withX509UserProxy set in the submit description file. If this feature is needed,
use the boolean expression to only allow specific values oftarget.Owner to use this shared proxy file. The
shared proxy file should be owned by thecondor user. Currently, to use a shared proxy, the job must also turn
on sandboxing by having the attributeJobShouldBeSandboxed .

SharedX509UserProxyA string representing file containing the X.509 user proxy for the routed job.

JobShouldBeSandboxedA boolean expression that whenTrue causes the created copy of the job to be sandboxed.
A copy of the input files will be placed in thecondor_schedddaemon’s spool area for the target job, and when
the job runs, the output will be staged back into the spool area. Once all of the output has been successfully
staged back, it will be copied again, this time from the spoolarea of the sandboxed job back to the original job’s
output locations. By default, sandboxing is turned off. Only to turn it on if using a shared X.509 user proxy or
if direct staging of remote output files back to the final output locations is not desired.

OverrideRoutingEntry A boolean value that whenTrue , indicates that this entry in the routing table replaces any
previous entry in the table with the same name. WhenFalse , it indicates that if there is a previous entry by the
same name, the previous entry should be retained and this entry should be ignored. The default value isTrue .

Set_<ATTR> Sets the value of<ATTR> in the routed copy’s job ClassAd to the specified value. An example of an
attribute that might be set isPeriodicRemove . For example, if the routed job goes on hold or stays idle for
too long, remove it and return the original copy of the job to anormal state.

Eval_Set_<ATTR> Defines an expression. The expression is evaluated, and the resulting value sets the value of the
routed copy’s job ClassAd attribute<ATTR>. Use this attribute to set a custom or local value, especially for
modifying an attribute which may have been already specifiedin a default routing table.

Copy_<ATTR> Defined with the name of a routed copy ClassAd attribute. Copies the value of<ATTR> from the
original job ClassAd into the specified attribute named of the routed copy. Useful to save the value of an
expression, before replacing it with something else that references the original expression.

Delete_<ATTR> Deletes<ATTR> from the routed copy ClassAd. A value assigned to this attribute in the routing
table entry is ignored.

EditJobInPlace A boolean expression that, whenTrue , causes the original job to be transformed in place rather
than creating a new transformed version (a routed copy) of the job. In this mode, the Job Router Hook
<Keyword>_HOOK_TRANSLATE_JOBand transformation rules in the routing table are applied during the

HTCondor Version 8.6.4 Manual

5.4.5. Example: constructing the routing table from ReSS 610

job transformation. The routing table attributeGridResource is ignored, and there is no default transfor-
mation of the job from a vanilla job to a grid universe job as there is otherwise. Once transformed, the job is
still a candidate for matching routing rules, so it is up to the routing logic to control whether the job may be
transformed multiple times or not. For example, to transform the job only once, an attribute could be set in
the job ClassAd to prevent it from matching the same routing rule in the future. To transform the job multiple
times with limited frequency, a timestamp could be insertedinto the job ClassAd marking the time of the last
transformation, and the routing entry could require that this timestamp either be undefined or older than some
limit.

5.4.5 Example: constructing the routing table from ReSS

The Open Science Grid has a service called ReSS (Resource Selection Service). It presents grid sites as ClassAds in
an HTCondor collector. This example builds a routing table from the site ClassAds in the ReSS collector.

Using JOB_ROUTER_ENTRIES_CMD, we tell thecondor_job_routerdaemon to call a simple script which
queries the collector and outputs a routing table. The script, calledosg_ress_routing_table.sh , is just this:

#!/bin/sh

you _MUST_ change this:
export condor_status=/path/to/condor_status
if no command line arguments specify -pool, use this:
export _CONDOR_COLLECTOR_HOST=osg-ress-1.fnal.gov

$condor_status -format '[' BeginAd \
-format 'GridResource = "gt2 %s"; ' GlueCEInfoContactStri ng \

-format ']\n' EndAd "$@" | uniq

Save this script to a file and make sure the permissions on the file mark it as executable. Test this script by calling
it by hand before trying to use it with thecondor_job_routerdaemon. You may supply additional arguments such as
-constraint to limit the sites which are returned.

Once you are satisfied that the routing table constructed by the script is what you want, configure thecon-
dor_job_routerdaemon to use it:

command to build the routing table
JOB_ROUTER_ENTRIES_CMD = /path/to/osg_ress_routing_ta ble.sh <extra arguments>

how often to rebuild the routing table:
JOB_ROUTER_ENTRIES_REFRESH = 3600

Using the example configuration, use the above settings to replace JOB_ROUTER_ENTRIES. Or, leave
JOB_ROUTER_ENTRIESthere and have a routing table containing entries from both sources. When you restart
or reconfigure thecondor_job_routerdaemon, you should see messages in the Job Router’s log indicating that it is
adding more routes to the table.

HTCondor Version 8.6.4 Manual

CHAPTER

SIX

Application Programming Interfaces (APIs)

There are several ways of interacting with the HTCondor system. Depending on your application and resources,
the interfaces to HTCondor listed below may be useful for your installation. If you have developed an interface to
HTCondor, please consider sharing it with the HTCondor community.

6.1 Web Service

HTCondor’s Web Service (WS) API provides a way for application developers to interact with HTCondor, without
needing to utilize HTCondor’s command-line tools. In keeping with the HTCondor philosophy of reliability and fault-
tolerance, this API is designed to provide a simple and powerful way to interact with HTCondor. HTCondor daemons
understand and implement the SOAP (Simple Object Access Protocol) XML API to provide a web service interface
for HTCondor job submission and management.

To deal with the issues of reliability and fault-tolerance,a two-phase commit mechanism to provides a transaction-
based protocol. The following API description describes interaction between a client using the API and both the
condor_scheddandcondor_collectordaemons to illustrate transactions for use in job submission, queue management
and ClassAd management functions.

6.1.1 Transactions

All applications using the API to interact with thecondor_scheddwill need to use transactions. A transaction is an
ACID unit of work (atomic, consistent, isolated, and durable). The API limits the lifetime of a transaction, and both the
client (application) and the server (thecondor_schedddaemon) may place a limit on the lifetime. The server reserves
the right to specify a maximum duration for a transaction.

611

6.1.2. Job Submission 612

The client initiates a transaction using thebeginTransaction() method. It ends the transaction with either a
commit (usingcommitTransaction()) or an abort (usingabortTransaction()).

Not all operations in the API need to be performed within a transaction. Some accept a null transaction. A null
transaction is a SOAP message with

<transaction xsi:type="ns1:Transaction" xsi:nil="true "/>

Often this is achieved by passing the programming language’s equivalent ofnull in place of a transaction identifier.
It is possible that some operations will have access to more information when they are used inside a transaction.
For instance, agetJobAds() . query would have access to the jobs that are pending in a transaction, which are
not committed and therefore not visible outside of the transaction. Transactions are as ACID compliant as possible.
Therefore, do not query for information outside of a transaction on which to make a decision inside a transaction based
on the query’s results.

6.1.2 Job Submission

A ClassAd is required to describe a job. The job ClassAd will be submitted to thecondor_scheddwithin a
transaction using thesubmit() method. The complexity of job ClassAd creation may be simplified by the
createJobTemplate() method. It returns an instance of a ClassAd structure that may be further modified. A
necessary part of the job ClassAd are the job attributesClusterId andProcId , which uniquely identify the cluster
and the job within a cluster. Allocation and assignment of (monotonically increasing)ClusterId values utilize the
newCluster() method. Jobs may be submitted within the assigned cluster only until thenewCluster() method
is invoked a subsequent time. Each job is allocated and assigned a (monotonically increasing)ProcId within the
current cluster using thenewJob() method. Therefore, the sequence of method calls to submit a set of jobs initially
callsnewCluster() . This is followed by calls tonewJob() and thensubmit() for each job within the cluster.

As an example, here are sample cluster and job numbers that result from the ordered calls to submission methods:

1. A call tonewCluster() , assigns aClusterId of 6.

2. A call tonewJob() , assigns aProcId of 0, as this is the first job within the cluster.

3. A call tosubmit() results in a job submission numbered 6.0.

4. A call tonewJob() , assigns aProcId of 1.

5. A call tosubmit() results in a job submission numbered 6.1.

6. A call tonewJob() , assigns aProcId of 2.

7. A call tosubmit() results in a job submission numbered 6.2.

8. A call tonewCluster() , assigns aClusterId of 7.

9. A call tonewJob() , assigns aProcId of 0, as this is the first job within the cluster.

10. A call tosubmit() results in a job submission numbered 7.0.

HTCondor Version 8.6.4 Manual

6.1.3. File Transfer 613

11. A call tonewJob() , assigns aProcId of 1.

12. A call tosubmit() results in a job submission numbered 7.1.

There is the potential that a call tosubmit() will fail. Failure means that the job is in the queue, and it typically
indicates that something needed by the job has not been sent.As a result the job has no hope in successfully running.
It is possible to recover from such a failure by trying to resend information that the job will need. It is also completely
acceptable to abort and make another attempt. To simplify the client’s effort in figuring out what the job requires, a
discoverJobRequirements() method accepting a job ClassAd and returning a list of thingsthat should be sent
along with the job is provided.

6.1.3 File Transfer

A common job submission case requires the job’s executable and input files to be transferred from the machine where
the application is running to the machine where thecondor_schedddaemon is running. This is the analogous situation
to runningcondor_submitusing the-spoolor -remoteoption. The executable and input files must be sent directly to
thecondor_schedddaemon, which places all files in a spool location.

The two methodsdeclareFile() andsendFile() work in tandem to transfer files to thecondor_schedd
daemon. ThedeclareFile() method causes thecondor_schedddaemon to create the file in its spool location, or
indicate in its return value that the file already exists. This increases efficiency, as resending an existing file is a waste
of resources. ThesendFile() method sends base64 encoded data.sendFile() may be used to send an entire
file, or chunks of files as desired.

ThedeclareFile() method has both required and optional arguments.declareFile() requires the name
of the file and its size in bytes. The optional arguments relate hash information. A hash type ofNOHASHdisables
file verification; thecondor_schedddaemon will not have a reliable way to determine the existence of the file being
declared.

Methods for retrieving files are most useful when a job is completed. Consider the categorization of the typical
life-cycle for a job:

Birth: The birth of a job begins withsubmit() .

Childhood: The job executes.

Middle Age: A completed job waits to be removed. As the job enters Middle Age, itsJobStatus ClassAd attribute
becomes Completed (the value 4).

Old Age: The job’s information goes into the history log.

Once the job enters Middle Age, thegetFile() method retrieves a file. ThelistSpool() method assists by
providing a list of all the job’s files in the spool location.

The job enters Old Age by the application’s use of thecloseSpool() method. It causes thecondor_schedd
daemon to remove the job from the queue, and the job’s spool files are no longer available. As there is no requirement
for the application to invoke thecloseSpool() method, jobs can potentially remain in the queue forever. The
configuration variableSOAP_LEAVE_IN_QUEUEmay mitigate this problem. When this boolean variable evaluates
to False , a job enters Old Age. A reasonable example for this configuration variable is

HTCondor Version 8.6.4 Manual

6.1.4. Implementation Details 614

SOAP_LEAVE_IN_QUEUE = ((JobStatus==4) && ((ServerTime - C ompletionDate) < (60 * 60 * 24)))

This expression results in Old age for a job (removed from thequeue), once the job has been Middle Aged (been
completed) for 24 hours.

6.1.4 Implementation Details

HTCondor daemons understand and communicate using the SOAPXML protocol. An application seek-
ing to use this protocol will require code that handles the communication. The XML WSDL (Web Ser-
vices Description Language) that HTCondor implements is included with the HTCondor distribution. It is in
$(RELEASE_DIR)/lib/webservice . The WSDL must be run through a toolkit to produce language-specific
routines that do communication. The application is compiled with these routines.

HTCondor must be configured to enable responses to SOAP calls. Please see section 3.5.29 for definitions of the
configuration variables related to the web services API. TheWS interface is listening on thecondor_schedddaemon’s
command port. To obtain a list of all the thecondor_schedddaemons in the pool with a WS interface, issue the
command:

% condor_status -schedd -constraint "HasSOAPInterface=? =TRUE"

With this information, a further command locates the port number to use:

% condor_status -schedd -constraint "HasSOAPInterface=? =TRUE" -l | grep MyAddress

HTCondor’s security configuration must be set up such that access is authorized for the SOAP client. See Sec-
tion 3.8.7 for information on how to set theALLOW_SOAPandDENY_SOAPconfiguration variables.

The API’s routines can be roughly categorized into ones thatdeal with

• Transactions

• Job Submission

• File Transfer

• Job Management

• ClassAd Management

• Version Information

The routines for each of these categories is detailed. Note that the signature provided will accurately reflect a routine’s
name, but that return values and parameter specification will vary according to the target programming language.

HTCondor Version 8.6.4 Manual

6.1.5. Get These Items Correct 615

6.1.5 Get These Items Correct

• For jobs that are to be executed on Windows platforms, explicitly set the job ClassAd attributeNTDomain. This
attribute defines the NT domain within which the job’s owner authenticates. The attribute is necessary, and it is
not set for the job by thecreateJobTemplate() function.

6.1.6 Methods for Transaction Management

beginTransaction Begin a transaction. A prototype is

StatusAndTransaction beginTransaction(int duration);

Parameters • duration The expected duration of the transaction.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values. Additionally, on success, the return value contains the new transaction.

commitTransaction Commits a transaction. A prototype is

Status commitTransaction(Transaction transaction);

Parameters • transaction The transaction to be committed.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values.

abortTransaction Abort a transaction. A prototype is

Status abortTransaction(Transaction transaction);

Parameters • transaction The transaction to be aborted.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values.

extendTransaction Request an extension in duration for a specific transaction.A prototype is

StatusAndTransaction extendTransaction(Transaction tr ansaction, int
duration);

Parameters • transaction The transaction to be extended.

• duration The duration of the extension.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values. Additionally, on success, the return value contains the transaction with the extended dura-
tion.

HTCondor Version 8.6.4 Manual

6.1.7. Methods for Job Submission 616

6.1.7 Methods for Job Submission

submit Submit a job. A prototype is

StatusAndRequirements submit(Transaction transaction, int clusterId, int
jobId, ClassAd jobAd);

Parameters • transaction The transaction in which the submission takes place.

• clusterId The cluster identifier.

• jobId The job identifier.

• jobAd The ClassAd describing the job. Creation of this ClassAd canbe simplified with
createJobTemplate(); .

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values. Additionally, the return value contains thejob’s requirements.

createJobTemplate Request a job Class Ad, given some of the job requirements. This job Class Ad will be
suitable for use when submitting the job. Note that the job attributeNTDomain is not set by this function, but
must be set for jobs that will execute on Windows platforms. Aprototype is

StatusAndClassAd createJobTemplate(int clusterId, int j obId, String owner,
UniverseType type, String command, String arguments, Stri ng requirements);

Parameters • clusterId The cluster identifier.

• jobId The job identifier.

• owner The name to be associated with the job.

• type The universe under which the job will run, wheretype can be one of the following:
enum UniverseType { STANDARD = 1, VANILLA = 5, SCHEDULER = 7, M PI =
8, GRID = 9, JAVA = 10, PARALLEL = 11, LOCALUNIVERSE = 12, VM = 13
};

• commandThe command to execute once the job has started.

• arguments The command-line arguments forcommand.

• requirements The requirements expression for the job. For further details and examples of the
expression syntax, please refer to section 4.1.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values.

discoverJobRequirements Discover the requirements of a job, given a Class Ad. May be helpful in determin-
ing what should be sent along with the job. A prototype is

StatusAndRequirements discoverJobRequirements(ClassA d jobAd);

Parameters • jobAd The ClassAd of the job.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values. Additionally, on success, the return value contains the job’s requirements.

HTCondor Version 8.6.4 Manual

6.1.8. Methods for File Transfer 617

6.1.8 Methods for File Transfer

declareFile Declare a file that may be used by a job. A prototype is

Status declareFile(Transaction transaction, int cluster Id, int jobId,
String name, int size, HashType hashType, String hash);

Parameters • transaction The transaction in which this file is declared.

• clusterId The cluster identifier.
• jobId An identifier of the job that will use the file.

• name The name of the file.
• size The size of the file.

• hashType The type of hash mechanism used to verify file integrity, where hashType can be one
of the following:
enum HashType { NOHASH, MD5HASH };

• hash An optionally zero-length string encoding of the file hash.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values.

sendFile Send a file that a job may use. A prototype is

Status sendFile(Transaction transaction, int clusterId, int jobId, String
name, int offset, Base64 data);

Parameters • transaction The transaction in which this file is send.

• clusterId The cluster identifier.
• jobId An identifier of the job that will use the file.

• name The name of the file being sent.

• offset The starting offset within the file being sent.
• length The length from the offset to send.

• data The data block being sent. This could be the entire file or a sub-section of the file as defined by
offset andlength .

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values.

getFile Get a file from a job’s spool. A prototype is

StatusAndBase64 getFile(Transaction transaction, int cl usterId, int jobId,
String name, int offset, int length);

Parameters • transaction An optionally nullable transaction, meaning this call doesnot need to occur
in a transaction.

• clusterId The cluster in which to search.

• jobId The job identifier the file is associated with.
• name The name of the file to retrieve.

• offset The starting offset withing the file being retrieved.

HTCondor Version 8.6.4 Manual

6.1.9. Methods for Job Management 618

• length The length from the offset to retrieve.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values. Additionally, on success, the return value contains the file or a sub-section of the file as
defined byoffset andlength .

closeSpool Close a job’s spool. All the files in the job’s spool can be deleted. A prototype is

Status closeSpool(Transaction transaction, int clusterI d, int jobId);

Parameters • transaction An optionally nullable transaction, meaning this call doesnot need to occur
in a transaction.

• clusterId The cluster identifier which the job is associated with.
• jobId The job identifier for which the spool is to be removed.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values.

listSpool List the files in a job’s spool. A prototype is

StatusAndFileInfoArray listSpool(Transaction transact ion, int clusterId,
int jobId);

Parameters • transaction An optionally nullable transaction, meaning this call doesnot need to occur
in a transaction.

• clusterId The cluster in which to search.

• jobId The job identifier to search for.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values. Additionally, on success, the return value contains a list of files and their respective sizes.

6.1.9 Methods for Job Management

newCluster Create a new job cluster. A prototype is

StatusAndInt newCluster(Transaction transaction);

Parameters • transaction The transaction in which this cluster is created.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values. Additionally, on success, the return value contains the cluster id.

removeCluster Remove a job cluster, and all the jobs within it. A prototype is

Status removeCluster(Transaction transaction, int clust erId, String
reason);

Parameters • transaction An optionally nullable transaction, meaning this call doesnot need to occur
in a transaction.

• clusterId The cluster to remove.

• reason The reason for the removal.

HTCondor Version 8.6.4 Manual

6.1.9. Methods for Job Management 619

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values.

newJob Creates a new job within the most recently created job cluster. A prototype is

StatusAndInt newJob(Transaction transaction, int cluste rId);

Parameters • transaction The transaction in which this job is created.

• clusterId The cluster identifier of the most recently created cluster.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values. Additionally, on success, the return value contains the job id.

removeJob Remove a job, regardless of the job’s state. A prototype is

Status removeJob(Transaction transaction, int clusterId , int jobId, String
reason, boolean forceRemoval);

Parameters • transaction An optionally nullable transaction, meaning this call doesnot need to occur
in a transaction.

• clusterId The cluster identifier to search in.

• jobId The job identifier to search for.

• reason The reason for the release.

• forceRemoval Set if the job should be forcibly removed.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values.

holdJob Put a job into the Hold state, regardless of the job’s currentstate. A prototype is

Status holdJob(Transaction transaction, int clusterId, i nt jobId, string
reason, boolean emailUser, boolean emailAdmin, boolean sy stemHold);

Parameters • transaction An optionally nullable transaction, meaning this call doesnot need to occur
in a transaction.

• clusterId The cluster in which to search.

• jobId The job identifier to search for.

• reason The reason for the release.

• emailUser Set if the submitting user should be notified.

• emailAdmin Set if the administrator should be notified.

• systemHold Set if the job should be put on hold.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values.

releaseJob Release a job that has been in the Hold state. A prototype is

Status releaseJob(Transaction transaction, int clusterI d, int jobId,
String reason, boolean emailUser, boolean emailAdmin);

HTCondor Version 8.6.4 Manual

6.1.9. Methods for Job Management 620

Parameters • transaction An optionally nullable transaction, meaning this call doesnot need to occur
in a transaction.

• clusterId The cluster in which to search.

• jobId The job identifier to search for.

• reason The reason for the release.

• emailUser Set if the submitting user should be notified.

• emailAdmin Set if the administrator should be notified.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values.

getJobAds A prototype is

StatusAndClassAdArray getJobAds(Transaction transacti on, String
constraint);

Parameters • transaction An optionally nullable transaction, meaning this call doesnot need to occur
in a transaction.

• constraint A string constraining the number ClassAds to return. For further details and examples
of the constraint syntax, please refer to section 4.1.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values. Additionally, on success, the return value contains all job ClassAds matching the given
constraint.

getJobAd Finds a specific job ClassAd.

This method does much the same as the first element from the array returned by

getJobAds(transaction, "(ClusterId==clusterId && JobId ==jobId)")

A prototype is

StatusAndClassAd getJobAd(Transaction transaction, int clusterId, int
jobId);

Parameters • transaction An optionally nullable transaction, meaning this call doesnot need to occur
in a transaction.

• clusterId The cluster in which to search.

• jobId The job identifier to search for.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values. Additionally, on success, the return value contains the requested ClassAd.

requestReschedule Request acondor_reschedulefrom thecondor_schedddaemon. A prototype is

Status requestReschedule();

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values.

HTCondor Version 8.6.4 Manual

6.1.10. Methods for ClassAd Management 621

6.1.10 Methods for ClassAd Management

insertAd A prototype is

Status insertAd(ClassAdType type, ClassAdStruct ad);

Parameters • type The type of ClassAd to insert, wheretype can be one of the following:
enum ClassAdType { STARTD_AD_TYPE, QUILL_AD_TYPE, SCHEDD_AD_TYPE,
SUBMITTOR_AD_TYPE, LICENSE_AD_TYPE, MASTER_AD_TYPE,
CKPTSRVR_AD_TYPE, COLLECTOR_AD_TYPE, STORAGE_AD_TYPE,
NEGOTIATOR_AD_TYPE, HAD_AD_TYPE, GENERIC_AD_TYPE };

• ad The ClassAd to insert.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, seeStatusCode for valid
return values.

queryStartdAds A prototype is

ClassAdArray queryStartdAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return. For further details and
examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all thecondor_startdClassAds matching the given constraint.

queryScheddAds A prototype is

ClassAdArray queryScheddAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return. For further details and
examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all thecondor_scheddClassAds matching the given constraint.

queryMasterAds A prototype is

ClassAdArray queryMasterAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return. For further details and
examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all thecondor_masterClassAds matching the given constraint.

querySubmittorAds A prototype is

ClassAdArray querySubmittorAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return. For further details and
examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all the submitters ClassAds matching the given constraint.

queryLicenseAds A prototype is

ClassAdArray queryLicenseAds(String constraint);

HTCondor Version 8.6.4 Manual

6.1.11. Methods for Version Information 622

Parameters • constraint A string constraining the number ClassAds to return.For further details and
examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all the license ClassAds matching the given constraint.

queryStorageAds A prototype is

ClassAdArray queryStorageAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return. For further details and
examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all the storage ClassAds matching the given constraint.

queryAnyAds A prototype is

ClassAdArray queryAnyAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return. For further details and
examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all the ClassAds matching the given constraint. to return.

6.1.11 Methods for Version Information

getVersionString A prototype is

StatusAndString getVersionString();

Return Value Returns the HTCondor version as a string.

getPlatformString A prototype is

StatusAndString getPlatformString();

Return Value Returns the platform information HTCondor is running on as string.

6.1.12 Common Data Structures

Many methods return a status. Table 6.1 lists and defines theStatusCode return values.

HTCondor Version 8.6.4 Manual

6.2. The DRMAA API 623

Value Identifier Definition
0 SUCCESS All OK
1 FAIL An error occurred that is not specific to another error code
2 INVALIDTRANSACTION No such transaction exists
3 UNKNOWNCLUSTER The specified cluster is not the currently active one
4 UNKNOWNJOB The specified job does not exist within the specified cluster
5 UNKNOWNFILE
6 INCOMPLETE
7 INVALIDOFFSET
8 ALREADYEXISTS For this job, the specified file already exists

Table 6.1:StatusCode definitions

6.2 The DRMAA API

The following quote from the DRMAA Specification 1.0 abstract nicely describes the purpose of the API:

The Distributed Resource Management Application API (DRMAA), developed by a working group of the Global
Grid Forum (GGF),

provides a generalized API to distributed resource management systems (DRMSs) in order to facilitate
integration of application programs. The scope of DRMAA is limited to job submission, job monitoring
and control, and the retrieval of the finished job status. DRMAA provides application developers and
distributed resource management builders with a programming model that enables the development of
distributed applications tightly coupled to an underlyingDRMS. For deployers of such distributed appli-
cations, DRMAA preserves flexibility and choice in system design.

The API allows users who write programs using DRMAA functions and link to a DRMAA library to submit,
control, and retrieve information about jobs to a Grid system. The HTCondor implementation of a portion of the API
allows programs (applications) to use the library functions provided to submit, monitor and control HTCondor jobs.

See the DRMAA site (http://www.drmaa.org) to find the API specification for DRMA 1.0 for further details on the
API.

6.2.1 Implementation Details

The library was developed from the DRMA API Specification 1.0of January 2004 and the DRMAA C Bindings v0.9
of September 2003. It is a static C library that expects a POSIX thread model on Unix systems and a Windows thread
model on Windows systems. Unix systems that do not support POSIX threads are not guaranteed thread safety when
calling the library’s functions.

The object library file is calledlibcondordrmaa.a , and it is located within the$(LIB) directory. Its header
file is $(INCLUDE)/drmaa.h , and file$(INCLUDE)/README gives further details on the implementation.

HTCondor Version 8.6.4 Manual

http://www.drmaa.org

6.3. The HTCondor User and Job Log Reader API 624

Use of the library requires that a localcondor_schedddaemon must be running, and the program linked to the
library must have sufficient spool space. This space should be in /tmp or specified by the environment variables
TEMP, TMP, orSPOOL. The program linked to the library and the localcondor_schedddaemon must have read, write,
and traverse rights to the spool space.

The library currently supports the following specification-defined job attributes:

DRMAA_REMOTE_COMMAND

DRMAA_JS_STATE

DRMAA_NATIVE_SPECIFICATION

DRMAA_BLOCK_EMAIL

DRMAA_INPUT_PATH

DRMAA_OUTPUT_PATH

DRMAA_ERROR_PATH

DRMAA_V_ARGV

DRMAA_V_ENV

DRMAA_V_EMAIL

The attributeDRMAA_NATIVE_SPECIFICATIONcan be used to direct all commands supported within submit
description files. See thecondor_submitmanual page at section 11 for a complete list. Multiple commands can be
specified if separated by newlines.

As in the normal submit file, arbitrary attributes can be added to the job’s ClassAd by prefixing the attribute with
+. In this case, you will need to put string values in quotation marks, the same as in a submit file.

Thus to tell HTCondor that the job will likely use 64 megabytes of memory (65536 kilobytes), to more highly
rank machines with more memory, and to add the arbitrary attribute of department set to chemistry, you would set
AttrDRMAA_NATIVE_SPECIFICATION to the C string:

drmaa_set_attribute(jobtemplate, DRMAA_NATIVE_SPECIF ICATION,
"image_size=65536\nrank=Memory\n+department=\"chemi stry\"",
err_buf, sizeof(err_buf)-1);

6.3 The HTCondor User and Job Log Reader API

HTCondor has the ability to log an HTCondor job’s significantevents during its lifetime. This is enabled in the job’s
submit description file with theLog command.

This section describes the API defined by the C++ReadUserLog class, which provides a programming interface
for applications to read and parse events, polling for events, and saving and restoring reader state.

HTCondor Version 8.6.4 Manual

6.3.1. Constants and Enumerated Types 625

6.3.1 Constants and Enumerated Types

The following define enumerated types useful to the API.

• ULogEventOutcome (defined incondor_event.h):

– ULOG_OK: Event is valid

– ULOG_NO_EVENT: No event occurred (like EOF)

– ULOG_RD_ERROR: Error reading log file

– ULOG_MISSED_EVENT: Missed event

– ULOG_UNK_ERROR: Unknown Error

• ReadUserLog::FileStatus

– LOG_STATUS_ERROR: An error was encountered

– LOG_STATUS_NOCHANGE: No change in file size

– LOG_STATUS_GROWN: File has grown

– LOG_STATUS_SHRUNK: File has shrunk

6.3.2 Constructors and Destructors

All ReadUserLog constructors invoke one of theinitialize() methods. Since C++ constructors cannot return
errors, an application using any but the default constructor should callisIinitialized() to verify that the object
initialized correctly, and for example, had permissions toopen required files.

Note that because the constructors cannot return status information, most of these constructors will be eliminated
in the future. All constructors, except for the default constructor with no parameters, will be removed. The application
will need to call the appropriateinitialize() method.

• ReadUserLog::ReadUserLog(bool isEventLog)
Synopsis:Constructor default
Returns: None
Constructor parameters:

– bool isEventLog (Optional with default= false)
If true , theReadUserLog object is initialized to read the schedd-wide event log.
NOTE: If isEventLog is true , the initialization may silently fail, so the value of
ReadUserLog::isInitialized should be checked to verify that the initialization was successful.
NOTE: The isEventLog parameter will be removed in the future.

• ReadUserLog::ReadUserLog(FILE * fp, bool is_xml, bool enable_close)
Synopsis:Constructor of a limited functionality reader: no rotationhandling, no locking
Returns: None
Constructor parameters:

HTCondor Version 8.6.4 Manual

6.3.2. Constructors and Destructors 626

– FILE * fp
File pointer to the previously opened log file to read.

– bool is_xml
If true , the file is treated as XML; otherwise, it will be read as an oldstyle file.

– bool enable_close (Optional with default= false)
If true , the reader will open the file read-only.

NOTE: The ReadUserLog::isInitialized method should be invoked to verify that this constructor
was initialized successfully.
NOTE: This constructor will be removed in the future.

• ReadUserLog::ReadUserLog(const char * filename, bool read_only)
Synopsis:Constructor to read a specific log file
Returns: None
Constructor parameters:

– const char * filename
Path to the log file to read

– bool read_only (Optional with default= false)
If true , the reader will open the file read-only and disable locking.

NOTE: This constructor will be removed in the future.

• ReadUserLog::ReadUserLog(const FileState &state, bool r ead_only)
Synopsis:Constructor to continue from a persisted reader state
Returns: None
Constructor parameters:

– const FileState & state
Reference to the persisted state to restore from

– bool read_only (Optional with default= false)
If true , the reader will open the file read-only and disable locking.

NOTE: The ReadUserLog::isInitialized method should be invoked to verify that this constructor
was initialized successfully.
NOTE: This constructor will be removed in the future.

• ReadUserLog::˜ReadUserLog(void)
Synopsis:Destructor
Returns: None
Destructor parameters:

– None.

HTCondor Version 8.6.4 Manual

6.3.3. Initializers 627

6.3.3 Initializers

These methods are used to perform the initialization of theReadUserLog objects. These initializers are used by all
constructors that do real work. Applications should never use those constructors, should use the default constructor,
and should instead use one of these initializer methods.

All of these functions will returnfalse if there are problems such as being unable to open the log file,or true
if successful.

• bool ReadUserLog::initialize(void)
Synopsis:Initialize to read the EventLog file.
NOTE: This method will likely be eliminated in the future, and this functionality will be moved to a new
ReadEventLog class.
Returns: bool ; true : success,false : failed
Method parameters:

– None.

• bool ReadUserLog::initialize(const char * filename, bool handle_rotation,
bool check_for_rotated, bool read_only)
Synopsis:Initialize to read a specific log file.
Returns: bool ; true : success,false : failed
Method parameters:

– const char * filename
Path to the log file to read

– bool handle_rotation (Optional with default= false)
If true , enable the reader to handle rotating log files, which is onlyuseful for global user logs

– bool check_for_rotated (Optional with default= false)
If true , try to open the rotated files (with file names appended with.old or .1 , .2 , . . .) first.

– bool read_only (Optional with default= false)
If true , the reader will open the file read-only and disable locking.

• bool ReadUserLog::initialize(const char * filename, int max_rotation, bool
check_for_rotated, bool read_only)
Synopsis:Initialize to read a specific log file.
Returns: bool ; true : success,false : failed
Method parameters:

– const char * filename
Path to the log file to read

– int max_rotation
Limits what previously rotated files will be considered by the number given in the file name suffix. A value
of 0 disables looking for rotated files. A value of 1 limits therotated file to be that with the file name suffix
of .old . As only event logs are rotated, this parameter is only useful for event logs.

HTCondor Version 8.6.4 Manual

6.3.4. Primary Methods 628

– bool check_for_rotated (Optional with default= false)
If true , try to open the rotated files (with file names appended with.old or .1 , .2 , . . .) first.

– bool read_only (Optional with default= false)
If true , the reader will open the file read-only and disable locking.

• bool ReadUserLog::initialize(const FileState &state, bo ol read_only)
Synopsis:Initialize to continue from a persisted reader state.
Returns: bool ; true : success,false : failed
Method parameters:

– const FileState & state
Reference to the persisted state to restore from

– bool read_only (Optional with default= false)
If true , the reader will open the file read-only and disable locking.

• bool ReadUserLog::initialize(const FileState &state, in t max_rotation,
bool read_only)
Synopsis:Initialize to continue from a persisted reader state and setthe rotation parameters.
Returns: bool ; true : success,false : failed
Method parameters:

– const FileState & state
Reference to the persisted state to restore from

– int max_rotation
Limits what previously rotated files will be considered by the number given in the file name suffix. A value
of 0 disables looking for rotated files. A value of 1 limits therotated file to be that with the file name suffix
of .old . As only event logs are rotated, this parameter is only useful for event logs.

– bool read_only (Optional with default= false)
If true , the reader will open the file read-only and disable locking.

6.3.4 Primary Methods

• ULogEventOutcome ReadUserLog::readEvent(ULogEvent ∗& event)
Synopsis:Read the next event from the log file.
Returns: ULogEventOutcome ; Outcome of the log read attempt.ULogEventOutcome is an enumerated
type.
Method parameters:

– ULogEvent ∗& event
Pointer to anULogEvent that is allocated by this call toReadUserLog::readEvent . If no event is
allocated, this pointer is set toNULL. Otherwise the event needs to bedelete()ed by the application.

• bool ReadUserLog::synchronize(void)
Synopsis:Synchronize the log file if the last event read was an error. This safe guard function should be called
if there is some error reading an event, but there are events after it in the file. It will skip over the bad event,
meaning it will read up to and including the event separator,so that the rest of the events can be read.

HTCondor Version 8.6.4 Manual

6.3.5. Accessors 629

Returns: bool ; true : success,false : failed
Method parameters:

– None.

6.3.5 Accessors

• ReadUserLog::FileStatus ReadUserLog::CheckFileStatus (void)
Synopsis:Check the status of the file, and whether it has grown, shrunk,etc.
Returns: ReadUserLog::FileStatus ; the status of the log file, an enumerated type.
Method parameters:

– None.

• ReadUserLog::FileStatus ReadUserLog::CheckFileStatus (bool &is_empty)
Synopsis:Check the status of the file, and whether it has grown, shrunk,etc.
Returns: ReadUserLog::FileStatus ; the status of the log file, an enumerated type.
Method parameters:

– bool & is_empty
Set totrue if the file is empty,false otherwise.

6.3.6 Methods for saving and restoring persistent reader state

The ReadUserLog::FileState structure is used to save and restore the state of theReadUserLog state for
persistence. The application should always useInitFileState() to initialize this structure.

All of these methods take a reference to a state buffer as their only parameter.

All of these methods returntrue upon success.

6.3.7 Save state to persistent storage

To save the state, do something like this:

ReadUserLog reader;
ReadUserLog::FileState statebuf;

status = ReadUserLog::InitFileState(statebuf);

status = reader.GetFileState(statebuf);
write(fd, statebuf.buf, statebuf.size);
...
status = reader.GetFileState(statebuf);
write(fd, statebuf.buf, statebuf.size);
...

status = UninitFileState(statebuf);

HTCondor Version 8.6.4 Manual

6.3.8. Restore state from persistent storage 630

6.3.8 Restore state from persistent storage

To restore the state, do something like this:

ReadUserLog::FileState statebuf;
status = ReadUserLog::InitFileState(statebuf);

read(fd, statebuf.buf, statebuf.size);

ReadUserLog reader;
status = reader.initialize(statebuf);

status = UninitFileState(statebuf);
....

6.3.9 API Reference

• static bool ReadUserLog::InitFileState(ReadUserLog::F ileState &state)
Synopsis:Initialize a file state buffer
Returns: bool ; true if successful,false otherwise
Method parameters:

– ReadUserLog::FileState & state
The file state buffer to initialize.

• static bool ReadUserLog::UninitFileState(ReadUserLog: :FileState &state)
Synopsis:Clean up a file state buffer and free allocated memory
Returns: bool ; true if successful,false otherwise
Method parameters:

– ReadUserLog::FileState & state
The file state buffer to un-initialize.

• bool ReadUserLog::GetFileState(ReadUserLog::FileStat e &state) const
Synopsis:Get the current state to persist it or save it off to disk
Returns: bool ; true if successful,false otherwise
Method parameters:

– ReadUserLog::FileState & state
The file state buffer to read the state into.

• bool ReadUserLog::SetFileState(const ReadUserLog::Fil eState &state)
Synopsis:Use this method to set the current state, after restoring it.
NOTE: The state buffer isNOT automatically updated; a callMUST be made to theGetFileState()
method each time before persisting the buffer to disk, or however else is chosen to persist its contents.
Returns: bool ; true if successful,false otherwise
Method parameters:

– const ReadUserLog::FileState & state
The file state buffer to restore from.

HTCondor Version 8.6.4 Manual

6.3.10. Access to the persistent state data 631

6.3.10 Access to the persistent state data

If the application needs access to the data elements in a persistent state, it should instantiate a
ReadUserLogStateAccess object.

• Constructors / Destructors

– ReadUserLogStateAccess::ReadUserLogStateAccess(cons t
ReadUserLog::FileState &state)
Synopsis:Constructor default
Returns: None
Constructor parameters:

* const ReadUserLog::FileState & state
Reference to the persistent state data to initialize from.

– ReadUserLogStateAccess::˜ReadUserLogStateAccess(voi d)
Synopsis:Destructor
Returns: None
Destructor parameters:

* None.

• Accessor Methods

– bool ReadUserLogFileState::isInitialized(void) const
Synopsis:Checks if the buffer initialized
Returns: bool ; true if successfully initialized,false otherwise
Method parameters:

* None.

– bool ReadUserLogFileState::isValid(void) const
Synopsis:Checks if the buffer is valid for use byReadUserLog::initialize()
Returns: bool ; true if successful,false otherwise
Method parameters:

* None.

– bool ReadUserLogFileState::getFileOffset(unsigned lon g &pos) const
Synopsis:Get position within individual file.
NOTE: Can return an error if the result is too large to be stored in along .
Returns: bool ; true if successful,false otherwise
Method parameters:

* unsigned long & pos
Byte position within the current log file

– bool ReadUserLogFileState::getFileEventNum(unsigned l ong &num) const
Synopsis:Get event number in individual file.
NOTE: Can return an error if the result is too large to be stored in along .
Returns: bool ; true if successful,false otherwise
Method parameters:

HTCondor Version 8.6.4 Manual

6.3.10. Access to the persistent state data 632

* unsigned long & num
Event number of the current event in the current log file

– bool ReadUserLogFileState::getLogPosition(unsigned lo ng &pos) const
Synopsis:Position of the start of the current file in overall log.
NOTE: Can return an error if the result is too large to be stored in along .
Returns: bool ; true if successful,false otherwise
Method parameters:

* unsigned long & pos
Byte offset of the start of the current file in the overall logical log stream.

– bool ReadUserLogFileState::getEventNumber(unsigned lo ng &num) const
Synopsis:Get the event number of the first event in the current file
NOTE: Can return an error if the result is too large to be stored in along .
Returns: bool; true if successful,false otherwise
Method parameters:

* unsigned long & num
This is the absolute event number of the first event in the current file in the overall logical log stream.

– bool ReadUserLogFileState::getUniqId(char * buf, int size) const
Synopsis:Get the unique ID of the associated state file.
Returns: bool; true if successful,false otherwise
Method parameters:

* char ∗ buf
Buffer to fill with the unique ID of the current file.

* int size
Size in bytes ofbuf .
This is to preventReadUserLogFileState::getUniqId from writing past the end ofbuf .

– bool ReadUserLogFileState::getSequenceNumber(int &seq no) const
Synopsis:Get the sequence number of the associated state file.
Returns: bool ; true if successful,false otherwise
Method parameters:

* int & seqno
Sequence number of the current file

• Comparison Methods

– bool ReadUserLogFileState::getFileOffsetDiff(const
ReadUserLogStateAccess &other, unsigned long &pos) const
Synopsis:Get the position difference of two states given bythis andother .
NOTE: Can return an error if the result is too large to be stored in along .
Returns: bool ; true if successful,false otherwise
Method parameters:

* const ReadUserLogStateAccess & other
Reference to the state to compare to.

* long & diff
Difference in the positions

HTCondor Version 8.6.4 Manual

6.3.11. Future persistence API 633

– bool ReadUserLogFileState::getFileEventNumDiff(const
ReadUserLogStateAccess &other, long &diff) const
Synopsis:Get event number in individual file.
NOTE: Can return an error if the result is too large to be stored in along .
Returns: bool; true if successful,false otherwise
Method parameters:

* const ReadUserLogStateAccess & other
Reference to the state to compare to.

* long & diff
Event number of the current event in the current log file

– bool ReadUserLogFileState::getLogPosition(const ReadU serLogStateAccess
&other, long &diff) const
Synopsis:Get the position difference of two states given bythis andother .
NOTE: Can return an error if the result is too large to be stored in along .
Returns: bool; true if successful,false otherwise
Method parameters:

* const ReadUserLogStateAccess & other
Reference to the state to compare to.

* long & diff
Difference between the byte offset of the start of the current file in the overall logical log stream and
that ofother .

– bool ReadUserLogFileState::getEventNumber(const ReadU serLogStateAccess
&other, long &diff) const
Synopsis:Get the difference between the event number of the first eventin two state buffers (this - other).
NOTE: Can return an error if the result is too large to be stored in along .
Returns: bool; true if successful,false otherwise
Method parameters:

* const ReadUserLogStateAccess & other
Reference to the state to compare to.

* long & diff
Difference between the absolute event number of the first event in the current file in the overall logical
log stream and that ofother .

6.3.11 Future persistence API

TheReadUserLog::FileState will likely be replaced with a new C++ReadUserLog::NewFileState ,
or a similarly named class that will self initialize.

Additionally, the functionality ofReadUserLogStateAccess will be integrated into this class.

HTCondor Version 8.6.4 Manual

6.4. Chirp 634

6.4 Chirp

Chirp is a wire protocol and API that supports communicationbetween a running job and a Chirp server. The HTCon-
dor system provides a Chirp server running in thecondor_starterthat allows a job to

1. perform file I/O to and from the submit machine

2. update an attribute in its own job ClassAd

3. append the job event log file

This service is off by default; it may be enabled by placing inthe submit description file:

+WantIOProxy = True

This places the needed attribute into the job ClassAd.

The Chirp protocol is fully documented at http://www3.nd.edu/ ccl/software/chirp.

To provide easier access to this wire protocol, thecondor_chirpcommand line tool is shipped with HTCondor.
This tool provides full access to the Chirp commands.

6.5 The Command Line Interface

While the usual HTCondor command line tools are often not thought of as an API, they are frequently the best choice
for a programmatic interface to the system. They are the mostcomplete, tested and debugged way to work with
the system. The major down side to running the tools is that spawning an executable may be relatively slow; many
applications do not need an extreme level of performance, making use of the command line tools acceptable. Even
some of the HTCondor tools themselves work this way. For example, whencondor_dagmanneeds to submit a job, it
invokes thecondor_submitprogram, just as an interactive user would.

6.6 The HTCondor Perl Module

The HTCondor Perl module facilitates automatic submittingand monitoring of HTCondor jobs, along with automated
administration of HTCondor. The most common use of this module is the monitoring of HTCondor jobs. The HT-
Condor Perl module can be used as a meta scheduler for the submission of HTCondor jobs.

The HTCondor Perl module provides several subroutines. Some of the subroutines are used as callbacks; an event
triggers the execution of a specific subroutine. Other of thesubroutines denote actions to be taken by Perl. Some of
these subroutines take other subroutines as arguments.

HTCondor Version 8.6.4 Manual

http://www3.nd.edu/~ccl/software/chirp

6.6.1. Subroutines 635

6.6.1 Subroutines

Submit(submit_description_file) This subroutine takes the action of submitting a job to HTCondor. The
argument is the name of a submit description file. Thecondor_submitprogram should be in the path of the user.
If the user wishes to monitor the job with condor they must specify a log file in the command file. The cluster
submitted is returned. For more information see thecondor_submitman page.

Vacate(machine) This subroutine takes the action of sending acondor_vacatecommand to the machine specified
as an argument. The machine may be specified either by host name, or bysinful string. For more information
see thecondor_vacateman page.

Reschedule(machine) This subroutine takes the action of sending acondor_reschedulecommand to the ma-
chine specified as an argument. The machine may be specified either by host name, or bysinful string. For more
information see thecondor_rescheduleman page.

Monitor(cluster) Takes the action of monitoring this cluster. It returns whenall jobs in cluster terminate.

Wait() Takes the action of waiting until all monitor subroutines finish, and then exits the Perl script.

DebugOn() Takes the action of turning debug messages on. This may be useful when attempting to debug the Perl
script.

DebugOff() Takes the action of turning debug messages off.

RegisterEvicted(sub) Register a subroutine (calledsub) to be used as a callback when a job from a specified
cluster is evicted. The subroutine will be called with two arguments: cluster and job. The cluster and job are the
cluster number and process number of the job that was evicted.

RegisterEvictedWithCheckpoint(sub) Same as RegisterEvicted except that the handler is called when
the evicted job was checkpointed.

RegisterEvictedWithoutCheckpoint(sub) Same as RegisterEvicted except that the handler is called
when the evicted job was not checkpointed.

RegisterExit(sub) Register a termination handler that is called when a job exits. The termination handler will
be called with two arguments: cluster and job. The cluster and job are the cluster and process numbers of the
existing job.

RegisterExitSuccess(sub) Register a termination handler that is called when a job exits without errors. The
termination handler will be called with two arguments: cluster and job The cluster and job are the cluster and
process numbers of the existing job.

RegisterExitFailure(sub) Register a termination handler that is called when a job exits with errors. The
termination handler will be called with three arguments: cluster, job and retval. The cluster and job are the
cluster and process numbers of the existing job and the retval is the exit code of the job.

RegisterExitAbnormal(sub) Register an termination handler that is called when a job abnormally exits (seg-
mentation fault, bus error, ...). The termination handler will be called with four arguments: cluster, job signal
and core. The cluster and job are the cluster and process numbers of the existing job. The signal indicates the
signal that the job died with and core indicates whether a core file was created and if so, what the full path to the
core file is.

HTCondor Version 8.6.4 Manual

6.6.1. Subroutines 636

RegisterAbort(sub) Register a handler that is called when a job is aborted by a user.

RegisterJobErr(sub) Register a handler that is called when a job is not executable.

RegisterExecute(sub) Register an execution handler that is called whenever a job starts running on a given
host. The handler is called with four arguments: cluster, job host, and sinful. Cluster and job are the cluster and
process numbers for the job, host is the Internet address of the machine running the job, and sinful is the Internet
address and command port of thecondor_startersupervising the job.

RegisterSubmit(sub) Register a submit handler that is called whenever a job is submitted with the given clus-
ter. The handler is called with cluster, job host, and sinful. Cluster and job are the cluster and process numbers
for the job, host is the Internet address of the machine running the job, and sinful is the Internet address and
command port of thecondor_scheddresponsible for the job.

Monitor(cluster) Begin monitoring this cluster. Returns when all jobs in cluster terminate.

Wait() Wait until all monitors finish and exit.

DebugOn() Turn debug messages on. This may be useful if you don’t understand what your script is doing.

DebugOff() Turn debug messages off.

TestSubmit(command_file) This subroutine submits a job to HTCondor for testing, and places all variables
from the command file into the Perl hash%submit_info . Does not reset the state of variables, so that testing
preserves callbacks.

SubmitDagman(DAG_file, DAGMan_args) Takes the action of submitting a DAG usingcondor_dagman.
The first argument is the name of the DAG input file, and the second argument is the command line arguments
for condor_dagman. Information from the submit description file generated bycondor_dagmanis placed into
the Perl hash%submit_info for access during callbacks.

TestSubmitDagman(DAG_file, DAGMan_args) This subroutine submits acondor_dagmanto HTCondor
for testing, and places information from the submit description file generated bycondor_dagmaninto the Perl
hash%submit_info for access during callbacks. The first argument is the name ofthe DAG input file, and
the second argument is the command line arguments forcondor_dagman. Does not reset the state of variables,
so that testing preserves callbacks.

RegisterEvictedWithRequeue(sub) Register a subroutine (calledsub) to be used as a callback when a job
from a specified cluster is requeued. The subroutine will be called with two arguments: cluster and job. The
cluster and job are the cluster number and process number of the job that was requeued.

RegisterShadow(sub) Register a subroutine (calledsub) to be used as a callback when a shadow exception
occurs.

RegisterHold(sub) Register a subroutine (calledsub) to be used as a callback when a job enters the hold state.

RegisterRelease(sub) Register a subroutine (calledsub) to be used as a callback when a job is released.

RegisterWantError(sub) Register a subroutine (calledsub) to be used as a callback when a system call
invoked usingrunCommand experiences an error.

HTCondor Version 8.6.4 Manual

6.6.2. Examples 637

runCommand(string) string identifies a syscall that is invoked. If the syscall exits abnormally or exits with
an error, the callback registered withRegisterWantError() is called, and an error message is issued.

RegisterTimed(sub, seconds) Register a subroutine (calledsub) to be called back at a delay ofseconds
time from this registration time. Only one callback may be registered, as subsequent calls modify the timer only.

RemoveTimed() Remove the single, timed callback registered withRegisterTimed() .

6.6.2 Examples

The following is an example that uses the HTCondor Perl module. The example uses the submit description file
mycmdfile.cmd to specify the submission of a job. As the job is matched with amachine and begins to execute,
a callback subroutine (calledexecute) sends acondor_vacatesignal to the job, and it increments a counter which
keeps track of the number of times this callback executes. A second callback keeps a count of the number of times
that the job was evicted before the job completes. After the job completes, the termination callback (callednormal)
prints out a summary of what happened.

#!/usr/bin/perl
use Condor;

$CMD_FILE = 'mycmdfile.cmd';
$evicts = 0;
$vacates = 0;

A subroutine that will be used as the normal execution callb ack
$normal = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "Job $cluster.$job exited normally without errors.\ n";
print "Job was vacated $vacates times and evicted $evicts ti mes\n";
exit(0);

};

$evicted = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "Job $cluster, $job was evicted.\n";
$evicts++;
&Condor::Reschedule();

};

$execute = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

HTCondor Version 8.6.4 Manual

6.6.2. Examples 638

$host = $parameters{'host'};
$sinful = $parameters{'sinful'};

print "Job running on $sinful, vacating...\n";
&Condor::Vacate($sinful);
$vacates++;

};

$cluster = Condor::Submit($CMD_FILE);
printf("Could not open. Access Denied\n");
break;
&Condor::RegisterExitSuccess($normal);
&Condor::RegisterEvicted($evicted);
&Condor::RegisterExecute($execute);
&Condor::Monitor($cluster);
&Condor::Wait();

This example program will submit the command file ’mycmdfile.cmd’ and attempt to vacate any machine that the
job runs on. The termination handler then prints out a summary of what has happened.

A second example Perl script facilitates the meta-scheduling of two of HTCondor jobs. It submits a second job if
the first job successfully completes.

#!/s/std/bin/perl

tell Perl where to find the HTCondor library
use lib '/unsup/condor/lib';
tell Perl to use what it finds in the HTCondor library
use Condor;

$SUBMIT_FILE1 = 'Asubmit.cmd';
$SUBMIT_FILE2 = 'Bsubmit.cmd';

Callback used when first job exits without errors.
$firstOK = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

$cluster = Condor::Submit($SUBMIT_FILE2);
if (($cluster) == 0)
{

printf("Could not open $SUBMIT_FILE2.\n");
}

&Condor::RegisterExitSuccess($secondOK);
&Condor::RegisterExitFailure($secondfails);
&Condor::Monitor($cluster);

};

$firstfails = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

HTCondor Version 8.6.4 Manual

6.6.2. Examples 639

print "The first job, $cluster.$job failed, exiting with an error. \n";
exit(0);

};

Callback used when second job exits without errors.
$secondOK = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The second job, $cluster.$job successfully complet ed. \n";
exit(0);

};

Callback used when second job exits WITH an error.
$secondfails = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The second job ($cluster.$job) failed. \n";
exit(0);

};

$cluster = Condor::Submit($SUBMIT_FILE1);
if (($cluster) == 0)
{

printf("Could not open $SUBMIT_FILE1. \n");
}
&Condor::RegisterExitSuccess($firstOK);
&Condor::RegisterExitFailure($firstfails);

&Condor::Monitor($cluster);
&Condor::Wait();

Some notes are in order about this example. The same task could be accomplished using the HTCondor DAGMan
metascheduler. The first job is the parent, and the second jobis the child. The input file to DAGMan is significantly
simpler than this Perl script.

A third example using the HTCondor Perl module expands upon the second example. Whereas the second example
could have been more easily implemented using DAGMan, this third example shows the versatility of using Perl as a
metascheduler.

In this example, the result generated from the successful completion of the first job are used to decide which
subsequent job should be submitted. This is a very simple example of a branch and bound technique, to focus the
search for a problem solution.

#!/s/std/bin/perl

tell Perl where to find the HTCondor library

HTCondor Version 8.6.4 Manual

6.6.2. Examples 640

use lib '/unsup/condor/lib';
tell Perl to use what it finds in the HTCondor library
use Condor;

$SUBMIT_FILE1 = 'Asubmit.cmd';
$SUBMIT_FILE2 = 'Bsubmit.cmd';
$SUBMIT_FILE3 = 'Csubmit.cmd';

Callback used when first job exits without errors.
$firstOK = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

open output file from first job, and read the result
if (-f "A.output")
{

open(RESULTFILE, "A.output") or die "Could not open result file.";
$result = <RESULTFILE>;
close(RESULTFILE);
next job to submit is based on output from first job
if ($result < 100)
{

$cluster = Condor::Submit($SUBMIT_FILE2);
if (($cluster) == 0)
{

printf("Could not open $SUBMIT_FILE2.\n");
}

&Condor::RegisterExitSuccess($secondOK);
&Condor::RegisterExitFailure($secondfails);
&Condor::Monitor($cluster);

}
else
{

$cluster = Condor::Submit($SUBMIT_FILE3);
if (($cluster) == 0)
{

printf("Could not open $SUBMIT_FILE3.\n");
}

&Condor::RegisterExitSuccess($thirdOK);
&Condor::RegisterExitFailure($thirdfails);
&Condor::Monitor($cluster);

}
}
else
{

printf("Results file does not exist.\n");
}

};

$firstfails = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};

HTCondor Version 8.6.4 Manual

6.6.2. Examples 641

$job = $parameters{'job'};

print "The first job, $cluster.$job failed, exiting with an error. \n";
exit(0);

};

Callback used when second job exits without errors.
$secondOK = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The second job, $cluster.$job successfully complet ed. \n";
exit(0);

};

Callback used when third job exits without errors.
$thirdOK = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The third job, $cluster.$job successfully complete d. \n";
exit(0);

};

Callback used when second job exits WITH an error.
$secondfails = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The second job ($cluster.$job) failed. \n";
exit(0);

};

Callback used when third job exits WITH an error.
$thirdfails = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The third job ($cluster.$job) failed. \n";
exit(0);

};

$cluster = Condor::Submit($SUBMIT_FILE1);
if (($cluster) == 0)
{

printf("Could not open $SUBMIT_FILE1. \n");

HTCondor Version 8.6.4 Manual

6.7. Python Bindings 642

}
&Condor::RegisterExitSuccess($firstOK);
&Condor::RegisterExitFailure($firstfails);

&Condor::Monitor($cluster);
&Condor::Wait();

6.7 Python Bindings

The Python module provides bindings to the client-side APIsfor HTCondor and the ClassAd language.

These Python bindings depend on loading the HTCondor sharedlibraries; this means the same code is used here
as the HTCondor client tools. It is more efficient in terms of memory and CPU to utilize these bindings than to parse
the output of the HTCondor client tools when writing applications in Python.

6.7.1 htcondor Module

Thehtcondor module provides a client interface to the various HTCondor daemons. It tries to provide functionality
similar to the HTCondor command line tools.

htcondor module functions:

HTCondor Version 8.6.4 Manual

6.7.1. htcondor Module 643

platform()
Returns the platform of HTCondor this module is running on.
version()
Returns the version of HTCondor this module is linked against.
reload_config()
Reload the HTCondor configuration from disk.
send_command(ad, (DaemonCommands)dc, (str)target = None)
Send a command to an HTCondor daemon specified by a location ClassAd.
ad is a ClassAd specifying the location of the daemon; typically, found by usingCollector.locate(...) .
dc is a command type; must be a member of the enumDaemonCommands.
target is an optional parameter, representing an additional command to send to a daemon. Some commands
require additional arguments; for example, sendingDaemonOff to acondor_masterrequires one to specify which
subsystem to turn off.
read_events(file_obj, is_xml = True)
Read and parse an HTCondor event log file. Returns a Python iterator of ClassAds.
Parameterfile_obj is a file object corresponding to an HTCondor event log.
The optional parameteris_xml specifies whether the event log is XML-formatted.

send_alive(ad, pid, timeout)
Send a keep alive message to an HTCondor daemon.
Parameterad is a ClassAd specifying the location of the daemon. This ClassAd is typically found by using
Collector.locate(...) .
Parameterpid is the process identifier for the keep alive. The default value of None uses the value from
os.getpid() .
Parametertimeout is the number of seconds that this keep alive is valid. If a newkeep alive is not received by
thecondor_masterin time, then the process will be terminated. The default value is controlled by configuration
variableNOT_RESPONDING_TIMEOUT.

set_subsystem(name, type = Auto)
Set the subsystem name for the object.
Parametername is the subsystem name.
Parametertype is the HTCondor daemon type, taken from theSubsystemType enum. The default value of
Auto infers the type from thename parameter.

lock(file_obj, lock_type)
Take a lock on a file object using the HTCondor locking protocol, which is distinct from typical POSIX locks.
Returns a context manager object; the lock is released as this context manager object is destroyed.
Parameterfile_obj is a file object corresponding to the file which should be locked.
Parameterlock_type specifies the string"ReadLock" if the lock should be for reads or"WriteLock" if
the lock should be for writes.

enable_debug()
Enable debugging output from HTCondor, where output is sentto stderr . The logging level is controlled by
TOOL_DEBUG.

enable_log()
Enable debugging output from HTCondor, where output is sentto a file. The log level is controlled by
TOOL_DEBUG, and the file used is controlled byTOOL_LOG.

log(level, msg) Log a message to the HTCondor logging subsystem.
Parameterlevel is the Log category and formatting indicator. Use theLogLevel enum to get list of attributes
that may be OR’d together.
Parametermsg is a String message to log.

poll(active_queries)

HTCondor Version 8.6.4 Manual

6.7.1. htcondor Module 644

The module object,param, is a dictionary-like object providing access to the configuration variables in the
current HTCondor configuration.

The Schedd class:

HTCondor Version 8.6.4 Manual

6.7.1. htcondor Module 645

__init__(classad)
Create an instance of theSchedd class.
Optional parameterclassad describes the location of the remotecondor_schedddaemon. If the parameter is
omitted, the localcondor_schedddaemon is used.
transaction(flags = 0, continue_txn = False)
Start a transaction with thecondor_schedd. Returns a transaction context manager. Starting a new transaction
while one is ongoing is an error.
The optional parameterflags defaults to 0. Transaction flags are from the the enum
htcondor.TransactionFlags , and the three flags areNonDurable , SetDirty , or ShouldLog .
NonDurable is used for performance, as it eliminates extrafsync() calls. If thecondor_scheddcrashes
before the transaction is written to disk, the transaction will be retried on restart of thecondor_schedd.
SetDirty marks the changed ClassAds as dirty, so an update notification is sent to thecondor_shadowand the
condor_gridmanager. ShouldLog causes changes to the job queue to be logged in the job event log file.
The optional parametercontinue_txn defaults tofalse ; set the value totrue to extend an ongoing transac-
tion.
act((JobAction)action, (object)job_spec)
Change status of job(s) in thecondor_schedddaemon. The integer return value is aClassAd object describing
the number of jobs changed.
Parameteraction is the action to perform; must be of the enumJobAction .
Parameterjob_spec is the job specification. It can either be a list of job IDs or a string specifying a constraint
to match jobs.
edit((object)job_spec, (str)attr, (object)value)
Edit one or more jobs in the queue.
Parameterjob_spec is either a list of jobs, with each given asClusterId.ProcId or a string containing a
constraint to match jobs against.
Parameterattr is the attribute name of the attribute to edit.
Parametervalue is the new value of the job attribute. It should be a string, which will be converted to a ClassAd
expression, or anExprTree object.
query(constraint = true, attr_list = [])
Query thecondor_schedddaemon for jobs. Returns a list of ClassAds representing thematching jobs, containing
at least the requested attributes requested by the second parameter.
The optional parameterconstraint provides a constraint for filtering out jobs. It defaults toTrue .
Parameterattr_list is a list of attributes for thecondor_schedddaemon to project along. It defaults to having
thecondor_schedddaemon return all attributes.
xquery(constraint = true, attr_list = [], limit, opts, name)
Query thecondor_schedddaemon for jobs. Returns an iterator of ClassAds representing the matching jobs con-
taining at least the list of attributes requested by the second parameter.
The optional parameterconstraint provides a constraint for filtering out jobs. It defaults toTrue .
Parameterattr_list is a list of attributes for thecondor_schedddaemon to project along. It defaults to having
thecondor_schedddaemon return all attributes.
Parameterlimit is the maximum number of results this query will return.
Parameteropts specifies any additional query options. Currently, the onlynon-default option is
QueryOpts.AutoCluster , which returns autoclusters in the schedd, not jobs.
Parametername provides atag name for the returned query iterator. This string will always be returned from
the tag() method of the returned iterator. The default value is thecondor_schedd’s name. This tag is useful to
identify different queries when using thepoll() module function.

history((object) requirements, (list) projection, (int) match)
Request history records from thecondor_schedddaemon. Returns an iterator to a set of ClassAds representing
completed jobs.
Parameterrequirements is either anExprTree or a string that can be parsed as an expression. The expression
represents the requirements that all returned jobs should match.
Parameterprojection is a list of all the ClassAd attributes that are to be includedfor each job. The empty list
causes all attributes to be included.
Parametermatch is an integer cap on the number of jobs to include.

HTCondor Version 8.6.4 Manual

6.7.1. htcondor Module 646

The Submit class:

__init__((dict)input = None)
Create an instance of theSubmit class.
Optional parameterinput is a Python dictionary containing submit file key = value pairs. If omitted, the submit
class is initially empty.

expand((str)attr)
Expand all macros for the given attribute.
Parameterattr is the name of the relevant attribute.
Returns a string containing the value of the given attributewith all macros expanded.

queue((object)txn, (int)count = 1, (object)ad_results = N one)
Submit the current object to a remote queue. Parametertxn is an active transaction object (see
Schedd.transaction()).
Optional parametercount is the number of procs to create (defaults to 1 if not specified).
Optional parameterad_results is an object to receive the ClassAd resulting from this submit.
Returns the ClusterID of the submitted job(s).
Throws a RuntimeError if the submission fails.

get((str)attr, (str)default = None)
Gets the value of the specified attribute.
Parameterattr is the name of the relevant attribute.
Optional parameterdefault is a default value to be returned if the attribute is not defined.
Returns a string containing the value of the attribute.

setdefault((str)attr, (str)default)
Set a default value for an attribute.
Parameterattr is the name of the relevant attribute.
Parameterdefault is the value to which to set the given attribute if that attribute has not already been set.
Returns a string containing the value of the attribute.

update((object)submit)
Copy the contents of a given Submit object into the current object.
Parametersubmit is the Submit object to copy.

The Collector class:

HTCondor Version 8.6.4 Manual

6.7.1. htcondor Module 647

__init__(pool = None)
Create an instance of theCollector class.
Optional parameterpool is a string with host:port pair specified or a list of pairs. Ifomitted, the value of config-
uration variableCOLLECTOR_HOSTis used.
locate((DaemonTypes)daemon_type, (str)name)
Query thecondor_collectorfor a particular daemon. Returns the ClassAd of the requested daemon.
Parameterdaemon_type is the type of daemon; must be of the enumDaemonTypes .
Optional parametername is the name of daemon to locate. If not specified, it searches for the local daemon.
locateAll((DaemonTypes)daemon_type)
Query thecondor_collectordaemon for all ClassAds of a particular type. Returns a list of matching ClassAds.
Parameterdaemon_type is the type of daemon; must be of the enumDaemonTypes .

query((AdTypes)ad_type, constraint=True, attrs=[], (st r)statistics = ”)
Query the contents of acondor_collectordaemon. Returns a list of ClassAds that match theconstraint
parameter.
Optional parameterad_type is the type of ClassAd to return, where the types are from the enumAdTypes . If
not specified, the type will beANY_AD.
Optional parameterconstraint is a constraint for the ClassAd query. It defaults toTrue .
Optional parameterattrs is a list of attributes. If specified, the returned ClassAds will be projected along these
attributes.
Optional parameterstatistics is a list of statistics attributes to include, if they exist for the specified daemon.
advertise(ad_list, command=UPDATE_AD_GENERIC, use_tcp = True)
Advertise a list of ClassAds into thecondor_collector.
Parameterad_list is the list of ClassAds to advertise.
Optional parametercommand is a command for thecondor_collector. It defaults toUPDATE_AD_GENERIC.
Other commands, such asUPDATE_STARTD_AD, may require reduced authorization levels.
Optional parameteruse_tcp causes updates to be sent via TCP. Defaults toTrue .
directQuery((Collector)arg1, (DaemonTypes)daemon_typ e, (str)name = ”,
(list)projection = [], (str)statistics = ”)
Query the specified daemon directly, instead of using the ClassAd from thecondor_collectordaemon. Returns the
ClassAd of the specified daemon, after obtaining it from the daemon.
Parameterarg1 is thecondor_collectorthat will identify where to find the specified daemon.
Parameterdaemon_type specified a daemon with an enum fromDaemonTypes .
Optional parametername specifies the daemon’s name. If not specified, the local daemon is used.
Optional parameterprojection is a list of attributes requested, to obtain only a subset of the attributes from the
ClassAd.
Optional parameterstatistics is a list of statistics attributes to include, if they exist for the specified daemon.

The Negotiator class:

HTCondor Version 8.6.4 Manual

6.7.1. htcondor Module 648

__init__((ClassAd)ad = None)
Create an instance of theNegotiator class.
Optional parameterad is a ClassAd containing the location of thecondor_negotiatordaemon. If omitted, uses the
local pool.
deleteUser((str)user)
Delete a user from the accounting.
user is a fully-qualified user name,"USER@DOMAIN".
getPriorities([(bool)rollup = False])
Retrieve the pool accounting information. Returns a list ofaccounting ClassAds.
Optional parameterrollup identifies if accounting information, as applied to hierarchical group quotas, should
be summed for groups and subgroups (True) or not (False , the default).
getResourceUsage((str)user)
Get the resource usage for a specified user. Returns a list of ClassAd attributes.
Parameteruser is a fully-qualified user name,"USER@DOMAIN".
resetAllUsage()
Reset all usage accounting.

resetUsage((str)user)
Reset all usage accounting of the specifieduser .
Parameteruser is a fully-qualified user name,"USER@DOMAIN"; resets the usage of only this user.
setBeginUsage((str)user, (time_t)value)
Initialize the time that a user begins using the pool.
Parameteruser is a fully-qualified user name,"USER@DOMAIN". Parametervalue is the time of initial usage.
setLastUsage((str)user, (time_t)value)
Set the time that a user last began using the pool.
Parameteruser is a fully-qualified user name,"USER@DOMAIN". Parametervalue is the time of last usage.
setFactor((str)user, (float)factor)
Set the priority factor of a specified user.
Parameteruser is a fully-qualified user name,"USER@DOMAIN". Parameterfactor is the priority factor to be
set for the user; must be greater than or equal to 1.0.
setPriority((str)user, (float)prio)
Set the real priority of a specified user.
Parameteruser is a fully-qualified user name,"USER@DOMAIN". Parameterprio is the priority to be set for
the user; must be greater than 0.0.
setUsage((str)user, (float)usage)
Set the accumulated usage of a specified user.
Parameteruser is a fully-qualified user name,"USER@DOMAIN". Parameterusage is the usage to be set for
the user.

The Startd class:

HTCondor Version 8.6.4 Manual

6.7.1. htcondor Module 649

__init__((ClassAd)ad = None)
Create an instance of theStartd class.
Optional parameterad is a ClassAd describing the claim (optional) and the startd location. If omitted, the local
startd is assumed.

drainJobs((int)how_fast = Graceful, (bool)resume_on_co mpletion = false,
(expr)check_expr = true)
Begin draining jobs from the startd.
Optional parameterdrain_type is how fast to drain the jobs (from the DrainTypes enum:Fast , Graceful
or Quick) (defaults toGraceful if not specified).
Parameterresume_on_completion is True if the startd should start accepting jobs again once draining is
complete,False if it should remain in the drained state (defaults toFalse if not specified).
Optional parametercheck_expr is an expression that must beTrue for all slots for draining to begin (defaults
to True if not specified).
Returns a (string)request_id that can be used to cancel draining.

cancelDrainJobs((object)request_id = None)
Cancel a draining request.
Optional parameterrequest_id specifies a draining request to cancel; if not specified, all draining requests for
this startd are canceled.

The SecMan classaccesses the internal security object. This class allows access to the security layer of HTCon-
dor.

Currently, this is limited to resetting security sessions and doing test authorizations against remote daemons.

If a security session becomes invalid, for example, becausethe remote daemon restarts, reuses the same port, and
the client continues to use the session, then all future commands will fail with strange connection errors. This is the
only mechanism to invalidate in-memory sessions.

__init__()
Create aSecMan object.
invalidateAllSessions()
Invalidate all security sessions. Any future connections to a daemon will cause a new security session to be created.

ping ((ClassAd)ad, (str)command)
or
ping ((string)sinful, (str)command)
Perform a test authorization against a remote daemon for a given command.
Returns the ClassAd of the security session.
Parameterad is the ClassAd of the daemon as returned byCollector.locate ; alternately, the sinful string
can be given directly as the first parameter.
Optional parametercommandis the DaemonCore command to try; if not given,DC_NOPwill be used.

HTCondor Version 8.6.4 Manual

6.7.1. htcondor Module 650

TheParam class provides a dictionary-like interface to the current configuration.

The Param class:

__getitem__((str)attr)
Returns the configuration for variableattr as an object.
__setitem__((str)attr, (str)value)
Sets the configuration variableattr to thevalue .
__contains__((str)attr)
Determines whether the configuration contains a setting forconfiguration variableattr .
Returnstrue if the configuration does contain a setting forattr , and it returns false otherwise.
Parameterattr is the name of the configuration variable.
__iter__()
Description not yet written.
__len__()
Returns the number of items in the configuration.
setdefault((str)attr, (str)value)
Behaves like the corresponding Python dictionary method. If attr is not set in the configuration, it setsattr to
value in the configuration. Returns thevalue as an object.
get()
get description not yet written.
keys()
Return a list of configuration variable names that are definedin the configuration files.
items()
Returns an iterator of tuples. Each item returned by the iterator is a tuple representing a pair (attribute,value) in the
configuration.
update(source)
Behaves like the corresponding Python dictionary method. Updates the current configuration to match the one in
objectsource .

TheRemoteParam class provides a dictionary-like interface to the configuration of daemons.

The RemoteParam class:

HTCondor Version 8.6.4 Manual

6.7.1. htcondor Module 651

__getitem__((str)attr)
Returns the configuration for variableattr as an object.
__setitem__((str)attr, (str)value)
Sets the configuration variableattr to thevalue .
__contains__((str)attr)
Determines whether the configuration contains a setting forconfiguration variableattr .
Returnstrue if the configuration does contain a setting forattr , and it returns false otherwise.
Parameterattr is the name of the configuration variable.
__iter__()
Description not yet written.
__len__()
Returns the number of items in the configuration.
__delitem__((str)attr)
If the configuration variable specified byattr is in the configuration, set its value to the null string.
Parameterattr is the name of the configuration variable to change.
setdefault((str)attr, (str)value)
Behaves like the corresponding Python dictionary method. If attr is not set in the configuration, it setsattr to
value in the configuration. Returns thevalue as an object.
get()
get description not yet written.
keys()
Return a list of configuration variable names that are definedfor the daemon.
items()
Returns an iterator of tuples. Each item returned by the iterator is a tuple representing a pair (attribute,value) in the
configuration.
update(source)
Behaves like the corresponding Python dictionary method. Updates the current configuration to match the one in
objectsource .
refresh()
Rebuilds the dictionary corresponding to the current configuration of the daemon.

TheClaim class provides access to HTCondor’s Compute-On-Demand facilities.

The Claim class:

HTCondor Version 8.6.4 Manual

6.7.1. htcondor Module 652

__init__(classad)
Create a Claim object. Theclassad argument provides a ClassAd describing the startd to claim.

requestCOD(constraint, lease_duration)
Request a claim from thecondor_startdrepresented by this object.
Theconstraint specifies which slot in the startd to claim (defaults to ’true’, which will result in the first slot
becoming claimed).
The lease_duration indicates how long the claim should be valid for.
On success, theClaim object will represent a valid claim on the remote startd.

release((VacateTypes)vacate_type)
Release acondor_startdfrom this claim and shut down any running job.
Thevacate_type argument indicates the type of vacate to perform (Fast or Graceful); must be from Vacate-
Types enum.

activate((ClassAd)ad)
Activate a claim using a given job ad.
Thead must describe a job to run.

suspend()
Suspend an activated claim.

renew()
Renew the lease on an existing claim.

resume()
Resume a temporarily suspended claim.

deactivate() Deactivate a claim; shuts down the currently-running job, but holds onto the claim for future
use.

delegateGSIProxy() Send an x509 proxy credential to an activated claim.

Module enums:

HTCondor Version 8.6.4 Manual

6.7.2. Sample Code using thehtcondor Python Module 653

AdTypes
A list of types used as values for theMyType ClassAd attribute. These types are only used by the HTCondor
system, not the ClassAd language. Typically, these specifydifferent kinds of daemons.
DaemonCommands
A list of commands which can be sent to a remote daemon.
DaemonTypes
A list of types of known HTCondor daemons.
JobAction
A list of actions that can be performed on a job in acondor_schedd.
SubsystemType
Distinguishes subsystems within HTCondor. Values may beMaster , Collector , Negotiator , Schedd ,
Shadow, Startd , Starter , GAHP, Dagman, SharedPort , Daemon, Tool , Submit , or Job .

LogLevel
The level at which events are logged. Values may beAlways , Error , Status , Job , Machine ,
Config , Protocol , Priv , DaemonCore, Security , Network , Hostname , Audit , Terse , Verbose ,
FullDebug , SubSecond , Timestamp , PID , or NoHeader .

6.7.2 Sample Code using thehtcondor Python Module

This sample code illustrates interactions with thehtcondor Python Module.

$ python
Python 2.6.6 (r266:84292, Jun 18 2012, 09:57:52)
[GCC 4.4.6 20110731 (Red Hat 4.4.6-3)] on linux2
Type "help", "copyright", "credits" or "license" for more i nformation.
>>> import htcondor
>>> import classad
>>> coll = htcondor.Collector("red-condor.unl.edu")
>>> results = coll.query(htcondor.AdTypes.Startd, "true ", ["Name"])
>>> len(results)
3812
>>> results[0]
[Name = "slot1@red-d20n35"; MyType = "Machine"; TargetTyp e = "Job"; CurrentTime = time()]
>>> scheddAd = coll.locate(htcondor.DaemonTypes.Schedd , "red-gw1.unl.edu")
>>> scheddAd["ScheddIpAddr"]
'<129.93.239.132:53020>'
>>> schedd = htcondor.Schedd(scheddAd)
>>> results = schedd.query('Owner =?= "cmsprod088"', ["Cl usterId", "ProcId"])
>>> len(results)
63
>>> results[0]
[MyType = "Job"; TargetType = "Machine"; ServerTime = 13567 22353; ClusterId = 674143; ProcId = 0; CurrentTime
>>> htcondor.param["COLLECTOR_HOST"]
'hcc-briantest.unl.edu'
>>> schedd = htcondor.Schedd() # Defaults to the local sched d.
>>> results = schedd.query()
>>> results[0]["RequestMemory"]
ifthenelse(MemoryUsage isnt undefined,MemoryUsage,(Im ageSize + 1023) / 1024)
>>> results[0]["RequestMemory"].eval()

HTCondor Version 8.6.4 Manual

6.7.3. ClassAd Module 654

1L
>>> ad=classad.parse(open("test.submit.ad"))
>>> print schedd.submit(ad, 2) # Submits two jobs in the clus ter; edit test.submit.ad to preference.
110
>>> print schedd.act(htcondor.JobAction.Remove, ["111. 0", "110.0"])'

[
TotalNotFound = 0;
TotalPermissionDenied = 0;
TotalAlreadyDone = 0;
TotalJobAds = 2;
TotalSuccess = 2;
TotalChangedAds = 1;
TotalBadStatus = 0;
TotalError = 0

]
>>> print schedd.act(htcondor.JobAction.Hold, "Owner =? = \"bbockelm\"")'

[
TotalNotFound = 0;
TotalPermissionDenied = 0;
TotalAlreadyDone = 0;
TotalJobAds = 2;
TotalSuccess = 2;
TotalChangedAds = 1;
TotalBadStatus = 0;
TotalError = 0

]
>>> schedd.edit('Owner =?= "bbockelm"', "Foo", classad.E xprTree('"baz"'))
>>> schedd.edit(["110.0"], "Foo", '"bar"')
>>> coll = htcondor.Collector()
>>> master_ad = coll.locate(htcondor.DaemonTypes.Maste r)
>>> htcondor.send_command(master_ad, htcondor.DaemonC ommands.Reconfig) # Reconfigures the local master and all
>>> htcondor.version()
'$CondorVersion: 7.9.4 Jan 02 2013 PRE-RELEASE-UWCS $'
>>> htcondor.platform()
'$CondorPlatform: X86_64-ScientificLinux_6.3 $'

The bindings can use a dictionary where a ClassAd is expected. Here is an example that uses the ClassAd:

htcondor.Schedd().submit(classad.ClassAd({"Cmd": "/b in/echo"}))

This same example, using a dictionary instead of constructing a ClassAd:

htcondor.Schedd().submit({"Cmd": "/bin/echo"})

6.7.3 ClassAd Module

The classad module class provides a dictionary-like mechanism for interacting with the ClassAd language.
classad objects implement the iterator interface to iterate through theclassad ’s attributes. The constructor can
take a dictionary, and the object can take lists, dictionaries, and ClassAds as values.

classad module functions:

HTCondor Version 8.6.4 Manual

6.7.3. ClassAd Module 655

parseOne(input, parser=Auto)
Parse the entireinput into a single ClassAd. In the presence of multiple ClassAds or blank lines, continue to
merge ClassAds together until the entire string is consumed. Returns aclassad object.
Parameterinput is a string-like object or a file pointer.
Parameterparser specifies which ClassAd parser to use.
parseNext(input, parser=Auto)
Parse the next ClassAd in the input string. Advances theinput object to point after the consumed ClassAd.
Returns aclassad object.
Parameterinput is a file-like object.
Parameterparser specifies which ClassAd parser to use.
parse(input)
This method is no longer used.Parse input into a ClassAd. Returns a ClassAd object.
Parameterinput is a string-like object or a file pointer.
parseOld(input)
This method is no longer used.Parse old ClassAd format input into a ClassAd. Returns a ClassAd object.
Parameterinput is a string-like object or a file pointer.
version()
Return the version of the linked ClassAd library.

lastError()
Return the string representation of the last error to occur in the ClassAd library.

Attribute(name)
Given the stringname, return anExprTree object which is a reference to an attribute of that name. The ClassAd
expressionfoo == 1 can be constructed by the pythonAttribute("foo") == 1 .

Function(name, arg1, arg2, ...)
Given function namename, and zero-or-more arguments, construct anExprTree which is a function call ex-
pression. The function is not evaluated. The ClassAd expression strcat("hello ", "world") can be
constructed by the pythonFunction("strcat", "hello ", "world") .

Literal(obj)
Given python objectobj , convert it to a ClassAd literal. Python strings, floats, integers, and booleans have
equivalent literals.

register(function, name=None)
Given the python functionfunction , register it as a ClassAd function. This allows the invocation of the python
function from within a ClassAd evaluation context. The optional parameter,name, provides an alternate name for
the function within the ClassAd library.

registerLibrary(path)
Given a file systempath , attempt to load it as a shared library of ClassAd functions.See the documentation
for configuration variableCLASSAD_USER_LIBSfor more information about loadable libraries for ClassAd
functions.

HTCondor Version 8.6.4 Manual

6.7.3. ClassAd Module 656

Standard Python object methods for theClassAd class:

__init__(str)
Create a ClassAd object from string,str , passed as a parameter. The string must be formatted in the new ClassAd
format.
__len__()
Returns the number of attributes in the ClassAd; allowslen(object) semantics for ClassAds.
__str__()
Converts the ClassAd to a string and returns the string; the formatting style is new ClassAd, with square brackets
and semicolons. For example,[Foo = "bar";] may be returned.

The classad object has the following dictionary-like methods:

items()
Returns an iterator of tuples. Each item returned by the iterator is a tuple representing a pair (attribute,value) in the
ClassAd object.
values()
Returns an iterator of objects. Each item returned by the iterator is a value in the ClassAd.
If the value is a literal, it will be cast to a native Python object, so a ClassAd string will be returned as a Python
string.
keys()
Returns an iterator of strings. Each item returned by the iterator is an attribute string in the ClassAd.
get(attr, value)
Behaves like the corresponding Python dictionary method. Given theattr as key, returns either the value of that
key, or if the key is not in the object, returnsNone or the optional second parameter when specified.
__getitem__(attr)
Returns (as an object) the value corresponding to the attributeattr passed as a parameter.
ClassAd values will be returned as Python objects; ClassAd expressions will be returned asExprTree objects.
__setitem__(attr, value)
Sets the ClassAd attributeattr to thevalue .
ClassAd values will be returned as Python objects; ClassAd expressions will be returned asExprTree objects.
setdefault(attr, value)
Behaves like the corresponding Python dictionary method. If called with an attribute,attr , that is not set, it will
set the attribute to the specifiedvalue . It returns the value of the attribute. If called with an attribute that is
already set, it does not change the object.
update(object)
Behaves like the corresponding Python dictionary method. Updates the ClassAd with the key/value pairs of the
given object.
Returns nothing.

Additional methods:

HTCondor Version 8.6.4 Manual

6.7.3. ClassAd Module 657

eval(attr)
Evaluate the value given a ClassAd attributeattr . ThrowsValueError if unable to evaluate the object.
Returns the Python object corresponding to the evaluated ClassAd attribute.
lookup(attr)
Look up theExprTree object associated with attributeattr . No attempt will be made to convert to a Python
object.
Returns anExprTree object.
printOld()
Print the ClassAd in the old ClassAd format.
Returns a string.
quote(str)
Converts the Python string,str , into a ClassAd string literal.
Returns the string literal.
unquote(str)
Converts the Python string,str , escaped as a ClassAd string back to a Python string.
Returns the Python string.
parseAds(input, parser=Auto)
Given input of a string or file, return an iterator of ClassAds. Parameterparser tells which ClassAd parser to
use. Note that automatic selection of ClassAd parser does not work on stream input.
Returns an iterator.
parseOldAds(input)
This method is no longer used.Giveninput of a string or file, return an iterator of ClassAds where the ClassAds
are in the Old ClassAd format.
Returns an iterator.
flatten(expression)
Given ExprTree objectexpression , perform a partial evaluation. All the attributes inexpression and
defined in this object are evaluated and expanded. Any constant expressions, such as1 + 2 , are evaluated.
Returns a newExprTree object.
matches(ad)
Given ClassAd objectad , check to see if this object matches theRequirements attribute ofad . Returns
true if it does.

symmetricMatch(ad)
Returnstrue if the givenad matches this and this matchesad . Equivalent toself.matches(ad) and
ad.matches(self) .

externalRefs(expr)
Returns a python list of external references found inexpr . In this context, an external reference is any attribute in
the expression which isnot found in theClassAd .

internalRefs(expr)
Returns a python list of internal references found inexpr . In this context, an internal reference is any attribute in
the expression which is found in theClassAd .

The ExprTree class object represents an expression in the ClassAd language. The python operators for

HTCondor Version 8.6.4 Manual

6.7.4. Sample Code using theclassad Module 658

ExprTree have been overloaded so, ife1 ande2 areExprTree objects, thene1 + e2 is also aExprTree
object. Lazy-evaluation is used, so an expression"foo" + 1 does not produce an error until it is evaluated with a
call tobool() or the.eval() class member.

ExprTree class methods:

__init__(str)
Parse the stringstr to create anExprTree .
__str__()
Represent and return the ClassAd expression as a string.
__int__()
Converts expression to an integer (evaluating as necessary).
__float__()
Converts expression to a float (evaluating as necessary).
eval()
Evaluate the expression and return as a ClassAd value, typically a Python object.

Module enums:

Parser
Tells which ClassAd parser to use. Values may beAuto , Old , or New.

6.7.4 Sample Code using theclassad Module

This sample Python code illustrates interactions with theclassad module.

$ python
Python 2.6.6 (r266:84292, Jun 18 2012, 09:57:52)
[GCC 4.4.6 20110731 (Red Hat 4.4.6-3)] on linux2
Type "help", "copyright", "credits" or "license" for more i nformation.
>>> import classad
>>> ad = classad.ClassAd()
>>> expr = classad.ExprTree("2+2")
>>> ad["foo"] = expr
>>> print ad["foo"].eval()
4
>>> ad["bar"] = 2.1
>>> ad["baz"] = classad.ExprTree("time() + 4")
>>> print list(ad)
['bar', 'foo', 'baz']
>>> print dict(ad.items())
{'baz': time() + 4, 'foo': 2 + 2, 'bar': 2.100000000000000E+ 00}
>>> print ad

[
bar = 2.100000000000000E+00;
foo = 2 + 2;
baz = time() + 4

]

HTCondor Version 8.6.4 Manual

6.7.4. Sample Code using theclassad Module 659

>>> ad2=classad.parseOne(open("test_ad", "r"));
>>> ad2["error"] = classad.Value.Error
>>> ad2["undefined"] = classad.Value.Undefined
>>> print ad2

[
error = error;
bar = 2.100000000000000E+00;
foo = 2 + 2;
undefined = undefined;
baz = time() + 4

]
>>> ad2["undefined"]
classad.Value.Undefined

Here is an example that illustrates the dictionary properties of the constructor.

>>> classad.ClassAd({"foo": "bar"})
[foo = "bar"]
>>> ad = classad.ClassAd({"foo": [1, 2, 3]})
>>> ad
[foo = { 1,2,3 }]
>>> ad["foo"][2]
3L
>>> ad = classad.ClassAd({"foo": {"bar": 1}})
>>> ad
[foo = [bar = 1]]
>>> ad["foo"]["bar"]
1L

Here are examples that illustrate theget method.

>>> ad = classad.ClassAd({"foo": "bar"})
>>> ad
[foo = "bar"]
>>> ad["foo"]
'bar'
>>> ad.get("foo")
'bar'
>>> ad.get("foo", 2)
'bar'
>>> ad.get("baz", 2)
2
>>> ad.get("baz")
>>>

Here are examples that illustrate thesetdefault method.

>>> ad = classad.ClassAd()

HTCondor Version 8.6.4 Manual

6.7.4. Sample Code using theclassad Module 660

>>> ad
[]
>>> ad["foo"]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'foo'
>>> ad.setdefault("foo", 1)
1
>>> ad
[foo = 1]
>>> ad.setdefault("foo", 2)
1L
>>> ad
[foo = 1]

Here is an example that illustrates the use of the iteratorparseAds method on a history log.

>>> import classad
>>> import os
>>> fd = os.popen("condor_history -l -match 4")
>>> ads = classad.parseAds(fd, classad.Parser.Old)
>>> print [ad["ClusterId"] for ad in ads]
[23389L, 23388L, 23386L, 23387L]
>>>

HTCondor Version 8.6.4 Manual

CHAPTER

SEVEN

Platform-Specific Information

The HTCondor Team strives to make HTCondor work the same way across all supported platforms. However, because
HTCondor is a very low-level system which interacts closelywith the internals of the operating systems on which it
runs, this goal is not always possible to achieve. The following sections provide detailed information about using
HTCondor on different computing platforms and operating systems.

7.1 Linux

This section provides information specific to the Linux portof HTCondor. Linux is a difficult platform to support. It
changes frequently, and HTCondor has some extremely system-dependent code, such as the checkpointing library.

HTCondor is sensitive to changes in the following elements of the system:

• The kernel version

• The version of the GNU C library (glibc)

• the version of GNU C Compiler (GCC) used to build and link HTCondor jobs. This matters for HTCondor’s
standard universe, which provides checkpoints and remote system calls.

The HTCondor Team tries to provide support for various releases of the distribution of Linux. Red Hat is probably
the most popular Linux distribution, and it provides a common set of versions for the above system components
at which HTCondor can aim support. HTCondor will often work with Linux distributions other than Red Hat (for
example, Debian or SuSE) that have the same versions of the above components. However, we do not usually test
HTCondor on other Linux distributions and we do not provide any guarantees about this.

661

7.1.1. Linux Address Space Randomization 662

New releases of Red Hat usually change the versions of some orall of the above system-level components. A
version of HTCondor that works with one release of Red Hat might not work with newer releases. The following
sections describe the details of HTCondor’s support for thecurrently available versions of Red Hat Linux on x86
architecture machines.

7.1.1 Linux Address Space Randomization

Modern versions of Red Hat and Fedora do address space randomization, which randomizes the memory layout
of a process to reduce the possibility of security exploits.This makes it impossible for standard universe jobs to
resume execution using a checkpoint. When starting or resuming a standard universe job, HTCondor disables the
randomization.

To run a binary compiled withcondor_compilein standalone mode, either initially or in resumption mode,manu-
ally disable the address space randomization by modifying the command line. For a 32-bit architecture, assuming an
HTCondor-linked binary calledmyapp, invoke the standalone executable with:

setarch i386 -L -R ./myapp

For a 64-bit architecture, the resumption command will be:

setarch x86_64 -L -R ./myapp

Some applications will also need the-B option.

The command to resume execution using the checkpoint must also disable address space randomization, as the
32-bit architecture example:

setarch i386 -L -R myapp -_condor_restart myapp.ckpt

7.2 Microsoft Windows

Windows is a strategic platform for HTCondor, and thereforewe have been working toward a complete port to Win-
dows. Our goal is to make HTCondor every bit as capable on Windows as it is on Unix – or even more capable.

Porting HTCondor from Unix to Windows is a formidable task, because many components of HTCondor must
interact closely with the underlying operating system. Provided is a clipped version of HTCondor for Windows. A
clipped version is one in which there is no checkpointing andthere are no remote system calls.

This section contains additional information specific to running HTCondor on Windows. In order to effectively
use HTCondor, first read the overview chapter (section 1.1) and the user’s manual (section 2.1). If administrating
or customizing the policy and set up of HTCondor, also read the administrator’s manual chapter (section 3.1). After
reading these chapters, review the information in this chapter for important information and differences when using
and administrating HTCondor on Windows. For information oninstalling HTCondor for Windows, see section 3.2.3.

HTCondor Version 8.6.4 Manual

7.2.1. Limitations under Windows 663

7.2.1 Limitations under Windows

In general, this release for Windows works the same as the release of HTCondor for Unix. However, the following
items are not supported in this version:

• The standard job universe is not present. This means transparent process checkpoint/migration and remote
system calls are not supported.

• grid universe jobs may not be submitted from a Windows platform, unless the grid type iscondor.

• Accessing files via a network share that requires a Kerberosticket (such as AFS) is not yet supported.

7.2.2 Supported Features under Windows

Except for those items listed above, most everything works the same way in HTCondor as it does in the Unix release.
This release is based on the HTCondor Version 8.6.4 source tree, and thus the feature set is the same as HTCondor
Version 8.6.4 for Unix. For instance, all of the following work in HTCondor:

• The ability to submit, run, and manage queues of jobs running on a cluster of Windows machines.

• All tools such ascondor_q, condor_status, condor_userprio, are included. Onlycondor_compileis not in-
cluded.

• The ability to customize job policy using ClassAds. The machine ClassAds contain all the information included
in the Unix version, including current load average, RAM andvirtual memory sizes, integer and floating-point
performance, keyboard/mouse idle time, etc. Likewise, jobClassAds contain a full complement of information,
including system dependent entries such as dynamic updatesof the job’s image size and CPU usage.

• Everything necessary to run an HTCondor central manager onWindows.

• Security mechanisms.

• HTCondor for Windows can run jobs at a lower operating system priority level. Jobs can be suspended, soft-
killed by using a WM_CLOSE message, or hard-killed automatically based upon policy expressions. For ex-
ample, HTCondor can automatically suspend a job whenever keyboard/mouse or non-HTCondor created CPU
activity is detected, and continue the job after the machinehas been idle for a specified amount of time.

• HTCondor correctly manages jobs which create multiple processes. For instance, if an HTCondor job spawns
multiple processes and HTCondor needs to kill the job, all processes created by the job will be terminated.

• In addition to interactive tools, users and administrators can receive information from HTCondor by e-mail
(standard SMTP) and/or by log files.

• HTCondor includes a friendly GUI installation and set up program, which can perform a full install or deinstall
of HTCondor. Information specified by the user in the set up program is stored in the system registry. The set
up program can update a current installation with a new release using a minimal amount of effort.

• HTCondor can give a job access to the running user’s Registry hive.

HTCondor Version 8.6.4 Manual

7.2.3. Secure Password Storage 664

7.2.3 Secure Password Storage

In order for HTCondor to operate properly, it must at times beable to act on behalf of users who submit jobs. This is
required on submit machines, so that HTCondor can access a job’s input files, create and access the job’s output files,
and write to the job’s log file from within the appropriate security context. On Unix systems, arbitrarily changing what
user HTCondor performs its actions as is easily done when HTCondor is started with root privileges. On Windows,
however, performing an action as a particular user or on behalf of a particular user requires knowledge of that user’s
password, even when running at the maximum privilege level.HTCondor provides secure password storage through
the use of thecondor_store_credtool. Passwords managed by HTCondor are encrypted and stored in a secure location
within the Windows registry. When HTCondor needs to performan action as or on behalf of a particular user, it uses
the securely stored password to do so. This implies that a password is stored for every user that will submit jobs from
the Windows submit machine.

A further feature permits HTCondor to execute the job itselfunder the security context of its submitting user,
specifying therun_as_owner command in the job’s submit description file. With this feature, it is necessary to
configure and run a centralizedcondor_credddaemon to manage the secure password storage. This makes each user’s
password available, via an encrypted connection to thecondor_credd, to any execute machine that may need it.

By default, the secure password store for a submit machine when nocondor_creddis running is managed by
the condor_schedd. This approach works in environments where the user’s password is only needed on the submit
machine.

7.2.4 Executing Jobs as the Submitting User

By default, HTCondor executes jobs on Windows using dedicated run accounts that have minimal access rights and
privileges, and which are recreated for each new job. As an alternative, HTCondor can be configured to allow users to
run jobs using their Windows login accounts. This may be useful if jobs need access to files on a network share, or to
other resources that are not available to the low-privilegerun account.

This feature requires use of acondor_credddaemon for secure password storage and retrieval. With thecon-
dor_credddaemon running, the user’s password must be stored, using the condor_store_credtool. Then, a user that
wants a job to run using their own account places into the job’s submit description file

run_as_owner = True

7.2.5 The condor_credd Daemon

Thecondor_credddaemon manages secure password storage. A single running instance of thecondor_creddwithin
an HTCondor pool is necessary in order to provide the featuredescribed in section 7.2.4, where a job runs as the
submitting user, instead of as a temporary user that has strictly limited access capabilities.

It is first necessary to select the single machine on which to run thecondor_credd. Often, the machine acting as
the pool’s central manager is a good choice. An important restriction, however, is that thecondor_creddhost must be
a machine running Windows.

HTCondor Version 8.6.4 Manual

7.2.5. The condor_credd Daemon 665

All configuration settings necessary to enable thecondor_credd are contained in the example file
etc\condor_config.local.credd from the HTCondor distribution. Copy these settings into a local con-
figuration file for the machine that will run thecondor_credd. Runcondor_restart for these new settings to take
effect, then verify (via Task Manager) that acondor_creddprocess is running.

A second set of configuration variables specify security forthe communication among HTCondor daemons. These
variables must be set for all machines in the pool. The following example settings are in the comments contained in
theetc\condor_config.local.credd example file. These sample settings rely on thePASSWORDmethod
for authentication among daemons, including communication with thecondor_credddaemon. TheLOCAL_CREDD
variable must be customized to point to the machine hosting thecondor_creddand theALLOW_CONFIGvariable will
be customized, if needed, to refer to an administrative account that exists on all HTCondor nodes.

CREDD_HOST = credd.cs.wisc.edu
CREDD_CACHE_LOCALLY = True

STARTER_ALLOW_RUNAS_OWNER = True

ALLOW_CONFIG = Administrator@ *
SEC_CLIENT_AUTHENTICATION_METHODS = NTSSPI, PASSWORD
SEC_CONFIG_NEGOTIATION = REQUIRED
SEC_CONFIG_AUTHENTICATION = REQUIRED
SEC_CONFIG_ENCRYPTION = REQUIRED
SEC_CONFIG_INTEGRITY = REQUIRED

The example above can be modified to meet the needs of your pool, providing the following conditions are met:

1. The requesting client must use an authenticated connection

2. The requesting client must have an encrypted connection

3. The requesting client must be authorized forDAEMONlevel access.

Using a pool password on Windows

In order forPASSWORDauthenticated communication to work, apool passwordmust be chosen and distributed. The
chosen pool password must be stored identically for each machine. The pool password first should be stored on the
condor_creddhost, then on the other machines in the pool.

To store the pool password on a Windows machine, run

condor_store_cred add -c

when logged in with the administrative account on that machine, and enter the password when prompted. If the
administrative account is shared across all machines, thatis if it is a domain account or has the same password on
all machines, logging in separately to each machine in the pool can be avoided. Instead, the pool password can be
securely pushed out for each Windows machine using a commandof the form

HTCondor Version 8.6.4 Manual

7.2.6. Executing Jobs with the User’s Profile Loaded 666

condor_store_cred add -c -n exec01.cs.wisc.edu

Once the pool password is distributed, but before submitting jobs, all machines must reevaluate their configuration,
so execute

condor_reconfig -all

from the central manager. This will cause each execute machine to test its ability to authenticate with thecondor_credd.
To see whether this test worked for each machine in the pool, run the command

condor_status -f "%s\t" Name -f "%s\n" ifThenElse(isUndef ined(LocalCredd),\"UNDEF\",LocalCredd)

Any rows in the output with theUNDEFstring indicate machines where secure communication is notworking properly.
Verify that the pool password is stored correctly on these machines.

7.2.6 Executing Jobs with the User’s Profile Loaded

HTCondor can be configured when using dedicated run accounts, to load the account’s profile. A user’s profile includes
a set of personal directories and a registry hive loaded under HKEY_CURRENT_USER.

This may be useful if the job requires direct access to the user’s registry entries. It also may be useful when
the job requires an application, and the application requires registry access. This feature is always enabled on the
condor_startd, but it is limited to the dedicated run account. For securityreasons, the profile is cleaned before a
subsequent job which uses the dedicated run account begins.This ensures that malicious jobs cannot discover what
any previous job has done, nor sabotage the registry for future jobs. It also ensures the next job has a fresh registry
hive.

A job that is to run with a profile uses theload_profile command in the job’s submit description file:

load_profile = True

This feature is currently not compatible withrun_as_owner, and will be ignored if both are specified.

7.2.7 Using Windows Scripts as Job Executables

HTCondor has added support for scripting jobs on Windows. Previously, HTCondor jobs on Windows were limited
to executables or batch files. With this new support, HTCondor determines how to interpret the script using the file
name’s extension. Without a file name extension, the file willbe treated as it has been in the past: as a Windows
executable.

This feature may not require any modifications to HTCondor’sconfiguration. An example that does not require
administrative intervention are Perl scripts usingActivePerl.

HTCondor Version 8.6.4 Manual

7.2.7. Using Windows Scripts as Job Executables 667

Windows Scripting Hostscripts do require configuration to work correctly. The configuration variables set values to
be used in registry look up, which results in a command that invokes the correct interpreter, with the correct command
line arguments for the specific scripting language. In Microsoft nomenclature,verbsare actions that can be taken
upon a given a file. The familiar examples ofOpen, Print , andEdit , can be found on the context menu when a
user right clicks on a file. The command lines to be used for each of these verbs are stored in the registry under the
HKEY_CLASSES_ROOThive. In general, a registry look up uses the form:

HKEY_CLASSES_ROOT\<FileType>\Shell\<OpenVerb>\Comma nd

Within this specification,<FileType> is the name of a file type (and therefore a scripting language), and is
obtained from the file name extension.<OpenVerb> identifies the verb, and is obtained from the HTCondor config-
uration.

The HTCondor configuration sets the selection of a verb, to aid in the registry look up. The file name extension
sets the name of the HTCondor configuration variable. This variable name is of the form:

OPEN_VERB_FOR_<EXT>_FILES

<EXT> represents the file name extension. The following configuration example uses theOpen2 verb for aWindows
Scripting Hostregistry look up for several scripting languages:

OPEN_VERB_FOR_JS_FILES = Open2
OPEN_VERB_FOR_VBS_FILES = Open2
OPEN_VERB_FOR_VBE_FILES = Open2
OPEN_VERB_FOR_JSE_FILES = Open2
OPEN_VERB_FOR_WSF_FILES = Open2
OPEN_VERB_FOR_WSH_FILES = Open2

In this example, HTCondor specifies theOpen2 verb, instead of the defaultOpen verb, for a script with the
file name extension ofwsh. TheWindows Scripting Host’s Open2 verb allows standard input, standard output, and
standard error to be redirected as needed for HTCondor jobs.

A common difficulty is encountered when a script interpreterrequires access to the user’s registry. Note that the
user’s registry is different than the root registry. If not given access to the user’s registry, some scripts, such asWindows
Scripting Hostscripts, will fail. The failure error message appears as:

CScript Error: Loading your settings failed. (Access is den ied.)

The fix for this error is to give explicit access to the submitting user’s registry hive. This can be accomplished with
the addition of theload_profile command in the job’s submit description file:

load_profile = True

With this command, there should be no registry access errors. This command should also work for other inter-
preters. Note that not all interpreters will require access. For example,ActivePerldoes not by default require access
to the user’s registry hive.

HTCondor Version 8.6.4 Manual

7.2.8. How HTCondor for Windows Starts and Stops a Job 668

7.2.8 How HTCondor for Windows Starts and Stops a Job

This section provides some details on how HTCondor starts and stops jobs. This discussion is geared for the HTCondor
administrator or advanced user who is already familiar withthe material in the Administrator’s Manual and wishes to
know detailed information on what HTCondor does when starting and stopping jobs.

When HTCondor is about to start a job, thecondor_startdon the execute machine spawns acondor_starterpro-
cess. Thecondor_starterthen creates:

1. a run account on the machine with a login name ofcondor-slot<X> , where<X> is the slot number of the
condor_starter. This account is added to groupUsers by default. The default group may be changed by setting
configuration variableDYNAMIC_RUN_ACCOUNT_LOCAL_GROUP. This step is skipped if the job is to be run
using the submitting user’s account, as specified in section7.2.4.

2. a new temporary working directory for the job on the execute machine. This directory is nameddir_XXX ,
whereXXXis the process ID of thecondor_starter. The directory is created in the$(EXECUTE) directory, as
specified in HTCondor’s configuration file. HTCondor then grants write permission to this directory for the user
account newly created for the job.

3. a new, non-visible Window Station and Desktop for the job.Permissions are set so that only the account that
will run the job has access rights to this Desktop. Any windows created by this job are not seen by anyone;
the job is run in the background. SettingUSE_VISIBLE_DESKTOPto True will allow the job to access the
default desktop instead of a newly created one.

Next, thecondor_starterdaemon contacts thecondor_shadowdaemon, which is running on the submitting ma-
chine, and thecondor_starterpulls over the job’s executable and input files. These files are placed into the temporary
working directory for the job. After all files have been received, thecondor_starterspawns the user’s executable. Its
current working directory set to the temporary working directory.

While the job is running, thecondor_starterclosely monitors the CPU usage and image size of all processes started
by the job. Every 20 minutes thecondor_startersends this information, along with the total size of all filescontained
in the job’s temporary working directory, to thecondor_shadow. Thecondor_shadowthen inserts this information
into the job’s ClassAd so that policy and scheduling expressions can make use of this dynamic information.

If the job exits of its own accord (that is, the job completes), the condor_starterfirst terminates any processes
started by the job which could still be around if the job did not clean up after itself. Thecondor_starterexamines the
job’s temporary working directory for any files which have been created or modified and sends these files back to the
condor_shadowrunning on the submit machine. Thecondor_shadowplaces these files into theinitialdir specified
in the submit description file; if noinitialdir was specified, the files go into the directory where the user invoked
condor_submit. Once all the output files are safely transferred back, the job is removed from the queue. If, however,
the condor_startdforcibly kills the job before all output files could be transferred, the job is not removed from the
queue but instead switches back to the Idle state.

If the condor_startddecides to vacate a job prematurely, thecondor_startersends a WM_CLOSE message to the
job. If the job spawned multiple child processes, the WM_CLOSE message is only sent to the parent process. This
is the one started by thecondor_starter. The WM_CLOSE message is the preferred way to terminate a process on
Windows, since this method allows the job to clean up and freeany resources it may have allocated. When the job

HTCondor Version 8.6.4 Manual

7.2.9. Security Considerations in HTCondor for Windows 669

exits, thecondor_startercleans up any processes left behind. At this point, ifwhen_to_transfer_output is set to
ON_EXIT (the default) in the job’s submit description file, the job switches states, from Running to Idle, and no files
are transferred back. Ifwhen_to_transfer_outputis set toON_EXIT_OR_EVICT, then files in the job’s temporary
working directory which were changed or modified are first sent back to the submitting machine. If exactly which
files to transfer is specified withtransfer_output_files, then this modifies the files transferred and can affect the state
of the job if the specified files do not exist. On an eviction, the condor_shadowplaces these intermediate files into
a subdirectory created in the$(SPOOL) directory on the submitting machine. The job is then switched back to the
Idle state until HTCondor finds a different machine on which to run. When the job is started again, HTCondor places
into the job’s temporary working directory the executable and input files as before,plusany files stored in the submit
machine’s$(SPOOL) directory for that job.

NOTE: A Windows console process can intercept a WM_CLOSE messagevia the Win32
SetConsoleCtrlHandler() function, if it needs to do special cleanup work at vacate time; a WM_CLOSE
message generates a CTRL_CLOSE_EVENT. SeeSetConsoleCtrlHandler() in the Win32 documentation
for more info.

NOTE: The default handler in Windows for a WM_CLOSE message is forthe process to exit. Of course, the job
could be coded to ignore it and not exit, but eventually thecondor_startdwill become impatient and hard-kill the job,
if that is the policy desired by the administrator.

Finally, after the job has left and any files transferred back, the condor_starterdeletes the temporary working
directory, the temporary account if one was created, the Window Station and the Desktop before exiting. If the
condor_startershould terminate abnormally, thecondor_startdattempts the clean up. If for some reason thecon-
dor_startdshould disappear as well (that is, if the entire machine was power-cycled hard), thecondor_startdwill
clean up when HTCondor is restarted.

7.2.9 Security Considerations in HTCondor for Windows

On the execute machine (by default), the user job is run usingthe access token of an account dynamically created by
HTCondor which has bare-bones access rights and privileges. For instance, if your machines are configured so that
only Administrators have write access toC:\WINNT , then certainly no HTCondor job run on that machine would
be able to write anything there. The only files the job should be able to access on the execute machine are files
accessible by the Users and Everyone groups, and files in the job’s temporary working directory. Of course, if the
job is configured to run using the account of the submitting user (as described in section 7.2.4), it will be able to do
anything that the user is able to do on the execute machine it runs on.

On the submit machine, HTCondor impersonates the submitting user, therefore the File Transfer mechanism has
the same access rights as the submitting user. For example, say only Administrators can write toC:\WINNT on the
submit machine, and a user gives the following tocondor_submit:

executable = mytrojan.exe
initialdir = c:\winnt
output = explorer.exe
queue

Unless that user is in group Administrators, HTCondor will not permitexplorer.exe to be overwritten.

HTCondor Version 8.6.4 Manual

7.2.10. Network files and HTCondor 670

If for some reason the submitting user’s account disappearsbetween the timecondor_submitwas run and when the
job runs, HTCondor is not able to check and see if the now-defunct submitting user has read/write access to a given
file. In this case, HTCondor will ensure that group “Everyone” has read or write access to any file the job subsequently
tries to read or write. This is in consideration for some network setups, where the user account only exists for as long
as the user is logged in.

HTCondor also provides protection to the job queue. It wouldbe bad if the integrity of the job queue is compro-
mised, because a malicious user could remove other user’s jobs or even change what executable a user’s job will run.
To guard against this, in HTCondor’s default configuration all connections to thecondor_schedd(the process which
manages the job queue on a given machine) are authenticated using Windows’ eSSPI security layer. The user is then
authenticated using the same challenge-response protocolthat Windows uses to authenticate users to Windows file
servers. Once authenticated, the only users allowed to editjob entry in the queue are:

1. the user who originally submitted that job (i.e. HTCondorallows users to remove or edit their own jobs)

2. users listed in thecondor_config file parameterQUEUE_SUPER_USERS. In the default configuration, only
the “SYSTEM” (LocalSystem) account is listed here.

WARNING: Do not remove “SYSTEM” fromQUEUE_SUPER_USERS, or HTCondor itself will not be able to access
the job queue when needed. If the LocalSystem account on yourmachine is compromised, you have all sorts of
problems!

To protect the actual job queue files themselves, the HTCondor installation program will automatically set permis-
sions on the entire HTCondor release directory so that only Administrators have write access.

Finally, HTCondor has all the IP/Host-based security mechanisms present in the full-blown version of HTCondor.
See section 3.8.9 starting on page 439 for complete information on how to allow/deny access to HTCondor based upon
machine host name or IP address.

7.2.10 Network files and HTCondor

HTCondor can work well with a network file server. The recommended approach to having jobs access files on
network shares is to configure jobs to run using the security context of the submitting user (see section 7.2.4). If
this is done, the job will be able to access resources on the network in the same way as the user can when logged in
interactively.

In some environments, running jobs as their submitting users is not a feasible option. This section outlines some
possible alternatives. The heart of the difficulty in this case is that on the execute machine, HTCondor creates a
temporary user that will run the job. The file server has neverheard of this user before.

Choose one of these methods to make it work:

• METHOD A: access the file server as a different user via a net use command with a login and password

• METHOD B: access the file server as guest

• METHOD C: access the file server with a "NULL" descriptor

HTCondor Version 8.6.4 Manual

7.2.10. Network files and HTCondor 671

• METHOD D: create and have HTCondor use a special account

All of these methods have advantages and disadvantages.

Here are the methods in more detail:

METHOD A - access the file server as a different user via a net use command with a login and password

Example: you want to copy a file off of a server before running it....

@echo off
net use \\myserver\someshare MYPASSWORD /USER:MYLOGIN
copy \\myserver\someshare\my-program.exe
my-program.exe

The idea here is to simply authenticate to the file server witha different login than the temporary HTCondor login.
This is easy with the "net use" command as shown above. Of course, the obvious disadvantage is this user’s password
is stored and transferred as clear text.

METHOD B - access the file server as guest

Example: you want to copy a file off of a server before running it as GUEST

@echo off
net use \\myserver\someshare
copy \\myserver\someshare\my-program.exe
my-program.exe

In this example, you’d contact the server MYSERVER as the HTCondor temporary user. However, if you have
the GUEST account enabled on MYSERVER, you will be authenticated to the server as user "GUEST". If your file
permissions (ACLs) are setup so that either user GUEST (or group EVERYONE) has access the share "someshare"
and the directories/files that live there, you can use this method. The downside of this method is you need to enable
the GUEST account on your file server. WARNING: This should be done *with extreme caution* and only if your file
server is well protected behind a firewall that blocks SMB traffic.

METHOD C - access the file server with a "NULL" descriptor

One more option is to use NULL Security Descriptors. In this way, you can specify which shares are accessible
by NULL Descriptor by adding them to your registry. You can then use the batch file wrapper like:

net use z: \\myserver\someshare /USER:""
z:\my-program.exe

so long as ’someshare’ is in the list of allowed NULL session shares. To edit this list, run regedit.exe and navigate
to the key:

HTCondor Version 8.6.4 Manual

7.2.11. Interoperability between HTCondor for Unix and HTCondor for Windows 672

HKEY_LOCAL_MACHINE\
SYSTEM\

CurrentControlSet\
Services\

LanmanServer\
Parameters\

NullSessionShares

and edit it. unfortunately it is a binary value, so you’ll then need to type in the hex ASCII codes to spell out your
share. each share is separated by a null (0x00) and the last inthe list is terminated with two nulls.

although a little more difficult to set up, this method of sharing is a relatively safe way to have one quasi-public
share without opening the whole guest account. you can control specifically which shares can be accessed or not via
the registry value mentioned above.

METHOD D - create and have HTCondor use a special account

Create a permanent account (called condor-guest in this description) under which HTCondor will run jobs. On all
Windows machines, and on the file server, create the condor-guest account.

On the network file server, give the condor-guest user permissions to access files needed to run HTCondor jobs.

Securely store the password of the condor-guest user in the Windows registry usingcondor_store_credon all
Windows machines.

Tell HTCondor to use the condor-guest user as the owner of jobs, when required. Details for this are in sec-
tion 3.8.13.

7.2.11 Interoperability between HTCondor for Unix and HTCondor for Windows

Unix machines and Windows machines running HTCondor can happily co-exist in the same HTCondor pool without
any problems. Jobs submitted on Windows can run on Windows orUnix, and jobs submitted on Unix can run on Unix
or Windows. Without any specification using theRequirementscommand in the submit description file, the default
behavior will be to require the execute machine to be of the same architecture and operating system as the submit
machine.

There is absolutely no need to run more than one HTCondor central manager, even if there are both Unix and
Windows machines in the pool. The HTCondor central manager itself can run on either Unix or Windows; there is no
advantage to choosing one over the other.

7.2.12 Some differences between HTCondor for Unix -vs- HTCondor for Windows

• On Unix, we recommend the creation of acondor account when installing HTCondor. On Windows, this is
not necessary, as HTCondor is designed to run as a system service as user LocalSystem.

• On Unix, HTCondor finds thecondor_config main configuration file by looking in ˜condor, in/etc , or
via an environment variable. On Windows, the location ofcondor_config file is determined via the registry

HTCondor Version 8.6.4 Manual

7.3. Macintosh OS X 673

keyHKEY_LOCAL_MACHINE/Software/Condor . Override this value by setting an environment variable
namedCONDOR_CONFIG.

• On Unix, in the vanilla universe at job vacate time, HTCondor sends the job a softkill signal defined in the
submit description file, which defaults to SIGTERM. On Windows, HTCondor sends a WM_CLOSE message
to the job at vacate time.

• On Unix, if one of the HTCondor daemons has a fault, a core filewill be created in the$(Log) directory. On
Windows, a core file will also be created, but instead of a memory dump of the process, it will be a very short
ASCII text file which describes what fault occurred and whereit happened. This information can be used by the
HTCondor developers to fix the problem.

7.3 Macintosh OS X

This section provides information specific to the MacintoshOS X port of HTCondor. The Macintosh port of HTCondor
is more accurately a port of HTCondor to Darwin, the BSD core of OS X. HTCondor uses the Carbon library only to
detect keyboard activity, and it does not use Cocoa at all. HTCondor on the Macintosh is a relatively new port, and it
is not yet well-integrated into the Macintosh environment.

HTCondor on the Macintosh has a few shortcomings:

• Users connected to the Macintosh viasshare not noticed for console activity.

• The memory size of threaded programs is reported incorrectly.

• No Macintosh-based installer is provided.

• The example start up scripts do not follow Macintosh conventions.

• Kerberos is not supported.

HTCondor Version 8.6.4 Manual

CHAPTER

EIGHT

Frequently Asked Questions (FAQ)

There are many Frequently Asked Questions maintained on theHTCondor web page, at
http://htcondor-wiki.cs.wisc.edu/index.cgi/wiki and on the configuration how-to and recipes page at
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToAdminRecipes

Supported platforms are listed in section 1.5, on page 5. There is also platform-specific information at Chapter 7
on page 661.

674

http://htcondor-wiki.cs.wisc.edu/index.cgi/wiki
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToAdminRecipes

CHAPTER

NINE

Contrib and Source Modules

9.1 Introduction

Contrib modules are stand alone, separate pieces of code that work together with HTCondor to accomplish some task.
These modules are available by following links from the wikiat https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki.
Documentation for these modules is either here and identified as a contrib module, or may be within the module itself.

Other features of HTCondor are available within the source code, but are not compiled in to the binaries distributed.
To utilize these features, acquire the source code and buildit. Enable the feature as described in this documentation.

This chapter documents the HTCondorView Client contrib module, Quill (available with the source code), and
using HTCondor with the Hadoop File System (available with the source code).

9.2 Using HTCondor with the Hadoop File System

The Hadoop project is an Apache project, headquartered at http://hadoop.apache.org, which implements an open-
source, distributed file system across a large set of machines. The file system proper is called the Hadoop File System,
or HDFS, and there are several Hadoop-provided tools which use the file system, most notably databases and tools
which use the map-reduce distributed programming style.

Distributed with the HTCondor source code, HTCondor provides a way to manage the daemons which implement
an HDFS, but no direct support for the high-level tools whichrun atop this file system. There are two types of
daemons, which together create an instance of a Hadoop File System. The first is called the Name node, which is
like the central manager for a Hadoop cluster. There is only one active Name node per HDFS. If the Name node is
not running, no files can be accessed. The HDFS does not support fail over of the Name node, but it does support a
hot-spare for the Name node, called the Backup node. HTCondor can configure one node to be running as a Backup

675

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki
http://hadoop.apache.org

9.2.1. condor_hdfs Configuration File Entries 676

node. The second kind of daemon is the Data node, and there is one Data node per machine in the distributed file
system. As these are both implemented in Java, HTCondor cannot directly manage these daemons. Rather, HTCondor
provides a small DaemonCore daemon, calledcondor_hdfs, which reads the HTCondor configuration file, responds
to HTCondor commands likecondor_onand condor_off, and runs the Hadoop Java code. It translates entries in
the HTCondor configuration file to an XML format native to HDFS. These configuration items are listed with the
condor_hdfsdaemon in section 9.2.1. So, to configure HDFS in HTCondor, the HTCondor configuration file should
specify one machine in the pool to be the HDFS Name node, and others to be the Data nodes.

Once an HDFS is deployed, HTCondor jobs can directly use it ina vanilla universe job, by transferring input files
directly from the HDFS by specifying a URL within the job’s submit description file commandtransfer_input_files.
See section 3.14.2 for the administrative details to set up transfers specified by a URL. It requires that a plug-in is
accessible and defined to handlehdfs protocol transfers.

9.2.1 condor_hdfs Configuration File Entries

These macros affect thecondor_hdfsdaemon. Many of these variables determine how thecondor_hdfsdaemon sets
the HDFS XML configuration.

HDFS_HOME The directory path for the Hadoop file system installation directory. Defaults to
$(RELEASE_DIR)/libexec . This directory is required to contain

• directorylib , containing all necessary jar files for the execution of a Name node and Data nodes.

• directoryconf , containing default Hadoop file system configuration files with names that conform to
* -site.xml .

• directorywebapps , containing JavaServer pages (jsp) files for the Hadoop file system’s embedded server.

HDFS_NAMENODE The host and port number for the HDFS Name node. There is no default value for this required
variable. Defines the value offs.default.name in the HDFS XML configuration.

HDFS_NAMENODE_WEB The IP address and port number for the HDFS embedded web server within the Name node
with the syntax ofa.b.c.d:portnumber . There is no default value for this required variable. Defines the
value ofdfs.http.address in the HDFS XML configuration.

HDFS_DATANODE_WEB The IP address and port number for the HDFS embedded web server within the Data node
with the syntax ofa.b.c.d:portnumber . The default value for this optional variable is 0.0.0.0:0,which
means bind to the default interface on a dynamic port. Definesthe value ofdfs.datanode.http.address
in the HDFS XML configuration.

HDFS_NAMENODE_DIR The path to the directory on a local file system where the Name node will store its meta-data
for file blocks. There is no default value for this variable; it is required to be defined for the Name node machine.
Defines the value ofdfs.name.dir in the HDFS XML configuration.

HDFS_DATANODE_DIR The path to the directory on a local file system where the Data node will store file blocks.
There is no default value for this variable; it is required tobe defined for a Data node machine. Defines the value
of dfs.data.dir in the HDFS XML configuration.

HTCondor Version 8.6.4 Manual

9.3. Quill 677

HDFS_DATANODE_ADDRESS The IP address and port number of this machine’s Data node. There is no default value
for this variable; it is required to be defined for a Data node machine, and may be given the value0.0.0.0:0
as a Data node need not be running on a known port. Defines the value of dfs.datanode.address in the
HDFS XML configuration.

HDFS_NODETYPE This parameter specifies the type of HDFS service provided bythis machine. Possible values are
HDFS_NAMENODEandHDFS_DATANODE. The default value isHDFS_DATANODE.

HDFS_BACKUPNODE The host address and port number for the HDFS Backup node. There is no default value. It
defines the value of the HDFS dfs.namenode.backup.address field in the HDFS XML configuration file.

HDFS_BACKUPNODE_WEB The address and port number for the HDFS embedded web server within the Backup
node, with the syntax of hdfs://<host_address>:<portnumber>. There is no default value for this required vari-
able. It defines the value of dfs.namenode.backup.http-address in the HDFS XML configuration.

HDFS_NAMENODE_ROLE If this machine is selected to be the Name node, then the role must be defined. Possible
values areACTIVE, BACKUP, CHECKPOINT, andSTANDBY. The default value isACTIVE. TheSTANDBY
value exists for future expansion. IfHDFS_NODETYPEis selected to be Data node (HDFS_DATANODE), then
this variable is ignored.

HDFS_LOG4J Used to set the configuration for the HDFS debugging level. Currently one ofOFF, FATAL, ERROR,
WARN, INFODEBUG, ALL or INFO. Debugging output is written to$(LOG)/hdfs.log . The default value
is INFO.

HDFS_ALLOW A comma separated list of hosts that are authorized with readand write access to the invoked HDFS.
Note that this configuration variable name is likely to change toHOSTALLOW_HDFS.

HDFS_DENY A comma separated list of hosts that are denied access to the invoked HDFS. Note that this configuration
variable name is likely to change toHOSTDENY_HDFS.

HDFS_NAMENODE_CLASS An optional value that specifies the class to invoke. The default value is
org.apache.hadoop.hdfs.server.namenode.NameNode .

HDFS_DATANODE_CLASS An optional value that specifies the class to invoke. The default value is
org.apache.hadoop.hdfs.server.datanode.DataNode .

HDFS_SITE_FILE The optional value that specifies the HDFS XML configuration file to generate. The default
value ishdfs-site.xml .

HDFS_REPLICATION An integer value that facilitates setting the replication factor of an HDFS, defining the value
of dfs.replication in the HDFS XML configuration. This configuration variable isoptional, as the HDFS
has its own default value of 3 when not set through configuration.

9.3 Quill

Quill is an optional component of HTCondor that maintains a mirror of HTCondor operational data in a relational
database. Thecondor_quilldaemon updates the data in the relation database, and thecondor_dbmsddaemon maintains
the database itself.

HTCondor Version 8.6.4 Manual

9.3.1. Installation and Configuration 678

As of HTCondor version 7.5.5, Quill is distributed only withthe source code. It is not included in the builds
of HTCondor provided by UW, but it is available as a feature that can be enabled by those who compile HTCondor
from the source code. Find the code within thecondor_contrib directory, in the directoriescondor_tt and
condor_dbmsd .

9.3.1 Installation and Configuration

Quill uses thePostgreSQLdatabase management system. Quill uses thePostgreSQLserver as its back end and client
library, libpq to talk to the server. Westrongly recommendthe use of version 8.2 or later due to its integrated facilities
of certain key database maintenance tasks, and stronger security features.

ObtainPostgreSQLfrom

http://www.postgresql.org/ftp/source/

Installation instructions are detailed in: http://www.postgresql.org/docs/8.2/static/installation.html

ConfigurePostgreSQLafter installation:

1. Initialize the database with thePostgreSQLcommandinitdb .

2. Configure to accept TCP/IP connections. ForPostgreSQLversion 8, use thelisten_addresses variable
in postgresql.conf file as a guide. For example,listen_addresses = ’ * ’ means listen on any IP
interface.

3. Configure automatic vacuuming. Ensure that these variables with these defaults are commented in and/or set
properly in thepostgresql.conf configuration file:

Turn on/off automatic vacuuming
autovacuum = on

time between autovacuum runs, in secs
autovacuum_naptime = 60

min # of tuple updates before vacuum
autovacuum_vacuum_threshold = 1000

min # of tuple updates before analyze
autovacuum_analyze_threshold = 500

fraction of rel size before vacuum
autovacuum_vacuum_scale_factor = 0.4

fraction of rel size before analyze
autovacuum_analyze_scale_factor = 0.2

HTCondor Version 8.6.4 Manual

http://www.postgresql.org/ftp/source/
http://www.postgresql.org/docs/8.2/static/installation.html

9.3.1. Installation and Configuration 679

default vacuum cost delay for
autovac, -1 means use
vacuum_cost_delay

autovacuum_vacuum_cost_delay = -1

default vacuum cost limit for
autovac, -1 means use
vacuum_cost_limit

autovacuum_vacuum_cost_limit = -1

4. ConfigurePostgreSQLto accept TCP/IP connections from specific hosts. Modify thepg_hba.conf file
(which usually resides in thePostgreSQLserver’s data directory). Access is required by thecondor_quill
daemon, as well as the database users “quillreader ” and “quillwriter ”. For example, to give database users
“quillreader ” and “quillwriter ” password-enabled access to all databases on current machine from any ma-
chine in the 128.105.0.0/16 subnet, add the following:

host all quillreader 128.105.0.0 255.255.0.0 md5
host all quillwriter 128.105.0.0 255.255.0.0 md5

Note that in addition to the database specified by the configuration variableQUILL_DB_NAME, thecondor_quill
daemon also needs access to the database "template1". In order to create the database in the first place, the
condor_quilldaemon needs to connect to the database.

5. Start thePostgreSQLserver service. See the installation instructions for the appropriate method to start the
service at http://www.postgresql.org/docs/8.2/static/installation.html

6. Thecondor_quillandcondor_dbmsddaemons and client tools connect to the database as users “quillreader ”
and “quillwriter ”. These are database users, not operating system users. Thetwo types of users are quite
different from each other. If these database users do not exist, add them using thecreateusercommand supplied
with the installation. Assign them with appropriate passwords; these passwords will be used by the Quill tools to
connect to the database in a secure way. User “quillreader ” should not be allowed to create more databases nor
create more users. User “quillwriter ” should not be allowed to create more users, however it should be allowed
to create more databases. The following commands create thetwo users with the appropriate permissions, and
be ready to enter the corresponding passwords when prompted.

/path/to/postgreSQL/bin/directory/createuser quillre ader \
--no-createdb --no-createrole --pwprompt

/path/to/postgreSQL/bin/directory/createuser quillwr iter \
--createdb --no-createrole --pwprompt

Answer “no” to the question about the ability for role creation.

7. Create a database for Quill to store data in with thecreatedb command. Create this database with the
“quillwriter ” user as the owner. A sample command to do this is

createdb -O quillwriter quill

quill is the database name to use with theQUILL_DB_NAMEconfiguration variable.

HTCondor Version 8.6.4 Manual

http://www.postgresql.org/docs/8.2/static/installation.html

9.3.1. Installation and Configuration 680

8. Thecondor_quillandcondor_dbmsddaemons need read and write access to the database. They connect as
user “quillwriter ”, which has owner privileges to the database. Since this gives all access to the “quillwriter ”
user, its password cannot be stored in a public place (such asin a ClassAd). For this reason, the “quillwriter ”
password is stored in a file named.pgpass in the HTCondor spool directory. Appropriate protections on this
file guarantee secure access to the database. This file must becreated and protected by the site administrator;
if this file does not exist as and where expected, thecondor_quillandcondor_dbmsddaemons log an error and
exit. The.pgpass file contains a single line that has fields separated by colonsand is properly terminated by
an operating system specific newline character (Unix) or CRLF (Windows). The first field may be either the
machine name and fully qualified domain, or it may be a dotted quad IP address. This is followed by four fields
containing: the TCP port number, the name of the database, the "quillwriter" user name, and the password. The
form used in the first field must exactly match the value set forthe configuration variableQUILL_DB_IP_ADDR
. HTCondor uses a string comparison between the two, and it does not resolve the host names to compare IP
addresses. Example:

machinename.cs.wisc.edu:5432:quill:quillwriter:pass word

After thePostgreSQLdatabase is initialized and running, the Quill schema must be loaded into it. First, load the
plsql programming language into the server:

createlang plpgsql [databasename]

Then, load the Quill schema from the sql files in thesql subdirectory of the HTCondor release directory:

psql [databasename] [username] < common_createddl.sql
psql [databasename] [username] < pgsql_createddl.sql

where[username] will be quillwriter .

After PostgreSQLis configured and running, HTCondor must also be configured touse Quill, since by default
Quill is configured to be off.

Add the file.pgpass to theVALID_SPOOL_FILES variable, sincecondor_preenmust be told not to delete this
file. This step may not be necessary, depending on which version of HTCondor you are upgrading from.

Set up configuration variables that are specific to the installation, and check that theHISTORYvariable is set.

HISTORY = $(SPOOL)/history
QUILL_ENABLED = TRUE
QUILL_USE_SQL_LOG = FALSE
QUILL_NAME = some-unique-quill-name.cs.wisc.edu
QUILL_DB_USER = quillwriter
QUILL_DB_NAME = database-for-some-unique-quill-name
QUILL_DB_IP_ADDR = databaseIPaddress:port
the following parameter's units is in seconds
QUILL_POLLING_PERIOD = 10
QUILL_HISTORY_DURATION = 30
QUILL_MANAGE_VACUUM = FALSE
QUILL_IS_REMOTELY_QUERYABLE = TRUE
QUILL_DB_QUERY_PASSWORD = password-for-database-user- quillreader
QUILL_ADDRESS_FILE = $(LOG)/.quill_address

HTCondor Version 8.6.4 Manual

9.3.1. Installation and Configuration 681

QUILL_DB_TYPE = PGSQL
The Purge and Reindex intervals are in seconds
DATABASE_PURGE_INTERVAL = 86400
DATABASE_REINDEX_INTERVAL = 86400
The History durations are all in days
QUILL_RESOURCE_HISTORY_DURATION = 7
QUILL_RUN_HISTORY_DURATION = 7
QUILL_JOB_HISTORY_DURATION = 3650
#The DB Size limit is in gigabytes
QUILL_DBSIZE_LIMIT = 20
QUILL_MAINTAIN_DB_CONN = TRUE
SCHEDD_SQLLOG = $(LOG)/schedd_sql.log
SCHEDD_DAEMON_AD_FILE = $(LOG)/.schedd_classad

The default HTCondor configuration file should already contain definitions forQUILL andQUILL_LOG. When
upgrading from a previous version that did not have Quill to anew one that does, define these two configuration
variables.

Only one machine should run thecondor_dbmsddaemon. On this machine, add it to theDAEMON_LISTcon-
figuration variable. All Quill-enabled machines should also run thecondor_quilldaemon. The machine running the
condor_dbmsddaemon can also run acondor_quilldaemon. An exampleDAEMON_LISTfor a machine running both
daemons, and acting as both a submit machine and a central manager might look like the following:

DAEMON_LIST = MASTER, SCHEDD, COLLECTOR, NEGOTIATOR, DBMSD, QUILL

The condor_dbmsddaemon will need configuration file entries common to all daemons. If not already in the
configuration file, add the following entries:

DBMSD = $(SBIN)/condor_dbmsd
DBMSD_ARGS = -f
DBMSD_LOG = $(LOG)/DbmsdLog
MAX_DBMSD_LOG = 10000000

Configuration Variables

These macros affect the Quill database management and interface to its representation of the job queue.

QUILL The full path name to thecondor_quilldaemon.

QUILL_ARGS Arguments to be passed to thecondor_quilldaemon upon its invocation.

QUILL_LOG Path to the Quill daemon’s log file.

QUILL_ENABLED A boolean variable that defaults toFalse . WhenTrue , Quill functionality is enabled. When
False , the Quill daemon writes a message to its log and exits. Thecondor_qandcondor_historytools then do
not use Quill.

HTCondor Version 8.6.4 Manual

9.3.1. Installation and Configuration 682

QUILL_NAME A string that uniquely identifies an instance of thecondor_quilldaemon, as there may be more than
condor_quilldaemon per pool. The string must not be the same as for anycondor_schedddaemon.

See the description ofMASTER_NAMEin section 3.5.8 on page 260 for defaults and composition of valid HT-
Condor daemon names.

QUILL_USE_SQL_LOG In order for Quill to store historical job information or resource information, the HTCondor
daemons must write information to the SQL logfile. By default, this is set toFalse , and the only information
Quill stores in the database is the current job queue. This can be set on a per daemon basis. For example, to
store information about historical jobs, but not store execute resource information, setQUILL_USE_SQL_LOG
to False and setSCHEDD._QUILL_USE_SQL_LOGto True .

QUILL_DB_NAME A string that identifies a database within a database server.

QUILL_DB_USER A string that identifies thePostgreSQLuser that Quill will connect as to the database. We recom-
mend “quillwriter ” for this setting. There is no default setting forQUILL_DB_USER, so it must be specified
in the configuration file.

QUILL_DB_TYPE A string that distinguishes between database system types.Defaults to the only database system
currently defined,"PGSQL".

QUILL_DB_IP_ADDR The host address of the database server. It can be either an IPaddress or an IP address. It
must match exactly what is used in the.pgpass file. More than one Quill server can talk to the same database
server. This can be accomplished by letting all theQUILL_DB_IP_ADDR values point to the same database
server.

QUILL_POLLING_PERIOD The frequency, in number of seconds, at which the Quill daemon polls the file
job_queue.log for updates. New information in the log file is sent to the database. The default value
is 10. Since Quill works by periodically sniffing the log file for updates and then sending those updates to
the database, this variable controls the trade off between the currency of query results and Quill’s load on the
system, which is usually negligible.

QUILL_NOT_RESPONDING_TIMEOUT The length of time, in seconds, before thecondor_mastermay decide that
thecondor_quilldaemon is hung due to a lack of communication, potentially causing thecondor_masterto kill
and restart thecondor_quilldaemon. When thecondor_quilldaemon is processing a very long log file, it may
not be able to communicate with the master. The default is 3600 seconds, or one hour. It may be advisable to
increase this to several hours.

QUILL_MAINTAIN_DB_CONN A boolean variable that defaults toTrue . WhenTrue , thecondor_quilldaemon
maintains an open connection the database server, which speeds up updates to the database. As each open
connection consumes resources at the database server, we recommend a setting ofFalse for large pools.

DATABASE_PURGE_INTERVAL The interval, in seconds, between scans of the database to identify and delete
records that are beyond their history durations. The default value is 86400, or one day.

QUILL_JOB_HISTORY_DURATION The number of days after entry into the database that a job will remain in
the database. AfterQUILL_JOB_HISTORY_DURATIONdays, the job is deleted. The job history is the final
ClassAd, and contains all information necessary forcondor_historyto succeed. The default is 3650, or about
10 years.

HTCondor Version 8.6.4 Manual

9.3.1. Installation and Configuration 683

QUILL_RUN_HISTORY_DURATION The number of days after entry into the database that extra information about
the job will remain in the database. AfterQUILL_RUN_HISTORY_DURATIONdays, the records are deleted.
This data includes matches made for the job, file transfers the job performed, and user log events. The default is
7 days, or one week.

QUILL_RESOURCE_HISTORY_DURATION The number of days after entry into the database that a resource record
will remain in the database. AfterQUILL_RESOURCE_HISTORY_DURATIONdays, the record is deleted. The
resource history data includes the ClassAd of a compute slot, submitter ClassAds, and daemon ClassAds. The
default is 7 days, or one week.

QUILL_DBSIZE_LIMIT At intervals of time set byDATABASE_PURGE_INTERVAL, thecondor_quilldaemon
estimates the size of the database. If the size of the database exceeds the limit set by this variable, thecon-
dor_quill daemon will e-mail the administrator a warning. This size isgiven in Gbytes, and defaults to 20.

QUILL_MANAGE_VACUUM A boolean value that defaults toFalse . WhenTrue , thecondor_quilldaemon takes
on the maintenance task of vacuuming the database. As ofPostgreSQLversion 8.1, the database can perform
this task automatically; therefore, having thecondor_quilldaemon vacuum is not necessary. A value ofTrue
causes warnings to be written to the log file.

QUILL_SHOULD_REINDEX A boolean value that defaults toTrue . WhenTrue , thecondor_quilldaemon will
re-index the database tables when the history file is purged of old data. So, if Quill is configured to never delete
history data, the tables are never re-indexed.

DATABASE_REINDEX_INTERVAL BecausePostgreSQLdoes not aggressively maintain the index structures for
deleted tuples, it can lead to bloated index structures. This variable is the interval, in seconds, between
re-index commands on the database. The default value is 86400, or one day. This is only used when the
QUILL_DB_TYPEis set to"PGSQL".

QUILL_IS_REMOTELY_QUERYABLE A boolean value that defaults toTrue . Thanks toPostgreSQL, one can
now remotely query both the job queue and the history tables.This variable controls whether this remote
querying feature should be enabled. Note that even ifFalse , one can still query the job queue at the remote
condor_schedddaemon.

QUILL_DB_QUERY_PASSWORD Defines the password string needed bycondor_qto gain read access for remotely
querying the Quill database. In order for the query tools to connect to a database, they need to provide the
password that is assigned to the database user “quillreader ”. This variable is then advertised by thecondor_quill
daemon to thecondor_collector. This facility enables remote querying: remotecondor_qquery tools first ask
thecondor_collectorfor the password associated with a particular Quill database, and then query that database.
Users who do not have access to thecondor_collectorcannot view the password, and as such cannot query the
database.

QUILL_ADDRESS_FILE When defined, it specifies the path and file name of a local file that contains the IP address
and port number of the Quill daemon. By using the file, tools executed on the local machine do not need to query
the central manager in order to find thecondor_quilldaemon.

DBMSD The full path name to thecondor_dbmsddaemon. The default location is$(SBIN)/condor_dbmsd .

DBMSD_ARGS Arguments to be passed to thecondor_dbmsddaemon upon its invocation. The default arguments are
-f .

HTCondor Version 8.6.4 Manual

9.3.2. Four Usage Examples 684

DBMSD_LOG Path to thecondor_dbmsddaemon’s log file. The default log location is$(LOG)/DbmsdLog .

DBMSD_NOT_RESPONDING_TIMEOUT The length of time, in seconds, before thecondor_mastermay decide that
thecondor_dbmsdis hung due to a lack of communication, potentially causing thecondor_masterto kill and
restart thecondor_dbmsddaemon. When thecondor_dbmsdis purging or re-indexing a very large database, it
may not be able to communicate with the master. The default is3600 seconds, or one hour. It may be advisable
to increase this to several hours.

9.3.2 Four Usage Examples

1. Query a remote Quill daemon onregular.cs.wisc.edu for all the jobs in the queue

condor_q -name quill@regular.cs.wisc.edu
condor_q -name schedd@regular.cs.wisc.edu

There are two ways to get to a Quill daemon: directly using itsname as specified in theQUILL_NAMEconfigu-
ration variable, or indirectly by querying thecondor_schedddaemon using its name. In the latter case,condor_q
will detect if thatcondor_schedddaemon is being serviced by a database, and if so, directly query it. In both
cases, the IP address and port of the database server hostingthe data of this particular remote Quill daemon can
be figured out by theQUILL_DB_IP_ADDRandQUILL_DB_NAMEvariables specified in theQUILL_AD sent
by the quill daemon to the collector and in theSCHEDD_ADsent by thecondor_schedddaemon.

2. Query a remote Quill daemon onregular.cs.wisc.edu for all historical jobs belonging to owner einstein.

condor_history -name quill@regular.cs.wisc.edu einstei n

3. Query the local Quill daemon for the average time spent in the queue for all non-completed jobs.

condor_q -avgqueuetime

The average queue time is defined as the average of(currenttime - jobsubmissiontime) over all
jobs which are neither completed(JobStatus == 4) or removed(JobStatus == 3) .

4. Query the local Quill daemon for all historical jobs completed since Apr 1, 2005 at 13h 00m.

condor_history -completedsince '04/01/2005 13:00'

It fetches all jobs which got into the ’Completed’ state on orafter the specified time stamp.
It use the PostgreSQL date/time syntax rules, as it encompasses most format options. See
http://www.postgresql.org/docs/8.2/static/datatype-datetime.html for the various time stamp formats.

HTCondor Version 8.6.4 Manual

http://www.postgresql.org/docs/8.2/static/datatype-datetime.html

9.3.3. Quill and Security 685

9.3.3 Quill and Security

There are several layers of security in Quill, some providedby HTCondor and others provided by the database. First,
all accesses to the database are password-protected.

1. The query tools,condor_qandcondor_historyconnect to the database as user “quillreader ”. The password
for this user can vary from one database to another and as such, each Quill daemon advertises this password
to the collector. The query tools then obtain this password from the collector and connect successfully to the
database. Access to the database by the “quillreader ” user is read-only, as this is sufficient for the query tools.
Thecondor_quilldaemon ensures this protected access using the sql GRANT command when it first creates the
tables in the database. Note that access to the “quillreader ” password itself can be blocked by blocking access
to the collector, a feature already supported in HTCondor.

2. Thecondor_quillandcondor_dbmsddaemons, on the other hand, need read and write access to the database. As
such, they connect as user “quillwriter ”, who has owner privileges to the database. Since this givesall access to
the “quillwriter ” user, this password cannot be stored in a public place (suchas the collector). For this reason,
the “quillwriter ” password is stored in a file called.pgpass in the HTCondor spool directory. Appropriate
protections on this file guarantee secure access to the database. This file must be created and protected by the
site administrator; if this file does not exist as and where expected, thecondor_quilldaemon logs an error and
exits.

3. TheIsRemotelyQueryable attribute in the Quill ClassAd advertised by the Quill daemon to the collector
can be used by site administrators to disallow the database from being read by all remote HTCondor query tools.

9.3.4 Quill and Its RDBMS Schema

Notes:

• The type “timestamp(precision) with timezone” is abbreviated “ts(precision) w tz.”

• The column O. Type is an abbreviation for Oracle Type.

• The column P. Type is an abbreviation for PostgreSQL Type.

Although the current version of HTCondor does not support Oracle, we anticipate supporting it in the future, so Oracle
support in this schema document is for future reference.

HTCondor Version 8.6.4 Manual

9.3.4. Quill and Its RDBMS Schema 686

Administrative Tables

Attributes of currencies Table
Name O. Type P. Type Description
datasource varchar(4000) varchar(4000) Identifier of the data source.
lastupdate ts(3) w tz ts(3) w tz Time of the last update sent to the database from the data

source.

Attributes of error_sqllogs Table
Name O. Type P. Type Description
logname varchar(100) varchar(100) Name of the SQL log file causing a SQL error.
host varchar(50) varchar(50) The host where the SQL log resides.
lastmodified ts(3) w tz ts(3) w tz The last modified time of the SQL log.
errorsql varchar(4000) text The SQL statement causing an error.
logbody clob text The body of the SQL log.
errormessage varchar(4000) varchar(4000) The description of the error.
INDEX: Index named error_sqllog_idx on (logname, host, lastmodified)

Attributes of maintenance_log Table
Name O. Type P. Type Description
eventts ts(3) w tz ts(3) w tz Time the event occurred.
eventmsg varchar(4000) varchar(4000) Message describing the event.

Attributes of quilldbmonitor Table
Name O. Type P. Type Description
dbsize integer integer Size of the database in megabytes.

Attributes of quill_schema_version Table
Name O. Type P. Type Description
major int int Major version number.
minor int int Minor version number.
back_to_major int int The major number of the old version this version is compatible

to.
back_to_minor int int The minor number of the old version this version is compatible

to.

HTCondor Version 8.6.4 Manual

9.3.4. Quill and Its RDBMS Schema 687

Attributes of throwns Table
Name O. Type P. Type Description
filename varchar(4000) varchar(4000) The name of the log that was truncated.
machine_id varchar(4000) varchar(4000) The machine where the truncated log resides.
log_size numeric(38) numeric(38) The size of the truncated log.
throwtime ts(3) w tz ts(3) w tz The time when the truncation occurred.

Daemon Tables

Attributes of daemons_horizontal Table
Name O. Type P. Type Description
mytype varchar(100) varchar(100) The type of daemon ClassAd, e.g. “Mas-

ter”
name varchar(500) varchar(500) The name identifier of the daemon

ClassAd.
lastreportedtime ts(3) w tz ts(3) w tz Time when the daemon last reported to

Quill.
monitorselftime ts(3) w tz ts(3) w tz The time when the daemon last collected

information about itself.
monitorselfcpuusage numeric(38) numeric(38) The amount of CPU this daemon has

used.
monitorselfimagesize numeric(38) numeric(38) The amount of virtual memory this dae-

mon has used.
monitorselfresidentsetsizenumeric(38) numeric(38) The amount of physical memory this dae-

mon has used.
monitorselfage integer integer How long the daemon has been running.
updatesequencenumber integer integer The sequence number associated with the

update.
updatestotal integer integer The number of updates received from the

daemon.
updatessequenced integer integer The number of updates that were in order.
updateslost integer integer The number of updates that were lost.
updateshistory varchar(4000) varchar(4000) Bitmask of the last 32 updates.
lastreportedtime_epoch integer integer The equivalent epoch time of last heard

from.
PRIMARY KEY: (mytype, name)
NOT NULL: mytype and name cannot be null

HTCondor Version 8.6.4 Manual

9.3.4. Quill and Its RDBMS Schema 688

Attributes of daemons_horizontal_history Table
Name O. Type P. Type Description
mytype varchar(100) varchar(100) The type of daemon ClassAd, e.g. “Mas-

ter”
name varchar(500) varchar(500) The name identifier of the daemon

ClassAd.
lastreportedtime ts(3) w tz ts(3) w tz Time when the daemon last reported to

Quill.
monitorselftime ts(3) w tz ts(3) w tz The time when the daemon last collected

information about itself.
monitorselfcpuusage numeric(38) numeric(38) The amount of CPU this daemon has

used.
monitorselfimagesize numeric(38) numeric(38) The amount of virtual memory this dae-

mon has used.
monitorselfresidentsetsizenumeric(38) numeric(38) The amount of physical memory this dae-

mon has used.
monitorselfage integer integer How long the daemon has been running.
updatesequencenumber integer integer The sequence number associated with the

update.
updatestotal integer integer The number of updates received from the

daemon.
updatessequenced integer integer The number of updates that were in order.
updateslost integer integer The number of updates that were lost.
updateshistory varchar(4000) varchar(4000) Bitmask of the last 32 updates.
endtime ts(3) w tz ts(3) w tz End of when the ClassAd is valid.

Attributes of daemons_vertical Table
Name O. Type P. Type Description
mytype varchar(100) varchar(100) The type of daemon ClassAd, e.g. “Master”
name varchar(500) varchar(500) The name identifier of the daemon ClassAd.
attr varchar(4000) varchar(4000) Attribute name.
val clob text Attribute value.
lastreportedtime ts(3) w tz ts(3) w tz Time when the daemon last reported to Quill.
PRIMARY KEY: (mytype, name, attr)
NOT NULL: mytype, name, and attr cannot be null

HTCondor Version 8.6.4 Manual

9.3.4. Quill and Its RDBMS Schema 689

Attributes of daemons_vertical_history Table
Name O. Type P. Type Description
mytype varchar(100) varchar(100) The type of daemon ClassAd, e.g. “Master”
name varchar(500) varchar(500) The name identifier of the daemon ClassAd.
lastreportedtime ts(3) w tz ts(3) w tz Time when the daemon last reported to Quill.
attr varchar(4000) varchar(4000) Attribute name.
val clob text Attribute value.
endtime ts(3) w tz ts(3) w tz End of when the ClassAd is valid.

Attributes of submitters_horizontal table
Name O. Type P. Type Description
name varchar(500) varchar(500) Name of the submitter ClassAd.
scheddname varchar(4000) varchar(4000) Name of the schedd where the submitter ad is from.
lastreportedtime ts(3) w tz ts(3) w tz Last time a submitter ClassAd was sent to Quill.
idlejobs integer integer Number of idle jobs of the submitter.
runningjobs integer integer Number of running jobs of the submitter.
heldjobs integer integer Number of held jobs of the submitter.
flockedjobs integer integer Number of flocked jobs of the submitter.

Attributes of submitters_horizontal_history table
Name O. Type P. Type Description
name varchar(500) varchar(500) Name of the submitter ClassAd.
scheddname varchar(4000) varchar(4000) Name of the schedd where the submitter ad is from.
lastreportedtime ts(3) w tz ts(3) w tz Last time a submitter ClassAd was sent to Quill.
idlejobs integer integer Number of idle jobs of the submitter.
runningjobs integer integer Number of running jobs of the submitter.
heldjobs integer integer Number of held jobs of the submitter.
flockedjobs integer integer Number of flocked jobs of the submitter.
endtime ts(3) w tz ts(3) w tz End of when the ClassAd is valid.

HTCondor Version 8.6.4 Manual

9.3.4. Quill and Its RDBMS Schema 690

Files Tables

Attributes of files Table
Name O. Type P. Type Description
file_id int int Unique numeric identifier of the file.
name varchar(4000) varchar(4000) File name.
host varchar(4000) varchar(4000) Name of machine where the file is located.
path varchar(4000) varchar(4000) Directory path to the file.
acl_id integer integer Not yet used, null.
lastmodified ts(3) w tz ts(3) w tz Timestamp of the file.
filesize numeric(38) numeric(38) Size of the file in bytes.
checksum varchar(32) varchar(32) MD5 checksum of the file.
PRIMARY KEY: file_id
NOT NULL: file_id cannot be null

Attributes of fileusages Table
Name O. Type P. Type Description
globaljobid varchar(4000) varchar(4000) Global identifier of the job that used the file.
file_id int int Numeric identifier of the file.
usagetype varchar(4000) varchar(4000) Type of use of the file by the job, e.g., input, output, com-

mand.
REFERENCE: file_id references files(file_id)

HTCondor Version 8.6.4 Manual

9.3.4. Quill and Its RDBMS Schema 691

Attributes of transfers Table
Name O. Type P. Type Description
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.
src_name varchar(4000) varchar(4000) Name of the file on the source machine.
src_host varchar(4000) varchar(4000) Name of the source machine.
src_port integer integer Source port number used for the transfer.
src_path varchar(4000) varchar(4000) Path to the file on the source machine.
src_daemon varchar(30) varchar(30) HTCondor daemon performing the transfer

on the source machine.
src_protocol varchar(30) varchar(30) The protocol used on the source machine.
src_credential_id integer integer Not yet used, null.
src_acl_id integer integer Not yet used, null.
dst_name varchar(4000) varchar(4000) Name of the file on the destination machine.
dst_host varchar(4000) varchar(4000) Name of the destination machine.
dst_port integer integer Destination port number used for the trans-

fer.
dst_path varchar(4000) varchar(4000) Path to the file on the destination machine.
dst_daemon varchar(30) varchar(30) HTCondor daemon receiving the transfer

on the destination machine.
dst_protocol varchar(30) varchar(30) The protocol used on the destination ma-

chine.
dst_credential_id integer integer Not yet used, null.
dst_acl_id integer integer Not yet used, null.
transfer_intermediary_id integer integer Not yet used, null; will use someday if a

proxy is used.
transfer_size_bytes numeric(38) numeric (38) Size of the data transfered in bytes.
elapsed numeric(38) numeric(38) Number of seconds that elapsed during the

transfer.
checksum varchar(256) varchar(256) Checksum of the file.
transfer_time ts(3) w tz ts(3) w tz Time when the transfer took place.
last_modified ts(3) w tz ts(3) w tz Last modified time for the file that was

transfered.
is_encrypted varchar(5) varchar(5) (boolean) True if the file is encrypted.
delegation_method_id integer integer Not yet used, null.
completion_code integer integer Indicates whether the transfer failed or suc-

ceeded.

HTCondor Version 8.6.4 Manual

9.3.4. Quill and Its RDBMS Schema 692

Interface Tables

Attributes of cdb_users Table
Name O. Type P. Type Description
userid varchar(30) varchar(30) Unique identifier of the user
password character(32) character(32) Encrypted password
admin varchar(5) varchar(5) (boolean) True if the user has administrator privileges

Attributes of l_eventtype Table
Name O. Type P. Type Description
eventtype integer integer Numeric type code of the event.
description varchar(4000) varchar(4000) Description of the type of event associated with the event-

type code.

Attributes of l_jobstatus Table
Name O. Type P. Type Description
jobstatus integer integer Numeric code for job status.
abbrev char(1) char(1) Single letter code for job status.
description varchar(4000) varchar(4000) Description of job status.
PRIMARY KEY: jobstatus
NOT NULL: jobstatus cannot be null

HTCondor Version 8.6.4 Manual

9.3.4. Quill and Its RDBMS Schema 693

Jobs Tables

Attributes of clusterads_horizontal Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd the job is submitted to.
cluster_id integer integer Cluster identifier for the job.
owner varchar(30) varchar(30) User who submitted the job.
jobstatus integer integer Current status of the job.
jobprio integer integer Priority for this job.
imagesize numeric(38) numeric(38) Estimate of memory image size of the job in

kilobytes.
qdate ts(3) w tz ts(3) w tz Time the job was submitted to the job queue.
remoteusercpu numeric(38) numeric(38) Total number of seconds of user CPU time the

job used on remote machines.
remotewallclocktime numeric(38) numeric(38) Committed cumulative number of seconds the

job has been allocated to a machine.
cmd clob text Path to and filename of the job to be executed.
args clob text Arguments passed to the job.
jobuniverse integer integer The HTCondor universe used by the job.
PRIMARY KEY: (scheddname, cluster_id)
NOT NULL: scheddname and cluster_id cannot be null

Attributes of clusterads_vertical Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that the job is submitted to.
cluster_id integer integer Cluster identifier for the job.
attr varchar(2000) varchar(2000) Attribute name.
val clob text Attribute value.
PRIMARY KEY: (scheddname, cluster_id, attr)

HTCondor Version 8.6.4 Manual

9.3.4. Quill and Its RDBMS Schema 694

Attributes of jobs_horizontal_history Table – Part 1 of 3
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
scheddbirthdate integer integer The birth date of the schedd where the job

is submitted.
cluster_id integer integer Cluster identifier for the job.
proc_id integer integer Process identifier for the job.
qdate ts(3) w tz ts(3) w tz Time the job was submitted to the job

queue.
owner varchar(30) varchar(30) User who submitted the job.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.
numckpts integer integer Number of checkpoints written by the job

during its lifetime.
numrestarts integer integer Number of restarts from a checkpoint at-

tempted by the job in its lifetime.
numsystemholds integer integer Number of times HTCondor-G placed the

job on hold.
condorversion varchar(4000) varchar(4000) Version of HTCondor that ran the job.
condorplatform varchar(4000) varchar(4000) Platform of the computer where the schedd

runs.
rootdir varchar(4000) varchar(4000) Root directory on the system where the job

is submitted from.
iwd varchar(4000) varchar(4000) Initial working directory of the job.
jobuniverse integer integer The HTCondor universe used by the job.
cmd clob text Path to and filename of the job to be exe-

cuted.
minhosts integer integer Minimum number of hosts that must be in

the claimed state for this job, before the job
may enter the running state.

maxhosts integer integer Maximum number of hosts this job would
like to claim.

jobprio integer integer Priority for this job.
negotiation_user_namevarchar(4000) varchar(4000) User name in which the job is negotiated.
env clob text Environment under which the job ran.
userlog varchar(4000) varchar(4000) User log where the job events are written to.
coresize numeric(38) numeric(38) Maximum allowed size of the core file.

Table Continues on Next Page

HTCondor Version 8.6.4 Manual

9.3.4. Quill and Its RDBMS Schema 695

Attributes of jobs_horizontal_history Table – Part 2 of 3
Name O. Type P. Type Description
killsig varchar(4000) varchar(4000) Signal to be sent if the job is put on hold.
stdin varchar(4000) varchar(4000) The file used as stdin.
transferin varchar(5) varchar(5) (boolean) For globus universe jobs. True if

input should be transferred to the remote ma-
chine.

stdout varchar(4000) varchar(4000) The file used as stdout.
transferout varchar(5) varchar(5) (boolean) For globus universe jobs. True if out-

put should be transferred back to the submit
machine.

stderr varchar(4000) varchar(4000) The file used as stderr.
transfererr varchar(5) varchar(5) (boolean) For globus universe jobs. True if

error output should be transferred back to the
submit machine.

shouldtransferfiles varchar (4000) varchar(4000) Whether HTCondor should transfer files to and
from the machine where the job runs.

transferfiles varchar(4000) varchar(4000) Depreciated. Similar to shouldtransferfiles.
executablesize numeric(38) numeric(38) Size of the executable in kilobytes.
diskusage integer integer Size of the executable and input files to be

transferred.
filesystemdomain varchar(4000) varchar(4000) Name of the networked file system used by the

job.
args clob text Arguments passed to the job.
lastmatchtime ts(3) w tz ts(3) w tz Time when the job was last successfully

matched with a resource.
numjobmatches integer integer Number of times the negotiator matches the job

with a resource.
jobstartdate ts(3) w tz ts(3) w tz Time when the job first began running.
jobcurrentstartdate ts(3) w tz ts(3) w tz Time when the job’s current run started.
jobruncount integer integer Number of times a shadow has been started for

the job.
filereadcount numeric(38) numeric(38) Number of read(2) calls the job made (only

standard universe).
filereadbytes numeric(38) numeric(38) Number of bytes read by the job (only standard

universe).
filewritecount numeric(38) numeric(38) Number of write calls the job made (only stan-

dard universe).
filewritebytes numeric(38) numeric(38) Number of bytes written by the job (only stan-

dard universe).
Table Continues on Next Page

HTCondor Version 8.6.4 Manual

9.3.4. Quill and Its RDBMS Schema 696

Attributes of jobs_horizontal_history Table – Part 3 of 3
Name O. Type P. Type Description
fileseekcount numeric(38) numeric(38) Number of seek calls that this job made (only

standard universe).
totalsuspensions integer integer Number of times the job has been suspended

during its lifetime
imagesize numeric(38) numeric(38) Estimate of memory image size of the job in

kilobytes.
exitstatus integer integer No longer used by HTCondor.
localusercpu numeric(38) numeric(38) Number of seconds of user CPU time the job

used on the submit machine.
localsyscpu numeric(38) numeric(38) Number of seconds of system CPU time the job

used on the submit machine.
remoteusercpu numeric(38) numeric(38) Number of seconds of user CPU time the job

used on remote machines.
remotesyscpu numeric(38) numeric(38) Number of seconds of system CPU time the job

used on remote machines.
bytessent numeric(38) numeric(38) Number of bytes sent to the job.
bytesrecvd numeric(38) numeric(38) Number of bytes received by the job.
rscbytessent numeric(38) numeric(38) Number of remote system call bytes sent to the

job.
rscbytesrecvd numeric(38) numeric(38) Number of remote system call bytes received

by the job.
exitcode integer integer Exit return code of the user job. Used when a

job exits by means other than a signal.
jobstatus integer integer Current status of the job.
enteredcurrentstatus ts(3) w tz ts(3) w tz Time the job entered into its current status.
remotewallclocktime numeric(38) numeric(38) Cumulative number of seconds the job has been

allocated to a machine.
lastremotehost varchar(4000) varchar(4000) The remote host for the last run of the job.
completiondate ts(3) w tz ts(3) w tz Time when the job completed; 0 if job has not

yet completed.
enteredhistorytable ts(3) w tz ts(3) w tz Time when the job entered the history table.
PRIMARY KEY: (scheddname, scheddbirthdate, cluster_id, proc_id)
NOT NULL: scheddname, scheddbirthdate, cluster_id, and proc_id cannot be null
INDEX: Index named hist_h_i_owner on owner

HTCondor Version 8.6.4 Manual

9.3.4. Quill and Its RDBMS Schema 697

Attributes of jobs_vertical_history Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
scheddbirthdate integer integer The birth date of the schedd where the job is submit-

ted.
cluster_id integer integer Cluster identifier for the job.
proc_id integer integer Process identifier for the job.
attr varchar(2000) varchar(2000) Attribute name.
val clob text Attribute value.
PRIMARY KEY: (scheddname, scheddbirthdate, cluster_id, proc_id, attr)
NOT NULL: scheddname, scheddbirthdate, cluster_id, proc_id, and attr cannot be null

Attributes of procads_horizontal Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
cluster_id integer integer Cluster identifier for the job.
proc_id integer integer Process identifier for the job.
jobstatus integer integer Current status of the job.
imagesize numeric(38) numeric(38) Estimate of memory image size of the job in

kilobytes.
remoteusercpu numeric(38) numeric(38) Total number of seconds of user CPU time the

job used on remote machines.
remotewallclocktime numeric(38) numeric(38) Cumulative number of seconds the job has been

allocated to a machine.
remotehost varchar(4000) varchar(4000) Name of the machine running the job.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.
jobprio integer integer Priority of the job.
args clob text Arguments passed to the job.
shadowbday ts(3) w tz ts(3) w tz The time when the shadow was started.
enteredcurrentstatus ts(3) w tz ts(3) w tz Time the job entered its current status.
numrestarts integer integer Number of times the job has restarted.
PRIMARY KEY: (scheddname, cluster_id, proc_id)
NOT NULL: scheddname, cluster_id, and proc_id cannot be null

Attributes of procads_vertical Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
cluster_id integer integer Cluster identifier for the job.
proc_id integer integer Process identifier for the job.
attr varchar(2000) varchar(2000) Attribute name.
val clob text Attribute value.

HTCondor Version 8.6.4 Manual

9.3.4. Quill and Its RDBMS Schema 698

Machines Tables

Attributes of machines_horizontal Table – Part 1 of 2
Name O. Type P. Type Description
machine_id varchar(4000) varchar(4000) Unique identifier of the machine.
opsys varchar(4000) varchar(4000) Operating system running on the machine.
arch varchar(4000) varchar(4000) Architecture of the machine.
state varchar(4000) varchar(4000) HTCondor state of the machine.
activity varchar(4000) varchar(4000) HTCondor job activity on the machine.
keyboardidle integer integer Number of seconds since activity has been

detected on any keyboard or mouse associ-
ated with the machine.

consoleidle integer integer Number of seconds since activity has been
detected on the console keyboard or mouse.

loadavg real real Current load average of the machine.
condorloadavg real real Portion of load average generated by HT-

Condor
totalloadavg real real
virtualmemory integer integer Amount of currently available virtual mem-

ory in kilobytes.
memory integer integer Amount of RAM in megabytes.
totalvirtualmemory integer integer
cpubusytime integer integer Time in seconds since cpuisbusy became

true.
cpuisbusy varchar(5) varchar(5) (boolean) True when the CPU is busy.
currentrank real real The machine owner’s affinity for running

the HTCondor job which it is currently
hosting.

clockmin integer integer Number of minutes passed since midnight.
clockday integer integer The day of the week.
lastreportedtime ts(3) w tz ts(3) w tz Time when the HTCondor central manager

last received a status update from this ma-
chine.

enteredcurrentactivity ts(3) w tz ts(3) w tz Time when the machine entered the current
activity.

enteredcurrentstate ts(3) w tz ts(3) w tz Time when the machine entered the current
state.

updatesequencenumberinteger integer Each update includes a sequence number.
Table Continues on Next Page

HTCondor Version 8.6.4 Manual

9.3.4. Quill and Its RDBMS Schema 699

Attributes of machines_horizontal Table – Part 2 of 2
updatestotal integer integer The number of updates received from the

daemon.
updatessequenced integer integer The number of updates that were in order.
updateslost integer integer The number of updates that were lost.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.
lastreportedtime_epochinteger integer The equivalent epoch time of lastreported-

time.
PRIMARY KEY: machine_id

HTCondor Version 8.6.4 Manual

9.3.4. Quill and Its RDBMS Schema 700

Attributes of machines_horizontal_history Table – Part 1 of 2
Name O. Type P. Type Description
machine_id varchar(4000) varchar(4000) Unique identifier of the machine.
opsys varchar(4000) varchar(4000) Operating system running on the machine.
arch varchar(4000) varchar(4000) Architecture of the machine.
state varchar(4000) varchar(4000) HTCondor state of the machine.
activity varchar(4000) varchar(4000) HTCondor job activity on the machine.
keyboardidle integer integer Number of seconds since activity has been

detected on any keyboard or mouse associ-
ated with the machine.

consoleidle integer integer Number of seconds since activity has been
detected on the console keyboard or mouse.

loadavg real real Current load average of the machine.
condorloadavg real real Portion of load average generated by HT-

Condor
totalloadavg real real
virtualmemory integer integer Amount of currently available virtual mem-

ory in kilobytes.
memory integer integer Amount of RAM in megabytes.
totalvirtualmemory integer integer
cpubusytime integer integer Time in seconds since cpuisbusy became

true.
cpuisbusy varchar(5) varchar(5) (boolean) True when the CPU is busy.
currentrank real real The machine owner’s affinity for running

the HTCondor job which it is currently
hosting.

clockmin integer integer Number of minutes passed since midnight.
clockday integer integer The day of the week.
lastreportedtime ts(3) w tz ts(3) w tz Time when the HTCondor central manager

last received a status update from this ma-
chine.

enteredcurrentactivity ts(3) w tz ts(3) w tz Time when the machine entered the current
activity.

enteredcurrentstate ts(3) w tz ts(3) w tz Time when the machine entered the current
state.

updatesequencenumberinteger integer Each update includes a sequence number.
Table Continues on Next Page

HTCondor Version 8.6.4 Manual

9.3.4. Quill and Its RDBMS Schema 701

Attributes of machines_horizontal_history Table – Part 2 of 2
Name O. Type P. Type Description
updatestotal integer integer The number of updates received from the dae-

mon.
updatessequencedinteger integer The number of updates that were in order.
updateslost integer integer The number of updates that were lost.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.
end_time ts(3) w tz ts(3) w tz The end of when the ClassAd is valid.

Attributes of machines_vertical Table
Name O. Type P. Type Description
machine_id varchar(4000) varchar(4000) Unique identifier of the machine.
attr varchar(2000) varchar(2000) Attribute name.
val clob text Attribute value.
start_time ts(3) w tz ts(3) w tz Time when this attribute–value pair became valid.
PRIMARY KEY: (machine_id, attr)
NOT NULL: machine_id and attr cannot be null

Attributes of machines_vertical_history Table
Name O. Type P. Type Description
machine_id varchar(4000) varchar(4000) Unique identifier of the machine.
attr varchar(4000) varchar(4000) Attribute name.
val clob text Attribute value.
start_time ts(3) w tz ts(3) w tz Time when this attribute–value pair became valid.
end_time ts(3) w tz ts(3) w tz Time when this attribute–value pair became invalid.

HTCondor Version 8.6.4 Manual

9.3.4. Quill and Its RDBMS Schema 702

Matchmaking Tables

Attributes of matches Table
Name O. Type P. Type Description
match_time ts(3) w tz ts(3) w tz Time the match was made.
username varchar(4000) varchar(4000) User who submitted the job.
scheddname varchar(4000) varchar(4000) Name of the schedd that the job is submitted to.
cluster_id integer integer Cluster identifier for the job.
proc_id integer integer Process identifier for the job.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.
machine_id varchar(4000) varchar(4000) Identifier of the machine the job matched with.
remote_user varchar(4000) varchar(4000) User that was preempted.
remote_priority real real The preempted user’s priority.

Attributes of rejects Table
Name O. Type P. Type Description
reject_time ts(3) w tz ts(3) w tz Time when the job was rejected.
username varchar(4000) varchar(4000) User who submitted the job.
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
cluster_id integer integer Cluster identifier for the job.
proc_id integer integer Process identifier for the job.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.

Runtime Tables

Attributes of events Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
cluster_id integer integer Cluster identifier for the job.
proc_id integer integer Process identifier for the job.
globaljobid varchar(4000) varchar(4000) Global identifier of the job that generated the event.
run_id numeric(12,0) numeric(12,0) Identifier of the run that the event is associated with.
eventtype integer integer Numeric type code of the event.
eventtime ts(3) w tz ts(3) w tz Time the event occurred.
description varchar(4000) varchar(4000) Description of the event.

HTCondor Version 8.6.4 Manual

9.3.4. Quill and Its RDBMS Schema 703

Attributes of generic_messages Table
Name O. Type P. Type Description
eventtype varchar(4000) varchar(4000) The type of event.
eventkey varchar(4000) varchar(4000) The key of the event.
eventtime ts(3) w tz ts(3) w tz The time of the event.
eventloc varchar(4000) varchar(4000) The location of the event.
attname varchar(4000) varchar(4000) The attribute name.
attval clob text The attribute value.
attrtype varchar(4000) varchar(4000) The attribute type.

Attributes of runs Table
Name O. Type P. Type Description
run_id numeric(12) numeric(12) Unique identifier of the run.
machine_id varchar(4000) varchar(4000) Identifier of the machine where the job ran.
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
cluster_id integer integer Cluster identifier for the job.
proc_id integer integer Process identifier for the job.
spid integer integer Subprocess identifier for the job.
globaljobid varchar(4000) varchar(4000) Identifier of the job that was run.
startts ts(3) w tz ts(3) w tz Time when the job started.
endts ts(3) w tz ts(3) w tz Time when the job ended.
endtype smallint smallint The type of ending event.
endmessage varchar(4000) varchar(4000) The ending message.
wascheckpointed varchar(7) varchar(7) Whether the run was checkpointed.
imagesize numeric(38) numeric(38) The image size of the executable.
runlocalusageuser integer integer The time the job spent in usermode on exe-

cute machines (only standard universe).
runlocalusagesystem integer integer The time the job was in system calls.
runremoteusageuser integer integer The time the shadow spent working for the

job.
runremoteusagesysteminteger integer The time the shadow spent in system calls for

the job.
runbytessent numeric(38) numeric(38) Number of bytes sent to the run.
runbytesreceived numeric(38) numeric(38) Number of bytes received from the run.
PRIMARY KEY: run_id
NOT NULL: run_id cannot be null

HTCondor Version 8.6.4 Manual

9.4. The HTCondorView Client Contrib Module 704

System Tables

Attributes of dummy_single_row_table Table
Name O. Type P. Type Description
a varchar(1) varchar(1) A dummy column.

Attributes of history_jobs_to_purge Table
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
cluster_id integer integer Cluster identifier for the job.
proc_id integer integer Process identifier for the job.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.

Attributes of jobqueuepollinginfo Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
last_file_mtime integer integer The last modification time of the file.
last_file_size numeric(38) numeric(38) The last size of the file in bytes.
last_next_cmd_offset integer integer The last offset for the next command.
last_cmd_offset integer integer The last offset of the current command.
last_cmd_type smallint smallint The last type of command.
last_cmd_key varchar(4000) varchar(4000) The last key of the command.
last_cmd_mytype varchar(4000) varchar(4000) The last my ClassAd type of the command.
last_cmd_targettype varchar(4000) varchar(4000) The last target ClassAd type.
last_cmd_name varchar(4000) varchar(4000) The attribute name of the command.
last_cmd_value varchar(4000) varchar(4000) The attribute value of the command.

9.4 The HTCondorView Client Contrib Module

The HTCondorView Client contrib module is used to automatically generate World Wide Web pages to display usage
statistics of an HTCondor pool. Included in the module is a shell script which invokes thecondor_statscommand
to retrieve pool usage statistics from the HTCondorView server, and generate HTML pages from the results. Also
included is a Java applet, which graphically visualizes HTCondor usage information. Users can interact with the
applet to customize the visualization and to zoom in to a specific time frame. Figure 9.1 on page 705 is a screen shot
of a web page created by HTCondorView.

After unpacking and installing the HTCondorView Client, a script namedmake_statscan be invoked to create
HTML pages displaying HTCondor usage for the past hour, day,week, or month. By using the Unixcron facility to
periodically executemake_stats, HTCondor pool usage statistics can be kept up to date automatically. This simple
model allows the HTCondorView Client to be easily installed; no Web server CGI interface is needed.

HTCondor Version 8.6.4 Manual

9.4.1. Step-by-Step Installation of the HTCondorView Client 705

Figure 9.1: Screen shot of HTCondorView Client

9.4.1 Step-by-Step Installation of the HTCondorView Client

1. Make certain that the HTCondorView Server is configured. Section 3.14.6 describes configuration of the server.
The server logs information on disk in order to provide a persistent, historical database of pool statistics. The
HTCondorView Client makes queries over the network to this database. Thecondor_collectorincludes this
database support. To activate the persistent database logging, add the following entries to the configuration file
for thecondor_collectorchosen to act as the ViewServer.

POOL_HISTORY_DIR = /full/path/to/directory/to/store/h istorical/data
KEEP_POOL_HISTORY = True

2. Create a directory where HTCondorView is to place the HTMLfiles. This directory should be one published

HTCondor Version 8.6.4 Manual

9.4.1. Step-by-Step Installation of the HTCondorView Client 706

by a web server, so that HTML files which exist in this directory can be accessed using a web browser. This
directory is referred to as theVIEWDIR directory.

3. Download the view_client contrib module. Follow links for contrib modules from the wiki at
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki.

4. Unpack or untar this contrib module into the directoryVIEWDIR. This creates several files and subdirectories.
Further unpack the jar file within theVIEWDIR directory with:

jar -xf condorview.jar

5. Edit themake_statsscript. At the beginning of the file are six parameters to customize. The parameters are

ORGNAME A brief name that identifies an organization. An example is “Univ of Wisconsin”. Do not use any
slashes in the name or other special regular-expression characters. Avoid the characters\ˆ and $.

CONDORADMIN The e-mail address of the HTCondor administrator at your site. This e-mail address will appear
at the bottom of the web pages.

VIEWDIR The full path name (nota relative path) to theVIEWDIR directory set by installation step 2. It is the
directory that contains themake_statsscript.

STATSDIR The full path name of the directory which contains thecondor_statsbinary. Thecondor_stats
program is included in the<release_dir>/bin directory. The value forSTATSDIR is added to the
PATHparameter by default.

PATH A list of subdirectories, separated by colons, where themake_statsscript can find theawk, bc, sed, date,
andcondor_statsprograms. Ifperl is installed, the path should also include the directory where perl is
installed. The following default works on most systems:

PATH=/bin:/usr/bin:$STATSDIR:/usr/local/bin

6. To create all of the initial HTML files, run

./make_stats setup

Open the fileindex.html to verify that things look good.

7. Add themake_statsprogram tocron. Runningmake_statsin step 6 created acronentries file. This
cronentries file is ready to be processed by the Unixcrontabcommand. Thecrontabmanual page con-
tains details about thecrontabcommand and thecron daemon. Look at thecronentries file; by default, it
will run make_stats hourevery 15 minutes,make_stats dayonce an hour,make_stats weektwice per day, and
make_stats monthonce per day. These are reasonable defaults. Add these commands to cron on any system that
can access theVIEWDIR andSTATSDIRdirectories, even on a system that does not have HTCondor installed.
The commands do not need to run as root user; in fact, they should probably not run as root. These commands
can run as any user that has read/write access to theVIEWDIR directory. The command

crontab cronentries

can set the crontab file; note that this command overwrites the current, existing crontab file with the entries from
the filecronentries .

8. Point the web browser at theVIEWDIR directory to complete the installation.

HTCondor Version 8.6.4 Manual

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki

9.5. Job Monitor/Log Viewer 707

9.5 Job Monitor/Log Viewer

The HTCondor Job Monitor is a Java application designed to allow users to view user log files. It is identified as the
Contrib Module called HTCondor Log Viewer.

To view a user log file, select it using the open file command in the File menu. After the file is parsed, it will be
visually represented. Each horizontal line represents an individual job. The x-axis is time. Whether a job is running
at a particular time is represented by its color at that time –white for running, black for idle. For example, a job
which appears predominantly white has made efficient progress, whereas a job which appears predominantly black
has received an inordinately small proportion of computational time.

9.5.1 Transition States

A transition state is the state of a job at any time. It is called a transition, because it is defined by the two events which
bookmark it. There are two basic transition states: runningand idle. An idle job typically is a job which has just
been submitted into the HTCondor pool and is waiting to be matched with an appropriate machine or a job which has
vacated from a machine and has been returned to the pool. A running job, by contrast, is a job which is making active
progress.

Advanced users may want a visual distinction between two types of running transitions:goodputor badput.
Goodput is the transition state preceding an eventual job completion or checkpoint. Badput is the transition state
preceding a non-checkpointed eviction event. Note that badput is potentially a misleading nomenclature; a job which
does not produce a checkpoint by the HTCondor program may produce the checkpoint itself or make progress in some
other way. To view these two transition as distinct transitions, select the appropriate option from the "View" menu.

9.5.2 Events

There are two basic kinds of events: checkpoint events and error events. Plus, advanced users can ask to see more
events.

9.5.3 Selecting Jobs

To view any arbitrary selection of jobs in a job file, use the job selector tool. Jobs appear visually by order of
appearance within the actual text log file. For example, the log file might contain jobs 775.1, 775.2, 775.3, 775.4, and
775.5, which appear in that order. A user who wishes to see only jobs 775.2 and 775.5 can select only these two jobs
in the job selector tool and click the "Ok" or "Apply" button.The job selector supports double clicking; double click
on any single job to see it drawn in isolation.

HTCondor Version 8.6.4 Manual

9.5.4. Zooming 708

9.5.4 Zooming

To view a small area of the log file, zoom in on the area which youwould like to see in greater detail. You can zoom
in, out and do a full zoom. A full zoom redraws the log file in itsentirety. For example, if you have zoomed in very
close and would like to go all the way back out, you could do so with a succession of zoom outs or with one full zoom.

There is a difference between using the menu driven zooming and the mouse driven zooming. The menu driven
zooming will recenter itself around the current center, whereas mouse driven zooming will recenter itself (as much as
possible) around the mouse click. To help you re-find the clicked area, a box will flash after the zoom. This is called
the "zoom finder" and it can be turned off in the zoom menu if youprefer.

9.5.5 Keyboard and Mouse Shortcuts

1. The Keyboard shortcuts:

• Arrows - an approximate ten percent scroll bar movement

• PageUp and PageDown - an approximate one hundred percent scroll bar movement

• Control + Left or Right - approximate one hundred percent scroll bar movement

• End and Home - scroll bar movement to the vertical extreme

• Others - as seen beside menu items

2. The mouse shortcuts:

• Control + Left click - zoom in

• Control + Right click - zoom out

• Shift + left click - re-center

HTCondor Version 8.6.4 Manual

CHAPTER

TEN

Version History and Release Notes

10.1 Introduction to HTCondor Versions

This chapter provides descriptions of what features have been added or bugs fixed for each version of HTCondor.
The first section describes the HTCondor version numbering scheme, what the numbers mean, and what the different
release seriesare. The rest of the sections each describe a specific releaseseries, and all the HTCondor versions found
in that series.

10.1.1 HTCondor Version Number Scheme

Starting with version 6.0.1, HTCondor adopted a new, hopefully easy to understand version numbering scheme. It
reflects the fact that HTCondor is both a production system and a research project. The numbering scheme was
primarily taken from the Linux kernel’s version numbering,so if you are familiar with that, it should seem quite
natural.

There will usually be two HTCondor versions available at anygiven time, thestableversion, and thedevelopment
version. Gone are the days of “patch level 3”, “beta2”, or anyother random words in the version string. All versions
of HTCondor now have exactly three numbers, separated by “.”

• The first number represents the major version number, and will change very infrequently.

• The thing that determines whether a version of HTCondor isstableor developmentis the second digit. Even
numbers represent stable versions, while odd numbers represent development versions.

• The final digit represents the minor version number, which defines a particular version in a given release series.

709

10.1.2. The Stable Release Series 710

10.1.2 The Stable Release Series

People expecting the stable, production HTCondor system should download the stable version, denoted with an even
number in the second digit of the version string. Most peopleare encouraged to use this version. We will only offer
our paid support for versions of HTCondor from the stable release series.

On the stable series, new minor version releases will only bemade for bug fixes and to support new platforms.No
new features will be added to the stable series. People are encouraged to install new stable versions of HTCondor when
they appear, since they probably fix bugs you care about. Hopefully, there will not be many minor version releases for
any given stable series.

10.1.3 The Development Release Series

Only people who are interested in the latest research, new features that haven’t been fully tested, etc, should download
the development version, denoted with an odd number in the second digit of the version string. We will make a best
effort to ensure that the development series will work, but we make no guarantees.

On the development series, new minor version releases will probably happen frequently. People should not feel
compelled to install new minor versions unless they know they want features or bug fixes from the newer development
version.

Most sites will probably never want to install a developmentversion of HTCondor for any reason.Only if you
know what you are doing (and like pain), or were explicitly instructed to do so by someone on the HTCondor Team,
should you install a development version at your site.

After the feature set of the development series is satisfactory to the HTCondor Team, we will put a code freeze
in place, and from that point forward, only bug fixes will be made to that development series. When we have fully
tested this version, we will release a new stable series, resetting the minor version number, and start work on a new
development release from there.

10.2 Upgrading from the 8.4 series to the 8.6 series of HTCondor

Upgrading from the 8.4 series of HTCondor to the 8.6 series will bring new features introduced in the 8.5 series of
HTCondor. These new features include the following (note that this list contains only the most significant changes; a
full list of changes can be found in the version history: 10.4):

• condor_q-related changes:

– condor_qnow defaults to showing only the current user’s jobs. (Ticket #5271). Similarly,condor_qedit
defaults to editing only jobs owned by the current user. (Ticket #5889). (The previous behavior of both
commands can be restored by settingCONDOR_Q_ONLY_MY_JOBSto False – see 3.5.10.)

– condor_q now defaults to batch mode, which produces a single line of output summarizing a
batch of jobs (see 844). (Ticket #5708). (The previous behavior can be restored by setting
CONDOR_Q_DASH_BATCH_IS_DEFAULTto False – see 3.5.10.)

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5271
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5889
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5708

10.2. Upgrading from the 8.4 series to the 8.6 series of HTCondor 711

– condor_q(andcondor_historyandcondor_status) can now read and write JSON, XML, and new ClassAd
formats (see 844, 810, and 901). (Ticket #5688). (Ticket #5844). (Ticket #5820).

• Job submission-related changes:

– Added the ability for thecondor_scheddto transform job ClassAds upon job submission (see sec-
tion 3.7.2).

– Added the ability to group jobs into batches, and assign names to the batches, using the new-batch
arguments tocondor_submitandcondor_submit_dag.

– Added support in the submit language for retrying jobs if they fail (see 926).

• condor_dagman-related changes:

– Added the ability to define SCRIPTS, VARS, etc., for all nodesin a DAG with a single command (see
section 2.10.9). (Ticket #5729).

– Simplified how DAG node priorities work (see section 2.10.9). This means that existing DAGs that use the
node priority feature will run differently than they have inthe past. (Ticket #4024). (Ticket #5749).

– Added the new splice connection feature (see section 2.10.9), which allows more flexible dependencies
between splices. (Ticket #5213).

• HTCondor can now use IPv6 interfaces; it prefers IPv4 if both IPv4 and IPv6 are available. (Ticket #5104).

• HTCondor now has initial support for Singularity containers (see section 3.17). (Ticket #5828).

• condor_statuscan now display a single line of output for each machine (rather than a line per slot).
(Ticket #5596).

• A number of improvements to the Python bindings including:submission (Ticket #5666). (Ticket #4916).;
draining (Ticket #5507).; per-thread security contexts (Ticket #5632).; Computing-On-Demand support
(Ticket #5130).; and multiple query support (Ticket #5187).

• Jobs can now be submitted to the Slurm batch scheduling system via the newslurm type in the grid universe.
(Ticket #5515).

• Numerous improvements to Docker support, including (Ticket #5680).; (Ticket #5760).; (Ticket #5761).;
(Ticket #5750).; (Ticket #5740).; (Ticket #5609).; (Ticket #5456).

Upgrading from the 8.4 series of HTCondor to the 8.6 series will also introduce changes that administrators and
users of sites running from an older HTCondor version shouldbe aware of when planning an upgrade. Here is a list
of items that administrators should be aware of.

• Shared port (see section 3.9.2) is now enabled by default; set USE_SHARED_PORTto False to disable it.
Note that this configuration macro does not control the HAD orreplication daemon’s use of shared port; use
HAD_USE_SHARED_PORTor REPLICATION_USE_SHARED_PORTinstead. See section 3.13.2 for more
details on how to configure HAD (and/or the replication daemon) to work with shared port, since just activating
shared port without any other configuration change will not work. (Ticket #3813). (Ticket #5103).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5688
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5844
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5820
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5729
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=4024
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5749
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5213
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5104
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5828
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5596
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5666
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=4916
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5507
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5632
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5130
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5187
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5515
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5680
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5760
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5761
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5750
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5740
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5609
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5456
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=3813
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5103

10.3. Stable Release Series 8.6 712

• To mitigate performance problems,LOWPORTand HIGHPORTno longer restrict outbound port ranges on
Windows. To re-enable this functionality, setOUT_LOWPORTandOUT_HIGHPORT(see 3.5.5 and 3.5.5).
(Ticket #4711).

• Cgroups (see section 3.14.12) are now enabled by default. This means that if you have partitionable slots, jobs
need to getrequest_memorycorrect. (Ticket #5936).

• By default,condor_qqueries only the current user’s jobs, unless the current user is a queue superuser or the
CONDOR_Q_ONLY_MY_JOBSconfiguration macro is set toFalse . (Ticket #5271).

• Added support for immutable and protected job attributes,which makes SUBMIT_REQUIREMENTS more
useful (see section 3.5.10). (Ticket #5065).

• By default, thecondor_scheddno longer changes the ownership of spooled job files (they remain owned by the
submitting user). (Ticket #5226).

• WhenSEC_ENABLE_MATCH_PASSWORD_AUTHENTICATIONis set toTrue , the related authorizations are
now automatically enabled. (Ticket #5304). (See 3.5.25 fordetails.)

• The master can now run an administrator-defined script at shutdown; see section 3.5.8 for details.
(Ticket #5590).

10.3 Stable Release Series 8.6

This is a stable release series of HTCondor. As usual, only bug fixes (and potentially, ports to new platforms) will be
provided in future 8.6.x releases. New features will be added in the 8.7.x development series.

The details of each version are described below.

Version 8.6.4

Release Notes:

• HTCondor version 8.6.4 released on June 22, 2017.

New Features:

• Python bindings are now available on MacOSX. (Ticket #6244).

• Allow Python modules to be used ascondor_collectorplugin. This undocumented feature is to be used by
expert developers only. (Ticket #6213). (Ticket #6295).

Bugs Fixed:

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=4711
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5936
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5271
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5065
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5226
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5304
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5590
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6244
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6213
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6295

10.3. Stable Release Series 8.6 713

• Fixed a bug with PASSWORD authentication that would sporadically cause it to fail to exchange keys, due to
whether or not the first round-trip of communications blocked on reading from the network. (Ticket #6265).

• Pslot preemption now properly handles machine custom resources, such as GPUs. (Ticket #6297).

• Fixed a bug that prevented HTCondor from correctly settingvirtual memory cgroup limits when soft physical
memory limits were being used. (Ticket #6294).

• Fixed a bug that prevented parallel universe jobs from running that used $$() expansion in submit files.
(Ticket #6299).

• Added a new knob,STARTD_RECOMPUTE_DISK_FREE, which defaults to true, which tells the startd to
periodically recompute and advertise free disk space. Admins can set this to false for partitionable slots whose
execute directory is used by HTCondor alone. (Ticket #6301).

• Fixed a bug that could causecondor_submitto fail to submit a job with a proxy file to acondor_scheddolder
than 8.5.8, due to the absence of an X.509 CA certificates directory. (Ticket #6258).

• Restored a check incondor_submitabout whether the job’s X.509 proxy has sufficient lifetime remaining.
(Ticket #6283).

• Fixed a bug incondor_dagmanwhere the DAG status file showed an incorrect status code if submit attempts
failed for the final node. (Ticket #6069).

• Bosco now properly identifies CentOS 7 as a supported platform. (Ticket #6303).

• Fixed a bug when Bosco is used to submit jobs to multiple remote clusters. When arguments toremote_gahp
are provided in the GridResource attribute, jobs could be submitted to the wrong cluster. (Ticket #6277).

• To speed up the installation process on Enterprise Linux 7,the SELinux profile is now reloaded only once, when
setting the HTCondor daemons to run in permissive mode. (Ticket #6304).

• Update the systemd configuration on Enterprise Linux 7 to start thecondor_masterafter time synchronization
is achieved. This prevents unnecessary daemon restarts dueto sudden time shifts. (Ticket #6255).

• The condor_shadowwill now ignore updates ofJobStartDate from the condor_startersince thecon-
dor_scheddalready sets this attribute correctly and thecondor_starterincorrectly tries to set it even if the
job has already run once. A consequence of this fix is that the value ofJobStartDate that thecondor_startd
uses for policy expressions will be different than the valuethat thecondor_schedduses. Resolving this problem
will potentially break existing policy expressions in thecondor_startd, so it will be be not be changed in the 8.6
series, but fixed in the 8.7 series. (Ticket #6280).

• Fixed a bug where per-instance job attributes likeRemoteHost would show up in the history file for completed
jobs. This bug occurred if a job happened to complete while thecondor_scheddwas in the process of a graceful
shutdown. (Ticket #6251).

• Thecondor_convert_historycommand is present again in this release. (Ticket #6282).

• The parameterSETTABLE_ATTRS_ADMINISTRATORis now correctly appears incondor_config_val.
(Ticket #6286).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6265
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6297
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6294
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6299
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6301
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6258
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6283
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6069
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6303
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6277
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6304
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6255
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6280
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6251
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6282
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6286

10.3. Stable Release Series 8.6 714

Version 8.6.3

Release Notes:

• HTCondor version 8.6.3 released on May 9, 2017.

Bugs Fixed:

• Fixed a bug that rarely corrupts thecondor_schedd’s job queue log file when the input sandbox of a job with an
X.509 proxy file is spooled. (Ticket #6240).

• Fixed a memory leak in the Python bindings related to logging. (Ticket #6227).

Version 8.6.2

Release Notes:

• HTCondor version 8.6.2 released on April 24, 2017.

New Features:

• Added metaknobs for defining map files for use with the ClassAd usermap function in thecondor_schedd, and
a metaknob for automatically assigning an accounting groupto a job based on a mapping of the owner name of
the job. (Ticket #6179).

• When the condor_credd is polling for credentials, the timeout is now configurable using
CREDD_POLLING_TIMEOUT.

• Thereverseoption forcondor_qwas changed toreverse-analyze, and it now impliesbetter-analyze. Formerly,
thereverseoption was ignored unless-better-analyzewas also specified. (Ticket #6167).

Bugs Fixed:

• Fixed a bug that could causecondor_store_credto fail on Windows due to a case-sensitive check of the user’s
account name. (Ticket #6200).

• Updated Open MPI helper script to catch and handle SIGTERM and to use bash explicitly. (Ticket #6194).

• Docker Universe jobs now update the RemoteSysCpu attributes for job and in the job log. Previously, this field
was always 0. (Ticket #6173).

• Docker universe detection is now more robust in the face of extraneous output to standard error on docker
startup. This was preventing Condor from detecting that docker was properly working on hosts. (Ticket #6185).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6240
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6227
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6179
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6167
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6200
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6194
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6173
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6185

10.3. Stable Release Series 8.6 715

• Fixed a bug that preventedSUBMIT_REQUIREMENTandJOB_TRANSFORMexpressions from referencing job
attributes describing the job’s X.509 proxy credential. (Ticket #6188).

• The Linux kernel tuning script no longer adjusts some kernel parameters unless acondor_scheddwill be started
by the master. (Ticket #6208).

• Fixed a bug that caused all but the first in a list of metaknobsto be ignored unless there were commas separating
the list items. Souse ROLE : Execute CentralManager would incorrectly add only the Execute role.
Previously,use ROLE : Execute, CentralManager would correctly add both roles. (Ticket #6171).

• Worked around a problem with FORTRAN programs built withcondor_compileand recent versions of gfor-
tran (4.7.2 was OK, 4.8.5 was not), where those executables would not write to standard out if started in the
standard universe. Also, updated the checkpointing library to permit condor_compileto successfully link
FORTRAN (and other) programs calling certain math functions and built against up-to-date versions of glibc.
(Ticket #6026).

• The default values forHAD_SOCKET_NAMEandREPLICATION_SOCKET_NAMEhave changed to enable the
documented configuration for using these services with shared port to work. (Ticket #6186).

• Fixed a bug that causedcondor_dagmanto sometimes (rarely, but repeatably) crash when parsing DAGs con-
taining splices. (Ticket #6170).

• The configuration parameters that control when job policy expressions are evaluated now work as documented.
Previously, the default value forPERIODIC_EXPR_INTERVALwas 300, not 60 as intended. Also, the pa-
rametersMAX_PERIODIC_EXPR_INTERVALandPERIODIC_EXPR_TIMESLICE were ignored for grid
universe jobs. (Ticket #6199).

• Fixed a bug that could cause the Job Router to crash if thejob_queue.log contained invalid or incomplete
records. (Ticket #6195).

• Fixed a bug that caused updates of the job attributex509UserProxyExpiration to be ignored for job
policy evaluation when the job was managed by the Job Router.(Ticket #6209).

• Changed the default value of configuration parametersCREAM_GAHP_WORKER_THREADSto the value of
GRIDMANAGER_MAX_PENDING_REQUESTS. This should prevent a back-log of commands in the CREAM
GAHP observed by some users. (Ticket #6071).

• Fixed modification ofPYTHONPATHenvironment variable that could fail in bash ifset -u is enabled.
(Ticket #6211).

• bosco_quickstartno longer assumes that submitting to a Slurm cluster requires the PBS emulation module.
(Ticket #6211).

• Fixed a bug that causedcondor_submit-dump to crash when the submit file had an attribute to enable the use
of an x509 user proxy. (Ticket #6197).

• Updated the supported platform list in the Bosco installerscript to include Ubuntu 16 and Mac OSX 10.12.
Also, dropped Ubuntu 12 and Mac OSX 10.6 through 10.9. (Ticket #6178).

• Fixed a bug which in some obscure configurations caused a spurious PERMISSION DENIED error was printed
in the StartLog when activating a claim. (Ticket #6172)..

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6188
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6208
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6171
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6026
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6186
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6170
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6199
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6195
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6209
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6071
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6211
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6211
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6197
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6178
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6172

10.3. Stable Release Series 8.6 716

• Fixed a bug which forced the administrator to restart (rather than reconfigure) running daemons after adding an
entry to aDENY_* authorization list. (Ticket #6172)..

Version 8.6.1

Release Notes:

• HTCondor version 8.6.1 released on March 2, 2017.

New Features:

• condor_qnow checks to see if authentication and security negotiation are enabled before attempting to request
only the current users jobs from thecondor_schedd. Prior to this change, configurations that disabled security
or authentication would also need to setCONDOR_Q_ONLY_MY_JOBSto false. (Ticket #6125).

• The CLAIMTOBE authentication method is now in the list of methods for READ access if no list of authen-
tication methods for READ or DEFAULT is specified in the configuration. This change allows sites that use
the default host based security model to usecondor_q-global with the only-my-jobs feature without making
changes to their security configuration. (Ticket #6125).

• The collector now records the authentication method used to determine the authenticated identity.
(Ticket #6122).

Bugs Fixed:

• Update Docker interface to be able to retrieve usage information from running containers and to remove con-
tainers when certain errors occurred when using Docker version 1.13. (Ticket #6088).

• In Docker universe, all writes to files in/tmp and/var/tmp by default write inside the container. There is a
limit on the file size within the container, and jobs that write a lot to/tmp may hit that. If a docker universe job
now runs on a system withMOUNT_UNDER_SCRATCHdefined, HTCondor now adds those mounts as volume
mounts, so file writes do not go to the container, but to the host file system. (Ticket #6080).

• Fixed a bug incondor_status-format andcondor_q-format that caused the tools to truncate output to the width
specified in the format specifier. The most likely manifestation of this bug was that punctuation after the format
would not be printed when the format had an explicit width. (Ticket #6120).

• Fixed a bug that caused spurious shared port-related errormessages to appear in thedagman.out file (by
adding the newDAGMAN_USE_SHARED_PORTconfiguration macro). (Ticket #6156).

• Fixed a bug that caused VM universe jobs to fail if thevm_disk submit command contained spaces after a
comma. (Ticket #6132).

• Fixed a bug that can cause the Job Router andcondor_c-gahpto crash if they fail to submit a job due to submit
transforms or submit requirements. (Ticket #6152).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6172
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6125
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6125
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6122
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6088
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6080
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6120
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6156
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6132
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6152

10.3. Stable Release Series 8.6 717

• Fixed a bug that caused the Job Router to not route any jobs iftheJOB_ROUTER_DEFAULTSconfiguration
parameter value started with white space. (Ticket #6128).

• Fixed several bugs in how the Job Router writes to job event logs. (Ticket #6092).

• Removed Bosco’s attempt to configure a default value forgrid_resource in the submit description file, as
condor_submitno longer supports this ability. Also, Bosco now works with Slurm clusters. (Ticket #6106).

• Changed Bosco’s configuration of thecondor_ft-gahpto eliminate worrying error messages in thecondor_ft-
gahp’s log file. (Ticket #6107).

• Fixed a bug that could cause a grid batch job submitted to PBSor Slurm to go on hold when the job’s X.509
proxy is refreshed. (Ticket #6136).

• Fixed a bug where thecondor_gridmanagerfails to put a job on hold due to the desired hold reason containing
invalid characters. (Ticket #6142).

• Improved the hold reason when submission of a grid-type batch job fails. (Ticket #3377).

• Update helper scripts to work with current versions of OpenMPI and MPICH2. (Ticket #6024).

• Fixes a bug that could cause events for local universe jobs to not be written to the global event log.
(Ticket #6100).

• Fixed a bug on execute machines that enable PID namespaces that would generate a spurious error message in
the daemon log whencondor_off-fast was issued. (Ticket #6137).

• Fixed a bug that could corrupt the job queue log file such thatthe condor_scheddcannot restart. The bug is
mostly likely to occur if the disk becomes full. (Ticket #6153).

• Incremented the ClassAd library version number, since thedeprecated iostream interface has been removed.
(Ticket #6050). (Ticket #6115).

Version 8.6.0

Release Notes:

• HTCondor version 8.6.0 released on January 26, 2017.

New Features:

• Added two new job ClassAd attributes, CumulativeRemoteSysCpu and
CumulativeRemoteUserCpu , which keep a running total of system and user CPU usage, respec-
tively, across all job restarts. Also, immediately clear attributesRemoteSysCpu andRemoveUserCpu on
job start, instead of on first update. (Ticket #6022).

• Added a new configuration knob,ALWAYS_REUSEADDR, which defaults toTrue . WhenTrue , it tells HT-
Condor to set theSO_REUSEADDRsocket option, so that the schedd can run large numbers of very short jobs
without exhausting the number of local ports needed for shadows. (Ticket #6040).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6128
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6092
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6106
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6107
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6136
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6142
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=3377
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6024
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6100
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6137
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6153
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6050
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6115
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6022
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6040

10.4. Development Release Series 8.5 718

• Changed the default value ofIGNORE_LEAF_OOMto True . (Ticket #5775).

Bugs Fixed:

• Fixed a bug causing unnecessarily slow updates from thecondor_startd. If you depend on the old behavior, set
UPDATE_SPREAD_TIMEto 8. A value of 0 enables the fix. (Ticket #6062).

• Fixed a race condition when running multiple concurrent jobs on the same claim. When the starter exits, it
notifies the shadow, which tells the startd to kill the starter. Immediately after the shadows tells the startd, it
fetches the next job, and tries to start it. If the starter hasn’t completely exited yet (perhaps it needs to clean
up a large sandbox), it will notice the shadow has closed the command socket, and the starter will go into
disconnected mode, and get confused. This has been fixed. (Ticket #6049).

• Fixed an infelicity withcondor_submit-i and docker universe, where it would start an interactive shell without
a container. Added error message expressing that this combination is not currently supported. (Ticket #6083).

• When a job claimed by the Job Router is held or removed, it is no longer considered a failure of the job route
chosen for that job. (Ticket #5968).

• Fixed a bug in recovering a Google Compute Engine (GCE) job if the condor_gridmanagerrestarts during
submission of the instance request. (Ticket #6078).

• Fixed a bug that could cause re-installation of a remote cluster to fail in Bosco. (Ticket #6042).

• Fixed a bug with handling the proxy files of grid-type batch jobs when the proxy’s file name is a relative path.
(Ticket #6053).

• Fixed a bug that caused thebatch_gahpto crash when a job’s X.509 proxy is refreshed and thebatch_gahpis
configured to not create a limited copy of the proxy. (Ticket #6051).

• Fixed a bug in the virtual machine universe whereRequestMemory andRequestCPUs were not changing
the resources assigned to the VM created by HTCondor. Now,VM_Memorydefaults toRequestMemory ,
and the number of CPUs defaults toRequestCPUs . (Ticket #5998).

10.4 Development Release Series 8.5

This is the development release series of HTCondor. The details of each version are described below.

Version 8.5.8

Release Notes:

• HTCondor version 8.5.8 released on December 13, 2016.

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5775
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6062
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6049
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6083
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5968
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6078
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6042
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6053
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6051
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5998

10.4. Development Release Series 8.5 719

New Features:

• On Linux, the starter now puts all jobs in a cgroup by default. The default for
CGROUP_MEMORY_LIMIT_POLICY is now "none". To disable cgroups, an admin can set the
BASE_CGROUP parameter to the empty string. (Ticket #5936).

• Added first-classcondor_submitcommands supporting job retries. (See section 11 for details.) (Ticket #5912).

• condor_qeditnow defaults to editing only jobs owned by the current user inthe same way thatcondor_qdoes.
It also honors theCONDOR_Q_ONLY_MY_JOBSconfiguration variable. (Ticket #5889).

• Added new parameterDOCKER_VOLUME_DIR_XXX_MOUNT_IFwhich is an expression, evaluated in the
context of the machine and job ad, which if it evaluates to a string, becomes a docker volume mount. This
allows admins to conditionally add docker volumes for certain types of jobs. (Ticket #5758).

• Added initial support for Singularity containers. (Ticket #5828).

• The XferStatsLog file on the submit side now contains TCP statistics for both the shadow point of view, and the
starter point of view. The starter side line is prefixed with the words "peer stats from starter". (Ticket #5917).

• Configuration variables of the formSUBSYS.LOCALNAME.VARIABLEno longer work. The use of the SUB-
SYS prefix before LOCALNAME never worked fully, and was only necessary for while as a workaround for
a bug that was fixed many years ago.condor_config_valand thecondor_masterwill now produce warning
messages when the configuration has variables that appear toof this form and begin with a known SUBSYS
name like MASTER or COLLECTOR. (Ticket #5969).

• TheSLOT_WEIGHTparameter can now be set on the central manager, instead of all the execute nodes. If the
execute nodes set this parameter, it will override the central manager setting. (Ticket #5953).

• New submit commandgce_json_filecan be used with grid-type gce jobs to specify a file that contains JSON
object members that should be added to the instance description submitted to the GCE service. (Ticket #5893).

• A number of command-line tools now support bash auto-completion. (Ticket #5924).

• The minimum update time forcondor_dagmannode status files now defaults to 60 seconds. (Ticket #5929).

• Added the newDAGMAN_REMOVE_NODE_JOBSconfiguration macro, which allows users to configure whether
condor_dagmanitself removes its node jobs when it is removed (note that thenode jobs are also removed by the
condor_schedd). This configuration macro defaults toTrue , which represents a change in behavior compared
to previous HTCondor versions. (See section 2.10.7 for moredetails.) (Ticket #5175).

• The -AllowLogError argument to condor_submit_dag and condor_dagman, and the DAG-
MAN_ALLOW_LOG_ERROR configuration macro, are no longer supported, and generate warnings if
used. (Ticket #5630).

• condor_dagman now ignores the DAGMAN_LOG_ON_NFS_IS_ERRORconfiguration setting if
ENABLE_USERLOG_LOCKINGis set toFalse . (Ticket #5641).

• Added the ALL_NODES option to a number ofcondor_dagmancommands (see 2.10.9 for details).
(Ticket #5729).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5936
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5912
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5889
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5758
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5828
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5917
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5969
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5953
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5893
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5924
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5929
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5175
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5630
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5641
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5729

10.4. Development Release Series 8.5 720

• Changed the previous term "metaknob" to "configuration template" and improved the configuration template
documentation. (Ticket #5865).

• The condor_scheddreceiving a refreshed X.509 proxy credential is now done in anon-blocking fashion.
(Ticket #5930).

• The Job Router now performs its automatic job ad transformations when the TRANSLATE_JOB hook is used.
These are changes that should happen to all job ads being transformed by the Job Router. (Ticket #5235).

• The$F() configuration macro has new options to support conversions of paths to Windows style path separators
or to Unix style. When used incondor_submitfiles it can do path completion as well. (Ticket #5938).

• The$ENV() configuration macro now supports default values. (Ticket #5882).

• A certificate mapfile can now use literal values rather than regular expressions for the second field. This is useful
when only a single identity should be matched. The use of a literal is both more secure and faster to search.
The new configuration variableCERTIFICATE_MAPFILE_ASSUME_HASH_KEYSenables this behavior, it
defaults to false. It will most likely default to true in a future version of HTCondor. (Ticket #5992).

• The ClassAduserMap function now uses only commas as the separator for the third field of the map file. This
makes it possible to have values with spaces in them. (Ticket#5988).

• Thecondor_collectorwill now allow more than onecondor_negotiatorto be registered. And a new A new con-
figuration variableCOLLECTOR_ALLOW_ONLY_ONE_NEGOTIATOR, which defaults to false has been added
so that the old behavior can still be configured. (Ticket #5967).

• The Requirements expression for Job transforms in thecondor_scheddwill now ignore the TARGET prefix
for attributes in the expression. This makes it easier to convert condor_job_routerrules to job transforms
because the TARGET prefix is required in thecondor_job_routerbut refers to nothing in the job transform.
(Ticket #5980).

• The-better-analyzeoption ofcondor_qhas been improved and the output reorganized. (Ticket #5290).

• A new tool -condor_transform_adshas been added. (See section 11 for details.) (Ticket #5805).

• A join function has been added to the ClassAd language. (Ticket #6018).

• condor_whohas additional options for querying the state and readinessof the various daemons. It has a com-
mand that can be used to wait for the daemons to startup with a timeout. (Ticket #5416).

• When submitting a job that has an associated X.509 proxy, orwhen authenticating to thecondor_scheddusing
X.509, the X.509 and VOMS attributes are securely extractedand carried along in the job ClassAd. This allows
them to be used, for example, in matchmaking policy and job routing. (Ticket #5064).

• Madecondor_creddconfiguration easier by automatically configuring network connections to use encryption.

Bugs Fixed:

• When the Google Compute Engine breaks the results of a queryinto multiple pages, thegce_gahpnow retrieves
all of the results, instead of just the first page. (Ticket #6010).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5865
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5930
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5235
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5938
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5882
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5992
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5988
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5967
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5980
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5290
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5805
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6018
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5416
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5064
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6010

10.4. Development Release Series 8.5 721

• Fixed a bug that caused file transfer to fail when a job created by the Job Router has a differentOwner than the
original job. (Ticket #5348).

• Fixed a bug that could result in "orphan" node jobs staying in the queue when an instance ofcondor_dagmanis
removed. (Ticket #5702).

• Fixed a regression introduced in v8.5.7 that prevents job preemption due to priority from occurring, be-
cause user priority and resources in use information cannotbe referenced inPREEMPTION_REQUIREMENTS.
(Ticket #6014).

• FixedCOLLECTOR_FORWARD_FILTERINGso that a startd ad update is always forwarded when any of the
Claim IDs change. (Ticket #5913).

• Fixed a bug that made the Requirements keyword for job transforms in thecondor_scheddonly work if it was all
uppercase on Red Hat 7 and some other platforms that use a newer version of the C++ compiler. (Ticket #5973).

• Fixed a bug that allowed a user to bypass theMAX_RUNNING_SCHEDULER_JOBS_PER_OWNERlimit by
specifying an accounting group or nice_user in their submitfile. (Ticket #5949).

• Fixed a bug incondor_cand thecondor_job_routerthat could cause inaccurate job totals to be reported by
condor_q-batch. (Ticket #6020).

Version 8.5.7

Release Notes:

• HTCondor version 8.5.7 released on September 29, 2016.

Known Issues:

• Preemption due to job priority is likely to fail ifPREEMPTION_REQUIREMENTSattempts to reference any
resource usage or priority attributes. This issue has been fixed in v8.5.8. If you cannot upgrade to v8.5.8,
a work-around for v8.5.7 is to set configuration macroNEGOTIATOR_CROSS_SLOT_PERI’Sto True .
(Ticket #6014).

New Features:

• Added the capability for the schedd to perform job ClassAd transformations upon job submission (see 3.7.2 for
details). (Ticket #5885).

• Added the capability for more flexible connections betweensplices in DAGs (see 2.10.9 for details). Also
added an INCLUDE command to the DAG language (see 2.10.9 for details). (Ticket #5213).

• Simplified the DAG node priority algorithm: the "effective" priority of a node is now simply the sum of the
explicit node priority and the overall DAG priority. (See section 2.10.9 for more details.) (Ticket #4024).
(Ticket #5749).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5348
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5702
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6014
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5913
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5973
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5949
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6020
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6014
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5885
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5213
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=4024
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5749

10.4. Development Release Series 8.5 722

• Allow the second argument of the ClassAd ternary operator (expression ? value1 : value2) to be omitted. This
new syntax means: evaluate the expression, and if it evaluated to a defined value or error, return it. If undefined,
return value2. (Ticket #5782).

• The time is now included after the SCHEDD or SUBMITTER name in the banner ofcondor_qoutput.
(Ticket #5895).

• condor_statushas a new-data option that, when used with-scheddwill show data transfer information; and
-run will show information about running jobs when used with-schedd. (Ticket #3938).

• condor_q-batch will now show Total and Completed counts for non-DAG jobs when querying a scheduler that
is at least version 8.5.7 (Ticket #5874).

• condor_statusandcondor_qnow support reading and writing ClassAds in xml, json, and "new ClassAd" form
as well as the traditional long form. (Ticket #5844). (Ticket #5820).

• HTCondor daemons now respect<LOCALNAME>.<SUBSYSTEM>_LOGif passed a -local-name parameter,
and default to using$(LOG)/<Localname>Log if the former is not set. (Ticket #5768).

• HTCondor now automatically passes the -local-name parameter to a DC daemon if its entry in the
DAEMON_LISTis not in the defaultDC_DAEMON_LIST. This should result in simpler and less error-prone
configuration. (Ticket #5768).

• HTCondor now detects if an entry inDAEMON_LISTshares a binary with an entry inDC_DAEMON_LIST
and marks the former as a DC daemon if so. This should result insimpler and less error-prone configuration.
(Ticket #5767).

• Increase the resolution of file transfer timing statisticsin the XferStatsLog to hundreds of a second.
(Ticket #5898).

• The default host based security meta-knob now works in IPv6only networks out of the box. (Ticket #5894).

• Old HAD configurations, with or without replication, should now work by default (without shared port).
(Ticket #5769).

• HTCondor no longer gives up if a bad networking configuration is detected while running a tool. This allows
condor_config_valto be used to debug the problem. (Ticket #5532).

• Thecondor_negotiatorby default no longer cross advertises the user priority and resources in use from every
slot in a machine ad to every other slot in that machine ad.NEGOTIATOR_CROSS_SLOT_PRIOS= true
re-enables the old behavior. The accounting information for the current user of the slot remains advertised.
(Ticket #5785).

• New submit attributegce_preemptibleallows the creation of preemptible Google Compute Engine (GCE)
instances. These instances have a lower price, but can be interrupted at any time. Also added support for service
accounts with GCE. (Ticket #5821).

• When submitting jobs to Slurm via the grid universe, the Slurm partition can now be specified using the
batch_queuesubmit command. (Ticket #5780).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5782
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5895
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=3938
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5874
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5844
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5820
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5768
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5768
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5767
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5898
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5894
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5769
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5532
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5785
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5821
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5780

10.4. Development Release Series 8.5 723

• Some old STARTD policy helper configuration variables weremoved into two new configuration templates –
FEATURE : UWCS_DESKTOP_POLICY_VALUESandFEATURE : TESTINGMODE_POLICY_VALUES
(Ticket #5871).

• condor_submit on Windows will no longer insert the OSVERSIONINFO fields like
WindowsMajorVersion into each job automatically. This is controlled by a new configuration vari-
ableSUBMIT_PUBLISH_WINDOWS_OSVERSIONINFOwhich defaults to false. (Ticket #5873).

• Added the option to cache the output of commands used in configuration files, so that the command doesn’t have
to be re-run every time the configuration file is referenced. Also added error and warning keywords to allow
configuration files to report errors and warnings. (Ticket #5781).

Bugs Fixed:

• Fixed a bug in how the HAD daemon checks to see if it and its corresponding replication daemon were config-
ured to be on the same host. (Ticket #5849).

• The EC2 GAHP now handles integer overflows when checking deadlines. This prevents spurious time-outs on
32-bit systems which have been up for more than 28 days. (Ticket #5824).

• Lengthened the watchdog timeout in the systemd service fileto 20 minutes. Also, ping systemd at a third of the
watchdog interval. (Ticket #5837).

• Fixed a bug that could cause daemons to create a file nameddprintf_failure.SUBSYS if they failed to
find themail program. (Ticket #5854).

• For grid-typebatch jobs, improved handling of command line arguments and environment variables that con-
tain characters that have meaning to the shell. Previously,the presence of these characters would cause job
execution to fail. (Ticket #5747).

• Fixed a bug that causedcondor_config_valto segfault when the-nameargument was used and the machine did
not exist (Ticket #5818).

• Fixed a bug that causedcondor_q -autocluster to crash unless the-nobatch option was also used.
(Ticket #5839).

• Fixed a bug in the Python bindings where a thread executed python byte code without holding the global inter-
preter lock. (Ticket #5864).

Version 8.5.6

Release Notes:

• HTCondor version 8.5.6 released on August 2, 2016.

New Features:

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5871
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5873
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5781
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5849
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5824
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5837
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5854
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5747
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5818
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5839
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5864

10.4. Development Release Series 8.5 724

• The default output ofcondor_qis now the-batch output. To change the default back to its pre-8.5.6 value, set
the new configuration variableCONDOR_Q_DASH_BATCH_IS_DEFAULTto False . (Ticket #5708).

• A new class – the Submit class – was added to the Python bindings. It allows for the submission of HTCon-
dor jobs via the Python bindings using the same keywords and automatic behavior ascondor_submit. See
section 6.7.1 for details. (Ticket #5666).

• The ability to sendcondor_draincommands is now exposed through the Python bindings. See section 6.7.1 for
details. (Ticket #5507).

• The value of the configuration parameterDOCKER_DROP_ALL_CAPABILITIESis now no longer just true or
false, but a ClassAd expression evaluated in the context of the machine (my) and the job (target). (Ticket #5759).

• When running Docker Universe containers on docker version1.11 and newer, HTCondor now
also sets –no-new-privs, to prevent setuid and setgid programs from running in containers, unless
DOCKER_DROP_ALL_CAPABILITIESevaluated to false. (Ticket #5680).

• The hostname of the container that Docker Universe jobs runin is now set to a more useful name. Instead of
a hash, it now contains the job’s owner, the cluster and proc of the job, and the hostname of the machine the
container runs on. (Ticket #5760).

• New options have been added tocondor_history, so that condor_history can be used as the the
HISTORY_HELPERfor remotecondor_history. The options are:

– -sinceScanning of the history file stops when an expression becomestrue or a job id is read.

– -completedsinceScanning of the history file stops when a job completed earlier than this time is read.

– -scanlimit Used by remotecondor_historyto limit the number of jobs read from the history file.

– -attributes Used by remotecondor_historyto limit the attributes transferred back.

– -inherit Used by remotecondor_historyto define the socket to write results to.

– -stream-resultsUsed by remotecondor_historyso that results can be printed as they arrive.

(Ticket #5642).

• Condorhistory will default to doing a remote query if thereis aSCHEDD_HOSTconfigured. This behavior can
be defeated by passing the new-local argument. (Ticket #5765).

• The high-availability and replication daemons may now useshared port. (Ticket #5726).

• ClassAds can now be represented in JSON format. condor_q, condor_status, and condor_history have a-json
command line option, which causes their output to be printedin JSON. (Ticket #5688).

• condor_dagmannow allows commands to be more flexibly ordered within a DAG file. (See section 2.10.3 for
details.) (Ticket #5732).

• Any accounting_groupandaccounting_group_uservalues specified for a DAG are now propagated to all jobs
of the workflow, including sub-DAGs. (Ticket #5077).

• A new configuration variableMAX_RUNNING_SCHEDULER_JOBS_PER_OWNERcan be used to limit the
number of DAGs that any single user can have running at a time.(Ticket #5568).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5708
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5666
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5507
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5759
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5680
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5760
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5642
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5765
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5726
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5688
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5732
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5077
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5568

10.4. Development Release Series 8.5 725

• Monitoring the status of PBS and Slurm jobs is now much more efficient. Now, one query to the batch system
is done for all jobs, instead of a separate query for each job.(Ticket #5722).

• Simplified how job leases are handled for grid universe jobs. Now, all jobs going to the same remote resource
share a single lease time. (Ticket #5625).

• Added several statistics about commands issued to the GAHPserver to the grid ads that thecondor_gridmanager
sends to thecondor_collector:

– GahpCommandsIssued

– GahpCommandsTimedOut

– GahpCommandsInFlight

– GahpCommandsQueued

– GahpCommandRuntime

(Ticket #5698).

• Thecondor_shadow, condor_starterandcondor_c-gahpdaemons now log TCP statistics for file transfers. See
3.5.3 for more details. (Ticket #5663).

• Job ads now includeNumJobCompletions , which counts the number of times a job exited of its own accord
(successfully or not) and then successfully completed file transfer (if any was requested). (Ticket #5705).

• Kerberos authentication is now non-blocking, allowing anHTCondor daemon authenticating clients with Ker-
beros to handle more simultaneous incoming connections. (Ticket #5737).

• Password authentication is now non-blocking, allowing anHTCondor daemon authenticating clients with the
PASSWORD method to handle more simultaneous incoming connections. (Ticket #5602).

• The full path to the submit file is now available as an automatic submit variable. (Ticket #5677).

• A new functionuserMap() has been added to the ClassAd language to facilitate the mapping of users to
groups in thecondor_scheddandcondor_job_router(see 4.1.2 for details). (Ticket #5751).

• Configuration files now support the declaration of multi-line values, the is primarily of use when configuring
thecondor_job_router. (Ticket #5721).

• Configuration templates can now take arguments. (Ticket #5739).

• Improved the performance of thecondor_negotiatorwhen running with a large number of users or groups. The
accounting data is only written to disk when it changes, not unconditionally. (Ticket #5719).

Bugs Fixed:

• Fixed a bug in Docker universe that required the name of a transferred executable to begin with "./"
(Ticket #5761).

• Fixed a bug the prevented Docker universe jobs from reporting their network usage correctly. (Ticket #5750).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5722
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5625
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5698
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5663
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5705
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5737
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5602
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5677
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5751
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5721
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5739
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5719
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5761
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5750

10.4. Development Release Series 8.5 726

• condor_whonow reports docker universe jobs more completely. (Ticket #5740).

• Fixed bugs preventing HTCondor daemons from recognizing an address in Sinful format as its own when oper-
ating in mixed (IPv4 and IPv6) mode. One manifestation of this would be errors from the HAD daemon when
specifying hosts by name in theHAD_LIST or REPLICATION_LIST . (Ticket #5728). (Ticket #5776).

• condor_user_prionow more correctly shows information about submitters flocking to a pool, but who haven’t
used any resources. (Ticket #5743).

• No longer leak a file in the user’s home directory each time a job is submitted to Slurm. (Ticket #5742).

• Fix a bug that prevented HTCondor from removing jobs from Slurm. (Ticket #5804).

• Fixed a bug when attempting to authenticate using multiplemethods wherein if a method failed, the remaining
methods were not always attempted. (Ticket #5673).

• Fixed a bug that prevented the condor_schedd from reading the job’s X.509 proxy file when writing information
to theSCHEDD_AUDIT_LOG. (Ticket #5770).

• Fixed a bug incondor_qwhere the SIZE column would not grow as needed to fit the data. (Ticket #5667).

• Fixed a bug where thecondor_schedddid not treat a user as a queue superuser when it should have ifthe
configuration included a map file, which is common for GSI authentication. (Ticket #5530).

• Lengthen the watchdog timeout in the systemd service file to1 minute. The previous value of 5 seconds has
taken down HTCondor for a single slow DNS query. (Ticket #5819).

Version 8.5.5

Release Notes:

• HTCondor version 8.5.5 released on June 6, 2016.

New Features:

• The EC2 GAHP now rate-limits its requests, and responds to overload warnings with an exponential back-off.
Additionally, fewer operations are now performed on a per-job basis (as few as one in some cases). The resulting
scalability improvements have been demonstrated to permita single GAHP to manage ten thousand instances.
Because the overload condition is account- and region- specific, the grid manager now launches a GAHP for
each account-region pair. We therefore recommend addingD_PID to EC2_GAHP_DEBUG, for disambiguation,
and this is now the default. (Ticket #5561). (Ticket #5588).(Ticket #5620).

• The grid manager now assignsHoldReasonCode s andHoldReasonSubCode s to EC2 jobs when they go
on hold. Values are subject to change until the stable release. (Ticket #5628).

• The grid manager now advertises some metrics from the EC2 GAHP. (Ticket #5580).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5740
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5728
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5776
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5743
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5742
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5804
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5673
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5770
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5667
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5530
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5819
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5561
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5588
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5620
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5628
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5580

10.4. Development Release Series 8.5 727

• Some Linux distributions for supercomputer compute nodesand others distributions for docker images have no
/var/run/utmp. HTCondor no longer aborts when this file is missing, when it tries to determine keyboard idle
times, it just assumes these kinds of machines have no keyboards. (Ticket #5624).

• Docker Universe jobs now correctly advertiseRemoteUserCpu andRemoteSysCpu in their job ad and in
the job log file. (Ticket #5609).

• A batch name specified for a DAG (with thecondor_submit_dag-batch-nameoption) is now propagated to all
jobs of that DAG, including sub-DAGs. (Ticket #5493).

• The batch name for acondor_dagmanjob (if not set) now defaults toDagFile+cluster(whereDagFile is the
primary DAG file of thecondor_dagmanjob, andclusteris the HTCondor cluster of thecondor_dagmanjob).
Because the batch name is now propagated throughout a workflow, if no batch name is specified, the batch name
for all jobs in the workflow will beDagFile+clusterof the top-levelcondor_dagmanjob. (Ticket #5605).

• The files named in the submit file attributesvm_disk, xen_kernel, andxen_initrd now refer to locations on the
execute machine.condor_submitno longer modifies these values or checks for their existenceon the submit
machine. If these files need to be transferred by HTCondor, then they should be listed intransfer_input_files
and their presence in these vm universe attributes shouldn’t include any path information. (Ticket #4167).

• In the python bindings, anExprTree can be cast to an integer or floating point value. (Ticket #5636).

• HTCondor now supports the following systemd features: Socket Activation, Watchdog, Status message, and
journald logging. In these release, the Socket Activation is not configured, because the security system is not
prepared to properly handle the socket passed in from outside HTCondor. (Ticket #4144).

• Added config knobDEFAULT_MASTER_SHUTDOWN_SCRIPTto specify a default program to exec as root
uponcondor_masterexit. See Section 3.5.8 for details. (Ticket #5590).

• The python bindings now support a per-thread security context, allowing the modification of various parameters
such as the pool password and the X509UserProxy location. (Ticket #5632).

Bugs Fixed:

• Fixed a bug that caused file transfers to fail when using Bosco. (Ticket #5704).

Version 8.5.4

Release Notes:

• HTCondor version 8.5.4 released on May 2, 2016.

• Thedeltacloud type in the grid universe, which allowed submission to Deltacloud services, has been removed.
(Ticket #5569).

New Features:

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5624
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5609
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5493
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5605
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=4167
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5636
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=4144
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5590
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5632
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5704
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5569

10.4. Development Release Series 8.5 728

• condor_statuscan now display the utilization of acondor_startdwith a single line of output for each machine
rather than a line per slot. In this release this output is enabled by passing-compact to condor_statusbut in a
future release this will be the default output ofcondor_status. (Ticket #5596).

• Improved the performance of thecondor_collectorby not computing dropped update statistics, statistics which
have never been accessible by users. (Ticket #5566).

• The performance of thecondor_historytool has been significantly improved. (Ticket #5536).

• condor_user_prionow queries thecondor_collectorfor accounting information by default, when appropriate.
This should be much faster than the older way of querying thecondor_negotiator. The old path is still available
by passing the -negotiator option to the tool. (Ticket #5508)..

• The default value ofDAGMAN_ALWAYS_RUN_POSThas been changed fromTrue to False . This means
that, by default, if the PRE script of a DAG node fails, the POST script of the node willnot be run.
(This had been the default behavior until version 7.7.2. The7.7.2-8.5.3 behavior can be restored by set-
ting DAGMAN_ALWAYS_RUN_POSTto True , or by passing the new-AlwaysRunPost argument tocon-
dor_submit_dag.) (Ticket #5477).

• Thebatch_gahpcan now submit multi-core jobs to HTCondor. (Ticket #5638).

• Thebatch_gahp’s ability to generate a limited X.509 proxy for use by the jobon the execute machine can now
be disabled, which is now the default. (Ticket #5601).

• The condor_scheddwill now send submitter ad updates for idle submitters less frequently than updates for
submitters that have jobs in the queue. There are two new configuration variables to control this behav-
ior. ABSENT_SUBMITTER_LIFETIMEis the number of seconds after the last job for that submitterleaves
the queue that the submitter will continue to send updates tothe condor_collector. It defaults to 1 week.
ABSENT_SUBMITTER_UPDATE_RATEis the maximum rate in seconds at which thecondor_scheddwill
send updates to thecondor_collectorfor a submitter that has no jobs in the queue. It defaults to 5 minutes.
(Ticket #5559).

Bugs Fixed:

• Fixed a bug that caused thecondor_scheddto exit when receiving an updated X.509 proxy for a job.
(Ticket #5645).

• In expressions in the Job Router’s configuration, attributes no longer require a ’TARGET.’ scope prefix.
(Ticket #5550).

• Fixed a bug incondor_q-xml that would put the XML header after the body unless-stream was passed.
(Ticket #5597).

Version 8.5.3

Release Notes:

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5596
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5566
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5536
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5508
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5477
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5638
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5601
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5559
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5645
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5550
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5597

10.4. Development Release Series 8.5 729

• HTCondor version 8.5.3 released on March 24, 2016.

New Features:

• ENABLE_IPV4 andENABLE_IPV6 both now accept the special value "AUTO", which is true if an interface
with the corresponding protocol exists on the host, and false otherwise. (Ticket #5524).

• ENABLE_IPV4 andENABLE_IPV6 both now default to the special value "AUTO". Additionally,the new
configuration macroPREFER_IPV4is true by default. This macro causes HTCondor to prefer IPv4over IPv6
when choosing an address to advertise, when choosing the address of daemon looked up in the collector, and
when resolving DNS queries. (Ticket #5104).

• New configuration macros added: IPV4_ADDRESS, IPV6_ADDRESS, IP_ADDRESS_IS_V6.
(Ticket #5512).

• New attributes have been added to the Submitter ClassAd to indicate the number of Idle and Running jobs for
Scheduler universe and for Local universe. (Ticket #5519).

• Jobs can now be submitted to the Slurm batch scheduling system via the newslurm type in the grid universe.
(Ticket #5515).

• In addition to logging to the fileKERNEL_TUNING_LOG, the defaultLINUX_KERNEL_TUNING_SCRIPT
now also logs to syslog and/etc/systcl.d/99-htcondor.conf . (Ticket #5489).

• condor_history-autoformat now supports the j option to print job ids likecondor_qdoes. (Ticket #5558).

• HTCondor is now built and linked with Globus 6.0. (Ticket #5520).

• Pre-size the ClassAd hash table to improve the performanceof the condor_collectorwhen getting ClassAd
updates. (Ticket #5551).

• The negotiator now forwards accounting information to thecollector, where it can be easily queried and moni-
tored. (Ticket #5491).

Bugs Fixed:

• Fixed a bug oncondor_historythat could result in truncation of the job id field. (Ticket #5527).

Version 8.5.2

Release Notes:

• HTCondor version 8.5.2 released on February 18, 2015.

New Features:

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5524
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5104
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5512
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5519
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5515
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5489
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5558
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5520
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5551
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5491
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5527

10.4. Development Release Series 8.5 730

• condor_qnow defaults to showing only the current user’s jobs, unlessthe current user is a queue supe-
ruser. This behavior can be turned off by setting the new configuration optionCONDOR_Q_ONLY_MY_JOBS
to False in the configuration for either thecondor_scheddor condor_q. It can also be turned off by passing
the new-alluserscommand line option tocondor_q. (Ticket #5271).

• Added support for immutable job attributes and protected job attributes. (Ticket #5065).

• Improved the speed ofcondor_qand other tools when querying non-local servers. (Ticket #5150).

• The new-batch command line option tocondor_qcan be used to show a single line of progress information
for a batch of jobs, where a batch is either an entire workflow (a DAG, including sub-DAGs), all of the jobs in
a cluster, all of the jobs from a single user that have the sameexecutable specified in their submit file, or all of
the jobs from a single user that have the same batch name. (Ticket #4976).

• condor_submitandcondor_submit_dagboth have a new command line option-batch-namewhich can be used
to set the batch name used bycondor_q-batch. (Ticket #5490).

• condor_qandcondor_statusnow attempt to avoid truncating data by making use of the fullwidth of the terminal.
(Ticket #5429). (Ticket #5459).

• Docker Universe jobs now report and update ResidentSetSize, ImageSize, MemoryUsage, NetworkInput, and
NetworkOutput attributes in the job ad and log file. (Ticket #5456).

• Added the capability to set ClassAd attributes for acondor_dagmanjob within the DAG file by using the new
SET_JOB_ATTRcommand. (See section 2.10.9 for details.) (Ticket #5107).

• Thedagman.out file produced bycondor_dagmannow has event timestamps added to the lines that report
condor_dagmanreading a log event. For example:

01/13/16 11:29:03 Event: ULOG_SUBMIT for HTCondor Node Nod eA (674.0.0) {01/13/16 11:28:59}

The timestamp in curly brackets at the end is the actual timestamp of the event. (Ticket #5439).

• The -run and-hold arguments ofcondor_qused to produce garbage output when used with other formatting
options such as-format . Now they will always constrain the query, and will also set the output format when
used by themselves. (Ticket #11).

• Thecondor_status-verboseargument has been removed; the equivalent-long argument should be used instead.

Bugs Fixed:

• On Windows, configuring HTCondor to restrict the range of outbound port numbers may cause substantial
delays when using the command-line tools. Since we now know that it’s not free to do so,LOWPORTand
HIGHPORTno longer restrict the port numbers of outbound connectionson Windows. If you still require this
functionality, useOUT_LOWPORTandOUT_HIGHPORT. (Ticket #4711).

• Fixed a bug that could cause a daemon to be in the wrong privilege state when attempting to act as the user.
(Ticket #5467).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5271
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5065
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5150
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=4976
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5490
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5429
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5459
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5456
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5107
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5439
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=11
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=4711
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5467

10.4. Development Release Series 8.5 731

Version 8.5.1

Release Notes:

• HTCondor version 8.5.1 released on December 21, 2015.

• Shared port is enabled by default. (Ticket #3813). (Ticket#5103).

New Features:

• The condor_startdhistory file now contains the peak memory usage, by an exited job, not the more recent.
(Ticket #5436).

• When thecondor_starterevicts a job, perhaps because it has exceeded a memory limit,it does not transfer back
to the submit machine the sandbox of working files. This is consistent with other types of holds. (Ticket #5437).

• Thecondor_startdnow advertises the following attributes on Linux machines:CpuFamily CpuModelNumber
CacheSize. These are pulled from the /proc/cpuinfo file. (Ticket #5323).

• condor_qhas a new option-schedd-constraintwhich can be used to constrain the queues displayed when using
the-global option. (Ticket #5043).

• When an HTCondor-C job is submitted to a remotecondor_schedd, the remote job ad now includes the at-
tributeSubmitterGlobalJobId , whose value is the same as the attributeGlobalJobId in the original
HTCondor-C job. (Ticket #3472).

• Thecondor_scheddnow sets environment variables for scheduler universe jobsso that the jobs can more easily
find thecondor_schedd’s contact information. On machines where there are multiplecondor_schedds running,
this helps DAGMan and similar applications contact thecondor_scheddthat started them. (Ticket #5166).

• When SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATIONis set to True , the related au-
thorizations are now automatically enabled. Previously,submit-side@matchsession and
execute-side@matchsession entries had to be added to theALLOW_DAEMONandALLOW_CLIENT
(if set) authorization parameters in order for this featureto work. (Ticket #5304).

Bugs Fixed:

• condor_historyrun on a pool with partitionable slots now shows the correct dynamic slot. (Ticket #4261).

Version 8.5.0

Release Notes:

• HTCondor version 8.5.0 released on October 12, 2015.

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=3813
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5103
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5436
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5437
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5323
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5043
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=3472
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5166
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5304
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=4261

10.5. Stable Release Series 8.4 732

New Features:

• The condor_startdhistory file contains two new attributes: BadputCausedByDraining and BadputCaused-
ByPreemption, two boolean-valued attributes which are true if the job was evicted not by a user request.
(Ticket #5255).

• The python bindings have a new Claim API, allowing Computing-On-Demand (COD) to be invoked via python.
(Ticket #5130).

• The python bindings can now submit multiple distinct processes using thesubmitMany method, similar to a
condor_submitfile with multiplequeue statements. (Ticket #4916).

• The python bindings now provide improved support for managing multiple concurrent queries. (Ticket #5187).

• As an experimental feature, the python bindings implementthe HTCondor negotiation protocol. (Ticket #5125).

• Changed "Condor" to "HTCondor" in condor_dagmanoutput (mainly in the dagman.out file).
(Ticket #5144).

• The new configuration parameterJOB_SPOOL_PERMISSIONScontrols the permissions on a job’s spool di-
rectory managed by thecondor_scheddon unix. It defaults to the valueuser , which results in a permissions
value of0700 . Other valid values aregroup (permissions0750) andworld (permissions0755). Previously,
all job spool directories had access permissions of0755 . (Ticket #4896).

• The condor_scheddno longer changes the ownership of spooled job files that it manages. Now, the files are
always owned by the submitting user. The previous behavior of changing ownership to/from thecondor
account can be restored by setting the new configuration parameterCHOWN_JOB_SPOOL_FILESto True .
(Ticket #5226).

Bugs Fixed:

• None.

10.5 Stable Release Series 8.4

This is a stable release series of HTCondor. As usual, only bug fixes (and potentially, ports to new platforms) will be
provided in future 8.4.x releases. New features will be added in the 8.5.x development series.

The details of each version are described below.

Version 8.4.12

Release Notes:

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5255
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5130
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=4916
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5187
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5125
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5144
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=4896
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5226

10.5. Stable Release Series 8.4 733

• HTCondor version 8.4.12 not yet released.

New Features:

• None.

Bugs Fixed:

• None.

Version 8.4.11

Release Notes:

• HTCondor version 8.4.11 released on January 23, 2017.

New Features:

• Added a new config knob,IGNORE_LEAF_OOM, which defaults toFalse . WhenTrue , it tells HTCondor
not to kill and hold a job that is within its memory allocation, even if other processes within the same cgroup
have exceeded theirs. (Ticket #5775).

Bugs Fixed:

• Fixed a bug where the effects of a startd cron job would not beused by thecondor_startdwhen making policy
decisions (e.g., evaluating theSTARTexpression) until anUPDATE_INTERVALhad passed. This was gen-
erally only noticeable if you setSTARTD_CRON_AUTOPUBLISHto a value other thanNEVER, which could
cause the startd to reject claims from the negotiator that had been made based on the cron-updated value(s).
(Ticket #6057).

• Fixed a bug in pslot preemption where it could cause matching jobs to not start for a long time. (Ticket #6055).

• Fixed a bug that caused a job to not be cleaned up when the job lease expires, if glexec is in use. (Ticket #6058).

• Fixed a problem, found while testing on Ubuntu 16, where thenegotiator would crash at the end of the negotia-
tion cycle. (Ticket #6064).

• Updated the default configuration in the Debian and Ubuntu packages to look for the Ganglia shared libraries in
the proper place. (Ticket #5939).

• Updated the Enterprise Linux 7 RPM to require the proper SELinux utilities for its post-install script.
(Ticket #6081).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5775
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6057
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6055
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6058
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6064
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5939
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6081

10.5. Stable Release Series 8.4 734

Version 8.4.10

Release Notes:

• HTCondor version 8.4.10 released on December 13, 2016.

New Features:

• None.

Bugs Fixed:

• Added additional SELinux type enforcement rules on Enterprise Linux 7 for thecondor_shared_portdaemon
and Linux tuning script. The RPM post install script makes the HTCondor SELinux domains permissive.
(Ticket #5449). (Ticket #5560). (Ticket #5835).

• Fixed a performance problem in thecondor_scheddwhenRequestCpus was an expression. Added a new pa-
rameterSCHEDD_SLOT_WEIGHT, which may be needed ifSLOT_WEIGHTis not the default value of "Cpus",
and refers to expressions in the job ad. (Ticket #5996).

• When transferring a job’s sandbox, the permissions on sub-directories are now preserved in the same that they
are for regular files. Previously, the permissions were modified by HTCondor daemon’s umask, and directories
transferred from a Windows machine to a UNIX machine had no permissions enabled. (Ticket #5948).

• Fixed bug in theHOLD_IF_CPUS_EXCEEDEDconfiguration template metaknob. (Ticket #5933).

• Fixed a bug in theLIMIT_JOB_RUNTIMES configuration template metaknob so that it works in the face of a
non-default MaxJobRuntime. (Ticket #5961).

• Fixed a bug that made it so a restart of thecondor_scheddwas required in order to change
REMOVE_SIGNIFICANT_ATTRIBUTESto remove an attribute that thecondor_schedds had already marked
as significant. (Ticket #5983).

• When creating a Google Compute Engine instance, instruct the server to delete the auto-created disk image
when the instance is removed. (Ticket #5999).

• Fixed a bug in our support for Google Compute Engine which would cause authorization tokens to be renewed
five minutes after the deadline instead of five minutes before. Naturally, this led to ten minutes of interrupted
service for jobs (or workloads) which lasted longer than theinitial valid duration of the tokens. (Ticket #6009).

• Fixed a bug that would cause thecondor_scheddto crash when a condor cron job was scheduled to start during
the one hour gap in daylight savings time when the clocks are moved backwards one hour. (Ticket #5995).

• Fixed a bug that would cause a core dump when running the condor_history command against a remote schedd.
The results would be returned correctly, but a core file wouldappear in the log directory after the command
exited. (Ticket #5956).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5449
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5560
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5835
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5996
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5948
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5933
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5961
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5983
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5999
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=6009
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5995
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5956

10.5. Stable Release Series 8.4 735

• In the Python bindings, fixed bugs in the LogReader and EventIterator classes that could cause invocations of
poll() to return prematurely with no event. (Ticket #5920).

• Fixed a bug incondor_dagmanthat caused a file named” (two single quotes) to be created if the
DAGMAN_SUPPRESS_JOB_LOGSconfiguration macro was set toTrue . (Ticket #5941).

• Fixed a bug that can cause thecondor_starterto crash if the connection to thecondor_shadowis lost during file
transfer. (Ticket #5972).

• Fixed a bug that allowed a user to bypass theMAX_JOBS_PER_OWNERlimit by specifying an accounting group
or nice_user in their submit file. (Ticket #5946).

• When there are no GPUs on a machine,condor_gpu_discoverywould write to stderr in addition to its normal
output, this made it hard to use the-config option as intended.condor_gpu_discoveryhas been changed so
that it will never write to stderr when the-config option is specified, instead it will write error messages as
configuration comments to stdout. (Ticket #5989).

• Removed obsolete ControlGroup option from HTCondor’s systemd service unit configuration file.
(Ticket #5997).

• Compiled benchmarking programs as a Position IndependentExecutable. Position Independent Executables are
a requirement for entry into Debian 9. (Ticket #5994).

• Fixed a denial of service vulnerability when using thecondor_creddon the Windows platform. (Ticket #5984).

• Fixed a bug where the-pool argument would be ignored bycondor_ssh_to_jobunder certain circumstances.
(Ticket #5919).

Version 8.4.9

Release Notes:

• HTCondor version 8.4.9 released on September 29, 2016.

New Features:

• Increased the maximum number of unique attributes that canbe set by the condor_chirp
command set_job_attr_delayed from 50 to 100, and added the configuration knob
CHIRP_DELAYED_UPDATE_MAX_ATTRS. See section 3.5.12 for more information. (Ticket #5891).

Bugs Fixed:

• Fixed a bug where if thecondor_startdcrashed while running a Docker universe job, the job would beleft
running and not removed when thecondor_startdrestarted. Thecondor_startdnow removes any orphaned
Docker universe jobs on restart. (Ticket #5858).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5920
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5941
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5972
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5946
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5989
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5997
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5994
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5984
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5919
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5891
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5858

10.5. Stable Release Series 8.4 736

• Fixed a bug that printed spurious locking-related warnings to the StarterLog when running Docker universe jobs.
(Ticket #5876).

• The Job Router and HTCondor-C now properly send a RESCHEDULE command to thecondor_scheddafter
submitting a job. (Ticket #5903).

• Fixed bugs in the Job Router that could cause a routed job to be aborted if theUPDATE_JOB_INFOhook
printed attributes to be set in the job ad. (Ticket #5899).

• The Job Router now uses the correct name for the configuration parameter for the JOB_FINALIZE hook. Pre-
viously, the Job Router used the name JOB_EXIT, counter to what was documented. (Ticket #5802).

• Updated systemd configuration to start HTCondor after NIS has started. (Ticket #5814).

• Updated systemd configuration to start HTCondor after local LDAP name service daemon has started.
(Ticket #5836).

• Updated systemd configuration to attempt restart of HTCondor daemons after 1 minute. (Ticket #5836).

• In the RPM packages, move the systemd tmpfiles configurationfile to the recommended directory
(/usr/lib/tmpfiles.d). (Ticket #5896).

• Fixed a bug introduced in 8.4.5 that caused configuration variables starting with STARTD. or STARTER. to be
ignored. (Ticket #5861).

• Fixed a typo in the desired value of ‘rmem_max’ in the Linux kernel tuning script. Improved logging of Linux
kernel tuning script by including the name of the file (not) being changed. (Ticket #5829).

• Fixed a bug that could cause thecondor_masterto crash after restarting thecondor_shared_portdaemon.
(Ticket #5801).

• Fixed a bug that could cause the wrong dynamic slots to be preempted for a match when
ALLOW_PSLOT_PREEMPTIONis set toTrue . (Ticket #5748).

• Fixed a bug incream_gahpthat caused it to delegate RFC-format X.509 proxies incorrectly to the CREAM
service. (Ticket #5773).

• Fixed a bug where the Windows version information was set toa single value for multiple programs. This
resulted in crash boxes for most of the HTCondor tools being reported as a crash ofcondor_gpu_discovery
(Ticket #5795).

• Fixed a bug whereby thecondor_collectorprocess would exit with an error several times per hour if theconfig-
uration knobNO_DNSis set to True. (Ticket #5762).

• Fixed monitoring of memory and CPU usage of running jobs on Mac OS X. This monitoring didn’t work for
a personal installation of HTCondor. With Mac OS X 10.11 and above, this monitoring resulted in a flood of
errors messages to the system logs for a root-based installation. (Ticket #5777).

• Fixed a bug when attempting to authenticate using multiplemethods wherein if a method failed, the remaining
methods were not always attempted. (Ticket #5674).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5876
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5903
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5899
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5802
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5814
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5836
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5836
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5896
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5861
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5829
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5801
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5748
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5773
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5795
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5762
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5777
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5674

10.5. Stable Release Series 8.4 737

• Fixed a bug wherecondor_userpriomay fail to display the correct priority factor value for a user associated
with a group. (Ticket #5848).

• Fixed a bug that can cause thecondor_procdto crash. Fixed a bug that prevented other daemons from talking
to thecondor_procdwhen it is restarted after a crash. (Ticket #5863).

• If the condor_procdcrashes, thecondor_masternow tries to restart it several times. Previously only one restart
attempt was done. (Ticket #3655).

• Fixed a bug that resulted in thecondor_startercrashing when attempting to run a BOINC backfill job.
(Ticket #5862).

• Fixed a bug in the configuration language where an if defined test would reject a valid variable name when it
had both an underscore and a digit. (Ticket #5914).

• Fixed a bug that caused the condor_ssh_to_job command to fail when using the HTCondor RPM installation.
(Ticket #5591).

Version 8.4.8

Release Notes:

• HTCondor version 8.4.8 released on July 5, 2016.

New Features:

• None.

Bugs Fixed:

• Fixed a memory leak in the condor_q client code that impacted users of the Python API call htcon-
dor.Schedd().query(). (Ticket #5727).

• Fixed a bug that caused file transfers to fail when using Bosco. (Ticket #5710).

• Fixed a bug that could cause thecondor_scheddto crash when usingSCHEDD_CRON_JOBLIST.
(Ticket #5715).

• Thecondor_scheddnow rejects job submissions when the job owner doesn’t have auser account on the machine.
Previously, thecondor_scheddwould accept such jobs and then fail to run them. (Ticket #5734).

• Fixed a bug introduced in the 8.4.7 release that resulted inthe remotecondor_historycommand failing unless
the-limit argument is used. (Ticket #5735).

• Fixed a bug incondor_historythat caused it to treat all unrecognized arguments as user names (Ticket #5706).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5848
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5863
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=3655
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5862
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5914
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5591
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5727
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5710
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5715
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5734
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5735
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5706

10.5. Stable Release Series 8.4 738

• The high-availability daemon now properly detects changes to the HAD_LIST when reconfigured.
(Ticket #5753).

• The high-availability daemon now properly internalizes theHAD_LIST when reconfigured. (Ticket #5754).

• Fixed a bug that caused thecondor_masterto stop responding after it restarted a child daemon when shared port
is enabled on Windows. This bug could also result in a hang on shutdown. (Ticket #5713).

• Fixed a bug that could causecondor_statusor condor_qto crash when the-xml option is used. (Ticket #5718).

• Fixed a bug introduced in the 8.4.7 release that resulted ina parse error fromcondor_submitwhen
JobAdInformationAttrs was set in the configuration variableSUBMIT_ATTRS. (Ticket #5720).

Version 8.4.7

Release Notes:

• HTCondor version 8.4.7 released on June 6, 2016.

New Features:

• Docker universe jobs now drop all Linux capabilities by default. The new knob
DOCKER_DROP_ALL_CAPABILITIES, which defaults to true canbe set to false to revert to the old
behavior. (Ticket #5679).

• Added configuration variableMAX_TIME_SKIP to control how much system clock skip is allowed before the
HTCondor daemons restart. See Section 3.5.4 for more information.

• On Linux, HTCondor appropriately tunes kernel parametersroot_maxkeys and root_maxbytes to preventcon-
dor_masterstartup failures on older Linux kernels. (Ticket #5671).

• The configuration variableSUBMIT_ATTRSnow understands the +Attr syntax thatcondor_submituses to
inject attributes directly into the job ClassAd. (Ticket #5694).

• Thecondor_submitvariablejob_lease_duration can now be an expression. (Ticket #5694).

Bugs Fixed:

• All $function macro substitutions in in configuration fileswill now correctly handle variables with subsystem
and localname prefixes as well as self references. In particular VAR = $F(VAR) now substitutes correctly
rather than hanging forever. (Ticket #5565).

• Fixed a bug in Docker universe where the job would not run with the correct group id. (Ticket #5649).

• Fixed a performance problem in thecondor_scheddthat could cause it to become unresponsive for several
minutes after the set of significant attributes for negotiation changes. (Ticket #5648).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5753
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5754
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5713
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5718
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5720
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5679
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5671
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5694
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5694
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5565
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5649
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5648

10.5. Stable Release Series 8.4 739

• Fixed a bug where the python bindings ClassAd parser would fail to detect whether old or new format ClassAds
were present in a stream, even though the ClassAd format was specified in advance. (Ticket #5643).

• Fixed a bug where some floating point values would have an extra .0 appended to the end when printed (e.g.
2E40.0). These values could not be read properly by normal number parsing functions. (Ticket #5682).

• When usingGRIDMANAGER_SELECTION_EXPR, grid ads from differentcondor_gridmanagerinstances will
no longer overwrite each other in thecondor_collector. (Ticket #5683).

• In addition to logging to the fileKERNEL_TUNING_LOG, the defaultLINUX_KERNEL_TUNING_SCRIPT
now also logs to syslog and/etc/systcl.d/99-htcondor.conf . (Ticket #5489).

• Fixed a bug oncondor_historythat could result in truncation of the job id field. (Ticket #5527).

• On Windows, configuring HTCondor to restrict the range of outbound port numbers may cause substantial
delays when using the command-line tools. Since we now know that it’s not free to do so,LOWPORTand
HIGHPORTno longer restrict the port numbers of outbound connectionson Windows. If you still require this
functionality, useOUT_LOWPORTandOUT_HIGHPORT. (Ticket #4711).

• Fixed a bug that would causecondor_submitto create extra, incorrectly named output and error files when $$
substitution is used as part of the filenames. (Ticket #2720).

• Fixed a bug that would cause thecondor_history_helperto be invoked using the wrong name on Windows
(Ticket #5656).

• Fixed a bug that would sometimes cause configuration variables with a subsystem prefix to be ignored.
(Ticket #5310).

• Fixed a bug that could cause HAD to fail if a machine has an IPv6 address. (Ticket #5659).

• Fixed a bugs incondor_historywhen fetching history from a remotecondor_schedd. The bugs caused complete
failure when the remotecondor_scheddwas running Windows, and would corrupt some string values when the
remotecondor_scheddwas any other operating system. (Ticket #5701).

Version 8.4.6

Release Notes:

• HTCondor version 8.4.6 released on April 21, 2016.

New Features:

• condor_advertise-multiple now tolerates multiple blank lines in the input file. It no longer quits parsing on the
first first blank line that does not follow a valid ClassAd. (Ticket #5147).

Bugs Fixed:

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5643
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5682
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5683
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5489
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5527
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=4711
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2720
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5656
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5310
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5659
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5701
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5147

10.5. Stable Release Series 8.4 740

• Fixed bug where when partitionable slots were enabled in the condor_startd, a job would be unable to start
running on that machine in some cases. (Ticket #5626).

• Fixed a bug that would cause thecondor_startdto crash whenALLOW_PSLOT_PREEMPTIONwas enabled.
(Ticket #5586).

• Fixed a bug introduced in version 8.3 that removed the attributeREMOTE_GROUP_RESOURCES_IN_USE
from the job ad in the negotiator. (Ticket #5593).

• Fixed a bug where HTCondor would regard as invalid text representations of IPv6 addresses which were the
longest possible. This bug typically manifested as a failure to contact hosts which were advertising IPv6 ad-
dresses of this sort. (Ticket #5585).

• Fixed a memory leak in thecondor_negotiatorwhen ALLOW_PSLOT_PREEMPTIONwas enabled.
(Ticket #5571).

• Fixed a bug where after acondor_scheddrestart the submitter attributeWEIGHTED_JOBS_RUNNINGwould
be incorrectly computed. (Ticket #5637).

• Fixed a bug when usingCLAIM_PARTITIONABLE_LEFTOVERSand flocking. Machines from a remote pool
could be treated as if they were in the local pool. As a result,theRemotePool attribute would not be set in
the ads of jobs running on these machines, and theFlockedJobs andRunningJobs attributes of submitter
ads would have incorrect values. (Ticket #5577).

• Fixed a bug that could cause a job’s supplemental groups to be set incorrectly whenSOFT_UID_DOMAINis
set toTrue . (Ticket #5603).

• Fixed a bug that caused supplemental groups to be set incorrectly when executing file transfer plugins and
various hooks. (Ticket #5600).

• Fixed a bug that resulted in Windows 10 being reported as WindowsUnknown in theOPSYSNAMEattribute of
thecondor_startdClassAd. (Ticket #5575).

• Fixed a typo in theLIMIT_JOB_RUNTIMES policy configuration template that prevented the policy from
working as intended. (Ticket #5307).

Version 8.4.5

Release Notes:

• HTCondor version 8.4.5 released on March 22, 2016.

New Features:

• The default forDAGMAN_LOG_ON_NFS_IS_ERRORhas been changed fromTrue to False . This is the
result of changes in the 8.3 series that mean that file lockingis no longer required on user logs. (Ticket #5516).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5626
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5586
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5593
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5585
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5571
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5637
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5577
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5603
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5600
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5575
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5307
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5516

10.5. Stable Release Series 8.4 741

Bugs Fixed:

• Fixed a bug where HTCondor would unconditionally retry non-successful DNS lookups of the local system’s
hostname; this could cause delays of up to sixty seconds whenusing command-line tools on systems whose
hostname was not in DNS. We no longer retry on errors at all, and only retry failures which are temporary.
(Ticket #5553).

• Fixed a bug that would causecondor_schedds flocking to remote pools to not send no jobs, or fewer
jobs than possible to the remote pool. This was a result of notcorrectly setting the submitter attribute
WeightedJobsRunning for flocked pools. (Ticket #5539).

• Accounting group names that contain spaces are now rejected by condor_submitand ignored by thecon-
dor_negotiator. Previously, submitting a job with an accounting group namethat contained a space would
cause thecondor_negotiatorto fail at startup. (Ticket #5538).

• Fixed a bug whereby per-job history files (enabled by the configuration settingPER_JOB_HISTORY_DIR)
may briefly appear to be empty or incomplete. (Ticket #5562).

• Fixed a bug whereby ClassAds written into history files may contain the same attribute multiple times.
(Ticket #5548).

• Fixed a bug that caused DAGMan to not work correctly with some local universe node jobs. (This bug was
introduced in version 8.3.0.) (Ticket #5299).

• Fixed a bug that resulted in jobs managed by thecondor_job_routernot reporting memory and disk usage of
the job correctly. (Ticket #5552).

• Reworked a bug fix from the 8.4.3 release that was designed toallow for more than 100 dynamic slots to be a
bit more generous in allocating Disk to those slots. Now, those slots are less prone to fail to match subsequent
jobs. (Ticket #5535).

• Fixed a bug in the randomization of ports within the LOWPORTto HIGHPORT range that would sometimes
generate ports outside of this range on Windows. (Ticket #5555).

• Fixed a bug incondor_off -peaceful that could result in never sending the "off" command to machines
when at least one of the machines could not be contacted when sending the previous "peaceful" command.
(Ticket #5504).

• When cgroups are in use, limit the amount of file system cachein the kernel to prevent the OOM killer from
killing jobs that use a large amount of file system cache. (Ticket #5500).

Version 8.4.4

Release Notes:

• HTCondor version 8.4.4 released on February 4, 2016.

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5553
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5539
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5538
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5562
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5548
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5299
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5552
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5535
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5555
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5504
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5500

10.5. Stable Release Series 8.4 742

New Features:

• None.

Bugs Fixed:

• Fixed a bug that caused thecondor_collectorto crash ifCONDOR_DEVELOPERS_COLLECTORfailed to re-
solve. (Ticket #5492).

• Fixed a bug that caused Condor-C jobs to fail whenJobLeaseDuration was set to less than one hour (3600
seconds). The remote job would be aborted due to the job leasenot being renewed. (Ticket #5446).

• Fixed a bug that could cause HTCondor to misreport an EC2 jobas running when it had in fact been purged
from the service. Fixed bugs that could cause a running EC2 job to be misreported as idle. HTCondor also no
longer sends EC2 services superfluous queries. (This may increase the latency of HTCondor job status updates.)
(Ticket #4568).

• The grid manager now aborts if the GAHP hangs, which we detect by the absence of a response after
GRIDMANAGER_GAHP_RESPONSE_TIMEOUTseconds. The EC2 GAHP now performs many fewer memory
allocations in the course of normal operations, which improves stability on some systems. (Ticket #5442).

• Fixed a bug that caused thecondor_masterto fail if a shared port daemon address file written by a version of
HTCondor prior to 8.4.0 is present. (Ticket #5488).

• Fixed a bug that caused updates to the job attributeTimerRemove to not be respected while the job was being
managed by thecondor_shadow, condor_gridmanager, or the Job Router. (Ticket #5470).

• Fixed a bug where the job policy expression of a job could appear in one of theReason attributes of another
job. (Ticket #5466).

• Fixed a bug, that occurred on the Windows platform, that would cause thecondor_shadowto hang while trying
to delete old shadow logs when the value ofMAX_NUM_SHADOW_LOGwas larger than the default value of 1.
This bug would also sometimes result in thecondor_scheddhanging. (Ticket #5499).

Version 8.4.3

Release Notes:

• HTCondor version 8.4.3 released on December 16, 2015.

New Features:

• None.

Bugs Fixed:

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5492
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5446
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=4568
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5442
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5488
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5470
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5466
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5499

10.5. Stable Release Series 8.4 743

• Fixed a bug that caused the-append option to be handled too late to apply to the first Queue statement in a
condor_submitfile. (Ticket #5414).

• Fixed a bug that prevented running more than 100 slots on a single condor_startdwith partitionable slots.
(Ticket #5398).

• Fixed a bug which causedec2_iam_profile_namenot to work for Spot instances. (Ticket #5410).

• Fixed a bug where the cgroup VM limit would not be set for sizes over 2 Gibibytes. (Ticket #5434).

• Fixed bugs that prevented the HTCondor daemons from working promptly at startup when thecon-
dor_shared_portdaemon was in use on Windows platforms. (Ticket #5283). (Ticket #5430). (Ticket #5431).
(Ticket #5432). (Ticket #5433).

• Added SELinux type enforcement rules to allow thecondor_scheddto usesendmailon Enterprise Linux 7
platforms. (Ticket #5418).

• Fixed a bug where HTCondor service would not start if thecondor_master.pid file was empty on Linux
platforms. (Ticket #5427).

Version 8.4.2

Release Notes:

• HTCondor version 8.4.2 released on November 17, 2015.

New Features:

• condor_historyno longer reports an error when run on a system that does not have a history file. This change
was made because the history file is not created until after the first job runs. So, users were always seeing an
error message on a fresh installation of HTCondor. (Ticket #5374).

Bugs Fixed:

• Fixed a bug introduced in 8.4.1 that could cause thecondor_scheddto exit. This affected remote submit,
HTCondor-CE, and HTCondor-C. (Ticket #4522).

• TheTCP_FORWARDING_HOSTis now honored by HTCondor client programs. (Ticket #5339).

• Fixed a problem where Standard Universe jobs could not restart from a checkpoint in the Enterprise Linux 6
RPM distribution. (Ticket #5382). (Ticket #5383).

• Fixed bugs in the function of the DAGManDAGMAN_MAX_JOBS_IDLE/-maxidle throttle, especially for
node jobs that create multiple procs. (Ticket #5333).

• Fixed a problem where the RPMs would claim to publicly provide Globus shared libraries that are in a private
location. (Ticket #5349).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5414
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5398
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5410
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5434
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5283
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5430
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5431
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5432
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5433
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5418
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5427
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5374
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=4522
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5339
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5382
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5383
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5333
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5349

10.5. Stable Release Series 8.4 744

• Added a defaultrequest_memory for condor_submit-interactive of 512 megabytes. Formerly, the default
was one, which is insufficient in environments that strictlyenforce memory usage. (Ticket #5344).

• Fixed a problem were thecondor_classad RPM would claim to provide a replacement for theclassad
RPM in EPEL. (Ticket #5400).

• HTCondor now applies the configuration settingsGRIDMANAGER_GAHP_CALL_TIMEOUTand
GRIDMANAGER_CONNECT_FAILURE_RETRY_COUNTwhen running grid universe jobs for EC2 or
Google Compute Engine. (Ticket #5300).

• Fixed a crash in thecondor_scheddthat happened when the schedd was under load and being shutdown in the
fast mode. (Ticket #5371).

• Added a timeout to thecondor_fetchlogcommand so that it will not hang forever waiting for a unresponsive
daemon. (Ticket #5325).

• Fixed a problem that prevented HTCondor from building on some 64-bit Linux platforms such as Arm64. This
was reported by Debian maintainers as their Bug 804386. (Ticket #5380).

• Fixed a problem where the platform string was incorrect in the RPM packages. (Ticket #5384).

Known Issues:

• The DAGMan workflow log file is not correctly written for local universe DAG node jobs that have no log file
specified in the submit file, which causes DAGMan to wait forever, thinking the jobs have not completed. Note
that this problem can be worked around by specifyinganylog file for the job, evenlog = /dev/null . (This
bug is a regression that was introduced some time since version 8.2.4.) (Ticket #5299).

• DAG node retries do not work correctly with DAG node submit files that create more than one proc in the
resulting cluster (such nodes cause DAGMan to hang if the retry is activated). We believe that this bug has
existed since DAGMan first supported multi-proc node jobs. (Ticket #5350).

Version 8.4.1

Release Notes:

• HTCondor version 8.4.1 released on October 27, 2015.

Known Issues:

• Remote submit to an 8.4.1condor_scheddis broken if file transfer is used. This also means HTCondor-CE and
HTCondor-C are broken. This bug will be fixed in version 8.4.2. (Ticket #4522).

• TCP_FORWARDING_HOSTis disregarded by HTCondor clients starting in version 8.3.6. This bug will be fixed
in version 8.4.2 and 8.5.1. (Ticket #5339).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5344
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5400
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5300
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5371
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5325
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5380
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5384
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5299
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5350
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=4522
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5339

10.5. Stable Release Series 8.4 745

New Features:

• Added support to allow an admin to always volume mount certain directories into docker universe containers
running on a host. (Ticket #5308).

• Added four policy metaknobs to simplify configuring a policy to either preempt or hold jobs that use more
memory or CPU cores than provisioned in the slot. See thePOLICY category of metaknobs in section 3.5.1 for
additional information. (Ticket #5250).

• Added configuration variables and documentation so that weuniformly prefer <var>_ATTRS over
<var>_EXPRS but support both. This includesSTARTD_ATTRS, STARTD_JOB_ATTRSand
SUBMIT_ATTRSwhich are often used by HTCondor sites which customize the configuration. These con-
figuration variables are now exclusively for use by HTCondoradministrators; The former default values for
these variables have been moved into other configuration which is reserved for use by HTCondor developers.
This is done to prevent administrators from accidentally removing the necessary defaults. A warning about use
of STARTD_EXPRShas been disabled unlessSTARTD_ATTRSor SLOT_TYPE_<n>_STARTD_ATTRSis
also used, since the use all three of these at the same time is not supported. (Ticket #5326).

• Whencondor_reconfigandcondor_restartare run as root they will check to see if the condor user has read
access to all of the configuration files before sending the command. This is done to prevent aborting the daemons
accidentally by sending reconfig after the admin creates a new config file and forgets to give the condor user
read access to that file. (Ticket #4506).

• Added the-natural sort option tocondor_statusto sort the slots in numerical order rather than alphabetical
order. (Ticket #5131).

Bugs Fixed:

• When cgroups are enabled, and CGROUP_MEMORY_POLICY is soft, HTCondor now also sets the hard limit
to the virtual memory limit of the job, if there is one. (Ticket #5280).

• If cgroups are enabled, and a job goes over the memory limit,the cgroup OOM killer fires, and the job is put
on hold. HTCondor now updates the job’s memory usage statistics with the most up to date usage, instead of
relying on the previous snapshot. (Ticket #5341).

• Fixed a bug where thecondor_kbddcould not accurately measure the keyboard idle time. This daemon now
works correctly on Linux systems whose X server support the MIT screen saver extension. (Ticket #5265).

• Fixed a bug which prevented SOAP submissions. (Ticket #5260).

• The parameterSTARTD_HISTORYis now set to record the job histories per startd, in the log directory of the
execute machine. These can be read with thecondor_historycommand. Previously the default was not to record
these. (Ticket #5257).

• The parameterSCHEDD_USE_SLOT_WEIGHTnow defaults to true, so that SLOT_WEIGHT can be used with
hierarchical group quotas and partitionable slots. (Ticket #5256).

• Fixed bug whereby occasionally the command-line tools would emit debug messages to stderr with text “I am:
hostname: . . . ”. (Ticket #5276).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5308
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5250
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5326
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=4506
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5131
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5280
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5341
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5265
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5260
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5257
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5256
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5276

10.5. Stable Release Series 8.4 746

• Fixed a bug that prevented node retries from working on DAG nodes that are DAG-level NOOP nodes. (This
bug has existed at least since the 8.2 series.) (Ticket #5277).

• Fixed a problem when the HTCondor executables were not compiled with RPATHenabled on Enterprise Linux
6 platforms.RPATHis used to load Globus and other libraries from the condor-externals RPM. (Ticket #5294).

• The job attributeJobCurrentStartTransferOutputDate is now properly reported in the job ad.
(Ticket #5298).

• Fixed configuration parameterNETWORK_HOSTNAME, which was broken starting with version 8.3.2.
(Ticket #5288).

• Fixed a bug that could cause the Job Router to crash when invoking a transformation hook. (Ticket #5224).

• Fixed several memory leaks in thenordugrid_gahp. (Ticket #5322).

• Improved thebatch_gahpto better handle batch systems that reuse job IDs. (Ticket #5062).

• When thebatch_gahprejects a request because it is overloaded, thecondor_gridmanagernow reduces the rate
of requests and retries the rejected request later. (Ticket#5253).

item Thecondor_hadandcondor_replicationdaemons now work properly when Shared Port is enabled. They
still require their own dedicated ports. (Ticket #5301).

• Fixed a bug that causecondor_mipsto report numbers about 40 percent lower than it should on Linux platforms.
(Ticket #5261).

• Fixed a bug incondor_installthat would cause it to configure HTCondor to advertise the public IP addresses to
the collector even when using localhost or 127.0.0.1 for a personal HTCondor. (Ticket #5286).

• Fixed a bug incondor_qthat caused slices in the Queue statement to be treated as part of the arguments filename
when the slice was longer than 8 characters. (Ticket #5273).

• Added SELinux type enforcement rules to allow thecondor_scheddto be able to access user files in NFS
mounted file systems. (Ticket #5343).

Version 8.4.0

Release Notes:

• HTCondor version 8.4.0 released on September 14, 2015.

New Features:

• None.

Bugs Fixed:

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5277
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5294
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5298
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5288
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5224
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5322
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5062
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5253
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5301
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5261
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5286
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5273
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5343

10.5. Stable Release Series 8.4 747

• Fixed a bug introduced in HTCondor version 8.3.7 that caused thecondor_shared_portdaemon to leak file
descriptors. Also made HTCondor work better when some HTCondor daemons are using shared port, but the
condor_masteris not. (Ticket #5259).

• Thecondor_starterlowers the OOM (out of memory) score of jobs so the OOM killer is more likely to chose
an HTCondor job rather than an HTCondor daemon or other user process. (Ticket #5249).

• Job submission fails if X.509 certificates are advertised with EC2 grid universe jobs. Therefore EC2 grid uni-
verse jobs no longer advertise their access keys. (Ticket #5252).

HTCondor Version 8.6.4 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5259
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5249
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5252

CHAPTER

ELEVEN

Command Reference Manual (man pages)

748

bosco_cluster(1) 749

bosco_cluster

Manage and configure the clusters to be accessed.

Synopsis

bosco_cluster[- h || -- help]

bosco_cluster[- l || -- list] [- a || -- add<host> [schedd]] [- r || -- remove<host>] [- s || -- status<host>] [- t ||
-- test<host>]

Description

bosco_clusteris part of the Bosco system for accessing high throughput computing resources from a local desktop.
For detailed information, please see the Bosco web site: http://bosco.opensciencegrid.org/

bosco_clusterenables management and configuration of the computing resources the Bosco tools access; these are
called clusters.

A <host> is of the formuser@fqdn.example.com .

Options

—help Print usage information and exit.

—list List all installed clusters.

—remove<host> Remove an already installed cluster, where the cluster is identified by<host>.

—add <host> [scheduler] Install and add a cluster defined by<host>. The optionalschedulerspecifies the scheduler
on the cluster. Valid values arepbs , lsf , condor , sge or slurm . If not given, the default will bepbs .

—status<host> Query and print the status of an already installed cluster, where the cluster is identified by<host>.

—test<host> Attempt to submit a test job to an already installed cluster,where the cluster is identified by<host>.

HTCondor Version 8.6.4, Command Reference

http://bosco.opensciencegrid.org/

bosco_cluster(1) 750

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

bosco_findplatform(1) 751

bosco_findplatform

Synopsis

bosco_findplatform[- h || -- help]

bosco_findplatform[- u || -- url] [- b || -- bit] [- f || -- full] [-- force=<platformstring>] [- i || -- install <instal-
loptions>]

Description

bosco_findplatformis part of the Bosco system for accessing high throughput computing resources from a local desk-
top.

This command is not meant to be executed on the command line byusers.

For detailed information, please see the Bosco web site: http://bosco.opensciencegrid.org/

Options

—help Print usage information and exit.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

http://bosco.opensciencegrid.org/

bosco_install(1) 752

bosco_install

Synopsis

bosco_install[-- help] | [-- usage]

bosco_install [-- install[=<path/to/release_dir>]] [-- prefix=<path>] [-- install-dir=<path>] [-- local-
dir=<path>] [-- make-personal-condor] [-- bosco] [-- type=<[submit][,execute][,manager]>] [-- central-
manager=<host>] [-- credd] [-- owner=<username>] [-- maybe-daemon-owner] [-- install-log=<file>]
[-- overwrite] [-- env-scripts-dir=<dir>] [-- no-env-scripts] [-- ignore-missing-libs] [-- force] [-- backup]
[-- verbose]

Description

bosco_installis part of the Bosco system for accessing high throughput computing resources from a local desktop.
For detailed information, please see the Bosco web site: http://bosco.opensciencegrid.org/

bosco_installis linked tocondor_install. The command

bosco_install

becomes

condor_install --bosco

Please see thecondor_installman page for details of the command line options.

A Personal HTCondor specialized for Bosco is installed, permitting central manager tasks and job submission.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

http://bosco.opensciencegrid.org/

bosco_ssh_start(1) 753

bosco_ssh_start

Synopsis

bosco_ssh_start

Description

bosco_ssh_startis part of the Bosco system for accessing high throughput computing resources from a local desktop.

This command is not meant to be executed on the command line byusers.

For detailed information, please see the Bosco web site: http://bosco.opensciencegrid.org/

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

http://bosco.opensciencegrid.org/

bosco_start(1) 754

bosco_start

start up the Personal HTCondor installation specific to Bosco

Synopsis

bosco_start

Description

bosco_startis part of the Bosco system for accessing high throughput computing resources from a local desktop. For
detailed information, please see the Bosco web site: http://bosco.opensciencegrid.org/

After installation,bosco_startinvokes the daemons of the Personal HTCondor installation specific to the Bosco im-
plementation.

There are no command line arguments to this script.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

http://bosco.opensciencegrid.org/

bosco_stop(1) 755

bosco_stop

Shut down HTCondor daemons in a Bosco installation.

Synopsis

bosco_stop

Description

bosco_stopis part of the Bosco system for accessing high throughput computing resources from a local desktop. For
detailed information, please see the Bosco web site: http://bosco.opensciencegrid.org.

bosco_stopshuts down the HTCondor daemons that are installed and running as part of the Personal HTCondor. It is
the equivalent ofcondor_off.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

http://bosco.opensciencegrid.org

bosco_uninstall(1) 756

bosco_uninstall

uninstall a Bosco installation

Synopsis

bosco_uninstall

bosco_uninstallis part of the Bosco system for accessing high throughput computing resources from a local desktop.
For detailed information, please see the Bosco web site: http://bosco.opensciencegrid.org/.

bosco_uninstallremoves the Bosco software, but leaves files in the.bosco and.ssh directories.

There are no command line arguments to this script.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

http://bosco.opensciencegrid.org/

condor_advertise(1) 757

condor_advertise

Send a ClassAd to thecondor_collectordaemon

Synopsis

condor_advertise[-help | -version]

condor_advertise[-pool centralmanagerhostname[:portname]] [-debug] [-tcp] [-udp] [-multiple] update-command
[classad-filename]

Description

condor_advertisesends one or more ClassAds to thecondor_collectordaemon on the central manager machine.
The required argumentupdate-commandsays what daemon type’s ClassAd is to be updated. The optional argument
classad-filenameis the file from which the ClassAd(s) should be read. Ifclassad-filenameis omitted or is the dash
character (’-’), then the ClassAd(s) are read from standardinput.

When-multiple is specified, multiple ClassAds may be published. Publishing many ClassAds in a single invocation
of condor_advertiseis more efficient than invokingcondor_advertiseonce per ClassAd. The ClassAds are expected
to be separated by one or more blank lines. When-multiple is not specified, blank lines are ignored (for backward
compatibility). It is best not to rely on blank lines being ignored, as this may change in the future.

Theupdate-commandmay be one of the following strings:

UPDATE_STARTD_AD

UPDATE_SCHEDD_AD

UPDATE_MASTER_AD

UPDATE_GATEWAY_AD

UPDATE_CKPT_SRVR_AD

UPDATE_NEGOTIATOR_AD

UPDATE_HAD_AD

UPDATE_AD_GENERIC

UPDATE_SUBMITTOR_AD

UPDATE_COLLECTOR_AD

UPDATE_LICENSE_AD

HTCondor Version 8.6.4, Command Reference

condor_advertise(1) 758

UPDATE_STORAGE_AD

condor_advertisecan also be used to invalidate and delete ClassAds currentlyheld by thecondor_collectordaemon.
In this case theupdate-commandwill be one of the following strings:

INVALIDATE_STARTD_ADS

INVALIDATE_SCHEDD_ADS

INVALIDATE_MASTER_ADS

INVALIDATE_GATEWAY_ADS

INVALIDATE_CKPT_SRVR_ADS

INVALIDATE_NEGOTIATOR_ADS

INVALIDATE_HAD_ADS

INVALIDATE_ADS_GENERIC

INVALIDATE_SUBMITTOR_ADS

INVALIDATE_COLLECTOR_ADS

INVALIDATE_LICENSE_ADS

INVALIDATE_STORAGE_ADS

For any of these INVALIDATE commands, the ClassAd in the required file consists of three entries. The file contents
will be similar to:

MyType = "Query"
TargetType = "Machine"
Requirements = Name == "condor.example.com"

The definition for MyType is always Query . TargetType is set to the MyType of the ad to be
deleted. ThisMyType is DaemonMaster for the condor_masterClassAd, Machine for the condor_startd
ClassAd,Scheduler for the condor_scheddClassAd, andNegotiator for the condor_negotiatorClassAd.
Requirements is an expression evaluated within the context of ads ofTargetType . WhenRequirements
evaluates toTrue , the matching ad is invalidated. A full example is given below.

Options

-help Display usage information

HTCondor Version 8.6.4, Command Reference

condor_advertise(1) 759

-version Display version information

-debug Print debugging information as the command executes.

-multiple Send more than one ClassAd, where the boundary between ClassAds is one or more blank lines.

-pool centralmanagerhostname[:portname]Specify a pool by giving the central manager’s host name and an
optional port number. The default is theCOLLECTOR_HOSTspecified in the configuration file.

-tcp Use TCP for communication. Used by default ifUPDATE_COLLECTOR_WITH_TCPis true.

-udp Use UDP for communication.

General Remarks

The job and machine ClassAds are regularly updated. Therefore, the result ofcondor_advertiseis likely to be over-
written in a very short time. It is unlikely that either HTCondor users (those who submit jobs) or administrators will
ever have a use for this command. If it is desired to update or set a ClassAd attribute, thecondor_config_valcommand
is the proper command to use.

Attributes are defined in Appendix A of the HTCondor manual.

For those administrators who do needcondor_advertise, the following attributes may be included:

DaemonStartTime

UpdateSequenceNumber

If both of the above are included, thecondor_collectorwill automatically include the following attributes:

UpdatesTotal

UpdatesLost

UpdatesSequenced

UpdatesHistory Affected byCOLLECTOR_DAEMON_HISTORY_SIZE.

HTCondor Version 8.6.4, Command Reference

condor_advertise(1) 760

Examples

Assume that a machine called condor.example.com is turned off, yet its condor_startdClassAd does not expire for
another 20 minutes. To avoid this machine being matched, an administrator chooses to delete the machine’scon-
dor_startdClassAd. Create a file (calledremove_file in this example) with the three required attributes:

MyType = "Query"
TargetType = "Machine"
Requirements = Name == "condor.example.com"

This file is used with the command:

% condor_advertise INVALIDATE_STARTD_ADS remove_file

Exit Status

condor_advertisewill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure. Success means that all ClassAds were successfullysent to allcondor_collectordaemons. When there are
multiple ClassAds or multiplecondor_collectordaemons, it is possible that some but not all publications succeed; in
this case, the exit status is 1, indicating failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_check_userlogs(1) 761

condor_check_userlogs

Check job event log files for errors

Synopsis

condor_check_userlogsUserLogFile1[UserLogFile2. . .UserLogFileN]

Description

condor_check_userlogsis a program for checking a job event log or a set of job event logs for errors. Output includes
an indication that no errors were found within a log file, or a list of errors such as an execute or terminate event without
a corresponding submit event, or multiple terminated events for the same job.

condor_check_userlogsis especially useful for debuggingcondor_dagmanproblems. Ifcondor_dagmanreports an
error it is often useful to runcondor_check_userlogson the relevant log files.

Exit Status

condor_check_userlogswill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one)
upon failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_checkpoint(1) 762

condor_checkpoint

send a checkpoint command to jobs running on specified hosts

Synopsis

condor_checkpoint[-help | -version]

condor_checkpoint [-debug] [-pool centralmanagerhostname[:portnumber]] [-namehostname| hostname|
-addr "<a.b.c.d:port>" | "<a.b.c.d:port>" | -constraint expression| -all]

Description

condor_checkpointsends a checkpoint command to a set of machines within a single pool. This causes the startd
daemon on each of the specified machines to take a checkpoint of any running job that is executing under the standard
universe. The job is temporarily stopped, a checkpoint is taken, and then the job continues. If no machine is specified,
then the command is sent to the machine that issued thecondor_checkpointcommand.

The command sent is a periodic checkpoint. The job will take acheckpoint, but then the job will immediately continue
running after the checkpoint is completed.condor_vacate, on the other hand, will result in the job exiting (vacating)
after it produces a checkpoint.

If the job being checkpointed is running under the standard universe, the job produces a checkpoint and then continues
running on the same machine. If the job is running under another universe, or if there is currently no HTCondor job
running on that host, thencondor_checkpointhas no effect.

There is generally no need for the user or administrator to explicitly run condor_checkpoint. Taking checkpoints of
running HTCondor jobs is handled automatically following the policies stated in the configuration files.

Options

-help Display usage information

-version Display version information

-debug Causes debugging information to be sent tostderr , based on the value of the configuration variable
TOOL_DEBUG.

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host name and an
optional port number

HTCondor Version 8.6.4, Command Reference

condor_checkpoint(1) 763

-namehostnameSend the command to a machine identified byhostname

hostnameSend the command to a machine identified byhostname

-addr " <a.b.c.d:port>" Send the command to a machine’s master located at"<a.b.c.d:port>"

" <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-constraint expressionApply this command only to machines matching the given ClassAd expression

-all Send the command to all machines in the pool

Exit Status

condor_checkpointwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

Examples

To send acondor_checkpointcommand to two named machines:

% condor_checkpoint robin cardinal

To send thecondor_checkpointcommand to a machine within a pool of machines other than the local pool, use the
-pool option. The argument is the name of the central manager for the pool. Note that one or more machines within
the pool must be specified as the targets for the command. Thiscommand sends the command to a the single machine
namedcae17within the pool of machines that hascondor.cae.wisc.eduas its central manager:

% condor_checkpoint -pool condor.cae.wisc.edu -name cae1 7

Author

Center for High Throughput Computing, University of Wisconsin–Madison

HTCondor Version 8.6.4, Command Reference

condor_checkpoint(1) 764

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_chirp(1) 765

condor_chirp

Access files or job ClassAd from an executing job

Synopsis

condor_chirp<Chirp-Command>

Description

condor_chirpis not intended for use as a command-line tool. It is most often invoked by an HTCondor job, while
the job is executing. It accesses files or job ClassAd attributes on the submit machine. Files can be read, written or
removed. Job attributes can be read, and most attributes canbe updated.

When invoked by an HTCondor job, the command-line argumentsdescribe the operation to be performed. Each of
these arguments is described below within the section on Chirp Commands. Descriptions using the termslocal and
remoteare given from the point of view of the executing job.

If the input file name forput or write is a dash,condor_chirpuses standard input as the source. If the output file name
for fetch is a dash,condor_chirpwrites to standard output instead of a local file.

Jobs that usecondor_chirpmust have the attributeWantIOProxy set toTrue in the job ClassAd. To do this, place

+WantIOProxy = true

in the submit description file of the job.

condor_chirponly works for jobs run in the vanilla, parallel and java universes.

Chirp Commands

fetch RemoteFileName LocalFileNameCopy theRemoteFileNamefrom the submit machine to the execute machine,
naming itLocalFileName.

put [-mode mode] [-perm UnixPerm] LocalFileName RemoteFileNameCopy theLocalFileNamefrom the exe-
cute machine to the submit machine, naming itRemoteFileName. The optional-perm UnixPermargument
describes the file access permissions in a Unix format; 660 isan example Unix format.

The optional-modemodeargument is one or more of the following characters describing theRemoteFileName
file: w, open for writing;a, force all writes to append;t , truncate before use;c , create the file, if it does not
exist;x , fail if c is given and the file already exists.

HTCondor Version 8.6.4, Command Reference

condor_chirp(1) 766

removeRemoteFileNameRemove theRemoteFileNamefile from the submit machine.

get_job_attr JobAttributeNamePrints the named job ClassAd attribute to standard output.

set_job_attr JobAttributeName AttributeValueSets the named job ClassAd attribute with the given attribute value.

get_job_attr_delayedJobAttributeNamePrints the named job ClassAd attribute to standard output, potentially
reading the cached value from a recent set_job_attr_delayed.

set_job_attr_delayedJobAttributeName AttributeValueSets the named job ClassAd attribute with the given
attribute value, but does not immediately synchronize the value with the submit side. It can take 15 minutes
before the synchronization occurs. This has much less overhead than the non delayed version. With this option,
jobs donot need ClassAd attributeWantIOProxy set. With this option, job attribute names are restricted to
begin with the case sensitive substringChirp .

ulog MessageAppendsMessageto the job event log.

read [-offset offset] [-stride length skip] RemoteFileName LengthRead Length bytes from RemoteFileName.
Optionally, implement a stride by starting the read atoffsetand readinglengthbytes with a stride ofskipbytes.

write [-offset offset] [-stride length skip] RemoteFileName LocalFileName[numbytes] Write the contents of
LocalFileNameto RemoteFileName. Optionally, start writing to the remote file atoffsetand writelengthbytes
with a stride ofskip bytes. If the optionalnumbytesfollows LocalFileName, then the write will halt after
numbytesinput bytes have been written. Otherwise, the entire contents ofLocalFileNamewill be written.

rmdir [-r] RemotePathDelete the directory specified byRemotePath. If the optional-r is specified, recursively
delete the entire directory.

getdir [-l] RemotePathList the contents of the directory specified byRemotePath. If -l is specified, list all metadata
as well.

whoami Get the user’s current identity.

whoareyouRemoteHostGet the identity ofRemoteHost.

link [-s] OldRemotePath NewRemotePathCreate a hard link fromOldRemotePathto NewRemotePath. If the
optional-s is specified, create a symbolic link instead.

HTCondor Version 8.6.4, Command Reference

condor_chirp(1) 767

readlink RemoteFileNameRead the contents of the file defined by the symbolic linkRemoteFileName.

stat RemotePathGet metadata forRemotePath. Examines the target, if it is a symbolic link.

lstat RemotePathGet metadata forRemotePath. Examines the file, if it is a symbolic link.

statfsRemotePathGet file system metadata forRemotePath.

accessRemotePath ModeCheck access permissions forRemotePath. Modeis one or more of the charactersr , w, x ,
or f , representing read, write, execute, and existence, respectively.

chmodRemotePath UnixPermChange the permissions ofRemotePathto UnixPerm. UnixPermdescribes the file
access permissions in a Unix format; 660 is an example Unix format.

chownRemotePath UID GID Change the ownership ofRemotePathto UID and GID. Changes the target of
RemotePath, if it is a symbolic link.

chownRemotePath UID GID Change the ownership ofRemotePathto UID and GID. Changes the link, if
RemotePathis a symbolic link.

truncate RemoteFileName LengthTruncatesRemoteFileNameto Lengthbytes.

utime RemotePath AccessTime ModifyTimeChange the access toAccessTimeand modification time toModifyTime
of RemotePath.

Examples

To copy a file from the submit machine to the execute machine while the user job is running, run

condor_chirp fetch remotefile localfile

To print to standard output the value of theRequirements expression from within a running job, run

condor_chirp get_job_attr Requirements

HTCondor Version 8.6.4, Command Reference

condor_chirp(1) 768

Note that the remote (submit-side) directory path is relative to the submit directory, and the local (execute-side) direc-
tory is relative to the current directory of the running program.

To append the word "foo" to a file calledRemoteFile on the submit machine, run

echo foo | condor_chirp put -mode wa - RemoteFile

To append the message "Hello World" to the job event log, run

condor_chirp ulog "Hello World"

Exit Status

condor_chirpwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_cod(1) 769

condor_cod

manage COD machines and jobs

Synopsis

condor_cod [-help | -version]

condor_cod request [-pool centralmanagerhostname[:portnumber] | -namescheddname]|
[-addr "<a.b.c.d:port>"] [[-help | -version] | [-debug| -timeout N | -classad file]][-requirements expr]
[-lease N]

condor_codrelease-id ClaimID [[-help | -version] | [-debug| -timeout N | -classad file]][-fast]

condor_cod activate -id ClaimID [[-help | -version] | [-debug| -timeout N | -classad file]
][-keyword string | -jobad filename| -cluster N | -proc N | -requirements expr]

condor_coddeactivate-id ClaimID [[-help | -version] | [-debug | -timeout N | -classad file]][-fast]

condor_codsuspend-id ClaimID [[-help | -version] | [-debug| -timeout N | -classad file]]

condor_codrenew-id ClaimID [[-help | -version] | [-debug| -timeout N | -classad file]]

condor_codresume-id ClaimID [[-help | -version] | [-debug| -timeout N | -classad file]]

condor_cod delegate_proxy -id ClaimID [[-help | -version] | [-debug| -timeout N | -classad file]
][-x509proxy ProxyFile]

Description

condor_codissues commands that manage and use COD claims on machines, given proper authorization.

Instead of specifying an argument ofrequest, release, activate, deactivate, suspend, renew, or resume, the user may
invoke thecondor_codtool by appending an underscore followed by one of these arguments. As an example, the
following two commands are equivalent:

condor_cod release -id "<128.105.121.21:49973>#1073352 104#4"

condor_cod_release -id "<128.105.121.21:49973>#107335 2104#4"

To make these extended-name commands work, hard link the extended name to thecondor_codexecutable. For
example on a Unix machine:

ln condor_cod_request condor_cod

HTCondor Version 8.6.4, Command Reference

condor_cod(1) 770

Therequestargument gives a claim ID, and the other commands (release, activate, deactivate, suspend, andresume)
use the claim ID. The claim ID is given as the last line of output for a request, and the output appears of the form:

ID of new claim is: "<a.b.c.d:portnumber>#x#y"

An actual example of this line of output is

ID of new claim is: "<128.105.121.21:49973>#1073352104#4 "

The HTCondor manual has a complete description of COD.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host name and an
optional port number

-namescheddnameSend the command to a machine identified byscheddname

-addr " <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-leaseN For therequestof a new claim, automatically release the claim afterN seconds.

request Create a new COD claim

release Relinquish a claim and kill any running job

activate Start a job on a given claim

deactivate Kill the current job, but keep the claim

suspend Suspend the job on a given claim

renew Renew the lease to the COD claim

HTCondor Version 8.6.4, Command Reference

condor_cod(1) 771

resume Resume the job on a given claim

delegate_proxyDelegate an X509 proxy for the given claim

General Remarks

Examples

Exit Status

condor_codwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_compile(1) 772

condor_compile

create a relinked executable for use as a standard universe job

Synopsis

condor_compilecc | CC | gcc| f77 | g++ | ld | make| . . .

Description

Usecondor_compileto relink a program with the HTCondor libraries for submission as a standard universe job. The
HTCondor libraries provide the program with additional support, such as the capability to produce checkpoints, which
facilitate the standard universe mode of operation.condor_compilerequires access to the source or object code of the
program to be submitted; if source or object code for the program is not available, then the program must use another
universe, such as vanilla. Source or object code may not be available if there is only an executable binary, or if a shell
script is to be executed as an HTCondor job.

To usecondor_compile, issue the commandcondor_compilewith command line arguments that form the normally
entered command to compile or link the application. Resulting executables will have the HTCondor libraries linked
in. For example,

condor_compile cc -O -o myprogram.condor file1.c file2.c . ..

will produce the binary myprogram.condor , which is relinked for HTCondor, capable of check-
point/migration/remote system calls, and ready to submit as a standard universe job.

If the HTCondor administrator has opted to fully installcondor_compile, thencondor_compilecan be followed by
practically any command or program, including make or shellscript programs. For example, the following would all
work:

condor_compile make

condor_compile make install

condor_compile f77 -O mysolver.f

condor_compile /bin/csh compile-me-shellscript

If the HTCondor administrator has opted to only do a partial install of condor_compile, then you are restricted to
following condor_compilewith one of these programs:

cc (the system C compiler)

c89 (POSIX compliant C compiler, on some systems)

CC (the system C++ compiler)

HTCondor Version 8.6.4, Command Reference

condor_compile(1) 773

f77 (the system FORTRAN compiler)

gcc (the GNU C compiler)

g++ (the GNU C++ compiler)

g77 (the GNU FORTRAN compiler)

ld (the system linker)

NOTE: If you explicitly call ld when you normally create your binary, instead use:

condor_compile ld <ld arguments and options>

Exit Status

condor_compileis a script that executes specified compilers and/or linkers. If an error is encountered before calling
these other programs,condor_compilewill exit with a status value of 1 (one). Otherwise, the exit status will be that
given by the executed program.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_config_val(1) 774

condor_config_val

Query or set a given HTCondor configuration variable

Synopsis

condor_config_val<help option>

condor_config_val[<location options>] <edit option>

condor_config_val[<location options>] [<view options>] vars

condor_config_valusecategory[:template_name] [-expand]

Description

condor_config_valcan be used to quickly see what the current HTCondor configuration is on any given machine.
Given a space separated set of configuration variables with the vars argument,condor_config_valwill report what
each of these variables is currently set to. If a given variable is not defined,condor_config_valwill halt on that
variable, and report that it is not defined. By default,condor_config_vallooks in the local machine’s configuration
files in order to evaluate the variables. Variables and values may instead be queried from a daemon specified using a
location option.

Rawoutput ofcondor_config_valdisplays the string used to define the configuration variable. This is what is on
the right hand side of the equals sign (=) in a configuration file for a variable. The default output is an expanded
one. Expanded output recursively replaces any macros within the raw definition of a variable with the macro’s raw
definition.

Each daemon remembers settings made by a successful invocation of condor_config_val. The configurationfile is not
modified.

condor_config_valcan be used to persistently set or unset configuration variables for a specific daemon on a given
machine using a-setor -unsetedit option. Persistent settings remain when the daemon is restarted. Configuration
variables for a specific daemon on a given machine may be set orunset for the time period that the daemon continues
to run using a-rsetor -runsetedit option. These runtime settings will override persistent settingsuntil the daemon is
restarted. Any changes made will not take effect untilcondor_reconfigis invoked.

In general, modifying a host’s configuration withcondor_config_valrequires theCONFIGaccess level, which is dis-
abled on all hosts by default. Administrators have more fine-grained control over which access levels can modify
which settings. See section 3.8.1 on page 413 for more details on security settings. Further, security considera-
tions require proper settings of configuration variablesSETTABLE_ATTRS_<PERMISSION-LEVEL>(see 3.5.4),
ENABLE_PERSISTENT_CONFIG(see 3.5.4), andHOSTALLOW. . . (see 3.5.4) in order to usecondor_config_valto
change any configuration variable.

It is generally wise to test a new configuration on a single machine to ensure that no syntax or other errors in the con-

HTCondor Version 8.6.4, Command Reference

condor_config_val(1) 775

figuration have been made before the reconfiguration of many machines. Having bad syntax or invalid configuration
settings is a fatal error for HTCondor daemons, and they willexit. It is far better to discover such a problem on a
single machine than to cause all the HTCondor daemons in the pool to exit.condor_config_valcan help with this type
of testing.

Options

-help (help option) Print usage information and exit.

-version (help option) Print the HTCondor version information and exit.

-set"var = value" (edit option) Sets one or more persistent configuration file variables. The new value remains if the
daemon is restarted. One or more variables can be set; the syntax requires double quote marks to identify the
pairing of variable name to value, and to permit spaces.

-unsetvar (edit option) Each of the persistent configuration variables listed reverts to its previous value.

-rset "var = value" (edit option) Sets one or more configuration file variables. The new value remains as long as
the daemon continues running. One or more variables can be set; the syntax requires double quote marks to
identify the pairing of variable name to value, and to permitspaces.

-runset var (edit option) Each of the configuration variables listed reverts to its previous value as long as the daemon
continues running.

-dump (view option) Display the raw value of allvars listed. If no vars are listed, then print all configuration
variables and their values. The-expand, -default, and -evaluateoptions take precedence over this-dump
option, such that the output will not be raw.

-default (view option) Default values are displayed.

-expand (view option) Expanded values are displayed. This is the default.

-raw (view option) Raw values are displayed.

-verbose (view option) Display configuration file name and line numberwhere the variable is set, along with the raw,
expanded, and default values of the variable.

HTCondor Version 8.6.4, Command Reference

condor_config_val(1) 776

-debug[:<opts>] (view option) Send output tostderr , overriding a set value ofTOOL_DEBUG.

-evaluate (view option) Applied only when alocation option specifies a daemon. The value of the requested
parameter will be evaluated with respect to the ClassAd of that daemon.

-used (view option) Applied only when alocation option specifies a daemon. Modifies which variables are displayed
to only those used by the specified daemon.

-unused (view option) Applied only when alocation option specifies a daemon. Modifies which variables are
displayed to only thosenot used by the specified daemon.

-config (view option) Applied only when the configuration is read from files (the default), andnot when applied to a
specific daemon. Display the current configuration file that set the variable.

-writeconfig[:upgrade] filename (view option) For the configuration read from files (the default), write to file
filenameall configuration variables. Values that are the same as internal, compile-time defaults will be preceded
by the comment character. If the:upgrade option is specified, then values that are the same as the internal,
compile-time defaults are omitted. Variables are in the same order as the they were read from the original
configuration files.

-mixedcase(view option) Applied only when the configuration is read from files (the default), andnot when applied
to a specific daemon. Print variable names with the same letter case used in the variable’s definition.

-local-name<name> (view option) Applied only when the configuration is read from files (the default), andnot
when applied to a specific daemon. Inspect the values of attributes that use local names, which is useful to
distinguish which daemon when there is more than one of the particular daemon running.

-subsystem<daemon> (view option) Applied only when the configuration is read from files (the default), andnot
when applied to a specific daemon. Specifies the subsystem or daemon name to query, with a default value of
theTOOLsubsystem.

-address<ip:port> (location option) Connect to the given IP address and port number.

-pool centralmanagerhostname[:portnumber](location option) Use the given central manager and an optional port
number to find daemons.

-name<machine_name>(location option) Query the specified machine’scondor_masterdaemon for its configura-
tion. Does not function together with any of the options:-dump, -config, or -verbose.

HTCondor Version 8.6.4, Command Reference

condor_config_val(1) 777

-master | -schedd| -startd | -collector | -negotiator (location option) The specific daemon to query.

usecategory[:set name] [-expand] Display information about configuration templates (see 3.4). Specifying only a
categorywill list the template_namesavailable for that category. Specifying acategoryand atemplate_name
will display the definition of that configuration template. Adding the-expandoption will display the expanded
definition (with macro substitutions). (-expand has no effect if atemplate_nameis not specified.) Note that
there is no dash beforeuseand that spaces are not allowed next to the colon character separatingcategoryand
template_name.

Exit Status

condor_config_valwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

Examples

Here is a set of examples to show a sequence of operations using condor_config_val. To request thecondor_schedd
daemon on host perdita to display the value of theMAX_JOBS_RUNNINGconfiguration variable:

% condor_config_val -name perdita -schedd MAX_JOBS_RUNNI NG
500

To request thecondor_schedddaemon on host perdita to set the value of theMAX_JOBS_RUNNINGconfiguration
variable to the value 10.

% condor_config_val -name perdita -schedd -set "MAX_JOBS_ RUNNING = 10"
Successfully set configuration "MAX_JOBS_RUNNING = 10" on
schedd perdita.cs.wisc.edu <128.105.73.32:52067>.

A command that will implement the change just set in the previous example.

% condor_reconfig -schedd perdita
Sent "Reconfig" command to schedd perdita.cs.wisc.edu

A re-check of the configuration variable reflects the change implemented:

% condor_config_val -name perdita -schedd MAX_JOBS_RUNNI NG
10

To set the configuration variableMAX_JOBS_RUNNINGback to what it was before the command to set it to 10:

% condor_config_val -name perdita -schedd -unset MAX_JOBS _RUNNING
Successfully unset configuration "MAX_JOBS_RUNNING" on
schedd perdita.cs.wisc.edu <128.105.73.32:52067>.

HTCondor Version 8.6.4, Command Reference

condor_config_val(1) 778

A command that will implement the change just set in the previous example.

% condor_reconfig -schedd perdita
Sent "Reconfig" command to schedd perdita.cs.wisc.edu

A re-check of the configuration variable reflects that variable has gone back to is value before initial set of the variable:

% condor_config_val -name perdita -schedd MAX_JOBS_RUNNI NG
500

Getting a list of template_names for therole configuration template category:

% condor_config_val use role
use ROLE accepts

CentralManager
Execute
Personal
Submit

Getting the definition ofrole:personalconfiguration template:

% condor_config_val use role:personal
use ROLE:Personal is

CONDOR_HOST=127.0.0.1
COLLECTOR_HOST=$(CONDOR_HOST):0
DAEMON_LIST=MASTER COLLECTOR NEGOTIATOR STARTD SCHEDD
RunBenchmarks=0

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_configure(1) 779

condor_configure

Configure or install HTCondor

Synopsis

condor_configureor condor_install[-- help] [-- usage]

condor_configure or condor_install [-- install[=<path/to/release>]] [-- install-dir= <path>]
[-- prefix=<path>] [-- local-dir=<path>] [-- make-personal-condor] [-- bosco] [-- type =< submit, execute,
manager>] [-- central-manager =< hostname>] [-- owner = < ownername>] [-- maybe-daemon-owner]
[-- install-log = < file >] [-- overwrite] [-- ignore-missing-libs] [-- force] [-- no-env-scripts] [-- env-scripts-dir
= < directory >] [-- backup] [-- credd] [-- verbose]

Description

condor_configureandcondor_installrefer to a single script that installs and/or configures HTCondor on Unix ma-
chines. As the names imply,condor_installis intended to perform a HTCondor installation, andcondor_configureis
intended to configure (or reconfigure) an existing installation. Both will run with Perl 5.6.0 or more recent versions.

condor_configure(and condor_install) are designed to be run more than one time where required. It can install
HTCondor when invoked with a correct configuration via

condor_install

or

condor_configure --install

or, it can change the configuration files when invoked via

condor_configure

Note that changes in the configuration files do not result in changes while HTCondor is running. To effect changes
while HTCondor is running, it is necessary to further use thecondor_reconfigor condor_restartcommand. con-
dor_reconfigis required where the currently executing daemons need to beinformed of configuration changes.con-
dor_restart is required where the options-- make-personal-condoror -- type are used, since these affect which
daemons are running.

Runningcondor_configureor condor_installwith no options results in a usage screen being printed. The-- help
option can be used to display a full help screen.

Within the options given below, the phraserelease directoriesis the list of directories that are released with HTCondor.
This list includes:bin , etc , examples , include , lib , libexec , man, sbin , sql andsrc .

HTCondor Version 8.6.4, Command Reference

condor_configure(1) 780

Options

—help Print help screen and exit

—usage Print short usage and exit

—install[=<path/to/release>] Perform installation, assuming that the current working directory contains the release
directory, if the optional=<path/to/release> is not specified. Without further options, the configuration
is that of a Personal HTCondor, a complete one-machine pool.If used as an upgrade within an existing
installation directory, existing configuration files and local directory are preserved. This is the default behavior
of condor_install.

—install-dir= <path> Specifies the path where HTCondor should be installed or the path where it already is
installed. The default is the current working directory.

—prefix=<path> This is an alias for–install-dir .

—local-dir=<path> Specifies the location of the local directory, which is the directory that generally contains the
local (machine-specific) configuration file as well as the directories where HTCondor daemons write their run-
time information (spool , log , execute). This location is indicated by theLOCAL_DIR variable in the
configuration file. When installing (that is, if–install is specified),condor_configurewill properly create the
local directory in the location specified. If none is specified, the default value is given by the evaluation of
$(RELEASE_DIR)/local.$(HOSTNAME) .

During subsequent invocations ofcondor_configure(that is, without the —install option), if the —local-dir
option is specified, the new directory will be created and thelog , spool andexecute directories will be
moved there from their current location.

—make-personal-condor Installs and configures for Personal HTCondor, a fully-functional, one-machine pool.

—bosco Installs and configures Bosco, a personal HTCondor that submits jobs to remote batch systems.

—type=< submit, execute, manager> One or more of the types may be listed. This determines the roles that a
machine may play in a pool. In general, any machine can be a submit and/or execute machine, and there is one
central manager per pool. In the case of a Personal HTCondor,the machine fulfills all three of these roles.

—central-manager=<hostname> Instructs the current HTCondor installation to use the specified machine as the
central manager. This modifies the configuration variableCOLLECTOR_HOSTto point to the given host name.
The central manager machine’s HTCondor configuration needsto be independently configured to act as a
manager using the option–type=manager.

HTCondor Version 8.6.4, Command Reference

condor_configure(1) 781

—owner=<ownername> Set configuration such that HTCondor daemons will be executed as the given owner.
This modifies the ownership on thelog , spool and execute directories and sets theCONDOR_IDS
value in the configuration file, to ensure that HTCondor daemons start up as the specified effective user. The
section on security within the HTCondor manual discusses UIDs in HTCondor. This is only applicable when
condor_configureis run by root. If not run as root, the owner is the user runningthecondor_configurecommand.

—maybe-daemon-ownerIf –owner is not specified and no appropriate user can be found to run Condor, then this
option will allow the daemon user to be selected. This optionis rarely needed by users but can be useful for
scripts that invoke condor_configure to install Condor.

—install-log=<file> Save information about the installation in the specified file. This is normally only needed when
condor_configure is called by a higher-level script, not when invoked by a person.

—overwrite Always overwrite the contents of thesbin directory in the installation directory. By default,con-
dor_installwill not install if it finds an existingsbin directory with HTCondor programs in it. In this case,
condor_installwill exit with an error message. Specify–overwrite or –backup to tell condor_installwhat to
do.

This preventscondor_installfrom moving ansbin directory out of the way that it should not move. This is
particularly useful when trying to install HTCondor in a location used by other things (/usr , /usr/local ,
etc.) For example:condor_install–prefix=/usr will not move /usr/sbin out of the way unless you specify
the–backupoption.

The–backup behavior is used to preventcondor_installfrom overwriting running daemons – Unix semantics
will keep the existing binaries running, even if they have been moved to a new directory.

—backup Always backup thesbin directory in the installation directory. By default,condor_installwill not install
if it finds an existingsbin directory with HTCondor programs in it. In this case,condor_installwith exit with
an error message. You must specify–overwrite or –backup to tell condor_installwhat to do.

This preventscondor_installfrom moving ansbin directory out of the way that it should not move. This is
particularly useful if you’re trying to install HTCondor ina location used by other things (/usr , /usr/local ,
etc.) For example:condor_install–prefix=/usr will not move /usr/sbin out of the way unless you specify
the–backupoption.

The–backup behavior is used to preventcondor_installfrom overwriting running daemons – Unix semantics
will keep the existing binaries running, even if they have been moved to a new directory.

—ignore-missing-libs Ignore missing shared libraries that are detected bycondor_install. By default,condor_install
will detect missing shared libraries such aslibstdc++.so.5 on Linux; it will print messages and exit if
missing libraries are detected. The—ignore-missing-libswill causecondor_installto not exit, and to proceed
with the installation if missing libraries are detected.

—force This is equivalent to enabling both the—overwrite and—ignore-missing-libscommand line options.

HTCondor Version 8.6.4, Command Reference

condor_configure(1) 782

—no-env-scripts By default,condor_configurewrites simple sh and csh shell scripts which can be sourced bytheir
respective shells to set the user’sPATHandCONDOR_CONFIGenvironment variables. This option prevents
condor_configurefrom generating these scripts.

—env-scripts-dir=<directory> By default, the simplesh andcshshell scripts (see—no-env-scripts for details)
are created in the root directory of the HTCondor installation. This option causescondor_configureto generate
these scripts in the specified directory.

—credd Configure the thecondor_credddaemon (credential manager daemon).

—verbose Print information about changes to configuration variablesas they occur.

Exit Status

condor_configurewill exit with a status value of 0 (zero) upon success, and it will exit with a nonzero value upon
failure.

Examples

Install HTCondor on the machine (machine1@cs.wisc.edu) tobe the pool’s central manager. On machine1, within the
directory that contains the unzipped HTCondor distribution directories:

% condor_install --type=submit,execute,manager

This will allow the machine to submit and execute HTCondor jobs, in addition to being the central manager of the
pool.

To change the configuration such that machine2@cs.wisc.eduis an execute-only machine (that is, a dedicated
computing node) within a pool with central manager on machine1@cs.wisc.edu, issue the command on that ma-
chine2@cs.wisc.edu from within the directory where HTCondor is installed:

% condor_configure --central-manager=machine1@cs.wisc .edu --type=execute

To change the location of theLOCAL_DIRdirectory in the configuration file, do (from the directory where HTCondor
is installed):

% condor_configure --local-dir=/path/to/new/local/dir ectory

This will move thelog ,spool ,execute directories to/path/to/new/local/directory from the current
local directory.

HTCondor Version 8.6.4, Command Reference

condor_configure(1) 783

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_continue(1) 784

condor_continue

continue suspended jobs from the HTCondor queue

Synopsis

condor_continue [-help | -version]

condor_continue [-debug] [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr "<a.b.c.d:port>"] cluster| cluster.process| user| -constraintexpression| -all

Description

condor_continuecontinues one or more suspended jobs from the HTCondor job queue. If the-nameoption is speci-
fied, the namedcondor_scheddis targeted for processing. Otherwise, the localcondor_scheddis targeted. The job(s)
to be continued are identified by one of the job identifiers, asdescribed below. For any given job, only the owner of
the job or one of the queue super users (defined by theQUEUE_SUPER_USERSmacro) can continue the job.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host name and an
optional port number

-namescheddnameSend the command to a machine identified byscheddname

-addr " <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-debug Causes debugging information to be sent tostderr , based on the value of the configuration variable
TOOL_DEBUG.

cluster Continue all jobs in the specified cluster

cluster.processContinue the specific job in the cluster

HTCondor Version 8.6.4, Command Reference

condor_continue(1) 785

user Continue jobs belonging to specified user

-constraint expressionContinue all jobs which match the job ClassAd expression constraint

-all Continue all the jobs in the queue

Exit Status

condor_continuewill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

Examples

To continue all jobs except for a specific user:

% condor_continue -constraint 'Owner =!= "foo"'

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_convert_history(1) 786

condor_convert_history

Convert the history file to the new format

Synopsis

condor_convert_history[-help]

condor_convert_historyhistory-file1[history-file2. . .]

Description

As of Condor version 6.7.19, the Condor history file has a new format to allow fast searches backwards through the
file. Not all queries can take advantage of the speed increase, but the ones that can are significantly faster.

Entries placed in the history file after upgrade to Condor 6.7.19 will automatically be saved in the new format. The
new format adds information to the string which distinguishes and separates job entries. In order to search within
this new format, no changes are necessary. However, to be able to search the entire history, the history file must be
converted to the updated format.condor_convert_historydoes this.

Thecondor_convert_historycommand can also be used to reconstruct the new format in a history file that has been
corrupted or concantenated with another history file.

Turn thecondor_schedddaemon off while converting history files. Turn it back on after conversion is completed.

Arguments tocondor_convert_historyare the history files to convert. The history file is normally in the Condor spool
directory; it is namedhistory . Since the history file is rotated, there may be multiple history files, and all of them
should be converted. On Unix platform variants, the easiestway to do this is:

cd `condor_config_val SPOOL`
condor_convert_history history *

condor_convert_historymakes a back up of each original history files in case of a problem. The names of these back
up files are listed; names are formed by appending the suffix.oldver to the original file name. Move these back up
files to a directory other than the spool directory. If kept inthe spool directory,condor_historywill find the back ups,
and will appear to have duplicate jobs.

Exit Status

condor_convert_historywill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one)
upon failure.

HTCondor Version 8.6.4, Command Reference

condor_convert_history(1) 787

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_dagman(3) 788

condor_dagman

meta scheduler of the jobs submitted as the nodes of a DAG or DAGs

Synopsis

condor_dagman-f -t -l . -help

condor_dagman-version

condor_dagman -f -l . -csdversionversion_string [-debug level] [-maxidle numberOfProcs]
[-maxjobs numberOfJobs] [-maxpre NumberOfPreScripts] [-maxpost NumberOfPostScripts] [-noeventchecks]
[-allowlogerror] [-usedagdir] -lockfile filename [-waitfordebug] [-autorescue0|1] [-dorescuefrom number]
[-allowversionmismatch] [-DumpRescue] [-verbose] [-force] [-notification value] [-suppress_notification]
[-dont_suppress_notification] [-dagman DagmanExecutable] [-outfile_dir directory] [-update_submit]
[-import_env] [-priority number] [-dont_use_default_node_log] [-DontAlwaysRunPost] [-AlwaysRunPost]
[-DoRecovery] -dagdag_file[-dagdag_file_2. . .-dagdag_file_n]

Description

condor_dagmanis a meta scheduler for the HTCondor jobs within a DAG (directed acyclic graph) (or multiple DAGs).
In typical usage, a submitter of jobs that are organized intoa DAG submits the DAG usingcondor_submit_dag.
condor_submit_dagdoes error checking on aspects of the DAG and then submitscondor_dagmanas an HTCondor
job. condor_dagmanuses log files to coordinate the further submission of the jobs within the DAG.

All command line arguments to theDaemonCorelibrary functions work forcondor_dagman. When invoked from the
command line,condor_dagmanrequires the arguments-f -l . to appear first on the command line, to be processed by
DaemonCore. Thecsdversionmust also be specified; at start up,condor_dagmanchecks for a version mismatch with
thecondor_submit_dagversion in this argument. The-t argument must also be present for the-help option, such that
output is sent to the terminal.

Arguments tocondor_dagmanare either automatically set bycondor_submit_dagor they are specified as command-
line arguments tocondor_submit_dagand passed on tocondor_dagman. The method by which the arguments are set
is given in their description below.

condor_dagmancan run multiple, independent DAGs. This is done by specifying multiple -dagarguments. Pass
multiple DAG input files as command-line arguments tocondor_submit_dag.

Debugging output may be obtained by using the-debug leveloption. Level values and what they produce is described
as

• level = 0; never produce output, except for usage info

• level = 1; very quiet, output severe errors

HTCondor Version 8.6.4, Command Reference

condor_dagman(3) 789

• level = 2; normal output, errors and warnings

• level = 3; output errors, as well as all warnings

• level = 4; internal debugging output

• level = 5; internal debugging output; outer loop debugging

• level = 6; internal debugging output; inner loop debugging; output DAG input file lines as they are parsed

• level = 7; internal debugging output; rarely used; output DAG input file lines as they are parsed

Options

-help Display usage information and exit.

-version Display version information and exit.

-debug level An integer level of debugging output.level is an integer, with values of 0-7 inclusive, where 7 is the
most verbose output. This command-line option tocondor_submit_dagis passed tocondor_dagmanor defaults
to the value 3.

-maxidle NumberOfProcsSets the maximum number of idle procs allowed beforecondor_dagmanstops submitting
more node jobs. Note that for this argument, each individualproc within a cluster counts as a towards the limit,
which is inconsistent with-maxjobs . Once idle procs start to run,condor_dagmanwill resume submitting jobs
once the number of idle procs falls below the specified limit.NumberOfProcsis a non-negative integer. If this
option is omitted, the number of idle procs is limited by the configuration variableDAGMAN_MAX_JOBS_IDLE
(see 3.5.24), which defaults to 1000. To disable this limit,setNumberOfProcsto 0. Note that submit description
files that queue multiple procs can cause theNumberOfProcslimit to be exceeded. Settingqueue 5000 in the
submit description file, where-maxidleis set to 250 will result in a cluster of 5000 new procs being submitted
to thecondor_schedd, not 250. In this case,condor_dagmanwill resume submitting jobs when the number of
idle procs falls below 250.

-maxjobsNumberOfClustersSets the maximum number of clusters within the DAG that will be submitted to
HTCondor at one time. Note that for this argument, each cluster counts as one job, no matter how many
individual procs are in the cluster.NumberOfClustersis a non-negative integer. If this option is omitted, the
number of clusters is limited by the configuration variableDAGMAN_MAX_JOBS_SUBMITTED(see 3.5.24),
which defaults to 0 (unlimited).

-maxpre NumberOfPreScriptsSets the maximum number of PRE scripts within the DAG that maybe running at
one time.NumberOfPreScriptsis a non-negative integer. If this option is omitted, the number of PRE scripts is
limited by the configuration variableDAGMAN_MAX_PRE_SCRIPTS(see 3.5.24), which defaults to 20.

HTCondor Version 8.6.4, Command Reference

condor_dagman(3) 790

-maxpostNumberOfPostScriptsSets the maximum number of POST scripts within the DAG that may be running at
one time.NumberOfPostScriptsis a non-negative integer. If this option is omitted, the number of POST scripts
is limited by the configuration variableDAGMAN_MAX_POST_SCRIPTS(see 3.5.24), which defaults to 20.

-noeventchecksThis argument is no longer used; it is now ignored. Its functionality is now implemented by the
DAGMAN_ALLOW_EVENTSconfiguration variable.

-allowlogerror As of verson 8.5.5 this argument is no longer supported, and setting it will generate a warning.

-usedagdir This optional argument causescondor_dagmanto run each specified DAG as if the directory containing
that DAG file was the current working directory. This option is most useful when running multiple DAGs in a
singlecondor_dagman.

-lockfile filename Names the file created and used as a lock file. The lock file prevents execution of two of the same
DAG, as defined by a DAG input file. A default lock file ending with the suffix .dag.lock is passed to
condor_dagmanby condor_submit_dag.

-waitfordebug This optional argument causescondor_dagmanto wait at startup until someone attaches to the
process with a debugger and sets the wait_for_debug variable in main_init() to false.

-autorescue0|1 Whether to automatically run the newest rescue DAG for the given DAG file, if one exists (0 =
false , 1 = true).

-dorescuefromnumber Forcescondor_dagmanto run the specified rescue DAG number for the given DAG. A value
of 0 is the same as not specifying this option. Specifying a nonexistent rescue DAG is a fatal error.

-allowversionmismatch This optional argument causescondor_dagmanto allow a version mismatch between
condor_dagmanitself and the.condor.sub file produced bycondor_submit_dag(or, in other words,
betweencondor_submit_dagand condor_dagman). WARNING! This option should be used only if abso-
lutely necessary. Allowing version mismatches can cause subtle problems when running DAGs. (Note that,
starting with version 7.4.0,condor_dagmanno longer requires an exact version match between itself andthe
.condor.sub file. Instead, a "minimum compatible version" is defined, andany.condor.sub file of that
version or newer is accepted.)

-DumpRescueThis optional argument causescondor_dagmanto immediately dump a Rescue DAG and then exit,
as opposed to actually running the DAG. This feature is mainly intended for testing. The Rescue DAG file is
produced whether or not there are parse errors reading the original DAG input file. The name of the file differs
if there was a parse error.

HTCondor Version 8.6.4, Command Reference

condor_dagman(3) 791

-verbose (This argument is included only to be passed tocondor_submit_dagif lazy submit file generation is used
for nested DAGs.) Causecondor_submit_dagto give verbose error messages.

-force (This argument is included only to be passed tocondor_submit_dagif lazy submit file generation is used for
nested DAGs.) Requirecondor_submit_dagto overwrite the files that it produces, if the files already exist. Note
thatdagman.out will be appended to, not overwritten. If new-style rescue DAG mode is in effect, and any
new-style rescue DAGs exist, the-force flag will cause them to be renamed, and the original DAG will berun.
If old-style rescue DAG mode is in effect, any existing old-style rescue DAGs will be deleted, and the original
DAG will be run. See the HTCondor manual section on Rescue DAGs for more information.

-notification value This argument is only included to be passed tocondor_submit_dagif lazy submit file generation
is used for nested DAGs. Sets the e-mail notification for DAGMan itself. This information will be used
within the HTCondor submit description file for DAGMan. Thisfile is produced bycondor_submit_dag. The
notification option is described in thecondor_submitmanual page.

-suppress_notification Causes jobs submitted bycondor_dagmanto not send email notification for events. The
same effect can be achieved by setting the configuration variable DAGMAN_SUPPRESS_NOTIFICATION
to True . This command line option is independent of the-notification command line option,
which controls notification for thecondor_dagmanjob itself. This flag is generally superfluous, as
DAGMAN_SUPPRESS_NOTIFICATIONdefaults toTrue .

-dont_suppress_notificationCauses jobs submitted bycondor_dagmanto defer to content within the submit
description file when deciding to send email notification forevents. The same effect can be achieved by setting
the configuration variableDAGMAN_SUPPRESS_NOTIFICATIONto False . This command line flag is
independent of the-notification command line option, which controls notification for thecondor_dagmanjob
itself. If both-dont_suppress_notificationand-suppress_notificationare specified within the same command
line, the last argument is used.

-dagmanDagmanExecutable(This argument is included only to be passed tocondor_submit_dagif lazy submit file
generation is used for nested DAGs.) Allows the specification of an alternatecondor_dagmanexecutable to be
used instead of the one found in the user’s path. This must be afully qualified path.

-outfile_dir directory (This argument is included only to be passed tocondor_submit_dagif lazy submit file
generation is used for nested DAGs.) Specifies the directoryin which the.dagman.out file will be written.
Thedirectorymay be specified relative to the current working directory ascondor_submit_dagis executed, or
specified with an absolute path. Without this option, the.dagman.out file is placed in the same directory as
the first DAG input file listed on the command line.

-update_submit (This argument is included only to be passed tocondor_submit_dagif lazy submit file generation
is used for nested DAGs.) This optional argument causes an existing .condor.sub file to not be treated as
an error; rather, the.condor.sub file will be overwritten, but the existing values of-maxjobs, -maxidle,

HTCondor Version 8.6.4, Command Reference

condor_dagman(3) 792

-maxpre, and-maxpostwill be preserved.

-import_env (This argument is included only to be passed tocondor_submit_dagif lazy submit file generation is
used for nested DAGs.) This optional argument causescondor_submit_dagto import the current environment
into theenvironment command of the.condor.sub file it generates.

-priority number Sets the minimum job priority of node jobs submitted and running under thiscondor_dagmanjob.

-dont_use_default_node_log This option is disabled as of HTCondor version 8.3.1.Tells condor_dagmanto use
the file specified by the job ClassAd attributeUserLog to monitor job status. If this command line argument
is used, then the job event log file cannot be defined with a macro.

-DontAlwaysRunPost This option causescondor_dagmanto not run the POST script of a node if the PRE script
fails. (This was the default behavior prior to HTCondor version 7.7.2, and is again the default behavior from
version 8.5.4 onwards.)

-AlwaysRunPost This option causescondor_dagmanto always run the POST script of a node, even if the PRE script
fails. (This was the default behavior for HTCondor version 7.7.2 through version 8.5.3.)

-DoRecovery Causescondor_dagmanto start in recovery mode. This means that it reads the relevant job user log(s)
and catches up to the given DAG’s previous state before submitting any new jobs.

-dagfilename filenameis the name of the DAG input file that is set as an argument tocondor_submit_dag, and
passed tocondor_dagman.

Exit Status

condor_dagmanwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

Examples

condor_dagmanis normally not run directly, but submitted as an HTCondor job by running condor_submit_dag. See
the condor_submit_dag manual page 953 for examples.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

HTCondor Version 8.6.4, Command Reference

condor_dagman(3) 793

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_dagman_metrics_reporter(1) 794

condor_dagman_metrics_reporter

Report the statistics of a DAGMan run to a central HTTP server

Synopsis

condor_dagman_metrics_reporter[-s] [-u URL] [-t maxtime] -f /path/to/metrics/file

Description

condor_dagman_metrics_reporter anonymously reports metrics from a DAGMan workflow
to a central server. The reporting of workflow metrics is onlyenabled for DAGMan
workflows run under Pegasus; metrics reporting has been requested by Pegasus’ funding
sources: see http://pegasus.isi.edu/wms/docs/latest/funding_citing_usage.php#usage_statistics and
https://confluence.pegasus.isi.edu/display/pegasus/DAGMan+Metrics+Reporting for the requirements to collect
this data.

The data sent to the server is in JSON format. Here is an example of what is sent:

{
"client":"condor_dagman",
"version":"8.1.0",
"planner":"/lfs1/devel/Pegasus/pegasus/bin/pegasus- plan",
"planner_version":"4.3.0cvs",
"type":"metrics",
"wf_uuid":"htcondor-test-job_dagman_metrics-A-subda g",
"root_wf_uuid":"htcondor-test-job_dagman_metrics-A" ,
"start_time":1375313459.603,
"end_time":1375313491.498,
"duration":31.895,
"exitcode":1,
"dagman_id":"26",
"parent_dagman_id":"11",
"rescue_dag_number":0,
"jobs":4,
"jobs_failed":1,
"jobs_succeeded":3,
"dag_jobs":0,
"dag_jobs_failed":0,
"dag_jobs_succeeded":0,
"total_jobs":4,
"total_jobs_run":4,
"total_job_time":0.000,

HTCondor Version 8.6.4, Command Reference

http://pegasus.isi.edu/wms/docs/latest/funding_citing_usage.php#usage_statistics
https://confluence.pegasus.isi.edu/display/pegasus/DAGMan+Metrics+Reporting

condor_dagman_metrics_reporter(1) 795

"dag_status":2
}

Metrics are sent only if thecondor_dagmanprocess hasPEGASUS_METRICSset toTrue in its environment, and
theCONDOR_DEVELOPERSconfiguration variable doesnot have the valueNONE.

Ordinarily, this program will be run bycondor_dagman, and users do not need to interact with it. This program uses
the following environment variables:

PEGASUS_USER_METRICS_DEFAULT_SERVER The URL of the default server to which to send the data. It
defaults tohttp://metrics.pegasus.isi.edu/metrics . It can be overridden at the command line
with the-u option.

PEGASUS_USER_METRICS_SERVER A comma separated list of URLs of servers that will receive the data, in
addition to the default server.

The-f argument specifies the metrics file to be sent to the HTTP server.

Options

-s Sleep for a random number of seconds between 1 and 10, before attempting to send data. This option is used to
space out the reporting from any sub-DAGs when a DAG is removed.

-u URL Overrides setting of the environment variablePEGASUS_USER_METRICS_DEFAULT_SERVER. This
option is unused bycondor_dagman; it is for testing by developers.

-t maxtime A maximum time in seconds that defaults to 100 seconds, setting a limit on the amount of time this
program will wait for communication from the server. A setting of zero will result in a single attempt per server.
condor_dagmanretrieves this value from theDAGMAN_PEGASUS_REPORT_TIMEOUTconfiguration variable.

-f metrics_file The name of the file containing the metrics values to be reported.

Exit Status

condor_dagman_metrics_reporterwill exit with a status value of 0 (zero) upon success, and it will exit with a value
of 1 (one) upon failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

HTCondor Version 8.6.4, Command Reference

condor_dagman_metrics_reporter(1) 796

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_drain(1) 797

condor_drain

Control draining of an execute machine

Synopsis

condor_drain[-help]

condor_drain [-debug] [-pool pool-name] [-graceful | -quick | -fast] [-resume-on-completion] [-check expr]
machine-name

condor_drain [-debug] [-pool pool-name] -cancel[-request-id id] machine-name

Description

condor_drainis an administrative command used to control the draining ofall slots on an execute machine. When
a machine is draining, it will not accept any new jobs. Which machine to drain is specified by the argument
machine-name, and will be the same as the machine ClassAd attributeMachine .

How currently running jobs are treated depends on the draining schedule that is chosen with a command-line option:

-graceful Initiate a graceful eviction of the job. This means all promises that have been made to the job are honored,
includingMaxJobRetirementTime . The eviction of jobs is coordinated to reduce idle time. This means
that if one slot has a job with a long retirement time and the other slots have jobs with shorter retirement times,
the effective retirement time for all of the jobs is the longer one. If no draining schedule is specified,-graceful
is chosen by default.

-quick MaxJobRetirementTime is not honored. Eviction of jobs is immediately initiated. Jobs are
given time to shut down and produce checkpoints, according to the usual policy, that is, given by
MachineMaxVacateTime .

-fast Jobs are immediately hard-killed, with no chance to gracefully shut down or produce a checkpoint.

Once draining is complete, the machine will enter the Drained/Idle state. To resume normal operation (negotiation) at
that time or any previous time during draining, the-canceloption may be used. The-resume-on-completionoption
results in automatic resumption of normal operation once draining has completed, and may be used when initiating
draining. This is useful for forcing a machine with a partitionable slots to join all of the resources back together into
one machine, facilitating de-fragmentation and whole machine negotiation.

Options

-help Display brief usage information and exit.

HTCondor Version 8.6.4, Command Reference

condor_drain(1) 798

-debug Causes debugging information to be sent tostderr , based on the value of the configuration variable
TOOL_DEBUG.

-pool pool-nameSpecify an alternate HTCondor pool, if the default one is notdesired.

-graceful (the default) Honor the maximum vacate and retirement time policy.

-quick Honor the maximum vacate time, but not the retirement time policy.

-fast Honor neither the maximum vacate time policy nor the retirement time policy.

-resume-on-completionWhen done draining, resume normal operation, such that potentially the whole machine
could be claimed.

-checkexpr Abort draining, ifexpr is not true for all slots to be drained.

-cancel Cancel a prior draining request, to permit thecondor_negotiatorto use the machine again.

-request-id id Specify a specific draining request to cancel, whereid is given by theDrainingRequestId
machine ClassAd attribute.

Exit Status

condor_drainwill exit with a non-zero status value if it fails and zero status if it succeeds.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_fetchlog(1) 799

condor_fetchlog

Retrieve a daemon’s log file that is located on another computer

Synopsis

condor_fetchlog[-help | -version]

condor_fetchlog [-pool centralmanagerhostname[:portnumber]] [-master | -startd | -schedd | -collector | -
negotiator | -kbdd] machine-name subsystem[.extension]

Description

condor_fetchlogcontacts HTCondor running on the machine specified bymachine-name, and asks it to return a log
file from that machine. Which log file is determined from thesubsystem[.extension]argument. The log file is printed
to standard output. This command eliminates the need to remotely log in to a machine in order to retrieve a daemon’s
log file.

For security purposes of authentication and authorization, this command requiresADMINISTRATORlevel of access.

Thesubsystem[.extension]argument is utilized to construct the log file’s name. Without an optional.extension, the
value of the configuration variable namedsubsystem_LOG defines the log file’s name. When specified, the.extension
is appended to this value.

The subsystemargument is any value$(SUBSYSTEM) that has a defined configuration variable of
$(SUBSYSTEM)_LOG, or any of

• NEGOTIATOR_MATCH

• HISTORY

• STARTD_HISTORY

A value for the optional.extensionto thesubsystemargument is typically one of the three strings:

1. .old

2. .slot<X>

3. .slot<X>.old

Within these strings,<X> is substituted with the slot number.

A subsystemargument ofSTARTD_HISTORYfetches allcondor_startdhistory by concatenating all instances of log
files resulting from rotation.

HTCondor Version 8.6.4, Command Reference

condor_fetchlog(1) 800

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host name and an
optional port number

-master Send the command to thecondor_masterdaemon (default)

-startd Send the command to thecondor_startddaemon

-schedd Send the command to thecondor_schedddaemon

-collector Send the command to thecondor_collectordaemon

-kbdd Send the command to thecondor_kbdddaemon

Examples

To get thecondor_negotiatordaemon’s log from a host namedhead.example.com from within the current pool:

condor_fetchlog head.example.com NEGOTIATOR

To get thecondor_startddaemon’s log from a host namedexecute.example.com from within the current pool:

condor_fetchlog execute.example.com STARTD

This command requested thecondor_startddaemon’s log from thecondor_master. If the condor_masterhas crashed
or is unresponsive, ask another daemon running on that computer to return the log. For example, ask thecondor_startd
daemon to return thecondor_master’s log:

condor_fetchlog -startd execute.example.com MASTER

HTCondor Version 8.6.4, Command Reference

condor_fetchlog(1) 801

Exit Status

condor_fetchlogwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_findhost(1) 802

condor_findhost

find machine(s) in the pool that can be used with minimal impact on currently running HTCondor jobs and best meet
any specified constraints

Synopsis

condor_findhost[-help] [-m] [-n num] [-c c_expr] [-r r_expr] [-p centralmanagerhostname]

Description

condor_findhostsearches an HTCondor pool of machines for the best machine ormachines that will have the minimum
impact on running HTCondor jobs if the machine or machines are taken out of the pool. The search may be limited to
the machine or machines that match a set of constraints and rank expression.

condor_findhostreturns a fully-qualified domain name for each machine. The search is limited (constrained) to a
specific set of machines using the-c option. The search can use the-r option for rank, the criterion used for selecting
a machine or machines from the constrained list.

Options

-help Display usage information and exit

-m Only search for entire machines. Slots within an entire machine are not considered.

-n num Find and list up tonummachines that fulfill the specification.numis an integer greater than zero.

-c c_expr Constrain the search to only consider machines that result from the evaluation ofc_expr. c_expr is a
ClassAd expression.

-r r_expr r_expr is the rank expression evaluated to use as a basis for machineselection. r_expr is a ClassAd
expression.

-p centralmanagerhostnameSpecify the pool to be searched by giving the central manager’s host name. Without
this option, the current pool is searched.

HTCondor Version 8.6.4, Command Reference

condor_findhost(1) 803

General Remarks

condor_findhostis used to locate a machine within a pool that can be taken out of the pool with the least disturbance
of the pool.

An administrator should set preemption requirements for the HTCondor pool. The expression

(Interactive =?= TRUE)

will let condor_findhostknow that it can claim a machine even if HTCondor would not normally preempt a job running
on that machine.

Exit Status

The exit status ofcondor_findhostis zero on success. If not able to identify as many machines asrequested, it returns
one more than the number of machines identified. For example,if 8 machines are requested, andcondor_findhostonly
locates 6, the exit status will be 7. If not able to locate any machines, or an error is encountered,condor_findhostwill
return the value 1.

Examples

To find and list four machines, preferring those with the highest mips (on Drystone benchmark) rating:

condor_findhost -n 4 -r "mips"

To find and list 24 machines, considering only those where thekflops attribute is not defined:

condor_findhost -n 24 -c "kflops=?=undefined"

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_gather_info(1) 804

condor_gather_info

Gather information about an HTCondor installation and a queued job

Synopsis

condor_gather_info[-- jobid ClusterId.ProcId] [-- scratch /path/to/directory]

Description

condor_gather_infois a Linux-only tool that will collect and output information about the machine it is run upon,
about the HTCondor installation local to the machine, and optionally about a specified HTCondor job. The information
gathered by this tool is most often used as a debugging aid forthe developers of HTCondor.

Without the-- jobid option, information about the local machine and its HTCondor installation is gathered and placed
into the file calledcondor-profile.txt , in the current working directory. The information gathered is under the
category of Identity.

With the -- jobid option, additional information is gathered about the job given in the command line argument and
identified by itsClusterId andProcId ClassAd attributes. The information includes both categories, Identity and
Job information. As the quantity of information can be extensive, this information is placed into a compressed tar file.
The file is placed into the current working directory, and it is named using the format

cgi-<username>-jid<ClusterId>.<ProcId>-<year>-<mont h>-<day>-<hour>_<minute>_<second>-<TZ>.tar.gz

All values within<> are substituted with current values. The building of this potentially large tar file can require a fair
amount of temporary space. If the-- scratchoption is specified, it identifies a directory in which to build the tar file.
If the -- scratchoption isnot specified, then the directory will be/tmp/cgi-<PID> , where the process ID is that
of thecondor_gather_infoexecutable.

The information gathered by this tool:

1. Identity

• User name who generated the report

• Script location and machine name

• Date of report creation

• uname -a

• Contents of/etc/issue

• Contents of/etc/redhat-release

• Contents of/etc/debian_version

• Contents of$(LOG)/MasterLog

HTCondor Version 8.6.4, Command Reference

condor_gather_info(1) 805

• Contents of$(LOG)/ShadowLog

• Contents of$(LOG)/SchedLog

• Output ofps -auxww -forest

• Output ofdf -h

• Output ofiptables -L

• Output ofls ‘condor_config_val LOG‘

• Output ofldd ‘condor_config_val SBIN‘/condor_schedd

• Contents of/etc/hosts

• Contents of/etc/nsswitch.conf

• Output ofulimit -a

• Output ofuptime

• Output offree

• Network interface configuration (ifconfig)

• HTCondor version

• Location of HTCondor configuration files

• HTCondor configuration variables

– All variables and values

– Definition locations for each configuration variable

2. Job Information

• Output ofcondor_q jobid

• Output ofcondor_q -l jobid

• Output ofcondor_q -analyze jobid

• Job event log, if it exists

– Only events pertaining to the job ID

• If condor_gather_infohas the proper permissions, it runscondor_fetchlogon the machine where the job
most recently ran, and includes the contents of the logs fromthe condor_master, condor_startd, and
condor_starter.

Options

—jobid <ClusterId.ProcId> Data mine information about this HTCondor job from the localHTCondor installation
andcondor_schedd.

—scratch /path/to/directory A path to temporary space needed when building the output tarfile. Defaults to
/tmp/cgi-<PID> , where<PID> is replaced by the process ID ofcondor_gather_info.

HTCondor Version 8.6.4, Command Reference

condor_gather_info(1) 806

Files

• condor-profile.txt The Identity portion of the information gathered whencondor_gather_infois run
without arguments.

• cgi-<username>-jid<cluster>.<proc>-<year>-<month>-< day>-<hour>_<minute>_<second>-<TZ>.
The output file which contains all of the information produced by this tool.

Exit Status

condor_gather_infowill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_gpu_discovery(1) 807

condor_gpu_discovery

Output GPU-related ClassAd attributes

Synopsis

condor_gpu_discovery-help

condor_gpu_discovery[<options>]

Description

condor_gpu_discoveryruns discovery software to determine the host’s GPU capabilities, which are output as ClassAd
attributes.

This tool is not available for MAC OS platforms.

With no command line options, the single ClassAd attributeDetectedGPUs is printed. If the value is 0, no GPUs
were detected. If one or more GPUS were detected, the value isa string, presented as a comma and space separated list
of the GPUs discovered, where each is given a name further used as theprefix stringin other attribute names. Where
there is more than one GPU of a particular type, theprefix stringincludes an integer value numbering the device; these
integer values monotonically increase from 0. For example,a discovery of two GPUs may output

DetectedGPUs="CUDA0, CUDA1"

Further command line options use"CUDA" either with or without one of the integer values 0 or 1 as theprefix string
in attribute names.

Options

-help Print usage information and exit.

-properties In addition to theDetectedGPUs attribute, display standard CUDA attributes. Each of theseattribute
names will have aprefix stringat the beginning of its name. For a host with more than one of the same
GPU type, those attribute values that are the same across allof the GPUs will not have an integer value
in the prefix string. The attributes areCapability , DeviceName , DriverVersion , ECCEnabled ,
GlobalMemoryMb , andRuntimeVersion . The displayed standard Open CL attributes areDeviceName ,
ECCEnabled , OpenCLVersion , andGlobalMemoryMb .

-extra Display the additional attributes of Each of these attribute names will have aprefix stringat the beginning
of its name. ClockMhz , ComputeUnits , andCoresPerCU for a CUDA device, andClockMhz and

HTCondor Version 8.6.4, Command Reference

condor_gpu_discovery(1) 808

ComputeUnits for an OCL device.

-dynamic Display attributes of NVIDIA devices that change values as the GPU is working. Each of these attribute
names will have aprefix string at the beginning of its name. These areFanSpeedPct , BoardTempC,
DieTempC, EccErrorsSingleBit , andEccErrorsDoubleBit .

-mixed When displaying attribute values, assume that the machine has a heterogeneous set of GPUs, so always
include the integer value in theprefix string.

-device<N> Display properties only for GPU device<N> , where <N> is the integer value defined for the
prefix string. Note that the attribute names in this output willnot contain the value for<N> .

-tag string Set the resource tag portion of the intended machine ClassAdattributeDetected<ResourceTag>
to be string. If this option is not specified, the resource tag is"GPUs" , resulting in attribute name
DetectedGPUs .

-prefix str When naming attributes, usestr as theprefix string. When this option is not specified, theprefix stringis
eitherCUDAor OCL.

-simulate:D,N For testing purposes, assume that N devices of type D were detected. No discovery software is
invoked. If D is 0, it refers to GeForce GT 330, and a default value for N is 1. If D is 1, it refers to GeForce
GTX 480, and a default value for N is 2.

-opencl Prefer detection via OpenCL rather than CUDA. Without this option, CUDA detection software is invoked
first, and no further Open CL software is invoked if CUDA devices are detected.

-cuda Do only CUDA detection.

-nvcuda For Windows platforms only, use a CUDA driver rather than theCUDA run time.

-config Output in the syntax of HTCondor configuration, instead of ClassAd language. An additional attribute is
producedNUM_DETECTED_GPUswhich is set to the number of GPUs detected.

-verbose For interactive use of the tool, output extra information toshow detection while in progress.

-diagnostic Show diagnostic information, to aid in tool development.

HTCondor Version 8.6.4, Command Reference

condor_gpu_discovery(1) 809

Exit Status

condor_gpu_discoverywill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one)
upon failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_history(1) 810

condor_history

View log of HTCondor jobs completed to date

Synopsis

condor_history[-help]

condor_history [-name name] [-pool centralmanagerhostname[:portnumber]] [-backwards] [-forwards]
[-constraint expr] [-file filename] [-userlog filename] [-format formatString AttributeName]
[-autoformat[:jlhVr,tng] attr1 [attr2 ...]] [-l | -long | -xml | -json] [-match | -limit number]
[cluster | cluster.process| owner]

Description

condor_historydisplays a summary of all HTCondor jobs listed in the specified history files. If no history files are spec-
ified with the-file option, the local history file as specified in HTCondor’s configuration file ($(SPOOL)/history
by default) is read. The default listing summarizes in reverse chronological order each job on a single line, and contains
the following items:

ID The cluster/process id of the job.

OWNER The owner of the job.

SUBMITTED The month, day, hour, and minute the job was submitted to the queue.

RUN_TIME Remote wall clock time accumulated by the job to date in days,hours, minutes, and seconds, given as
the job ClassAd attributeRemoteWallClockTime .

ST Completion status of the job (C = completed and X = removed).

COMPLETED The time the job was completed.

CMD The name of the executable.

If a job ID (in the form ofcluster_idor cluster_id.proc_id) or anowneris provided, output will be restricted to jobs
with the specified IDs and/or submitted by the specified owner. The-constraintoption can be used to display jobs that
satisfy a specified boolean expression.

The history file is kept in chronological order, implying that new entries are appended at the end of the file. As of
Condor version 6.7.19, the format of the history file is altered to enable faster reading of the history file backwards
(most recent job first). History files written with earlier versions of Condor, as well as those that have entries of both
the older and newer format need to be converted to the new format. See thecondor_convert_historymanual page on
page 786 for details on converting history files to the new format.

HTCondor Version 8.6.4, Command Reference

condor_history(1) 811

Options

-help Display usage information and exit.

-namename Query the namedcondor_schedddaemon.

-pool centralmanagerhostname[:portnumber]Use thecentralmanagerhostnameas the central manager to locate
condor_schedddaemons. The default is theCOLLECTOR_HOST, as specified in the configuration.

-backwards List jobs in reverse chronological order. The job most recently added to the history file is first. This is
the default ordering.

-forwards List jobs in chronological order. The job most recently added to the history file is last. At least 4 characters
must be given to distinguish this option from the-file and-format options.

-constraint expr Display jobs that satisfy the expression.

-attributes attrs Display only the given attributes when the-long option is used.

-sincejobid or expr Stop scanning when the given jobid is found or when the expression becomes true.

-local Read from local history files even if there is aSCHEDD_HOSTconfigured.

-file filename Use the specified file instead of the default history file.

-userlogfilename Display jobs, with job information coming from a job event log, instead of from the default
history file. A job event log does not contain all of the job information, so some fields in the normal output of
condor_historywill be blank.

-format formatStringAttributeName Display jobs with a custom format. See thecondor_qman page-format
option for details.

-autoformat[:jlhVr,tng] attr1 [attr2 ...] or -af[:jlhVr,tng] attr1 [attr2 ...] (output option) Display attribute(s) or ex-
pression(s) formatted in a default way according to attribute types. This option takes an arbitrary number of
attribute names as arguments, and prints out their values, with a space between each value and a newline char-
acter after the last value. It is like the-format option without format strings.

It is assumed that no attribute names begin with a dash character, so that the next word that begins with dash
is the start of the next option. Theautoformat option may be followed by a colon character and formatting
qualifiers to deviate the output formatting from the default:

HTCondor Version 8.6.4, Command Reference

condor_history(1) 812

j print the job ID as the first field,

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are quoted),

r print "raw", or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces before each field.

Use-af:h to get tabular values with headings.

Use-af:lrng to get -long equivalent format.

The newline and comma characters maynot be used together. Thel andh characters maynot be used together.

-l or -long Display job ClassAds in long format.

-limit Number Limit the number of jobs displayed toNumber. Same option as-match.

-match Number Limit the number of jobs displayed toNumber. Same option as-limit .

-xml Display job ClassAds in XML format. The XML format is fully defined in the reference manual, obtained from
the ClassAds web page, with a link at http://htcondor.org/classad/classad.html.

-json Display job ClassAds in JSON format.

Exit Status

condor_historywill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

HTCondor Version 8.6.4, Command Reference

http://htcondor.org/classad/classad.html

condor_history(1) 813

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_hold(1) 814

condor_hold

put jobs in the queue into the hold state

Synopsis

condor_hold [-help | -version]

condor_hold [-debug] [-reason reasonstring] [-subcode number] [-pool centralmanagerhostname[:portnumber]|
-namescheddname]| [-addr "<a.b.c.d:port>"] cluster. . .| cluster.process. . .| user. . . | -constraint expression. . .

condor_hold [-debug] [-reason reasonstring] [-subcode number] [-pool centralmanagerhostname[:portnumber]|
-namescheddname]| [-addr "<a.b.c.d:port>"] -all

Description

condor_holdplaces jobs from the HTCondor job queue in the hold state. If the-nameoption is specified, the named
condor_scheddis targeted for processing. Otherwise, the localcondor_scheddis targeted. The jobs to be held are
identified by one or more job identifiers, as described below.For any given job, only the owner of the job or one of the
queue super users (defined by theQUEUE_SUPER_USERSmacro) can place the job on hold.

A job in the hold state remains in the job queue, but the job will not run until released withcondor_release.

A currently running job that is placed in the hold state bycondor_holdis sent a hard kill signal. For a standard universe
job, this means that the job is removed from the machine without allowing a checkpoint to be produced first.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host name and an
optional port number

-namescheddnameSend the command to a machine identified byscheddname

-addr " <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

HTCondor Version 8.6.4, Command Reference

condor_hold(1) 815

-debug Causes debugging information to be sent tostderr , based on the value of the configuration variable
TOOL_DEBUG.

-reasonreasonstring Sets the job ClassAd attributeHoldReason to the value given byreasonstring. reasonstring
will be delimited by double quote marks on the command line, if it contains space characters.

-subcodenumber Sets the job ClassAd attributeHoldReasonSubCode to the integer value given bynumber.

cluster Hold all jobs in the specified cluster

cluster.processHold the specific job in the cluster

user Hold all jobs belonging to specified user

-constraint expressionHold all jobs which match the job ClassAd expression constraint (within quotation marks).
Note that quotation marks must be escaped with the backslashcharacters for most shells.

-all Hold all the jobs in the queue

See Also

condor_release

Examples

To place on hold all jobs (of the user that issued thecondor_holdcommand) that are not currently running:

% condor_hold -constraint "JobStatus!=2"

Multiple options within the same command cause the union of all jobs that meet either (or both) of the options to be
placed in the hold state. Therefore, the command

% condor_hold Mary -constraint "JobStatus!=2"

places all of Mary’s queued jobs into the hold state, and the constraint holds all queued jobs not currently running.
It also sends a hard kill signal to any of Mary’s jobs that are currently running. Note that the jobs specified by the
constraint will also be Mary’s jobs, if it is Mary that issuesthis examplecondor_holdcommand.

HTCondor Version 8.6.4, Command Reference

condor_hold(1) 816

Exit Status

condor_holdwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_install(1) 817

condor_install

Configure or install HTCondor

Synopsis

condor_configureor condor_install[-- help] [-- usage]

condor_configure or condor_install [-- install[=<path/to/release>]] [-- install-dir= <path>]
[-- prefix=<path>] [-- local-dir=<path>] [-- make-personal-condor] [-- bosco] [-- type =< submit, execute,
manager>] [-- central-manager =< hostname>] [-- owner = < ownername>] [-- maybe-daemon-owner]
[-- install-log = < file >] [-- overwrite] [-- ignore-missing-libs] [-- force] [-- no-env-scripts] [-- env-scripts-dir
= < directory >] [-- backup] [-- credd] [-- verbose]

Description

condor_configureandcondor_installrefer to a single script that installs and/or configures HTCondor on Unix ma-
chines. As the names imply,condor_installis intended to perform a HTCondor installation, andcondor_configureis
intended to configure (or reconfigure) an existing installation. Both will run with Perl 5.6.0 or more recent versions.

condor_configure(and condor_install) are designed to be run more than one time where required. It can install
HTCondor when invoked with a correct configuration via

condor_install

or

condor_configure --install

or, it can change the configuration files when invoked via

condor_configure

Note that changes in the configuration files do not result in changes while HTCondor is running. To effect changes
while HTCondor is running, it is necessary to further use thecondor_reconfigor condor_restartcommand. con-
dor_reconfigis required where the currently executing daemons need to beinformed of configuration changes.con-
dor_restart is required where the options-- make-personal-condoror -- type are used, since these affect which
daemons are running.

Runningcondor_configureor condor_installwith no options results in a usage screen being printed. The-- help
option can be used to display a full help screen.

Within the options given below, the phraserelease directoriesis the list of directories that are released with HTCondor.
This list includes:bin , etc , examples , include , lib , libexec , man, sbin , sql andsrc .

HTCondor Version 8.6.4, Command Reference

condor_install(1) 818

Options

—help Print help screen and exit

—usage Print short usage and exit

—install Perform installation, assuming that the current working directory contains the release directories. Without
further options, the configuration is that of a Personal HTCondor, a complete one-machine pool. If used as an
upgrade within an existing installation directory, existing configuration files and local directory are preserved.
This is the default behavior ofcondor_install.

—install-dir= <path> Specifies the path where HTCondor should be installed or the path where it already is
installed. The default is the current working directory.

—prefix=<path> This is an alias for–install-dir .

—local-dir=<path> Specifies the location of the local directory, which is the directory that generally contains the
local (machine-specific) configuration file as well as the directories where HTCondor daemons write their run-
time information (spool , log , execute). This location is indicated by theLOCAL_DIR variable in the
configuration file. When installing (that is, if–install is specified),condor_configurewill properly create the
local directory in the location specified. If none is specified, the default value is given by the evaluation of
$(RELEASE_DIR)/local.$(HOSTNAME) .

During subsequent invocations ofcondor_configure(that is, without the —install option), if the —local-dir
option is specified, the new directory will be created and thelog , spool andexecute directories will be
moved there from their current location.

—make-personal-condor Installs and configures for Personal HTCondor, a fully-functional, one-machine pool.

—bosco Installs and configures Bosco, a personal HTCondor that submits jobs to remote batch systems.

—type=< submit, execute, manager> One or more of the types may be listed. This determines the roles that a
machine may play in a pool. In general, any machine can be a submit and/or execute machine, and there is one
central manager per pool. In the case of a Personal HTCondor,the machine fulfills all three of these roles.

—central-manager=<hostname> Instructs the current HTCondor installation to use the specified machine as the
central manager. This modifies the configuration variableCOLLECTOR_HOSTto point to the given host name.
The central manager machine’s HTCondor configuration needsto be independently configured to act as a
manager using the option–type=manager.

HTCondor Version 8.6.4, Command Reference

condor_install(1) 819

—owner=<ownername> Set configuration such that HTCondor daemons will be executed as the given owner.
This modifies the ownership on thelog , spool andexecute directories and sets theCONDOR_IDSvalue
in the configuration file, to ensure that HTCondor daemons start up as the specified effective user. This is
only applicable whencondor_configureis run by root. If not run as root, the owner is the user runningthe
condor_configurecommand.

—maybe-daemon-ownerIf –owner is not specified and no appropriate user can be found to run Condor, then this
option will allow the daemon user to be selected. This optionis rarely needed by users but can be useful for
scripts that invoke condor_configure to install Condor.

—install-log=<file> Save information about the installation in the specified file. This is normally only needed when
condor_configure is called by a higher-level script, not when invoked by a person.

—overwrite Always overwrite the contents of thesbin directory in the installation directory. By default,con-
dor_installwill not install if it finds an existingsbin directory with HTCondor programs in it. In this case,
condor_installwill exit with an error message. Specify–overwrite or –backup to tell condor_installwhat to
do.

This preventscondor_installfrom moving ansbin directory out of the way that it should not move. This is
particularly useful when trying to install HTCondor in a location used by other things (/usr , /usr/local ,
etc.) For example:condor_install–prefix=/usr will not move /usr/sbin out of the way unless you specify
the–backupoption.

The–backup behavior is used to preventcondor_installfrom overwriting running daemons – Unix semantics
will keep the existing binaries running, even if they have been moved to a new directory.

—backup Always backup thesbin directory in the installation directory. By default,condor_installwill not install
if it finds an existingsbin directory with HTCondor programs in it. In this case,condor_installwith exit with
an error message. You must specify–overwrite or –backup to tell condor_installwhat to do.

This preventscondor_installfrom moving ansbin directory out of the way that it should not move. This is
particularly useful if you’re trying to install HTCondor ina location used by other things (/usr , /usr/local ,
etc.) For example:condor_install–prefix=/usr will not move /usr/sbin out of the way unless you specify
the–backupoption.

The–backup behavior is used to preventcondor_installfrom overwriting running daemons – Unix semantics
will keep the existing binaries running, even if they have been moved to a new directory.

—ignore-missing-libs Ignore missing shared libraries that are detected bycondor_install. By default,condor_install
will detect missing shared libraries such aslibstdc++.so.5 on Linux; it will print messages and exit if
missing libraries are detected. The—ignore-missing-libswill causecondor_installto not exit, and to proceed
with the installation if missing libraries are detected.

—force This is equivalent to enabling both the—overwrite and—ignore-missing-libscommand line options.

HTCondor Version 8.6.4, Command Reference

condor_install(1) 820

—no-env-scripts By default,condor_configurewrites simple sh and csh shell scripts which can be sourced bytheir
respective shells to set the user’sPATHandCONDOR_CONFIGenvironment variables. This option prevents
condor_configurefrom generating these scripts.

—env-scripts-dir=<directory> By default, the simplesh andcshshell scripts (see—no-env-scripts for details)
are created in the root directory of the HTCondor installation. This option causescondor_configureto generate
these scripts in the specified directory.

—credd Configure the thecondor_credddaemon (credential manager daemon).

—verbose Print information about changes to configuration variablesas they occur.

Exit Status

condor_configurewill exit with a status value of 0 (zero) upon success, and it will exit with a nonzero value upon
failure.

Examples

Install HTCondor on the machine (machine1@cs.wisc.edu) tobe the pool’s central manager. On machine1, within the
directory that contains the unzipped HTCondor distribution directories:

% condor_install --type=submit,execute,manager

This will allow the machine to submit and execute HTCondor jobs, in addition to being the central manager of the
pool.

To change the configuration such that machine2@cs.wisc.eduis an execute-only machine (that is, a dedicated
computing node) within a pool with central manager on machine1@cs.wisc.edu, issue the command on that ma-
chine2@cs.wisc.edu from within the directory where HTCondor is installed:

% condor_configure --central-manager=machine1@cs.wisc .edu --type=execute

To change the location of theLOCAL_DIRdirectory in the configuration file, do (from the directory where HTCondor
is installed):

% condor_configure --local-dir=/path/to/new/local/dir ectory

This will move thelog ,spool ,execute directories to/path/to/new/local/directory from the current
local directory.

HTCondor Version 8.6.4, Command Reference

condor_install(1) 821

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_job_router_info(1) 822

condor_job_router_info

Discover and display information related to job routing

Synopsis

condor_job_router_info[-help | -version]

condor_job_router_info-config

condor_job_router_info-match-jobs -jobadsfilename [-ignore-prior-routing]

Description

condor_job_router_infodisplays information about job routing. The information will be either the available, config-
ured routes or the routes for specified jobs.

Options

-help Display usage information and exit.

-version Display HTCondor version information and exit.

-config Display configured routes.

-match-jobs For each job listed in the file specified by the-jobadsoption, display the first route found.

-ignore-prior-routing For each job, remove any existing routing ClassAd attributes, and set attributeJobStatus
to the Idle state before finding the first route.

-jobadsfilename Read job ClassAds from filefilename. If filenameis - , then read fromstdin .

Exit Status

condor_job_router_infowill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one)
upon failure.

HTCondor Version 8.6.4, Command Reference

condor_job_router_info(1) 823

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_master(1) 824

condor_master

The master HTCondor Daemon

Synopsis

condor_master

Description

This daemon is responsible for keeping all the rest of the HTCondor daemons running on each machine in your pool.
It spawns the other daemons, and periodically checks to see if there are new binaries installed for any of them. If there
are, thecondor_masterwill restart the affected daemons. In addition, if any daemon crashes, thecondor_masterwill
send e-mail to the HTCondor Administrator of your pool and restart the daemon. Thecondor_masteralso supports
various administrative commands that let you start, stop orreconfigure daemons remotely. Thecondor_masterwill run
on every machine in your HTCondor pool, regardless of what functions each machine are performing. Additionally,
on Linux platforms, if you start thecondor_masteras root, it will tune (but never decrease) certain kernel parameters
important to HTCondor’s performance.

TheDAEMON_LISTconfiguration macro is used by thecondor_masterto provide a per-machine list of daemons that
should be started and kept running. For daemons that are specified in theDC_DAEMON_LISTconfiguration macro, the
condor_masterdaemon will spawn them automatically appending a-f argument. For those listed inDAEMON_LIST,
but not inDC_DAEMON_LIST, there will be no-f argument.

Options

-n name Provides an alternate name for thecondor_masterto override that given by theMASTER_NAMEconfigura-
tion variable.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_off(1) 825

condor_off

Shutdown HTCondor daemons

Synopsis

condor_off [-help | -version]

condor_off [-graceful | -fast | -peaceful| -force-graceful] [-debug] [-pool centralmanagerhostname[:portnumber]]
[-namehostname| hostname| -addr "<a.b.c.d:port>" | "<a.b.c.d:port>" | -constraint expression| -all] [-daemon
daemonname]

Description

condor_offshuts down a set of the HTCondor daemons running on a set of oneor more machines. It does this cleanly
so that checkpointable jobs may gracefully exit with minimal loss of work.

The commandcondor_off without any arguments will shut down all daemons exceptcondor_master. The con-
dor_mastercan then handle both local and remote requests to restart theother HTCondor daemons if need be. To
restart HTCondor running on a machine, see thecondor_oncommand.

With the-daemonmasteroption,condor_offwill shut down all daemons including thecondor_master. Specification
using the-daemonoption will shut down only the specified daemon.

For security reasons of authentication and authorization,this command requiresADMINISTRATORlevel of access.

Options

-help Display usage information

-version Display version information

-graceful Gracefully shutdown daemons (the default)

-fast Quickly shutdown daemons. A minimum of the first two characters of this option must be specified, to
distinguish it from the-force-gracefulcommand.

-peaceful Wait indefinitely for jobs to finish

HTCondor Version 8.6.4, Command Reference

condor_off(1) 826

-force-graceful Force a graceful shutdown, even after issuing a-peacefulcommand. A minimum of the first two
characters of this option must be specified, to distinguish it from the-fast command.

-debug Causes debugging information to be sent tostderr , based on the value of the configuration variable
TOOL_DEBUG.

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host name and an
optional port number

-namehostnameSend the command to a machine identified byhostname

hostnameSend the command to a machine identified byhostname

-addr " <a.b.c.d:port>" Send the command to a machine’s master located at"<a.b.c.d:port>"

" <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-constraint expressionApply this command only to machines matching the given ClassAd expression

-all Send the command to all machines in the pool

-daemondaemonnameSend the command to the named daemon. Without this option, the command is sent to the
condor_masterdaemon.

Exit Status

condor_offwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

Examples

To shut down all daemons (other thancondor_master) on the local host:

% condor_off

To shut down only thecondor_collectoron three named machines:

HTCondor Version 8.6.4, Command Reference

condor_off(1) 827

% condor_off cinnamon cloves vanilla -daemon collector

To shut down daemons within a pool of machines other than the local pool, use the-pool option. The argument is the
name of the central manager for the pool. Note that one or moremachines within the pool must be specified as the
targets for the command. This command shuts down all daemonsexcept thecondor_masteron the single machine
namedcae17within the pool of machines that hascondor.cae.wisc.eduas its central manager:

% condor_off -pool condor.cae.wisc.edu -name cae17

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_on(1) 828

condor_on

Start up HTCondor daemons

Synopsis

condor_on [-help | -version]

condor_on [-debug] [-pool centralmanagerhostname[:portnumber]] [-namehostname | hostname |
-addr "<a.b.c.d:port>" | "<a.b.c.d:port>" | -constraint expression| -all] [-daemon daemonname]

Description

condor_onstarts up a set of the HTCondor daemons on a set of machines. This command assumes that thecon-
dor_masteris already running on the machine. If this is not the case,condor_onwill fail complaining that it cannot
find the address of the master. The commandcondor_onwith no arguments or with the-daemonmasteroption will
tell thecondor_masterto start up the HTCondor daemons specified in the configuration variableDAEMON_LIST. If
a daemon other than thecondor_masteris specified with the-daemonoption,condor_onstarts up only that daemon.

This command cannot be used to start up thecondor_masterdaemon.

For security reasons of authentication and authorization,this command requires ADMINISTRATOR level of access.

Options

-help Display usage information

-version Display version information

-debug Causes debugging information to be sent tostderr , based on the value of the configuration variable
TOOL_DEBUG.

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host name and an
optional port number

-namehostnameSend the command to a machine identified byhostname

hostnameSend the command to a machine identified byhostname

HTCondor Version 8.6.4, Command Reference

condor_on(1) 829

-addr " <a.b.c.d:port>" Send the command to a machine’s master located at"<a.b.c.d:port>"

" <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-constraint expressionApply this command only to machines matching the given ClassAd expression

-all Send the command to all machines in the pool

-daemondaemonnameSend the command to the named daemon. Without this option, the command is sent to the
condor_masterdaemon.

Exit Status

condor_onwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

Examples

To begin running all daemons (other thancondor_master) given in the configuration variableDAEMON_LISTon the
local host:

% condor_on

To start up only thecondor_negotiatoron two named machines:

% condor_on robin cardinal -daemon negotiator

To start up only a daemon within a pool of machines other than the local pool, use the-pool option. The argument is
the name of the central manager for the pool. Note that one or more machines within the pool must be specified as
the targets for the command. This command starts up only thecondor_schedddaemon on the single machine named
cae17within the pool of machines that hascondor.cae.wisc.eduas its central manager:

% condor_on -pool condor.cae.wisc.edu -name cae17 -daemon schedd

Author

Center for High Throughput Computing, University of Wisconsin–Madison

HTCondor Version 8.6.4, Command Reference

condor_on(1) 830

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_ping(1) 831

condor_ping

Attempt a security negotiation to determine if it succeeds

Synopsis

condor_ping [-help | -version]

condor_ping [-debug] [-address <a.b.c.d:port>] [-pool host name] [-name daemon name] [-type subsystem]
[-config filename] [-quiet | -table | -verbose] token[token [. . .]]

Description

condor_pingattempts a security negotiation to discover whether the configuration is set such that the negotiation
succeeds. The target of the negotiation is defined by one or a combination of theaddress, pool, name, or type
options. If no target is specified, the default target is thecondor_schedddaemon on the local machine.

One or moretokens may be listed, thereby specifying one or more authorization level to impersonate in security
negotiation. A token is the valueALL, an authorization level, a command name, or the integer value of a command.
The many command names and their associated integer values will more likely be used by experts, and they are defined
in the filecondor_includes/condor_commands.h .

An authorization level may be one of the following strings. If ALL is listed, then negotiation is attempted for each of
these possible authorization levels.

READ

WRITE

ADMINISTRATOR

SOAP

CONFIG

OWNER

DAEMON

NEGOTIATOR

ADVERTISE_MASTER

ADVERTISE_STARTD

ADVERTISE_SCHEDD

CLIENT

HTCondor Version 8.6.4, Command Reference

condor_ping(1) 832

Options

-help Display usage information

-version Display version information

-debug Print extra debugging information as the command executes.

-configfilename Attempt the negotiation based on the contents of the configuration file contents in filefilename.

-address<a.b.c.d:port>Target the given IP address with the negotiation attempt.

-pool hostnameTarget the givenhostwith the negotiation attempt. May be combined with specifications defined by
nameandtype options.

-namedaemonnameTarget the daemon given bydaemonnamewith the negotiation attempt.

-type subsystemTarget the daemon identified bysubsystem, one of the values of the predefined$(SUBSYSTEM)
macro.

-quiet Set exit status only; no output displayed.

-table Output is displayed with one result per line, in a table format.

-verbose Display all available output.

Examples

The example Unix command

condor_ping -address "<127.0.0.1:9618>" -table READ WRIT E DAEMON

places double quote marks around the sinful string to prevent the less than and the greater than characters from
causing redirect of input and output. The given IP address istargeted with 3 attempts to negotiate: one at theREAD
authorization level, one at theWRITEauthorization level, and one at theDAEMONauthorization level.

HTCondor Version 8.6.4, Command Reference

condor_ping(1) 833

Exit Status

condor_pingwill exit with the status value of the negotiation it attempted, where 0 (zero) indicates success, and 1
(one) indicates failure. If multiple security negotiations were attempted, the exit status will be the logical OR of all
values.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_pool_job_report(1) 834

condor_pool_job_report

generate report about all jobs that have run in the last 24 hours on all execute hosts

Synopsis

condor_pool_job_report

Description

condor_pool_job_reportis a Linux-only tool that is designed to be run nightly usingcron. It is intended to be run on the
central manager, or another machine that has administrative permissions, and is able to fetch thecondor_startdhistory
logs from all of thecondor_startddaemons in the pool. After fetching these logs,condor_pool_job_reportthen gener-
ates a report about job run times and mails it to administrators, as defined by configuration variableCONDOR_ADMIN.

Exit Status

condor_pool_job_reportwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one)
upon failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_power(1) 835

condor_power

send packet intended to wake a machine from a low power state

Synopsis

condor_power[-h]

condor_power[-d] [-i] [-m MACaddress] [-s subnet] [ClassAdFile]

Description

condor_powersends one UDP Wake on LAN (WOL) packet to a machine specified either by command line arguments
or by the contents of a machine ClassAd. The machine ClassAd may be in a file, where the file name specified by
the optional argumentClassAdFileis given on the command line. With no command line arguments to specify the
machine, and no file specified,condor_powerquietly presumes that standard input is the file source whichwill specify
the machine ClassAd that includes the public IP address and subnet of the machine.

condor_powerneeds a complete specification of the machine to be successful. If a MAC address is provided on the
command line, but no subnet is given, then the default value for the subnet is used. If a subnet is provided on the
command line, but no MAC address is given, thencondor_powerfalls back to taking its information in the form of
the machine ClassAd as provided in a file or on standard input.Note that this case implies that the command line
specification of the subnet is ignored.

condor_powerrelies on the router receiving the WOL packet to correctly broadcast the request. Since routers are often
configured to ignore requests to broadcast messages on a different subnet than the sender, the send of a WOL packet
to a machine on a different subnet may fail.

Options

-h Print usage information and exit.

-d Enable debugging messages.

-i Read a ClassAd that is piped in through standard input.

-m MACaddressSpecify the MAC address in the standard format of six groups of two hexadecimal digits separated
by colons.

HTCondor Version 8.6.4, Command Reference

condor_power(1) 836

-ssubnet Specify the subnet in the standard form of a mask for an IPv4 address. Without this option, a global
broadcast will be sent.

Exit Status

condor_powerwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_preen(1) 837

condor_preen

remove extraneous files from HTCondor directories

Synopsis

condor_preen[-mail] [-remove] [-verbose] [-debug]

Description

condor_preenexamines the directories belonging to HTCondor, and removes extraneous files and directories which
may be left over from HTCondor processes which terminated abnormally either due to internal errors or a system crash.
The directories checked are theLOG, EXECUTE, andSPOOLdirectories as defined in the HTCondor configuration
files. condor_preenis intended to be run as userroot or usercondor periodically as a backup method to ensure
reasonable file system cleanliness in the face of errors. This is done automatically by default by thecondor_master
daemon. It may also be explicitly invoked on an as needed basis.

Whencondor_preencleans theSPOOLdirectory, it always leaves behind the files specified in the configuration vari-
ablesVALID_SPOOL_FILES andSYSTEM_VALID_SPOOL_FILES, as given by the configuration. For theLOG
directory, the only files removed or reported are those listed within the configuration variableINVALID_LOG_FILES
list. The reason for this difference is that, in general, thefiles in theLOGdirectory ought to be left alone, with few
exceptions. An example of exceptions are core files. As thereare new log files introduced regularly, it is less effort to
specify those that ought to be removed than those that are notto be removed.

Options

-mail Send mail to the user defined in thePREEN_ADMINconfiguration variable, instead of writing to the standard
output.

-remove Remove the offending files and directories rather than reporting on them.

-verbose List all files found in the Condor directories, even those which are not considered extraneous.

-debug Print extra debugging information as the command executes.

Exit Status

condor_preenwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

HTCondor Version 8.6.4, Command Reference

condor_preen(1) 838

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_prio(1) 839

condor_prio

change priority of jobs in the HTCondor queue

Synopsis

condor_prio-p priority | + value| - value[-n schedd_name] cluster| cluster.process| username| -a

condor_prio-p priority | + value| - value[-pool pool_name-n schedd_name]cluster| cluster.process| username| -a

Description

condor_priochanges the priority of one or more jobs in the HTCondor queue. If the job identification is given by
cluster.process, condor_prioattempts to change the priority of the single job with job ClassAd attributesClusterId
andProcId . If described bycluster, condor_prioattempts to change the priority of all processes with the given
ClusterId job ClassAd attribute. Ifusernameis specified,condor_prioattempts to change priority of all jobs
belonging to that user. For-a, condor_prioattempts to change priority of all jobs in the queue.

The user must set a new priority with the-p option, or specify a priority adjustment. The priority of a job can be any
integer, with higher numbers corresponding to greater priority. For adjustment of the current priority,+ valueincreases
the priority by the amount given withvalue. - valuedecreases the priority by the amount given withvalue.

Only the owner of a job or the super user can change the priority.

The priority changed bycondor_priois only used when comparing to the priority jobs owned by the same user and
submitted from the same machine.

Options

-n schedd_nameChange priority of jobs queued at the specifiedcondor_scheddin the local pool.

-pool pool_name-n schedd_nameChange priority of jobs queued at the specifiedcondor_scheddin the specified
pool.

Exit Status

condor_priowill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

HTCondor Version 8.6.4, Command Reference

condor_prio(1) 840

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_procd(1) 841

condor_procd

Track and manage process families

Synopsis

condor_procd-h

condor_procd-A address-file[options]

Description

condor_procdtracks and manages process families on behalf of the HTCondor daemons. It may track families of PIDs
via relationships such as: direct parent/child, environment variables, UID, and supplementary group IDs. Management
of the PID families include

• registering new families or new members of existing families

• getting usage information

• signaling families for operations such as suspension, continuing, or killing the family

• getting a snapshot of the tree of families

In a regular HTCondor installation, this program is not intended to be used or executed by any human.

The required argument,-A address-file, is the path and file name of the address file which is the named pipe that clients
must use to speak with thecondor_procd.

Options

-h Print out usage information and exit.

-D Wait for the debugger. Initially sleep 30 seconds before beginning normal function.

-C principal The principal is the UID of the owner of the named pipe that clients must use to speak to the
condor_procd.

-L log-file A file thecondor_procdwill use to write logging information.

HTCondor Version 8.6.4, Command Reference

condor_procd(1) 842

-E When specified, another tool such as theprocd_ctltool must allocate the GID associated with a process. When
this option isnot specified, thecondor_procdwill allocate the GID itself.

-P PID If not specified, thecondor_procdwill use thecondor_procd’s parent, which may not be PID 1 on Unix, as
the parent of thecondor_procdand the root of the tracking family. When not specified, if thecondor_procd’s
parent PID dies, thecondor_procdexits. When specified, thecondor_procdwill track this PID family in
question and not also exit if the PID exits.

-S secondsThe maximum number of seconds thecondor_procdwill wait between taking snapshots of the tree of
families. Different clients to thecondor_procdcan specify different snapshot times. The quickest snapshot
time is the one performed by thecondor_procd. When this option is not specified, a default value of 60 seconds
is used.

-G min-gid max-gid If the -E option isnot specified, then track process families using a self-allocated, free GID out
of the inclusive range specified bymin-gid andmax-gid. This means that if a new process shows up using a
previously known GID, the new process will automatically associate into the process family assigned that GID.
If the -E optionis specified, then instead of self-allocating the GID, theprocd_ctltool must be used to associate
the GID with the PID root of the family. The associated GID must still be in the range specified. This is a
Linux-only feature.

-K windows-softkill-binary This is the path and executable name of thecondor_softkill.exebinary. It is used to send
softkill signals to process families. This is a Windows-only feature.

-I glexec-kill-path glexec-pathSpecifies, withglexec-kill-path, the path and executable name of a binary used to
send a signal to a PID. Theglexecbinary, specified byglexec-path, executes the program specified with
glexec-kill-pathunder the right privileges to send the signal.

General Remarks

This program may be used in a stand alone mode, independent ofHTCondor, to track process families. The programs
procd_ctlandgidd_allocare used with thecondor_procdin stand alone mode to interact with the daemon and to
inquire about certain state of running processes on the machine, respectively.

Exit Status

condor_procdwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

HTCondor Version 8.6.4, Command Reference

condor_procd(1) 843

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_q(1) 844

condor_q

Display information about jobs in queue

Synopsis

condor_q[-help [Universe | State]]

condor_q [-debug] [general options] [restriction list] [output options] [analyze options]

Description

condor_qdisplays information about jobs in the HTCondor job queue. By default,condor_qqueries the local job
queue, but this behavior may be modified by specifying one of the general options.

As of version 8.5.2,condor_q defaults to querying only the current user’s jobs. This default is overrid-
den when the restriction list has usernames and/or job ids, when the -submitter or -allusers arguments
are specified, or when the current user is a queue superuser. It can also be overridden by setting the
CONDOR_Q_ONLY_MY_JOBS configuration macro to False.

As of version 8.5.6,condor_qdefaults to batch-mode output (see -batch in the Options section below). The
old behavior can be obtained by specifying -nobatch on the command line. To change the default back to its
pre-8.5.6 value, set the new configuration variableCONDOR_Q_DASH_BATCH_IS_DEFAULT to False.

Batches of jobs

As of version 8.5.6,condor_qdefaults to displaying information about batches of jobs, rather than individual jobs.
The intention is that this will be a more useful, and user-friendly, format for users with large numbers of jobs in the
queue. Ideally, users will specify meaningful batch names for their jobs, to make it easier to keep track of related jobs.

(For information about specifying batch names for your jobs, see thecondor_submit(11) andcondor_submit_dag
(11) man pages.)

A batch of jobs is defined as follows:

• An entire workflow (a DAG or hierarchy of nested DAGs) (note that condor_dagmannow specifies a default
batch name for all jobs in a given workflow)

• All jobs in a single cluster

• All jobs submitted by a single user that have the same executable specified in their submit file (unless submitted
with different batch names)

HTCondor Version 8.6.4, Command Reference

condor_q(1) 845

• All jobs submitted by a single user that have the same batch name specified in their submit file or on the
condor_submitor condor_submit_dagcommand line.

Output

There are many output options that modify the output generated bycondor_q. The effects of these options, and the
meanings of the various output data, are described below.

Output options

If the -long option is specified,condor_qdisplays a long description of the queried jobs by printing the entire job
ClassAd for all jobs matching the restrictions, if any. Individual attributes of the job ClassAd can be displayed by
means of the-format option, which displays attributes with aprintf(3) format, or with the-autoformat option.
Multiple -format options may be specified in the option list to display severalattributes of the job.

For most output options (except as specified), the last line of condor_qoutput contains a summary of the queue: the
total number of jobs, and the number of jobs in the completed,removed, idle, running, held and suspended states.

If no output options are specified,condor_qnow defaults to batch mode, and displays the following columns of
information, with one line of output per batch of jobs:

OWNER, BATCH_NAME, SUBMITTED, DONE, RUN, IDLE, [HOLD,] TOTAL, JOB_IDS

Note that the HOLD column is only shown if there are held jobs in the output or if there areno jobs in the output.

If the -nobatch option is specified,condor_qdisplays the following columns of information, with one line of output
per job:

ID, OWNER, SUBMITTED, RUN_TIME, ST, PRI, SIZE, CMD

If the -dagoption is specified (in conjunction with-nobatch), condor_qdisplays the following columns of information,
with one line of output per job; the owner is shown only for top-level jobs, and for all other jobs (including sub-DAGs)
the node name is shown:

ID, OWNER/NODENAME, SUBMITTED, RUN_TIME, ST, PRI, SIZE, CM D

If the -run option is specified (in conjunction with-nobatch), condor_qdisplays the following columns of information,
with one line of output per running job:

ID, OWNER, SUBMITTED, RUN_TIME, HOST(S)

Also note that the-run option disables output of the totals line.

HTCondor Version 8.6.4, Command Reference

condor_q(1) 846

If the -grid option is specified,condor_qdisplays the following columns of information, with one line of output per
job:

ID, OWNER, STATUS, GRID->MANAGER, HOST, GRID_JOB_ID

If the -goodput option is specified,condor_qdisplays the following columns of information, with one line of output
per job:

ID, OWNER, SUBMITTED, RUN_TIME, GOODPUT, CPU_UTIL, Mb/s

If the -io option is specified,condor_qdisplays the following columns of information, with one line of output per job:

ID, OWNER, RUNS, ST, INPUT, OUTPUT, RATE, MISC

If the -cputime option is specified (in conjunction with-nobatch), condor_qdisplays the following columns of infor-
mation, with one line of output per job:

ID, OWNER, SUBMITTED, CPU_TIME, ST, PRI, SIZE, CMD

If the -hold option is specified,condor_qdisplays the following columns of information, with one line of output per
job:

ID, OWNER, HELD_SINCE, HOLD_REASON

If the -totals option is specified,condor_qdisplays only one line of output no matter how many jobs and batches of
jobs are in the queue. That line of output contains the total number of jobs, and the number of jobs in the completed,
removed, idle, running, held and suspended states.

Output data

The available output data are as follows:

ID (Non-batch mode only) The cluster/process id of the HTCondor job.

OWNER The owner of the job or batch of jobs.

OWNER/NODENAME (-dagonly) The owner of a job or the DAG node name of the job.

BATCH_NAME (Batch mode only) The batch name of the job or batch of jobs.

SUBMITTED The month, day, hour, and minute the job was submitted to the queue.

DONE (Batch mode only) The number of job procs that are done, but still in the queue.

HTCondor Version 8.6.4, Command Reference

condor_q(1) 847

RUN (Batch mode only) The number of job procs that are running.

IDLE (Batch mode only) The number of job procs that are in the queuebut idle.

HOLD (Batch mode only) The number of job procs that are in the queuebut held.

TOTAL (Batch mode only) The total number of job procs in the queue, unless the batch is a DAG, in which case this
is the total number of clusters in the queue. Note: for non-DAG batches, the TOTAL column contains correct
values only in version 8.5.7 and later.

JOB_IDS (Batch mode only) The range of job IDs belonging to the batch.

RUN_TIME (Non-batch mode only) Wall-clock time accumulated by the job to date in days, hours, minutes, and
seconds.

ST (Non-batch mode only) Current status of the job, which varies somewhat according to the job universe and the
timing of updates. H = on hold, R = running, I = idle (waiting for a machine to execute on), C = completed, X =
removed, S = suspended (execution of a running job temporarily suspended on execute node), < = transferring
input (or queued to do so), and > = transferring output (or queued to do so).

PRI (Non-batch mode only) User specified priority of the job, displayed as an integer, with higher numbers corre-
sponding to better priority.

SIZE (Non-batch mode only) The peak amount of memory in Mbytes consumed by the job; note this value is only
refreshed periodically. The actual value reported is takenfrom the job ClassAd attributeMemoryUsage if this
attribute is defined, and from job attributeImageSize otherwise.

CMD (Non-batch mode only) The name of the executable.

HOST(S) (-run only) The host where the job is running.

STATUS (-grid only) The state that HTCondor believes the job is in. Possible values are

PENDING The job is waiting for resources to become available in orderto run.

ACTIVE The job has received resources, and the application is executing.

FAILED The job terminated before completion because of an error, user-triggered cancel, or system-triggered
cancel.

DONE The job completed successfully.

SUSPENDED The job has been suspended. Resources which were allocated for this job may have been re-
leased due to a scheduler-specific reason.

UNSUBMITTED The job has not been submitted to the scheduler yet, pending the reception of the
GLOBUS_GRAM_PROTOCOL_JOB_SIGNAL_COMMIT_REQUEST signal from a client.

STAGE_IN The job manager is staging in files, in order to run the job.

STAGE_OUT The job manager is staging out files generated by the job.

UNKNOWN

GRID->MANAGER (-grid only) A guess at what remote batch system is running the job. It is a guess, because
HTCondor looks at the Globus jobmanager contact string to attempt identification. If the value is fork, the job
is running on the remote host without a jobmanager. Values may also be condor, lsf, or pbs.

HTCondor Version 8.6.4, Command Reference

condor_q(1) 848

HOST (-grid only) The host to which the job was submitted.

GRID_JOB_ID (-grid only) (More information needed here.)

GOODPUT (-goodput only) The percentage of RUN_TIME for this job which has been saved in a checkpoint. A
low GOODPUT value indicates that the job is failing to checkpoint. If a job has not yet attempted a checkpoint,
this column contains[?????] .

CPU_UTIL (-goodput only) The ratio of CPU_TIME to RUN_TIME for checkpointed work. A low CPU_UTIL
indicates that the job is not running efficiently, perhaps because it is I/O bound or because the job requires more
memory than available on the remote workstations. If the jobhas not (yet) checkpointed, this column contains
[??????] .

Mb/s (-goodputonly) The network usage of this job, in Megabits per second ofrun-time.

READ The total number of bytes the application has read from files and sockets.

WRITE The total number of bytes the application has written to files and sockets.

SEEK The total number of seek operations the application hasperformed on files.

XPUT The effective throughput (average bytes read and written per second) from the application’s point of view.

BUFSIZE The maximum number of bytes to be buffered per file.

BLOCKSIZE The desired block size for large data transfers. These fields are updated when a job produces a check-
point or completes. If a job has not yet produced a checkpoint, this information is not available.

INPUT (-io only) For standard universe, FileReadBytes; otherwise, BytesRecvd.

OUTPUT (-io only) For standard universe, FileWriteBytes; otherwise, BytesSent.

RATE (-io only) For standard universe, FileReadBytes+FileWriteBytes; otherwise, BytesRecvd+BytesSent.

MISC (-io only) JobUniverse.

CPU_TIME (-cputime only) The remote CPU time accumulated by the job to date (which has been stored in a
checkpoint) in days, hours, minutes, and seconds. (If the job is currently running, time accumulated during the
current run isnot shown. If the job has not produced a checkpoint, this column contains 0+00:00:00.)

HELD_SINCE (-hold only) Month, day, hour and minute at which the job was held.

HOLD_REASON (-hold only) The hold reason for the job.

Analyze

The -analyzeor -better-analyzeoptions can be used to determine why certain jobs are not running by performing
an analysis on a per machine basis for each machine in the pool. The reasons can vary among failed constraints, in-
sufficient priority, resource owner preferences and prevention of preemption by thePREEMPTION_REQUIREMENTS
expression. If the analyze option-verboseis specified along with the-analyzeoption, the reason for failure is dis-
played on a per machine basis.-better-analyzediffers from-analyzein that it will do matchmaking analysis on jobs

HTCondor Version 8.6.4, Command Reference

condor_q(1) 849

even if they are currently running, or if the reason they are not running is not due to matchmaking.-better-analyzealso
produces more thorough analysis of complex Requirements and shows the values of relevant job ClassAd attributes.
When only a single machine is being analyzed via-machineor -mconstraint, the values of relevant attributes of the
machine ClassAd are also displayed.

Restrictions

To restrict the display to jobs of interest, a list of zero or more restriction options may be supplied. Each restriction
may be one of:

• cluster.process, which matches jobs which belong to the specified cluster andhave the specified process number;

• cluster(without aprocess), which matches all jobs belonging to the specified cluster;

• owner, which matches all jobs owned by the specified owner;

• -constraint expression, which matches all jobs that satisfy the specified ClassAd expression;

• -allusers, which overrides the default restriction of only matching jobs submitted by the current user.

If clusteror cluster.processis specified, and the job matching that restriction is acondor_dagmanjob, information for
all jobs of that DAG is displayed in batch mode (in non-batch mode, only thecondor_dagmanjob itself is displayed).

If no ownerrestrictions are present, the job matches the restriction list if it matches at least one restriction in the list.
If ownerrestrictions are present, the job matches the list if it matches one of theownerrestrictionsand at least one
non-ownerrestriction.

Options

-debug Causes debugging information to be sent tostderr , based on the value of the configuration variable
TOOL_DEBUG.

-batch (output option) Show a single line of progress information for a batch of jobs, where a batch is defined as
follows:

• An entire workflow (a DAG or hierarchy of nested DAGs)

• All jobs in a single cluster

• All jobs submitted by a single user that have the same executable specified in their submit file

• All jobs submitted by a single user that have the same batch name specified in their submit file or on the
condor_submitor condor_submit_dagcommand line.

Also change the output columns as noted above.

Note that, as of version 8.5.6,-batch is the default, unless theCONDOR_Q_DASH_BATCH_IS_DEFAULT
configuration variable is set toFalse .

HTCondor Version 8.6.4, Command Reference

condor_q(1) 850

-nobatch (output option) Show a line for each job (turn off the-batch option).

-global (general option) Queries all job queues in the pool.

-submitter submitter (general option) List jobs of a specific submitter in the entire pool, not just for a single
condor_schedd.

-namename (general option) Query only the job queue of the namedcondor_schedddaemon.

-pool centralmanagerhostname[:portnumber](general option) Use thecentralmanagerhostnameas the central
manager to locatecondor_schedddaemons. The default is theCOLLECTOR_HOST, as specified in the
configuration.

-jobadsfile (general option) Display jobs from a list of ClassAds from a file, instead of the real ClassAds from the
condor_schedddaemon. This is most useful for debugging purposes. The ClassAds appear as ifcondor_q
-long is used with the header stripped out.

-userlogfile (general option) Display jobs, with job information comingfrom a job event log, instead of from the
real ClassAds from thecondor_schedddaemon. This is most useful for automated testing of the status of jobs
known to be in the given job event log, because it reduces the load on thecondor_schedd. A job event log does
not contain all of the job information, so some fields in the normal output ofcondor_qwill be blank.

-autocluster (output option) Outputcondor_schedddaemon auto cluster information. For each auto cluster, output
the unique ID of the auto cluster along with the number of jobsin that auto cluster. This option is intended to be
used together with the-long option to output the ClassAds representing auto clusters. The ClassAds can then
be used to identify or classify the demand for sets of machineresources, which will be useful in the on-demand
creation of execute nodes for glidein services.

-cputime (output option) Instead of wall-clock allocation time (RUN_TIME), display remote CPU time accumulated
by the job to date in days, hours, minutes, and seconds. If thejob is currently running, time accumulated
during the current run isnotshown. Note that this option has no effect unless used in conjunction with-nobatch.

-currentrun (output option) Normally, RUN_TIME contains all the time accumulated during the current run plus all
previous runs. If this option is specified, RUN_TIME only displays the time accumulated so far on this current
run.

-dag (output option) Display DAG node jobs under their DAGMan instance. Child nodes are listed using indentation
to show the structure of the DAG. Note that this option has no effect unless used in conjunction with-nobatch.

HTCondor Version 8.6.4, Command Reference

condor_q(1) 851

-expert (output option) Display shorter error messages.

-grid (output option) Get information only about jobs submitted to grid resources described asgt2 or gt5.

-goodput (output option) Display job goodput statistics.

-help [Universe | State] (output option) Print usage info, and, optionally, additionally print job universes or job states.

-hold (output option) Get information about jobs in the hold state. Also displays the time the job was placed into the
hold state and the reason why the job was placed in the hold state.

-limit Number (output option) Limit the number of items output toNumber.

-io (output option) Display job input/output summaries.

-long (output option) Display entire job ClassAds in long format (one attribute per line).

-run (output option) Get information about running jobs. Note that this option has no effect unless used in
conjunction with-nobatch.

-stream-results (output option) Display results as jobs are fetched from thejob queue rather than storing results in
memory until all jobs have been fetched. This can reduce memory consumption when fetching large numbers
of jobs, but ifcondor_qis paused while displaying results, this could result in a timeout in communication with
condor_schedd.

-totals (output option) Display only the totals.

-version (output option) Print the HTCondor version and exit.

-wide (output option) If this option is specified, and the command portion of the output would cause the output to
extend beyond 80 columns, display beyond the 80 columns.

-xml (output option) Display entire job ClassAds in XML format. The XML format is fully defined in the reference
manual, obtained from the ClassAds web page, with a link at http://htcondor.org/classad/classad.html.

-json (output option) Display entire job ClassAds in JSON format.

HTCondor Version 8.6.4, Command Reference

http://htcondor.org/classad/classad.html

condor_q(1) 852

-attributes Attr1[,Attr2 . . .] (output option) Explicitly list the attributes, by name in acomma separated list, which
should be displayed when using the-xml, -json or -long options. Limiting the number of attributes increases
the efficiency of the query.

-format fmt attr (output option) Display attribute or expressionattr in format fmt. To display the attribute or
expression the format must contain a singleprintf(3) -style conversion specifier. Attributes must be from
the job ClassAd. Expressions are ClassAd expressions and may refer to attributes in the job ClassAd. If the
attribute is not present in a given ClassAd and cannot be parsed as an expression, then the format option will be
silently skipped. %r prints the unevaluated, or raw values.The conversion specifier must match the type of the
attribute or expression. %s is suitable for strings such asOwner, %d for integers such asClusterId , and
%f for floating point numbers such asRemoteWallClockTime . %v identifies the type of the attribute, and
then prints the value in an appropriate format. %V identifiesthe type of the attribute, and then prints the value
in an appropriate format as it would appear in the-long format. As an example, strings used with %V will
have quote marks. An incorrect format will result in undefined behavior. Do not use more than one conversion
specifier in a given format. More than one conversion specifier will result in undefined behavior. To output
multiple attributes repeat the-format option once for each desired attribute. Likeprintf(3) style formats,
one may include other text that will be reproduced directly.A format without any conversion specifiers may be
specified, but an attribute is still required. Include\n to specify a line break.

-autoformat[:jlhVr,tng] attr1 [attr2 ...] or -af[:jlhVr,tng] attr1 [attr2 ...] (output option) Display attribute(s) or ex-
pression(s) formatted in a default way according to attribute types. This option takes an arbitrary number of
attribute names as arguments, and prints out their values, with a space between each value and a newline char-
acter after the last value. It is like the-format option without format strings. This output option doesnot work
in conjunction with any of the options-run , -currentrun , -hold, -grid , -goodput, or -io.

It is assumed that no attribute names begin with a dash character, so that the next word that begins with dash
is the start of the next option. Theautoformat option may be followed by a colon character and formatting
qualifiers to deviate the output formatting from the default:

j print the job ID as the first field,

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are quoted),

r print "raw", or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces before each field.

Use-af:h to get tabular values with headings.

Use-af:lrng to get -long equivalent format.

The newline and comma characters maynot be used together. Thel andh characters maynot be used together.

HTCondor Version 8.6.4, Command Reference

condor_q(1) 853

-analyze[:<qual>] (analyze option) Perform a matchmaking analysis on why the requested jobs are not running.
First a simple analysis determines if the job is not running due to not being in a runnable state. If the job is in
a runnable state, then this option is equivalent to-better-analyze. <qual> is a comma separated list containing
one or more of

priority to consider user priority during the analysis

summary to show a one line summary for each job or machine

reverseto analyze machines, rather than jobs

-better-analyze[:<qual>] (analyze option) Perform a more detailed matchmaking analysis to determine how many
resources are available to run the requested jobs. This option is never meaningful for Scheduler universe jobs
and only meaningful for grid universe jobs doing matchmaking. <qual> is a comma separated list containing
one or more of

priority to consider user priority during the analysis

summary to show a one line summary for each job or machine

reverseto analyze machines, rather than jobs

-machinename (analyze option) When doing matchmaking analysis, analyzeonly machine ClassAds that have slot
or machine names that match the given name.

-mconstraint expression(analyze option) When doing matchmaking analysis, match only machine ClassAds which
match the ClassAd expression constraint.

-slotadsfile (analyze option) When doing matchmaking analysis, use the machine ClassAds from the file instead of
the ones from thecondor_collectordaemon. This is most useful for debugging purposes. The ClassAds appear
as if condor_status-long is used.

-userpriosfile (analyze option) When doing matchmaking analysis with priority, read user priorities from the file
rather than the ones from thecondor_negotiatordaemon. This is most useful for debugging purposes or to
speed up analysis in situations where thecondor_negotiatordaemon is slow to respond tocondor_userprio
requests. The file should be in the format produced bycondor_userprio-long.

-nouserprios (analyze option) Do not consider user priority during the analysis.

-reverse-analyze(analyze option) Analyze machine requirements against jobs.

-verbose (analyze option) When doing analysis, show progress and include the names of specific machines in the
output.

HTCondor Version 8.6.4, Command Reference

condor_q(1) 854

General Remarks

The default output fromcondor_qis formatted to be human readable, not script readable. In aneffort to make the
output fit within 80 characters, values in some fields might betruncated. Furthermore, the HTCondor Project can (and
does) change the formatting of this default output as we see fit. Therefore, any script that is attempting to parse data
from condor_qis strongly encouraged to use the-format option (described above, examples given below).

Although -analyzeprovides a very good first approximation, the analyzer cannot diagnose all possible situations,
because the analysis is based on instantaneous and local information. Therefore, there are some situations such as when
several submitters are contending for resources, or if the pool is rapidly changing state which cannot be accurately
diagnosed.

Options-goodput, -cputime, and-io are most useful for standard universe jobs, since they rely on values computed
when a job produces a checkpoint.

It is possible to to hold jobs that are in the X state. To avoid this it is best to construct a-constraint expressionthat
option containsJobStatus != 3 if the user wishes to avoid this condition.

Examples

The -format option provides a way to specify both the job attributes and formatting of those attributes. There must
be only one conversion specification per-format option. As an example, to list only Jane Doe’s jobs in the queue,
choosing to print and format only the owner of the job, the command line arguments for the job, and the process ID of
the job:

$ condor_q -submitter jdoe -format "%s" Owner -format " %s " A rgs -format " ProcId = %d\n" ProcId
jdoe 16386 2800 ProcId = 0
jdoe 16386 3000 ProcId = 1
jdoe 16386 3200 ProcId = 2
jdoe 16386 3400 ProcId = 3
jdoe 16386 3600 ProcId = 4
jdoe 16386 4200 ProcId = 7

To display only the JobID’s of Jane Doe’s jobs you can use the following.

$ condor_q -submitter jdoe -format "%d." ClusterId -format "%d\n" ProcId
27.0
27.1
27.2
27.3
27.4
27.7

An example that shows the analysis in summary format:

$ condor_q -analyze:summary

-- Submitter: submit-1.chtc.wisc.edu : <192.168.100.43: 9618?sock=11794_95bb_3> :
submit-1.chtc.wisc.edu

HTCondor Version 8.6.4, Command Reference

condor_q(1) 855

Analyzing matches for 5979 slots
Autocluster Matches Machine Running Serving

JobId Members/Idle Reqmnts Rejects Job Users Job Other User Avail Owner
---------- ------------ -------- ------------ --------- - ---------- ----- -----
25764522.0 7/0 5910 820 7/10 5046 34 smith
25764682.0 9/0 2172 603 9/9 1531 29 smith
25765082.0 18/0 2172 603 18/9 1531 29 smith
25765900.0 1/0 2172 603 1/9 1531 29 smith

An example that shows summary information by machine:

$ condor_q -ana:sum,rev

-- Submitter: s-1.chtc.wisc.edu : <192.168.100.43:9618? sock=11794_95bb_3> : s-1.chtc.wisc.edu
Analyzing matches for 2885 jobs

Slot Slot's Req Job's Req Both
Name Type Matches Job Matches Slot Match %
------------------------ ---- ------------ ----------- - ----------
slot1@INFO.wisc.edu Stat 2729 0 0.00
slot2@INFO.wisc.edu Stat 2729 0 0.00
slot1@aci-001.chtc.wisc.edu Part 0 2793 0.00
slot1_1@a-001.chtc.wisc.edu Dyn 2644 2792 91.37
slot1_2@a-001.chtc.wisc.edu Dyn 2623 2601 85.10
slot1_3@a-001.chtc.wisc.edu Dyn 2644 2632 85.82
slot1_4@a-001.chtc.wisc.edu Dyn 2644 2792 91.37
slot1@a-002.chtc.wisc.edu Part 0 2633 0.00
slot1_10@a-002.chtc.wisc.edu Den 2623 2601 85.10

An example with two independent DAGs in the queue:

$ condor_q

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:3 5169?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
wenger DAG: 3696 2/12 11:55 _ 10 _ 10 3698.0 ... 3707.0
wenger DAG: 3697 2/12 11:55 1 1 1 10 3709.0 ... 3710.0

14 jobs; 0 completed, 0 removed, 1 idle, 13 running, 0 held, 0 s uspended

Note that the "13 running" in the last line is two more than thetotal of the RUN column, because the twocon-
dor_dagmanjobs themselves are counted in the last line but not the RUN column.

Also note that the "completed" value in the last line does notcorrespond to the total of the DONE column, because
the "completed" value in the last line only counts jobs that are completed but still in the queue, whereas the DONE
column counts jobs that are no longer in the queue.

Here’s an example with a held job, illustrating the additionof the HOLD column to the output:

$ condor_q

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9 619?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS
wenger CMD: /bin/slee 9/13 16:25 _ 3 _ 1 4 599.0 ...

HTCondor Version 8.6.4, Command Reference

condor_q(1) 856

4 jobs; 0 completed, 0 removed, 0 idle, 3 running, 1 held, 0 sus pended

Here are some examples with a nested-DAG workflow in the queue, which is one of the most complicated cases. The
workflow consists of a top-level DAG with nodes NodeA and NodeB, each with two two-proc clusters; and a sub-DAG
SubZ with nodes NodeSA and NodeSB, each with two two-proc clusters.

First of all, non-batch mode with all of the node jobs in the queue:

$ condor_q -nobatch

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9 619?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
591.0 wenger 9/13 16:05 0+00:00:13 R 0 2.4 condor_dagman -p 0
592.0 wenger 9/13 16:05 0+00:00:07 R 0 0.0 sleep 60
592.1 wenger 9/13 16:05 0+00:00:07 R 0 0.0 sleep 300
593.0 wenger 9/13 16:05 0+00:00:07 R 0 0.0 sleep 60
593.1 wenger 9/13 16:05 0+00:00:07 R 0 0.0 sleep 300
594.0 wenger 9/13 16:05 0+00:00:07 R 0 2.4 condor_dagman -p 0
595.0 wenger 9/13 16:05 0+00:00:01 R 0 0.0 sleep 60
595.1 wenger 9/13 16:05 0+00:00:01 R 0 0.0 sleep 300
596.0 wenger 9/13 16:05 0+00:00:01 R 0 0.0 sleep 60
596.1 wenger 9/13 16:05 0+00:00:01 R 0 0.0 sleep 300

10 jobs; 0 completed, 0 removed, 0 idle, 10 running, 0 held, 0 s uspended

Now non-batch mode with the-dag option (unfortunately,condor_qdoesn’t do a good job of grouping procs in the
same cluster together):

$ condor_q -nobatch -dag

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9 619?...
ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
591.0 wenger 9/13 16:05 0+00:00:27 R 0 2.4 condor_dagman -
592.0 |-NodeA 9/13 16:05 0+00:00:21 R 0 0.0 sleep 60
593.0 |-NodeB 9/13 16:05 0+00:00:21 R 0 0.0 sleep 60
594.0 |-SubZ 9/13 16:05 0+00:00:21 R 0 2.4 condor_dagman -
595.0 |-NodeSA 9/13 16:05 0+00:00:15 R 0 0.0 sleep 60
596.0 |-NodeSB 9/13 16:05 0+00:00:15 R 0 0.0 sleep 60
592.1 |-NodeA 9/13 16:05 0+00:00:21 R 0 0.0 sleep 300
593.1 |-NodeB 9/13 16:05 0+00:00:21 R 0 0.0 sleep 300
595.1 |-NodeSA 9/13 16:05 0+00:00:15 R 0 0.0 sleep 300
596.1 |-NodeSB 9/13 16:05 0+00:00:15 R 0 0.0 sleep 300

10 jobs; 0 completed, 0 removed, 0 idle, 10 running, 0 held, 0 s uspended

Now, finally, the non-batch (default) mode:

$ condor_q

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9 619?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

HTCondor Version 8.6.4, Command Reference

condor_q(1) 857

wenger ex1.dag+591 9/13 16:05 _ 8 _ 5 592.0 ... 596.1

10 jobs; 0 completed, 0 removed, 0 idle, 10 running, 0 held, 0 s uspended

There are several things about this output that may be slightly confusing:

• The TOTAL column is less than the RUN column. This is because, for DAG node jobs, their contribution to the
TOTAL column is the number of clusters, not the number of procs (but their contribution to the RUN column
is the number of procs). So the four DAG nodes (8 procs) contribute 4, and the sub-DAG contributes 1, to the
TOTAL column. (But, somewhat confusingly, the sub-DAG job isnot counted in the RUN column.)

• The sum of the RUN and IDLE columns (8) is less than the 10 jobslisted in the totals line at the bottom. This is
because the top-level DAG and sub-DAG jobs are not counted inthe RUN column, but they are counted in the
totals line.

Now here is non-batch mode after proc 0 of each node job has finished:

$ condor_q -nobatch

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9 619?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
591.0 wenger 9/13 16:05 0+00:01:19 R 0 2.4 condor_dagman -p 0
592.1 wenger 9/13 16:05 0+00:01:13 R 0 0.0 sleep 300
593.1 wenger 9/13 16:05 0+00:01:13 R 0 0.0 sleep 300
594.0 wenger 9/13 16:05 0+00:01:13 R 0 2.4 condor_dagman -p 0
595.1 wenger 9/13 16:05 0+00:01:07 R 0 0.0 sleep 300
596.1 wenger 9/13 16:05 0+00:01:07 R 0 0.0 sleep 300

6 jobs; 0 completed, 0 removed, 0 idle, 6 running, 0 held, 0 sus pended

The same state also with the-dagoption:

$ condor_q -nobatch -dag

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9 619?...
ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
591.0 wenger 9/13 16:05 0+00:01:30 R 0 2.4 condor_dagman -
592.1 |-NodeA 9/13 16:05 0+00:01:24 R 0 0.0 sleep 300
593.1 |-NodeB 9/13 16:05 0+00:01:24 R 0 0.0 sleep 300
594.0 |-SubZ 9/13 16:05 0+00:01:24 R 0 2.4 condor_dagman -
595.1 |-NodeSA 9/13 16:05 0+00:01:18 R 0 0.0 sleep 300
596.1 |-NodeSB 9/13 16:05 0+00:01:18 R 0 0.0 sleep 300

6 jobs; 0 completed, 0 removed, 0 idle, 6 running, 0 held, 0 sus pended

And, finally, that state in batch (default) mode:

$ condor_q

HTCondor Version 8.6.4, Command Reference

condor_q(1) 858

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9 619?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
wenger ex1.dag+591 9/13 16:05 _ 4 _ 5 592.1 ... 596.1

6 jobs; 0 completed, 0 removed, 0 idle, 6 running, 0 held, 0 sus pended

Exit Status

condor_qwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_qedit(1) 859

condor_qedit

modify job attributes

Synopsis

condor_qedit [-debug] [-n schedd-name] [-pool pool-name] {cluster | cluster.proc| owner| -constraint constraint}
attribute-name attribute-value. . .

Description

condor_qeditmodifies job ClassAd attributes of queued HTCondor jobs. Thejobs are specified either by cluster
number, job ID, owner, or by a ClassAd constraint expression. Theattribute-valuemay be any ClassAd expression.
String expressions must be surrounded by double quotes. Multiple attribute value pairs may be listed on the same
command line.

To ensure security and correctness,condor_qeditwill not allow modification of the following ClassAd attributes:

• Owner

• ClusterId

• ProcId

• MyType

• TargetType

• JobStatus

SinceJobStatus may not be changed withcondor_qedit, usecondor_holdto place a job in the hold state, and use
condor_releaseto release a held job, instead of attempting to modifyJobStatus directly.

If a job is currently running, modified attributes for that job will not affect the job until it restarts. As an exam-
ple, for PeriodicRemove to affect when a currently running job will be removed from the queue, that job must
first be evicted from a machine and returned to the queue. The same is true for other periodic expressions, such as
PeriodicHold andPeriodicRelease .

condor_qeditvalidates both attribute names and attribute values, checking for correct ClassAd syntax. An error
message is printed, and no attribute is set or changed if the name or value is invalid.

HTCondor Version 8.6.4, Command Reference

condor_qedit(1) 860

Options

-debug Causes debugging information to be sent tostderr , based on the value of the configuration variable
TOOL_DEBUG.

-n schedd-nameModify job attributes in the queue of the specified schedd

-pool pool-nameModify job attributes in the queue of the schedd specified in the specified pool

Examples

% condor_qedit -name north.cs.wisc.edu -pool condor.cs.w isc.edu 249.0 answer 42
Set attribute "answer".
% condor_qedit -name perdita 1849.0 In '"myinput"'
Set attribute "In".
% condor_qedit jbasney NiceUser TRUE
Set attribute "NiceUser".
% condor_qedit -constraint 'JobUniverse == 1' Requirement s '(Arch == "INTEL") && (OpSys == "SOLARIS26") && (Disk
Set attribute "Requirements".

General Remarks

A job’s ClassAd attributes may be viewed with

condor_q -long

Exit Status

condor_qeditwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_qsub(1) 861

condor_qsub

Queue jobs that use PBS/SGE-style submission

Synopsis

condor_qsub[-- version]

condor_qsub[Specific options] [Directory options] [Environmental options] [File options] [Notification options]
[Resource options] [Status options] [Submission options] commandfile

Description

condor_qsubsubmits an HTCondor job. This job is specified in a PBS/Torquestyle or an SGE style.condor_qsub
permits the submission of dependent jobs without the need tospecify the full dependency graph at submission time.
Doing things this way is neither as efficient as HTCondor’s DAGMan, nor as functional as SGE’sqsubor qalter.
condor_qsubserves as a minimal translator to be able to use software originally written to interact with PBS, Torque,
and SGE in an HTCondor pool.

condor_qsubattempts to behave likeqsub. Less than half of theqsubfunctionality is implemented. Option descriptions
describe the differences between the behavior ofqsubandcondor_qsub. qsuboptions not listed here are not supported.
Some concepts present in PBS and SGE do not apply to HTCondor,and so these options are not implemented.

For a full listing ofqsuboptions, please see

POSIX : http://pubs.opengroup.org/onlinepubs/9699919799/utilities/qsub.html

SGE : http://gridscheduler.sourceforge.net/htmlman/htmlman1/qsub.html

PBS/Torque : http://docs.adaptivecomputing.com/torque/4-1-3/Content/topics/commands/qsub.htm

condor_qsubaccepts either command line options or the single file,commandfile, that contains all of the commands.

condor_qsubdoes the opposite of job submission within thegrid universebatch grid type, which takes HTCondor
jobs submitted with HTCondor syntax and submits them to PBS,SGE, or LSF.

Options

-a date_time(Submission option) Specify a deferred execution date and time. The PBS/Torque syntax ofdate_timeis
a string in the form[[[[CC]YY]MM]DD]hhmm[.SS] . The portions of this string which are optional areCC, YY,
MM, DD, andSS. For SGE,MM andDD arenot optional. For PBS,MM andDD are optional.condor_qsub
follows the PBS style.

HTCondor Version 8.6.4, Command Reference

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/qsub.html
http://gridscheduler.sourceforge.net/htmlman/htmlman1/qsub.html
http://docs.adaptivecomputing.com/torque/4-1-3/Content/topics/commands/qsub.htm

condor_qsub(1) 862

-A account_string (Status option) Uses group accounting where the stringaccount_stringis the accounting group
associated with this job. Unlike SGE, there is no default group of "sge" .

-b y|n (Submission option) Using the SGE definition of its-b option, a value ofy causescondor_qsubto notparse the
file for additionalcondor_qsubcommands. The default value isn. If the command line argument-f filenameis
also specified, it negates a value ofy.

-c checkpoint_option(Submission option) For standard universe jobs only, controls the how HTCondor produces
checkpoints.checkpoint_optionsmay be one of

n or N Do not produce checkpoints.

s or S Do not produce periodic checkpoints. A job will only producea checkpoint when the job is evicted.

More options may be implemented in the future.

—condor-keep-files (Specific option) Directs HTCondor tonot remove temporary files generated bycondor_qsub,
such as HTCondor submit files and sentinel jobs. These temporary files may be important for debugging.

-cwd (Directory option) Specifies the initial directory in whichthe job will run to be the current directory from which
the job was submitted. This setsinitialdir for condor_submit.

-d pathor -wd path (Directory option) Specifies the initial directory in whichthe job will run to bepath. This sets
initialdir for condor_submit.

-efilename (File option) Specifies thecondor_submitcommanderror , the file wherestderr is written. If not
specified, set to the default name of<commandfile>.e<ClusterId> , where<commandfile> is the
condor_qsubargument, and <ClusterId> is the job attributeClusterId assigned for the job.

—f qsub_file (Specific option) Parseqsub_fileto search for and set additionalcondor_submitcommands. Within the
file, commands will appear as#PBSor #SGE. condor_qsubwill parse the batch file listed asqsub_file.

-h (Status option) Placed submitted job directly into the holdstate.

—help (Specific option) Print usage information and exit.

-hold_jid <jid> (Status option) Submits a job in the hold state. This job is released only when a previously submitted
job, identified by its cluster ID as<jid> , exits successfully. Successful completion is defined as not exiting
with exit code 100. In implementation, there are three jobs that define this SGE feature. The first job is the
previously submitted job. The second job is the newly submitted one that is waiting for the first to finish
successfully. The third job is what SGE calls asentineljob; this is an HTCondor local universe job that watches

HTCondor Version 8.6.4, Command Reference

condor_qsub(1) 863

the history for the first job’s exit code. This third job will exit once it has seen the exit code and, for a successful
termination of the first job, runcondor_releaseon the second job. If the first job is an array job, the second job
will only be released after all individual jobs of the first job have completed.

-i [hostname:]filename (File option) Specifies thecondor_submitcommandinput , the file from whichstdin is
read.

-j characters (File option) Acceptable characters for this option aree, o, andn. The only sequence that is relevant
is eo ; it specifies that both standard output and standard error are to be sent to the same file. The file will be
the one specified by the-o option, if both the-o and-e options exist. The file will be the one specified by the
-e option, if only the-e option is provided. If neither the-o nor the-e options are provided, the file will be the
default used for the-o option.

-l resource_spec(Resource option) Specifies requirements for the job, such as the amount of RAM and the number
of CPUs. Only PBS-style resource requests are supported.resource_specis a comma separated list of key/value
pairs. Each pair is of the formresource_name=value . resource_name andvalue may be

resource_name value Description
arch string Sets Arch machine attribute. Enclose in double

quotes.
file size Disk space requested.
host string Host machine on which the job must run.
mem size Amount of memory requested.
nodes {<node_count>

|
<hostname>}
[:ppn=<ppn>]
[:gpus=<gpu>]
[:<property>
[:<property>]
...] [+
...]

Number and/or properties of nodes to
be used. For examples, please see
http://docs.adaptivecomputing.com/torque/4-1-3/Content/topics/2-jobs/requesting

opsys string Sets OpSys machine attribute. Enclose in double
quotes.

procs integer Number of CPUs requested.

A size value is an

integer specified in bytes, following the PBS/Torque default. AppendKb, Mb, Gb, or Tb to specify the value in
powers of two quantities greater than bytes.

-m a|e|n (Notification option) Identify when HTCondor sends notification e-mail. If a, send e-mail when the job
terminates abnormally. Ife, send e-mail when the job terminates. Ifn, never send e-mail.

-M e-mail_address(Notification option) Sets the destination address for HTCondor e-mail.

HTCondor Version 8.6.4, Command Reference

http://docs.adaptivecomputing.com/torque/4-1-3/Content/topics/2-jobs/requestingRes.htm#qsub

condor_qsub(1) 864

-o filename (File option) Specifies thecondor_submitcommandoutput, the file wherestdout is written. If not
specified, set to the default name of<commandfile>.o<ClusterId> , where<commandfile> is the
condor_qsubargument, and <ClusterId> is the job attributeClusterId assigned for the job.

-p integer (Status option) Sets thepriority submit command for the job, with 0 being the default. Jobs with higher
numerical priority will run before jobs with lower numerical priority.

—print (Specific option) Send tostdout the contents of the HTCondor submit description file thatcondor_qsub
generates.

-r y|n (Status option) The default value ofy implements the default HTCondor policy of assuming that jobs that do
not complete are placed back in the queue to be run again. Whenn, job submission is restricted to only running
the job if the job ClassAd attributeNumJobStarts is currently 0. This identifies the job as not re-runnable,
limiting it to start once.

-S shell (Submission option) Specifies the path and executable name of a shell. Alters the HTCondor submit
description file produced, such that the executable becomesa wrapper script. Within the submit description file
will be executable = <shell> andarguments = <commandfile> .

-t start [-stop:step] (Submission option) Queues a set of nearly identical jobs. The SGE-style syntax is supported.
start, stop, andstepare all integers.start is the starting index of the jobs,stopis the ending index (inclusive) of
the jobs, andstepis the step size through the indices. Note that using more than one processor or node in a job
will not work with this option.

—test (Specific option) With the intention of testing a potential job submission, parse files and commands to generate
error output. Produces, but then removes the HTCondor submit description file. Never submits the job, even if
no errors are encountered.

-v variable list (Environmental option) Used to set the submit commandenvironment for the job.variable list is as
that defined for the submit command. Note that the syntax needed is specialized to deal with quote marks and
white space characters.

-V (Environmental option) Setsgetenv = True in the submit description file.

-W attr_name=attr_value[,attr_name=attr_value. . .](File option) PBS/Torque supports a number of attributes.
However, condor_qsubonly supports the namesstagein and stageout for attr_name. The format of
attr_valuefor stageinandstageoutis local_file@hostname:remote_file[,...] and we strip it to
remote_file[,...] . HTCondor’s file transfer mechanism is then used if needed.

HTCondor Version 8.6.4, Command Reference

condor_qsub(1) 865

—version (Specific option) Print version information for thecondor_qsubprogram and exit. Note thatcondor_qsub
has its own version numbers which are separate from those of HTCondor.

Exit Status

condor_qsubwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure
to submit a job.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_reconfig(1) 866

condor_reconfig

Reconfigure HTCondor daemons

Synopsis

condor_reconfig[-help | -version]

condor_reconfig [-debug] [-pool centralmanagerhostname[:portnumber]] [-namehostname | hostname |
-addr "<a.b.c.d:port>" | "<a.b.c.d:port>" | -constraint expression| -all] [-daemon daemonname]

Description

condor_reconfigreconfigures all of the HTCondor daemons in accordance with the current status of the HTCondor
configuration file(s). Once reconfiguration is complete, thedaemons will behave according to the policies stated in
the configuration file(s). The main exception is with theDAEMON_LISTvariable, which will only be updated if the
condor_restartcommand is used. Other configuration variables that can onlybe changed if the HTCondor daemons
are restarted are listed in the HTCondor manual in the section on configuration. In general,condor_reconfigshould be
used when making changes to the configuration files, since it is faster and more efficient than restarting the daemons.

The commandcondor_reconfigwith no arguments or with the-daemonmasteroption will cause the reconfiguration
of thecondor_masterdaemon and all the child processes of thecondor_master.

For security reasons of authentication and authorization,this command requires ADMINISTRATOR level of access.

Options

-help Display usage information

-version Display version information

-debug Causes debugging information to be sent tostderr , based on the value of the configuration variable
TOOL_DEBUG.

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host name and an
optional port number

-namehostnameSend the command to a machine identified byhostname

HTCondor Version 8.6.4, Command Reference

condor_reconfig(1) 867

hostnameSend the command to a machine identified byhostname

-addr " <a.b.c.d:port>" Send the command to a machine’s master located at"<a.b.c.d:port>"

" <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-constraint expressionApply this command only to machines matching the given ClassAd expression

-all Send the command to all machines in the pool

-daemondaemonnameSend the command to the named daemon. Without this option, the command is sent to the
condor_masterdaemon.

Exit Status

condor_reconfigwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

Examples

To reconfigure thecondor_masterand all its children on the local host:

% condor_reconfig

To reconfigure only thecondor_startdon a named machine:

% condor_reconfig -name bluejay -daemon startd

To reconfigure a machine within a pool other than the local pool, use the-pool option. The argument is the name
of the central manager for the pool. Note that one or more machines within the pool must be specified as the targets
for the command. This command reconfigures the single machine namedcae17within the pool of machines that has
condor.cae.wisc.eduas its central manager:

% condor_reconfig -pool condor.cae.wisc.edu -name cae17

Author

Center for High Throughput Computing, University of Wisconsin–Madison

HTCondor Version 8.6.4, Command Reference

condor_reconfig(1) 868

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_release(1) 869

condor_release

release held jobs in the HTCondor queue

Synopsis

condor_release[-help | -version]

condor_release [-debug] [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr "<a.b.c.d:port>"] cluster. . .| cluster.process. . .| user. . . | -constraint expression. . .

condor_release [-debug] [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr "<a.b.c.d:port>"] -all

Description

condor_releasereleases jobs from the HTCondor job queue that were previously placed in hold state. If the-name
option is specified, the namedcondor_scheddis targeted for processing. Otherwise, the localcondor_scheddis tar-
geted. The jobs to be released are identified by one or more jobidentifiers, as described below. For any given job, only
the owner of the job or one of the queue super users (defined by theQUEUE_SUPER_USERSmacro) can release the
job.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host name and an
optional port number

-namescheddnameSend the command to a machine identified byscheddname

-addr " <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-debug Causes debugging information to be sent tostderr , based on the value of the configuration variable
TOOL_DEBUG.

HTCondor Version 8.6.4, Command Reference

condor_release(1) 870

cluster Release all jobs in the specified cluster

cluster.processRelease the specific job in the cluster

user Release jobs belonging to specified user

-constraint expressionRelease all jobs which match the job ClassAd expression constraint

-all Release all the jobs in the queue

See Also

condor_hold

Examples

To release all of the jobs of a user named Mary:

% condor_release Mary

Exit Status

condor_releasewill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_reschedule(1) 871

condor_reschedule

Update scheduling information to the central manager

Synopsis

condor_reschedule[-help | -version]

condor_reschedule [-debug] [-pool centralmanagerhostname[:portnumber]] [-namehostname| hostname|
-addr "<a.b.c.d:port>" | "<a.b.c.d:port>" | -constraint expression| -all]

Description

condor_rescheduleupdates the information about a set of machines’ resources and jobs to the central manager. This
command is used to force an update before viewing the currentstatus of a machine. Viewing the status of a machine
is done with thecondor_statuscommand.condor_reschedulealso starts a new negotiation cycle between resource
owners and resource providers on the central managers, so that jobs can be matched with machines right away. This
can be useful in situations where the time between negotiation cycles is somewhat long, and an administrator wants to
see if a job in the queue will get matched without waiting for the next negotiation cycle.

A new negotiation cycle cannot occur more frequently than every 20 seconds. Requests for new negotiation cycle
within that 20 second window will be deferred until 20 seconds have passed since that last cycle.

Options

-help Display usage information

-version Display version information

-debug Causes debugging information to be sent tostderr , based on the value of the configuration variable
TOOL_DEBUG.

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host name and an
optional port number

-namehostnameSend the command to a machine identified byhostname

hostnameSend the command to a machine identified byhostname

HTCondor Version 8.6.4, Command Reference

condor_reschedule(1) 872

-addr " <a.b.c.d:port>" Send the command to a machine’s master located at"<a.b.c.d:port>"

" <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-constraint expressionApply this command only to machines matching the given ClassAd expression

-all Send the command to all machines in the pool

Exit Status

condor_reschedulewill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

Examples

To update the information on three named machines:

% condor_reschedule robin cardinal bluejay

To reschedule on a machine within a pool other than the local pool, use the-pool option. The argument is the name
of the central manager for the pool. Note that one or more machines within the pool must be specified as the targets
for the command. This command reschedules the single machine namedcae17within the pool of machines that has
condor.cae.wisc.eduas its central manager:

% condor_reschedule -pool condor.cae.wisc.edu -name cae1 7

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_restart(1) 873

condor_restart

Restart a set of HTCondor daemons

Synopsis

condor_restart [-help | -version]

condor_restart [-debug] [-graceful | -fast | -peaceful] [-pool centralmanagerhostname[:portnumber]]
[-namehostname| hostname| -addr "<a.b.c.d:port>" | "<a.b.c.d:port>" | -constraint expression| -all] [-daemon
daemonname]

Description

condor_restartrestarts a set of HTCondor daemons on a set of machines. The daemons will be put into a consistent
state, killed, and then invoked anew.

If, for example, thecondor_masterneeds to be restarted again with a fresh state, this is the command that should be
used to do so. If theDAEMON_LISTvariable in the configuration file has been changed, this command is used to
restart thecondor_masterin order to see this change. Thecondor_reconfigurecommand cannot be used in the case
where theDAEMON_LISTexpression changes.

The commandcondor_restartwith no arguments or with the-daemonmasteroption will safely shut down all running
jobs and all submitted jobs from the machine(s) being restarted, then shut down all the child daemons of thecon-
dor_master, and then restart thecondor_master. This, in turn, will allow thecondor_masterto start up other daemons
as specified in theDAEMON_LISTconfiguration file entry.

For security reasons of authentication and authorization,this command requires ADMINISTRATOR level of access.

Options

-help Display usage information

-version Display version information

-debug Causes debugging information to be sent tostderr , based on the value of the configuration variable
TOOL_DEBUG.

-graceful Gracefully shutdown daemons (the default) before restarting them

HTCondor Version 8.6.4, Command Reference

condor_restart(1) 874

-fast Quickly shutdown daemons before restarting them

-peaceful Wait indefinitely for jobs to finish before shutting down daemons, prior to restarting them

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host name and an
optional port number

-namehostnameSend the command to a machine identified byhostname

hostnameSend the command to a machine identified byhostname

-addr " <a.b.c.d:port>" Send the command to a machine’s master located at"<a.b.c.d:port>"

" <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-constraint expressionApply this command only to machines matching the given ClassAd expression

-all Send the command to all machines in the pool

-daemondaemonnameSend the command to the named daemon. Without this option, the command is sent to the
condor_masterdaemon.

Exit Status

condor_restartwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

Examples

To restart thecondor_masterand all its children on the local host:

% condor_restart

To restart only thecondor_startdon a named machine:

% condor_restart -name bluejay -daemon startd

HTCondor Version 8.6.4, Command Reference

condor_restart(1) 875

To restart a machine within a pool other than the local pool, use the-pool option. The argument is the name of
the central manager for the pool. Note that one or more machines within the pool must be specified as the targets
for the command. This command restarts the single machine namedcae17within the pool of machines that has
condor.cae.wisc.eduas its central manager:

% condor_restart -pool condor.cae.wisc.edu -name cae17

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_rm(1) 876

condor_rm

remove jobs from the HTCondor queue

Synopsis

condor_rm [-help | -version]

condor_rm [-debug] [-forcex] [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr "<a.b.c.d:port>"] cluster. . .| cluster.process. . .| user. . . | -constraint expression. . .

condor_rm [-debug] [-pool centralmanagerhostname[:portnumber] | -namescheddname]|
[-addr "<a.b.c.d:port>"] -all

Description

condor_rmremoves one or more jobs from the HTCondor job queue. If the-name option is specified, the named
condor_scheddis targeted for processing. Otherwise, the localcondor_scheddis targeted. The jobs to be removed are
identified by one or more job identifiers, as described below.For any given job, only the owner of the job or one of the
queue super users (defined by theQUEUE_SUPER_USERSmacro) can remove the job.

When removing a grid job, the job may remain in the “X” state for a very long time. This is normal, as HTCondor is
attempting to communicate with the remote scheduling system, ensuring that the job has been properly cleaned up. If
it takes too long, or in rare circumstances is never removed,the job may be forced to leave the job queue by using the
-forcex option. This forcibly removes jobs that are in the “X” state without attempting to finish any clean up at the
remote scheduler.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host name and an
optional port number

-namescheddnameSend the command to a machine identified byscheddname

-addr " <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

HTCondor Version 8.6.4, Command Reference

condor_rm(1) 877

-debug Causes debugging information to be sent tostderr , based on the value of the configuration variable
TOOL_DEBUG.

-forcex Force the immediate local removal of jobs in the ’X’ state (only affects jobs already being removed)

cluster Remove all jobs in the specified cluster

cluster.processRemove the specific job in the cluster

user Remove jobs belonging to specified user

-constraint expressionRemove all jobs which match the job ClassAd expression constraint

-all Remove all the jobs in the queue

General Remarks

Use the-forcexargument with caution, as it will remove jobs from the local queue immediately, but can orphan parts
of the job that are running remotely and have not yet been stopped or removed.

Examples

For a user to remove all their jobs that are not currently running:

% condor_rm -constraint 'JobStatus =!= 2'

Exit Status

condor_rmwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

HTCondor Version 8.6.4, Command Reference

condor_rm(1) 878

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_rmdir(1) 879

condor_rmdir

Windows-only no-fail deletion of directories

Synopsis

condor_rmdir[/HELP | /?]

condor_rmdir@filename

condor_rmdir[/VERBOSE] [/DIAGNOSTIC] [/PATH:<path>] [/S] [/C] [/Q] [/NODEL] directory

Description

condor_rmdircan delete a specifieddirectory, and will not fail if the directory contains files that have ACLs that deny
the SYSTEM process delete access, unlike the built-in Windows rmdir command.

The directory to be removed together with other command linearguments may be specified within a file named
filename, prefixing this argument with an@character.

The condor_rmdir.exeexecutable is is intended to be used by HTCondor with the/S /C options, which cause it to
recurse into subdirectories and continue on errors.

Options

/HELP Print usage information.

/? Print usage information.

/VERBOSE Print detailed output.

/DIAGNOSTIC Print out the internal flow of control information.

/PATH:<path> Remove the directory given by<path>.

/S Include subdirectories in those removed.

/C Continue even if access is denied.

HTCondor Version 8.6.4, Command Reference

condor_rmdir(1) 880

/Q Print error output only.

/NODEL Do not remove directories. ACLs may still be changed.

Exit Status

condor_rmdirwill exit with a status value of 0 (zero) upon success, and it will exit with the standard HRESULT error
code upon failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_router_history(1) 881

condor_router_history

Display the history for routed jobs

Synopsis

condor_router_history[-- h]

condor_router_history[-- show_records] [-- show_iwd] [-- age days] [-- days days] [-- start "YYYY-MM-DD
HH:MM"]

Description

condor_router_historysummarizes statistics for routed jobs over the previous 24 hours. With no command line op-
tions, statistics for run time, number of jobs completed, and number of jobs aborted are listed per route (site).

Options

—h Display usage information and exit.

—show_records Displays individual records in addition to the summary.

—show_iwd Include working directory in displayed records.

—agedays Set the ending time of the summary to bedaysdays ago.

—daysdays Set the number of days to summarize.

—start "YYYY-MM-DD HH:MM" Set the start time of the summary.

Exit Status

condor_router_historywill exit with a status of 0 (zero) upon success, and non-zerootherwise.

HTCondor Version 8.6.4, Command Reference

condor_router_history(1) 882

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_router_q(1) 883

condor_router_q

Display information about routed jobs in the queue

Synopsis

condor_router_q[-S] [-R] [-I] [-H] [-route name] [-idle] [-held] [-constraint X] [condor_q options]

Description

condor_router_qdisplays information about jobs managed by thecondor_job_routerthat are in the HTCondor job
queue. The functionality of this tool is that ofcondor_q, with additional options specialized for routed jobs. Therefore,
any of the options forcondor_qmay also be used withcondor_router_q.

Options

-S Summarize the state of the jobs on each route.

-R Summarize the running jobs on each route.

-I Summarize the idle jobs on each route.

-H Summarize the held jobs on each route.

-route name Display only the jobs on the route identified byname.

-idle Display only the idle jobs.

-held Display only the held jobs.

-constraint X Display only the jobs matching constraintX.

Exit Status

condor_router_qwill exit with a status of 0 (zero) upon success, and non-zerootherwise.

HTCondor Version 8.6.4, Command Reference

condor_router_q(1) 884

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_router_rm(1) 885

condor_router_rm

Remove jobs being managed by the HTCondor Job Router

Synopsis

condor_router_rm[router_rm options] [condor_rm options]

Description

condor_router_rmis a script that provides additional features above those offered bycondor_rm, for removing jobs
being managed by the HTCondor Job Router.

The options that may be supplied tocondor_router_rmbelong to two groups:

• router_rm options provide the additional features

• condor_rm options are those options already offered bycondor_rm. See thecondor_rmmanual page for
specification of these options.

Options

-constraint X (router_rm option) Remove jobs matching the constraint specified byX

-held (router_rm option) Remove only jobs in the hold state

-idle (router_rm option) Remove only idle jobs

-route name (router_rm option) Remove only jobs on specified route

Exit Status

condor_router_rmwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

HTCondor Version 8.6.4, Command Reference

condor_router_rm(1) 886

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_run(1) 887

condor_run

Submit a shell command-line as an HTCondor job

Synopsis

condor_run[-u universe] [-a submitcmd] "shell command"

Description

condor_runbundles a shell command line into an HTCondor job and submitsthe job. Thecondor_runcommand
waits for the HTCondor job to complete, writes the job’s output to the terminal, and exits with the exit status of the
HTCondor job. No output appears until the job completes.

Enclose the shell command line in double quote marks, so it may be passed tocondor_runwithout modification.
condor_runwill not read input from the terminal while the job executes.If the shell command line requires input,
redirect the input from a file, as illustrated by the example

% condor_run "myprog < input.data"

condor_runjobs rely on a shared file system for access to any necessary input files. The current working directory of
the job must be accessible to the machine within the HTCondorpool where the job runs.

Specialized environment variables may be used to specify requirements for the machine where the job may run.

CONDOR_ARCH Specifies the architecture of the required platform. Valueswill be the same as theArch machine
ClassAd attribute.

CONDOR_OPSYS Specifies the operating system of the required platform. Values will be the same as theOpSys
machine ClassAd attribute.

CONDOR_REQUIREMENTS Specifies any additional requirements for the HTCondor job.It is recommended that
the value defined forCONDOR_REQUIREMENTSbe enclosed in parenthesis.

When one or more of these environment variables is specified,the job is submitted with:

Requirements = $CONDOR_REQUIREMENTS && Arch == $CONDOR_ARCH && \
OpSys == $CONDOR_OPSYS

Without these environment variables, the job receives the default requirements expression, which requests a machine
of the same platform as the machine on whichcondor_runis executed.

HTCondor Version 8.6.4, Command Reference

condor_run(1) 888

All environment variables set whencondor_runis executed will be included in the environment of the HTCondor job.

condor_runremoves the HTCondor job from the queue and deletes its temporary files, ifcondor_runis killed before
the HTCondor job completes.

Options

-u universe Submit the job under the specified universe. The default is vanilla. While any universe may be specified,
only the vanilla, standard, scheduler, and local universesresult in a submit description file that may work
properly.

-a submitcmd Add the specified submit command to the implied submit description file for the job. To include spaces
within submitcmd, enclose the submit command in double quote marks. And, to include double quote marks
within submitcmd, enclose the submit command in single quote marks.

Examples

condor_runmay be used to compile an executable on a different platform.As an example, first set the environment
variables for the required platform:

% setenv CONDOR_ARCH "SUN4u"
% setenv CONDOR_OPSYS "SOLARIS28"

Then, usecondor_runto submit the compilation as in the following three examples.

% condor_run "f77 -O -o myprog myprog.f"

or

% condor_run "make"

or

% condor_run "condor_compile cc -o myprog.condor myprog.c "

Files

condor_runcreates the following temporary files in the user’s working directory. The placeholder <pid> is replaced
by the process id ofcondor_run.

HTCondor Version 8.6.4, Command Reference

condor_run(1) 889

.condor_run.<pid> A shell script containing the shell command line.

.condor_submit.<pid> The submit description file for the job.

.condor_log.<pid> The HTCondor job’s log file; it is monitored bycondor_run, to determine when the job
exits.

.condor_out.<pid> The output of the HTCondor job before it is output to the terminal.

.condor_error.<pid> Any error messages for the HTCondor job before they are output to the terminal.

condor_runremoves these files when the job completes. However, ifcondor_runfails, it is possible that these files
will remain in the user’s working directory, and the HTCondor job may remain in the queue.

General Remarks

condor_runis intended for submitting simple shell command lines to HTCondor. It does not provide the full function-
ality of condor_submit. Therefore, somecondor_submiterrors and system failures may not be handled correctly.

All processes specified within the single shell command linewill be executed on the single machine matched with the
job. HTCondor will not distribute multiple processes of a command line pipe across multiple machines.

condor_runwill use the shell specified in theSHELLenvironment variable, if one exists. Otherwise, it will use/bin/sh
to execute the shell command-line.

By default,condor_runexpects Perl to be installed in/usr/bin/perl . If Perl is installed in another path, ask the
Condor administrator to edit the path in thecondor_runscript, or explicitly call Perl from the command line:

% perl path-to-condor/bin/condor_run "shell-cmd"

Exit Status

condor_runexits with a status value of 0 (zero) upon complete success. The exit status ofcondor_runwill be non-zero
upon failure. The exit status in the case of a single error dueto a system call will be the error number (errno) of the
failed call.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_set_shutdown(1) 890

condor_set_shutdown

Set a program to execute uponcondor_mastershut down

Synopsis

condor_set_shutdown[-help | -version]

condor_set_shutdown -execprogramname [-debug] [-pool centralmanagerhostname[:portnumber]]
[-namehostname| hostname| -addr "<a.b.c.d:port>" | "<a.b.c.d:port>" | -constraint expression| -all]

Description

condor_set_shutdownsets a program (typically a script) to execute when thecondor_masterdaemon shuts down. The
-execprogramnameargument is required, and specifies the program to run. The string programnamemust match
the string that definesName in the configuration variableMASTER_SHUTDOWN_<Name> in the condor_master
daemon’s configuration. If it does not match, thecondor_masterwill log an error and ignore the request.

For security reasons of authentication and authorization,this command requires ADMINISTRATOR level of access.

Options

-help Display usage information

-version Display version information

-debug Causes debugging information to be sent tostderr , based on the value of the configuration variable
TOOL_DEBUG.

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host name and an
optional port number

-namehostnameSend the command to a machine identified byhostname

hostnameSend the command to a machine identified byhostname

-addr " <a.b.c.d:port>" Send the command to a machine’s master located at"<a.b.c.d:port>"

HTCondor Version 8.6.4, Command Reference

condor_set_shutdown(1) 891

" <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-constraint expressionApply this command only to machines matching the given ClassAd expression

-all Send the command to all machines in the pool

Exit Status

condor_set_shutdownwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

Examples

To have allcondor_masterdaemons run the program/bin/rebootupon shut down, configure thecondor_masterto
contain a definition similar to:

MASTER_SHUTDOWN_REBOOT = /sbin/reboot

whereREBOOTis an invented name for this program that thecondor_masterwill execute. On the command line, run

% condor_set_shutdown -exec reboot -all
% condor_off -graceful -all

where the stringreboot matches the invented name.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_ssh_to_job(1) 892

condor_ssh_to_job

create an ssh session to a running job

Synopsis

condor_ssh_to_job[-help]

condor_ssh_to_job [-debug] [-name schedd-name] [-pool pool-name] [-ssh ssh-command]
[-keygen-optionsssh-keygen-options] [-shells shell1,shell2,...] [-auto-retry] [-remove-on-interrupt]
cluster| cluster.process| cluster.process.node[remote-command]

Description

condor_ssh_to_jobcreates ansshsession to a running job. The job is specified with the argument. If only the job
clusterid is given, then the jobprocessid defaults to the value 0.

condor_ssh_to_jobis available in Unix HTCondor distributions, and works withtwo kinds of jobs: those in the vanilla,
vm, java, local, or parallel universes, and those jobs in thegrid universe which use EC2 resources. It will not work
with other grid universe jobs.

For jobs in the vanilla, vm, java, local, or parallel universes, the user must be the owner of the job or must be a queue
super user, and both thecondor_scheddandcondor_starterdaemons must allowcondor_ssh_to_jobaccess. If no
remote-commandis specified, an interactive shell is created. An alternatesshprogram such assftpmay be specified,
using the-sshoption, for uploading and downloading files.

The remote command or shell runs with the same user id as the running job, and it is initialized with the same
working directory. The environment is initialized to be thesame as that of the job, plus any changes made by the
shell setup scripts and any environment variables passed bythe sshclient. In addition, the environment variable
_CONDOR_JOB_PIDSis defined. It is a space-separated list of PIDs associated with the job. At a minimum, the list
will contain the PID of the process started when the job was launched, and it will be the first item in the list. It may
contain additional PIDs of other processes that the job has created.

Thesshsession and all processes it creates are treated by HTCondoras though they are processes belonging to the job.
If the slot is preempted or suspended, thesshsession is killed or suspended along with the job. If the job exits before
thesshsession finishes, the slot remains in the Claimed Busy state and is treated as though not all job processes have
exited until allsshsessions are closed. Multiplesshsessions may be created to the same job at the same time. Resource
consumption of thesshdprocess and all processes spawned by it are monitored by thecondor_starteras though these
processes belong to the job, so any policies such asPREEMPTthat enforce a limit on resource consumption also take
into account resources consumed by thesshsession.

condor_ssh_to_jobstores ssh keys in temporary files within a newly created and uniquely named directory. The newly
created directory will be within the directory defined by theenvironment variableTMPDIR. When the ssh session is
finished, this directory and the ssh keys contained within itare removed.

HTCondor Version 8.6.4, Command Reference

condor_ssh_to_job(1) 893

See the HTCondor administrator’s manual section on configuration for details of the configuration variables related to
condor_ssh_to_job.

An sshsession works by first authenticating and authorizing a secure connection betweencondor_ssh_to_joband
the condor_starterdaemon, using HTCondor protocols. Thecondor_startergenerates an ssh key pair and sends it
securely tocondor_ssh_to_job. Then thecondor_starterspawnssshdin inetd mode with its stdin and stdout attached
to the TCP connection fromcondor_ssh_to_job. condor_ssh_to_jobacts as a proxy for thesshclient to communicate
with sshd, using the existing connection authorized by HTCondor.At no point is sshd listening on the network for
connections or running with any privileges other than that of the user identity running the job.If CCB is being used
to enable connectivity to the execute node from outside of a firewall or private network,condor_ssh_to_jobis able to
make use of CCB in order to form thesshconnection.

The login shell of the user id running the job is used to run therequested command,sshdsubsystem, or interactive
shell. This is hard-coded behavior inOpenSSHand cannot be overridden by configuration. This means thatcon-
dor_ssh_to_jobaccess is effectively disabled if the login shell disables access, as in the example programs/bin/true
and/sbin/nologin.

condor_ssh_to_jobis intended to work withOpenSSHas installed in typical environments. It does not work on
Windows platforms. If thesshprograms are installed in non-standard locations, then thepaths to these programs will
need to be customized within the HTCondor configuration. Versions ofsshother thanOpenSSHmay work, but they
will likely require additional configuration of command-line arguments, changes to thesshdconfiguration template
file, and possibly modification of the$(LIBEXEC)/condor_ssh_to_job_sshd_setup script used by the
condor_starterto set upsshd.

For jobs in the grid universe which use EC2 resources, a request that HTCondor have the EC2 service create a new key
pair for the job by specifyingec2_keypair_filecausescondor_ssh_to_jobto attempt to connect to the corresponding
instance viassh. This attempts invokessshdirectly, bypassing the HTCondor networking layer. It supplies sshwith
the public DNS name of the instance and the name of the file withthe new key pair’s private key. For the connection
to succeed, the instance must have started ansshserver, and its security group(s) must allow connections onport
22. Conventionally, images will allow logins using the key pair on a single specific account. Becausesshdefaults to
logging in as the current user, the-l <username>option or its equivalent for other versions ofsshwill be needed as
part of theremote-commandargument. Although the-X option does not apply to EC2 jobs, adding-X or -Y to the
remote-commandargument can duplicate the effect.

Options

-help Display brief usage information and exit.

-debug Causes debugging information to be sent tostderr , based on the value of the configuration variable
TOOL_DEBUG.

-nameschedd-nameSpecify an alternatecondor_schedd, if the default (local) one is not desired.

-pool pool-nameSpecify an alternate HTCondor pool, if the default one is notdesired. Does not apply to EC2 jobs.

HTCondor Version 8.6.4, Command Reference

condor_ssh_to_job(1) 894

-sshssh-commandSpecify an alternatesshprogram to run in place ofssh, for examplesftpor scp. Additional argu-
ments are specified asssh-command. Since the arguments are delimited by spaces, place double quote marks
around the whole command, to prevent the shell from splitting it into multiple arguments tocondor_ssh_to_job.
If any arguments must contain spaces, enclose them within single quotes. Does not apply to EC2 jobs.

-keygen-optionsssh-keygen-optionsSpecify additional arguments to thessh_keygenprogram, for creating the ssh
key that is used for the duration of the session. For example,a different number of bits could be used, or a
different key type than the default. Does not apply to EC2 jobs.

-shellsshell1,shell2,...Specify a comma-separated list of shells to attempt to launch. If the first shell does not exist
on the remote machine, then the following ones in the list will be tried. If none of the specified shells can be
found,/bin/shis used by default. If this option is not specified, it defaults to the environment variableSHELL
from within thecondor_ssh_to_jobenvironment. Does not apply to EC2 jobs.

-auto-retry Specifies that if the job is not yet running,condor_ssh_to_jobshould keep trying periodically until it
succeeds or encounters some other error.

-remove-on-interrupt If specified, attempt to remove the job from the queue ifcondor_ssh_to_jobis interrupted via
a CTRL-c or otherwise terminated abnormally.

-X Enable X11 forwarding. Does not apply to EC2 jobs.

-x Disable X11 forwarding.

Examples

% condor_ssh_to_job 32.0
Welcome to slot2@tonic.cs.wisc.edu!
Your condor job is running with pid(s) 65881.
% gdb -p 65881
(gdb) where
...
% logout
Connection to condor-job.tonic.cs.wisc.edu closed.

To upload or download files interactively withsftp:

% condor_ssh_to_job -ssh sftp 32.0
Connecting to condor-job.tonic.cs.wisc.edu...
sftp> ls
...
sftp> get outputfile.dat

HTCondor Version 8.6.4, Command Reference

condor_ssh_to_job(1) 895

This example shows downloading a file from the job withscp. The string "remote" is used in place of a host name in
this example. It is not necessary to insert the correct remote host name, or even a valid one, because the connection to
the job is created automatically. Therefore, the placeholder string "remote" is perfectly fine.

% condor_ssh_to_job -ssh scp 32 remote:outputfile.dat .

This example usescondor_ssh_to_jobto accomplish the task of runningrsyncto synchronize a local file with a remote
file in the job’s working directory. Job id 32.0 is used in place of a host name in this example. This causesrsyncto
insert the expected job id in the arguments tocondor_ssh_to_job.

% rsync -v -e "condor_ssh_to_job" 32.0:outputfile.dat .

Note thatcondor_ssh_to_jobwas added to HTCondor in version 7.3. If one usescondor_ssh_to_jobto connect to a
job on an execute machine running a version of HTCondor olderthan the 7.3 series, the command will fail with the
error message

Failed to send CREATE_JOB_OWNER_SEC_SESSION to starter

Exit Status

condor_ssh_to_jobwill exit with a non-zero status value if it fails to set up an ssh session. If it succeeds, it will exit
with the status value of the remote command or shell.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_sos(1) 896

condor_sos

Issue a command that will be serviced with a higher priority

Synopsis

condor_sos[-help | -version]

condor_sos[-debug] [-timeoutmult value] condor_command

Description

condor_sossends thecondor_commandin such a way that the command is serviced ahead of other waiting commands.
It appears to have a higher priority than other waiting commands.

condor_sosis intended to give administrators a way to query thecondor_scheddandcondor_collectordaemons when
they are under such a heavy load that they are not responsive.

There must be a special command port configured, in order for acommand to be serviced with priority. Thecon-
dor_scheddandcondor_collectoralways have the special command port. Other daemons requireconfiguration by
setting configuration variable<SUBSYS>_SUPER_ADDRESS_FILE.

Options

-help Display usage information

-version Display version information

-debug Print extra debugging information as the command executes.

-timeoutmult value Multiply any timeouts set for the command by the integervalue.

Examples

The example command

condor_sos -timeoutmult 5 condor_hold -all

HTCondor Version 8.6.4, Command Reference

condor_sos(1) 897

causes thecondor_hold -all command to be handled by thecondor_scheddwith priority over any other com-
mands that thecondor_scheddhas waiting to be serviced. It also extends any set timeouts by a factor of 5.

Exit Status

condor_soswill exit with the value 1 on error and with the exit value of the invoked command when the command is
successfully invoked.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_stats(1) 898

condor_stats

Display historical information about the HTCondor pool

Synopsis

condor_stats[-f filename] [-orgformat] [-pool centralmanagerhostname[:portnumber]] [time-range] query-type

Description

condor_statsdisplays historic information about an HTCondor pool. Based on the type of information requested, a
query is sent to thecondor_collectordaemon, and the information received is displayed using thestandard output. If
the-f option is used, the information will be written to a file instead of to standard output. The-pool option can be used
to get information from other pools, instead of from the local (default) pool. Thecondor_statstool is used to query
resource information (single or by platform), submitter and user information, and checkpoint server information. If a
time range is not specified, the default query provides information for the previous 24 hours. Otherwise, information
can be retrieved for other time ranges such as the last specified number of hours, last week, last month, or a specified
date range.

The information is displayed in columns separated by tabs. The first column always represents the time, as a percentage
of the range of the query. Thus the first entry will have a valueclose to 0.0, while the last will be close to 100.0. If the
-orgformat option is used, the time is displayed as number of seconds since the Unix epoch. The information in the
remainder of the columns depends on the query type.

Note that logging of pool history must be enabled in thecondor_collectordaemon, otherwise no information will be
available.

One query type is required. If multiple queries are specified, only the last one takes effect.

Time Range Options

-lastday Get information for the last day.

-lastweek Get information for the last week.

-lastmonth Get information for the last month.

-lasthoursn Get information for the n last hours.

HTCondor Version 8.6.4, Command Reference

condor_stats(1) 899

-from m d y Get information for the time since the beginning of the specified date. A start date prior to the Unix
epoch causescondor_statsto print its usage information and quit.

-to m d y Get information for the time up to the beginning of the specified date, instead of up to now. A finish date in
the future causescondor_statsto print its usage information and quit.

Query Type Arguments

The query types that do not list all of a category require further specification as given by an argument.

-resourcequeryhostnameA single resource query provides information about a singlemachine. The information
also includes the keyboard idle time (in seconds), the load average, and the machine state.

-resourcelist A query of a single list of resources to provide a list of all the machines for which thecondor_collector
daemon has historic information within the query’s time range.

-resgroupqueryarch/opsys | “Total” A query of a specified group to provide information about a group of machines
based on their platform (operating system and architecture). The architecture is defined by the machine ClassAd
Arch , and the operating system is defined by the machine ClassAdOpSys. The string “Total” ask for informa-
tion about all platforms.

The columns displayed are the number of machines that are unclaimed, matched, claimed, preempting, owner,
shutdown, delete, backfill, and drained state.

-resgrouplist Queries for a list of all the group names for which thecondor_collectorhas historic information within
the query’s time range.

-userqueryemail_address/submit_machineQuery for a specific submitter on a specific machine. The informa-
tion displayed includes the number of running jobs and the number of idle jobs. An example argument appears as

-userquery jondoe@sample.com/onemachine.sample.com

-userlist Queries for the list of all submitters for which thecondor_collectordaemon has historic information within
the query’s time range.

-usergroupqueryemail_address | “Total”Query for all jobs submitted by the specific user, regardlessof the
machine they were submitted from, or all jobs. The information displayed includes the number of running jobs
and the number of idle jobs.

HTCondor Version 8.6.4, Command Reference

condor_stats(1) 900

-usergrouplist Queries for the list of all users for which thecondor_collectorhas historic information within the
query’s time range.

-ckptquery hostnameQuery about a checkpoint server given its host name. The information displayed includes the
number of MiB received, MiB sent, average receive bandwidth(in KiB/sec), and average send bandwidth (in
KiB/sec).

-ckptlist Query for the entire list of checkpoint servers for which thecondor_collectorhas historic information in
the query’s time range.

Options

-f filename Write the information to a file instead of the standard output.

-pool centralmanagerhostname[:portnumber]Contact the specified central manager instead of the local one.

-orgformat Display the information in an alternate format for timing, which presents timestamps since the Unix
epoch. This argument only affects the display ofresoursequery, resgroupquery, userquery, usergroupquery,
andckptquery.

Exit Status

condor_statswill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_status(1) 901

condor_status

Display status of the HTCondor pool

Synopsis

condor_status[-debug] [help options] [query options] [display options] [custom options] [name. . .]

Description

condor_statusis a versatile tool that may be used to monitor and query the HTCondor pool. Thecondor_statustool
can be used to query resource information, submitter information, checkpoint server information, and daemon master
information. The specific query sent and the resulting information display is controlled by the query options supplied.
Queries and display formats can also be customized.

The options that may be supplied tocondor_statusbelong to five groups:

• Help optionsprovide information about thecondor_statustool.

• Query optionscontrol the content and presentation of status information.

• Display optionscontrol the display of the queried information.

• Custom optionsallow the user to customize query and display information.

• Host optionsspecify specific machines to be queried

At any time, only onehelp option, one query optionand onedisplay optionmay be specified. Any number of
custom optionsandhost optionsmay be specified.

Options

-debug Causes debugging information to be sent tostderr , based on the value of the configuration variable
TOOL_DEBUG.

-help (Help option) Display usage information.

-diagnose (Help option) Print out ClassAd query without performing the query.

-absent (Query option) Query for and display only absent resources.

HTCondor Version 8.6.4, Command Reference

condor_status(1) 902

-adsfilename (Query option) Read the set of ClassAds in the file specified byfilename, instead of querying the
condor_collector.

-any (Query option) Query all ClassAds and display their type, target type, and name.

-avail (Query option) Querycondor_startdClassAds and identify resources which are available.

-ckptsrvr (Query option) Querycondor_ckpt_serverClassAds and display checkpoint server attributes.

-claimed (Query option) Querycondor_startdClassAds and print information about claimed resources.

-cod (Query option) Display only machine ClassAds that have COD claims. Information displayed includes the
claim ID, the owner of the claim, and the state of the COD claim.

-collector (Query option) Querycondor_collectorClassAds and display attributes.

-defrag (Query option) Querycondor_defragClassAds.

-direct hostname (Query option) Go directly to the given host name to get the ClassAds to display. By default,
returns thecondor_startdClassAd. If-scheddis also given, return thecondor_scheddClassAd on that host.

-java (Query option) Display only Java-capable resources.

-license (Query option) Display license attributes.

-master (Query option) Querycondor_masterClassAds and display daemon master attributes.

-negotiator (Query option) Querycondor_negotiatorClassAds and display attributes.

-pool centralmanagerhostname[:portnumber](Query option) Query the specified central manager using an optional
port number.condor_statusqueries the machine specified by the configuration variableCOLLECTOR_HOST
by default.

-run (Query option) Display information about machines currently running jobs.

-schedd (Query option) Querycondor_scheddClassAds and display attributes.

HTCondor Version 8.6.4, Command Reference

condor_status(1) 903

-server (Query option) Querycondor_startdClassAds and display resource attributes.

-startd (Query option) Querycondor_startdClassAds.

-state (Query option) Querycondor_startdClassAds and display resource state information.

-statisticsWhichStatistics (Query option) Can only be used if the-direct option has been specified. Identifies
which Statistics attributes to include in the ClassAd.WhichStatisticsis specified using the same syntax as
defined forSTATISTICS_TO_PUBLISH. A definition is in the HTCondor Administrator’s manual section on
configuration.

-storage (Query option) Display attributes of machines with networkstorage resources.

-submitters (Query option) Query ClassAds sent by submitters and display important submitter attributes.

-subsystemtype (Query option) Iftypeis one ofcollector, negotiator, master, schedd, startd, or quill, then behavior
is the same as the query option without the-subsystemoption. For example,-subsystemcollector is the
same as-collector. A value oftypeof CkptServer, Machine, DaemonMaster, or Schedulertargets that type of
ClassAd.

-vm (Query option) Querycondor_startdClassAds, and display only VM-enabled machines. Information displayed
includes the machine name, the virtual machine software version, the state of machine, the virtual machine
memory, and the type of networking.

-offline (Query option) Querycondor_startdClassAds, and display, for each machine with at least one offline
universe, which universes are offline for it.

-attributes Attr1[,Attr2 . . .] (Display option) Explicitly list the attributes in a comma separated list which should
be displayed when using the-xml, -json or -long options. Limiting the number of attributes increases the
efficiency of the query.

-expert (Display option) Display shortened error messages.

-long (Display option) Display entire ClassAds. Implies that totals will not be displayed.

-sort expr (Display option) Change the display order to be based on ascending values of an evaluated expression
given byexpr. Evaluated expressions of a string type are in a case insensitive alphabetical order. If multiple
-sort arguments appear on the command line, the primary sort will be on the leftmost one within the command

HTCondor Version 8.6.4, Command Reference

condor_status(1) 904

line, and it is numbered 0. A secondary sort will be based on the second expression, and it is numbered 1. For
informational or debugging purposes, the ClassAd output tobe displayed will appear as if the ClassAd had two
additional attributes.CondorStatusSortKeyExpr<N> is the expression, where<N> is replaced by the
number of the sort.CondorStatusSortKey<N> gives the result of evaluating the sort expression that is
numbered<N>.

-total (Display option) Display totals only.

-xml (Display option) Display entire ClassAds, in XML format. The XML format is fully defined in the reference
manual, obtained from the ClassAds web page, with a link at http://htcondor.org/classad/classad.html.

-json (Display option) Display entire ClassAds in JSON format.

-constraint const (Custom option) Add constraint expression.

-compact (Custom option) Show compact form, rolling up slots into a single line.

-format fmt attr (Custom option) Display attribute or expressionattr in format fmt. To display the attribute or
expression the format must contain a singleprintf(3) -style conversion specifier. Attributes must be
from the resource ClassAd. Expressions are ClassAd expressions and may refer to attributes in the resource
ClassAd. If the attribute is not present in a given ClassAd and cannot be parsed as an expression, then the
format option will be silently skipped. %r prints the unevaluated, or raw values. The conversion specifier
must match the type of the attribute or expression. %s is suitable for strings such asName, %d for integers
such asLastHeardFrom , and %f for floating point numbers such asLoadAvg . %v identifies the type
of the attribute, and then prints the value in an appropriateformat. %V identifies the type of the attribute,
and then prints the value in an appropriate format as it wouldappear in the-long format. As an example,
strings used with %V will have quote marks. An incorrect format will result in undefined behavior. Do not
use more than one conversion specifier in a given format. Morethan one conversion specifier will result in
undefined behavior. To output multiple attributes repeat the -format option once for each desired attribute.
Like printf(3) -style formats, one may include other text that will be reproduced directly. A format with-
out any conversion specifiers may be specified, but an attribute is still required. Include\n to specify a line break.

-autoformat[:lhVr,tng] attr1 [attr2 ...] or -af[:lhVr,tng] attr1 [attr2 ...] (Output option) Display attribute(s) or ex-
pression(s) formatted in a default way according to attribute types. This option takes an arbitrary number of
attribute names as arguments, and prints out their values, with a space between each value and a newline char-
acter after the last value. It is like the-format option without format strings. This output option doesnot work
in conjunction with the-run option.

It is assumed that no attribute names begin with a dash character, so that the next word that begins with dash
is the start of the next option. Theautoformat option may be followed by a colon character and formatting
qualifiers to deviate the output formatting from the default:

l label each field,

HTCondor Version 8.6.4, Command Reference

http://htcondor.org/classad/classad.html

condor_status(1) 905

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are quoted),

r print "raw", or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces before each field.

Use-af:h to get tabular values with headings.

Use-af:lrng to get -long equivalent format.

The newline and comma characters maynot be used together. Thel andh characters maynot be used together.

-target filename (Custom option) Where evaluation requires a target ClassAdto evaluate against, filefilename
contains the target ClassAd.

General Remarks

• The default output fromcondor_statusis formatted to be human readable, not script readable. In aneffort to
make the output fit within 80 characters, values in some fieldsmight be truncated. Furthermore, the HTCondor
Project can (and does) change the formatting of this defaultoutput as we see fit. Therefore, any script that is
attempting to parse data fromcondor_statusis strongly encouraged to use the-format option (described above).

• The information obtained fromcondor_startdandcondor_schedddaemons may sometimes appear to be in-
consistent. This is normal sincecondor_startdandcondor_schedddaemons update the HTCondor manager at
different rates, and since there is a delay as information propagates through the network and the system.

• Note that theActivityTime in theIdle state isnot the amount of time that the machine has been idle. See
the section oncondor_startdstates in theAdministrator’s Manualfor more information.

• When usingcondor_statuson a pool with SMP machines, you can either provide the host name, in which case
you will get back information about all slots that are represented on that host, or you can list specific slots by
name. See the examples below for details.

• If you specify host names, without domains, HTCondor will automatically try to resolve those host names into
fully qualified host names for you. This also works when specifying specific nodes of an SMP machine. In this
case, everything after the “@” sign is treated as a host name and that is what is resolved.

• You can use the-direct option in conjunction with almost any other set of options. However, at this time, the
only daemon that will allow direct queries for its ad(s) is the condor_startd. So, the only options currently not
supported with-direct are-scheddand-master. Most other options use startd ads for their information, sothey
work seamlessly with-direct. The only other restriction on-direct is that you may only use 1-direct option
at a time. If you want to query information directly from multiple hosts, you must runcondor_statusmultiple
times.

HTCondor Version 8.6.4, Command Reference

condor_status(1) 906

• Unless you use the local host name with-direct, condor_statuswill still have to contact a collector to find the
address where the specified daemon is listening. So, using a-pool option in conjunction with-direct just tells
condor_statuswhich collector to query to find the address of the daemon you want. The information actually
displayed will still be retrieved directly from the daemon you specified as the argument to-direct.

Examples

Example 1To view information from all nodes of an SMP machine, use onlythe host name. For example, if you had
a 4-CPU machine, namedvulture.cs.wisc.edu , you might see

% condor_status vulture

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot1@vulture.cs.w LINUX INTEL Claimed Busy 1.050 512 0+01 :47:42
slot2@vulture.cs.w LINUX INTEL Claimed Busy 1.000 512 0+01 :48:19
slot3@vulture.cs.w LINUX INTEL Unclaimed Idle 0.070 512 1+ 11:05:32
slot4@vulture.cs.w LINUX INTEL Unclaimed Idle 0.000 512 1+ 11:05:34

Total Owner Claimed Unclaimed Matched Preempting Backfill

INTEL/LINUX 4 0 2 2 0 0 0

Total 4 0 2 2 0 0 0

Example 2To view information from a specific nodes of an SMP machine, specify the node directly. You do this by
providing the name of the slot. This has the formslot#@hostname . For example:

% condor_status slot3@vulture

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot3@vulture.cs.w LINUX INTEL Unclaimed Idle 0.070 512 1+ 11:10:32

Total Owner Claimed Unclaimed Matched Preempting Backfill

INTEL/LINUX 1 0 0 1 0 0 0

Total 1 0 0 1 0 0 0

Constraint option examples

The Unix command to use the constraint option to see all machines with theOpSys of "LINUX" :

% condor_status -constraint OpSys==\"LINUX\"

Note that quotation marks must be escaped with the backslashcharacters for most shells.

The Windows command to do the same thing:

HTCondor Version 8.6.4, Command Reference

condor_status(1) 907

>condor_status -constraint " OpSys==""LINUX"" "

Note that quotation marks are used to delimit the single argument which is the expression, and the quotation marks
that identify the string must be escaped by using a set of two double quote marks without any intervening spaces.

To see all machines that are currently in the Idle state, the Unix command is

% condor_status -constraint State==\"Idle\"

To see all machines that are bench marked to have a MIPS ratingof more than 750, the Unix command is

% condor_status -constraint 'Mips>750'

-cod option example

The-codoption displays the status of COD claims within a given HTCondor pool.

Name ID ClaimState TimeInState RemoteUser JobId Keyword
astro.cs.wi COD1 Idle 0+00:00:04 wright
chopin.cs.w COD1 Running 0+00:02:05 wright 3.0 fractgen
chopin.cs.w COD2 Suspended 0+00:10:21 wright 4.0 fractgen

Total Idle Running Suspended Vacating Killing
INTEL/LINUX 3 1 1 1 0 0

Total 3 1 1 1 0 0

-format option exampleTo display the name and memory attributes of each job ClassAdin a format that is easily
parsable by other tools:

% condor_status -format "%s " Name -format "%d\n" Memory

To do the same with theautoformat option, run

% condor_status -autoformat Name Memory

Exit Status

condor_statuswill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

HTCondor Version 8.6.4, Command Reference

condor_status(1) 908

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_store_cred(1) 909

condor_store_cred

securely stash a password

Synopsis

condor_store_cred[-help]

condor_store_credadd [-c | -u username][-p password] [-n machinename] [-f filename]

condor_store_creddelete[-c | -u username][-n machinename]

condor_store_credquery[-c | -u username][-n machinename]

Description

condor_store_credstores passwords in a secure manner. There are two separate uses ofcondor_store_cred:

1. A shared pool password is needed in order to implement thePASSWORDauthentication method.con-
dor_store_credusing the-coption deals with the password for the impliedcondor_pool@$(UID_DOMAIN)
user name.

On a Unix machine,condor_store_credwith the -f option is used to set the pool password, as needed when
used with thePASSWORDauthentication method. The pool password is placed in a file specified by the
SEC_PASSWORD_FILEconfiguration variable.

2. In order to submit a job from a Windows platform machine, orto execute a job on a Windows platform machine
utilizing therun_as_ownerfunctionality,condor_store_credstores the password of a user/domain pair securely
in the Windows registry. Using this stored password, HTCondor may act on behalf of the submitting user to
access files, such as writing output or log files. HTCondor is able to run jobs with the user ID of the submitting
user. The password is stored in the same manner as the system does when setting or changing account passwords.

Passwords are stashed in a persistent manner; they are maintained across system reboots.

Theaddargument on the Windows platform stores the password securely in the registry. The user is prompted to enter
the password twice for confirmation, and characters are not echoed. If there is already a password stashed, the old
password will be overwritten by the new password.

Thedeleteargument deletes the current password, if it exists.

Thequeryreports whether the password is stored or not.

HTCondor Version 8.6.4, Command Reference

condor_store_cred(1) 910

Options

-c Operations refer to the pool password, as used in thePASSWORDauthentication method.

-f filename For Unix machines only, generates a pool password file namedfilenamethat may be used with the
PASSWORDauthentication method.

-help Displays a brief summary of command options.

-n machinenameApply the command on the given machine.

-p passwordStorespassword, rather than prompting the user to enter a password.

-u usernameSpecify the user name.

Exit Status

condor_store_credwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 911

condor_submit

Queue jobs for execution under HTCondor

Synopsis

condor_submit [-terse] [-verbose] [-unused] [-name schedd_name] [-remote schedd_name]
[-addr <ip:port>] [-pool pool_name] [-disable] [-password passphrase] [-debug] [-append command
. . .][-batch-name batch_name] [-spool] [-dump filename] [-interactive] [-dry-run] [-maxjobs number-of-jobs]
[-single-cluster] [-stm method] [<submit-variable>=<value>] [submit description file] [-queue queue_arguments]

Description

condor_submitis the program for submitting jobs for execution under HTCondor. condor_submitrequires a submit
description file which contains commands to direct the queuing of jobs. One submit description file may contain
specifications for the queuing of many HTCondor jobs at once.A single invocation ofcondor_submitmay cause one
or more clusters. A cluster is a set of jobs specified in the submit description file betweenqueuecommands for which
the executable is not changed. It is advantageous to submit multiple jobs as a single cluster because:

• Only one copy of the checkpoint file is needed to represent all jobs in a cluster until they begin execution.

• There is much less overhead involved for HTCondor to start the next job in a cluster than for HTCondor to start
a new cluster. This can make a big difference when submittinglots of short jobs.

Multiple clusters may be specified within a single submit description file. Each cluster must specify a single executable.

The job ClassAd attributeClusterId identifies a cluster.

Thesubmit description fileargument is the path and file name of the submit description file. If this optional argument
is missing or is the dash character (-), then the commands are taken from standard input. If- is specified for the
submit description file, -verboseis implied; this can be overridden by specifying-terse.

Note that submission of jobs from a Windows machine requiresa stashed password to allow HTCondor to impersonate
the user submitting the job. To stash a password, use thecondor_store_credcommand. See the manual page for details.

For lengthy lines within the submit description file, the backslash (\) is a line continuation character. Placing the
backslash at the end of a line causes the current line’s command to be continued with the next line of the file. Submit
description files may contain comments. A comment is any linebeginning with a pound character (#).

Options

-terse Terse output - display JobId ranges only.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 912

-verbose Verbose output - display the created job ClassAd

-unused As a default, causes no warnings to be issued about user-defined macros not being used
within the submit description file. The meaning reverses (toggles) when the configuration variable
WARN_ON_UNUSED_SUBMIT_FILE_MACROSis set to the non default value ofFalse . Printing the
warnings can help identify spelling errors of submit description file commands. The warnings are sent to stderr.

-nameschedd_nameSubmit to the specifiedcondor_schedd. Use this option to submit to acondor_scheddother
than the default local one.schedd_nameis the value of theNameClassAd attribute on the machine where the
condor_schedddaemon runs.

-remoteschedd_nameSubmit to the specifiedcondor_schedd, spooling all required input files over the network
connection.schedd_nameis the value of theNameClassAd attribute on the machine where thecondor_schedd
daemon runs. This option is equivalent to using both-nameand-spool.

-addr <ip:port> Submit to thecondor_scheddat the IP address and port given by thesinful string argument
<ip:port>.

-pool pool_nameLook in the specified pool for thecondor_scheddto submit to. This option is used with-nameor
-remote.

-disable Disable file permission checks when submitting a job for readpermissions on all input files, such as those
defined by commandsinput andtransfer_input_files, as well as write permission to output files, such as a log
file defined bylog and output files defined withoutput or transfer_output_files.

-passwordpassphraseSpecify a password to theMyProxyserver.

-debug Cause debugging information to be sent tostderr , based on the value of the configuration variable
TOOL_DEBUG.

-appendcommand Augment the commands in the submit description file with the given command. This command
will be considered to immediately precede thequeuecommand within the submit description file, and come
after all other previous commands. If thecommandspecifies aqueuecommand, as in the example

condor_submit mysubmitfile -append "queue input in A, B, C"

then the entire-appendcommand line option and its arguments are converted to

condor_submit mysubmitfile -queue input in A, B, C

The submit description file is not modified. Multiple commands are specified by using the-append option
multiple times. Each new command is given in a separate-appendoption. Commands with spaces in them will
need to be enclosed in double quote marks.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 913

-batch-namebatch_nameSet the batch name for this submit. The batch name is displayed bycondor_q-batch. It is
intended for use by users to give meaningful names to their jobs and to influence howcondor_qgroups jobs for
display. Use of this argument takes precedence over a batch name specified in the submit description file itself.

-spool Spool all required input files, job event log, and proxy over the connection to thecondor_schedd. After
submission, modify local copies of the files without affecting your jobs. Any output files for completed jobs
need to be retrieved withcondor_transfer_data.

-dump filename Sends all ClassAds to the specified file, instead of to thecondor_schedd.

-interactive Indicates that the user wants to run an interactive shell on an execute machine in the pool. This is equiv-
alent to creating a submit description file of a vanilla universe sleep job, and then runningcondor_ssh_to_job
by hand. Without any additional arguments,condor_submitwith the -interactive flag creates a dummy
vanilla universe job that sleeps, submits it to the local scheduler, waits for the job to run, and then launches
condor_ssh_to_jobto run a shell. If the user would like to run the shell on a machine that matches a particular
requirements expression, the submit description file is specified, and it will contain the expression. Note that
all policy expressions specified in the submit description file are honored, but anyexecutableor universe
commands are overwritten to be sleep and vanilla. The job ClassAd attributeInteractiveJob is set to
True to identify interactive jobs forcondor_startdpolicy usage.

-dry-run file Parse the submit description file, sending the resulting jobClassAd to the file given byfile, but do not
submit the job(s). This permits observation of the job specification, and it facilitates debugging the submit
description file contents. Iffile is -, the output is written tostdout .

-maxjobsnumber-of-jobs If the total number of jobs specified by the submit description file is more than the integer
value given bynumber-of-jobs, then no jobs are submitted for execution and an error message is generated. A 0
or negative value for thenumber-of-jobscauses no limit to be imposed.

-single-cluster If the jobs specified by the submit description file causes more than a single cluster value to be
assigned, then no jobs are submitted for execution and an error message is generated.

-stm method Specify the method use to move a sandbox into HTCondor.methodis one ofstm_use_schedd_onlyor
stm_use_transferd.

<submit-variable>=<value> Defines a submit command or submit variable with a value, and parses it as if it was
placed at the beginning of the submit description file. The submit description file is not changed. To correctly
parse thecondor_submitcommand line, this option must be specified without white space characters before
and after the equals sign (=), or the entire option must be surrounded by double quote marks.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 914

-queuequeue_argumentsA command line specification of how many jobs to queue, which is only permitted if the
submit description file does not have aqueuecommand. Thequeue_argumentsare the same as may be within
a submit description file. The parsing of thequeue_argumentsfinishes at the end of the line or when a dash
character (-) is encountered. Therefore, its best placement within the command line will be at the end of the
command line.

On a Unix command line, the shell expands file globs before parsing occurs.

Submit Description File Commands

Note: more information on submitting HTCondor jobs can be found here: 2.5.

As of version 8.5.6, thecondor_submitlanguage supports multi-line values in commands. The syntax is the same as
the configuration language (see more details here: 3.3.5).

Each submit description file describes one or more clusters of jobs to be placed in the HTCondor execution pool.
All jobs in a cluster must share the same executable, but theymay have different input and output files, and different
program arguments. The submit description file is generallythe last command-line argument tocondor_submit. If the
submit description file argument is omitted,condor_submitwill read the submit description from standard input.

The submit description file must contain at least oneexecutablecommand and at least onequeuecommand. All of the
other commands have default actions.

Note that a submit file that contains more than one executablecommand will produce multiple clusters when
submitted. This is not generally recommended, and is not allowed for submit files that are run as DAG node
jobs by condor_dagman.

The commands which can appear in the submit description file are numerous. They are listed here in alphabetical
order by category.

BASIC COMMANDS

arguments =<argument_list> List of arguments to be supplied to the executable as part of the command line.

In the java universe, the first argument must be the name of the class containingmain .

There are two permissible formats for specifying arguments, identified as the old syntax and the new syntax.
The old syntax supports white space characters within arguments only in special circumstances; when used, the
command line arguments are represented in the job ClassAd attributeArgs . The new syntax supports uniform
quoting of white space characters within arguments; when used, the command line arguments are represented
in the job ClassAd attributeArguments .

Old Syntax

In the old syntax, individual command line arguments are delimited (separated) by space characters. To allow
a double quote mark in an argument, it is escaped with a backslash; that is, the two character sequence\"
becomes a single double quote mark within an argument.

Further interpretation of the argument string differs depending on the operating system. On Windows, the
entire argument string is passed verbatim (other than the backslash in front of double quote marks) to the

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 915

Windows application. Most Windows applications will allowspaces within an argument value by surrounding
the argument with double quotes marks. In all other cases, there is no further interpretation of the arguments.

Example:

arguments = one \"two\" 'three'

Produces in Unix vanilla universe:

argument 1: one
argument 2: "two"
argument 3: 'three'

New Syntax

Here are the rules for using the new syntax:

1. The entire string representing the command line arguments is surrounded by double quote marks. This
permits the white space characters of spaces and tabs to potentially be embedded within a single argument.
Putting the double quote mark within the arguments is accomplished by escaping it with another double
quote mark.

2. The white space characters of spaces or tabs delimit arguments.

3. To embed white space characters of spaces or tabs within a single argument, surround the entire argument
with single quote marks.

4. To insert a literal single quote mark, escape it within an argument already delimited by single quote marks
by adding another single quote mark.

Example:

arguments = "3 simple arguments"

Produces:

argument 1: 3
argument 2: simple
argument 3: arguments

Another example:

arguments = "one 'two with spaces' 3"

Produces:

argument 1: one
argument 2: two with spaces
argument 3: 3

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 916

And yet another example:

arguments = "one ""two"" 'spacey ''quoted'' argument'"

Produces:

argument 1: one
argument 2: "two"
argument 3: spacey 'quoted' argument

Notice that in the new syntax, the backslash has no special meaning. This is for the convenience of Windows
users.

environment =<parameter_list> List of environment variables.

There are two different formats for specifying the environment variables: the old format and the new format.
The old format is retained for backward-compatibility. It suffers from a platform-dependent syntax and the
inability to insert some special characters into the environment.

The new syntax for specifying environment values:

1. Put double quote marks around the entire argument string.This distinguishes the new syntax from the old.
The old syntax does not have double quote marks around it. Anyliteral double quote marks within the
string must be escaped by repeating the double quote mark.

2. Each environment entry has the form

<name>=<value>

3. Use white space (space or tab characters) to separate environment entries.

4. To put any white space in an environment entry, surround the space and as much of the surrounding entry
as desired with single quote marks.

5. To insert a literal single quote mark, repeat the single quote mark anywhere inside of a section surrounded
by single quote marks.

Example:

environment = "one=1 two=""2"" three='spacey ''quoted'' v alue'"

Produces the following environment entries:

one=1
two="2"
three=spacey 'quoted' value

Under the old syntax, there are no double quote marks surrounding the environment specification. Each envi-
ronment entry remains of the form

<name>=<value>

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 917

Under Unix, list multiple environment entries by separating them with a semicolon (;). Under Windows, separate
multiple entries with a vertical bar (|). There is no way to insert a literal semicolon under Unix or aliteral vertical
bar under Windows. Note that spaces are accepted, but rarelydesired, characters within parameter names and
values, because they are treated as literal characters, notseparators or ignored white space. Place spaces within
the parameter list only if required.

A Unix example:

environment = one=1;two=2;three="quotes have no 'special ' meaning"

This produces the following:

one=1
two=2
three="quotes have no 'special' meaning"

If the environment is set with theenvironment commandand getenvis also set to true, values specified with
environment override values in the submitter’s environment (regardless of the order of theenvironment and
getenvcommands).

error = <pathname> A path and file name used by HTCondor to capture any error messages the program would
normally write to the screen (that is, this file becomesstderr). A path is given with respect to the file system
of the machine on which the job is submitted. The file is written (by the job) in the remote scratch directory of
the machine where the job is executed. When the job exits, theresulting file is transferred back to the machine
where the job was submitted, and the path is utilized for file placement. If not specified, the default value
of /dev/null is used for submission to a Unix machine. If not specified, error messages are ignored for
submission to a Windows machine. More than one job should notuse the same error file, since this will cause
one job to overwrite the errors of another. The error file and the output file should not be the same file as the
outputs will overwrite each other or be lost. For grid universe jobs,error may be a URL that the Globus tool
globus_url_copyunderstands.

executable =<pathname> An optional path and a required file name of the executable filefor this job cluster. Only
oneexecutablecommand within a submit description file is guaranteed to work properly. More than one often
works.

If no path or a relative path is used, then the executable file is presumed to be relative to the current working
directory of the user as thecondor_submitcommand is issued.

If submitting into the standard universe, then the named executable must have been re-linked with the HTCondor
libraries (such as via thecondor_compilecommand). If submitting into the vanilla universe (the default), then
the named executable need not be re-linked and can be any process which can run in the background (shell
scripts work fine as well). If submitting into the Java universe, then the argument must be a compiled.class
file.

getenv =<True | False> If getenv is set toTrue , then condor_submitwill copy all of the user’s current shell
environment variables at the time of job submission into thejob ClassAd. The job will therefore execute with
the same set of environment variables that the user had at submit time. Defaults toFalse .

If the environment is set with theenvironment commandand getenvis also set to true, values specified with
environment override values in the submitter’s environment (regardless of the order of theenvironment and
getenvcommands).

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 918

input = <pathname> HTCondor assumes that its jobs are long-running, and that the user will not wait at the terminal
for their completion. Because of this, the standard files which normally access the terminal, (stdin , stdout ,
andstderr), must refer to files. Thus, the file name specified withinput should contain any keyboard input
the program requires (that is, this file becomesstdin). A path is given with respect to the file system of the
machine on which the job is submitted. The file is transferredbefore execution to the remote scratch directory of
the machine where the job is executed. If not specified, the default value of/dev/null is used for submission
to a Unix machine. If not specified, input is ignored for submission to a Windows machine. For grid universe
jobs,input may be a URL that the Globus toolglobus_url_copyunderstands.

Note that this command doesnot refer to the command-line arguments of the program. The command-line
arguments are specified by theargumentscommand.

log =<pathname> Use log to specify a file name where HTCondor will write a log file of what is happening with
this job cluster, called a job event log. For example, HTCondor will place a log entry into this file when and
where the job begins running, when the job produces a checkpoint, or moves (migrates) to another machine, and
when the job completes. Most users find specifying alog file to be handy; its use is recommended. If nolog
entry is specified, HTCondor does not create a log for this cluster. If a relative path is specified, it is relative to
the current working directory as the job is submitted or the directory specified by submit commandinitialdir on
the submit machine.

log_xml =<True | False> If log_xml is True , then the job event log file will be written in ClassAd XML. If not
specified, XML is not used. Note that the file is an XML fragment; it is missing the file header and footer. Do
not mix XML and non-XML within a single file. If multiple jobs write to a single job event log file, ensure that
all of the jobs specify this option in the same way.

notification = <Always | Complete| Error | Never> Owners of HTCondor jobs are notified by e-mail when cer-
tain events occur. If defined byAlways, the owner will be notified whenever the job produces a checkpoint, as
well as when the job completes. If defined byComplete, the owner will be notified when the job terminates.
If defined byError , the owner will only be notified if the job terminates abnormally, or if the job is placed on
hold because of a failure, and not by user request. If defined by Never(the default), the owner will not receive
e-mail, regardless to what happens to the job. The HTCondor User’s manual documents statistics included in
the e-mail.

notify_user =<email-address> Used to specify the e-mail address to use when HTCondor sendse-mail about a job.
If not specified, HTCondor defaults to using the e-mail address defined by

job-owner@UID_DOMAIN

where the configuration variableUID_DOMAIN is specified by the HTCondor site administrator. If
UID_DOMAINhas not been specified, HTCondor sends the e-mail to:

job-owner@submit-machine-name

output = <pathname> Theoutput file captures any information the program would ordinarily write to the screen
(that is, this file becomesstdout). A path is given with respect to the file system of the machineon which
the job is submitted. The file is written (by the job) in the remote scratch directory of the machine where the
job is executed. When the job exits, the resulting file is transferred back to the machine where the job was
submitted, and the path is utilized for file placement. If notspecified, the default value of/dev/null is used

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 919

for submission to a Unix machine. If not specified, output is ignored for submission to a Windows machine.
Multiple jobs should not use the same output file, since this will cause one job to overwrite the output of another.
The output file and the error file should not be the same file as the outputs will overwrite each other or be lost.
For grid universe jobs,output may be a URL that the Globus toolglobus_url_copyunderstands.

Note that if a program explicitly opens and writes to a file, that file shouldnot be specified as theoutput file.

priority = <integer> An HTCondor job priority can be any integer, with 0 being the default. Jobs with higher
numerical priority will run before jobs with lower numerical priority. Note that this priority is on a per user
basis. One user with many jobs may use this command to order his/her own jobs, and this will have no effect on
whether or not these jobs will run ahead of another user’s jobs.

Note that the priority setting in an HTCondor submit file willbe overridden bycondor_dagmanif the submit
file is used for a node in a DAG, and the priority of the node within the DAG is non-zero (see 2.10.9 for more
details).

queue [<int expr>] Places zero or more copies of the job into the HTCondor queue.

queue [<int expr>] [<varname>] in [slice] <list of items> Places zero or more copies of the job in the queue based
on items in a<list of items>

queue [<int expr>] [<varname>] matching [files | dirs] [slice] <list of items with file globbing>] Places zero or
more copies of the job in the queue based on files that match a<list of items with file globbing>

queue [<int expr>] [<list of varnames>] from [slice] <file name> | <list of items>] Places zero or more copies of
the job in the queue based on lines from the submit file or from<file name>

The optional argument<int expr> specifies how many times to repeat the job submission for a given set of
arguments. It may be an integer or an expression that evaluates to an integer, and it defaults to 1. All but the
first form of this command are various ways of specifying a list of items. When these forms are used<int expr>
jobs will be queued for each item in the list. Thein, matchingandfrom keyword indicates how the list will be
specified.

• in The list of items is an explicit comma and/or space separated<list of items>. If the <list of items>
begins with an open paren, and the close paren is not on the same line as the open, then the list continues
until a line that begins with a close paren is read from the submit file.

• matchingEach item in the<list of items with file globbing> will be matched against the names of files
and directories relative to the current directory, the set of matching names is the resulting list of items.

– filesOnly filenames will matched.

– dirs Only directory names will be matched.

• from <file name> | <list of items>Each line from<file name> or <list of items> is a single item, this
allows for multiple variables to be set for each item. Lines from<file name>or <list of items>will be split
on comma and/or space until there are values for each of the variables specified in<list of varnames>.
The last variable will contain the remainder of the line. When the<list of items> form is used, the list
continues until the first line that begins with a close paren,and lines beginning with pound sign (’#’) will
be skipped. When using the<file name>form, if the<file name>ends with |, then it will be executed as
a script whatever the script writes tostdout will be the list of items.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 920

The optional argument<varname>or <list of varnames>is the name or names of of variables that will be set
to the value of the current item when queuing the job. If no<varname> is specified the variable ITEM will
be used. Leading and trailing whitespace be trimmed. The optional argument<slice> is a python style slice
selecting only some of the items in the list of items. Negative step values are not supported.

A submit file may contain more than onequeuestatement, and if desired, any commands may be placed between
subsequentqueuecommands, such as newinput , output, error , initialdir , or argumentscommands. This is
handy when submitting multiple runs into one cluster with one submit description file.

universe =<vanilla | standard | scheduler| local | grid | java | vm | parallel | docker> Specifies which HT-
Condor universe to use when running this job. The HTCondor universe specifies an HTCondor execution envi-
ronment.

Thevanilla universe is the default (except where the configuration variableDEFAULT_UNIVERSEdefines it
otherwise), and is an execution environment for jobs which do not use HTCondor’s mechanisms for taking
checkpoints; these are ones that have not been linked with the HTCondor libraries. Use thevanilla universe to
submit shell scripts to HTCondor.

Thestandard universe tells HTCondor that this job has been re-linked viacondor_compilewith the HTCondor
libraries and therefore supports taking checkpoints and remote system calls.

Thescheduleruniverse is for a job that is to run on the machine where the jobis submitted. This universe is
intended for a job that acts as a metascheduler and will not bepreempted.

The local universe is for a job that is to run on the machine where the jobis submitted. This universe runs the
job immediately and will not preempt the job.

The grid universe forwards the job to an external job management system. Further specification of thegrid
universe is done with thegrid_resourcecommand.

Thejava universe is for programs written to the Java Virtual Machine.

Thevm universe facilitates the execution of a virtual machine.

Theparallel universe is for parallel jobs (e.g. MPI) that require multiple machines in order to run.

Thedocker universe runs a docker container as an HTCondor job.

COMMANDS FOR MATCHMAKING

rank = <ClassAd Float Expression> A ClassAd Floating-Point expression that states how to rankmachines which
have already met the requirements expression. Essentially, rank expresses preference. A higher numeric value
equals better rank. HTCondor will give the job the machine with the highest rank. For example,

request_memory = max({60, Target.TotalSlotMemory})
rank = Memory

asks HTCondor to find all available machines with more than 60megabytes of memory and give to the job the
machine with the most amount of memory. The HTCondor User’s Manual contains complete information on
the syntax and available attributes that can be used in the ClassAd expression.

request_cpus =<num-cpus> A requested number of CPUs (cores). If not specified, the number requested will be
1. If specified, the expression

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 921

&& (RequestCpus <= Target.Cpus)

is appended to therequirementsexpression for the job.

For pools that enable dynamiccondor_startdprovisioning, specifies the minimum number of CPUs requested
for this job, resulting in a dynamic slot being created with this many cores.

request_disk =<quantity> The requested amount of disk space in KiB requested for this job. If not specified, it
will be set to the job ClassAd attributeDiskUsage . The expression

&& (RequestDisk <= Target.Disk)

is appended to therequirementsexpression for the job.

For pools that enable dynamiccondor_startdprovisioning, a dynamic slot will be created with at least this much
disk space.

Characters may be appended to a numerical value to indicate units. K or KB indicates KiB,210 numbers of bytes.
Mor MBindicates MiB,220 numbers of bytes.Gor GBindicates GiB,230 numbers of bytes.T or TB indicates
TiB, 240 numbers of bytes.

request_memory =<quantity> The required amount of memory in MiB that this job needs to avoid excessive
swapping. If not specified and the submit commandvm_memory is specified, then the value specified for
vm_memorydefinesrequest_memory. If neitherrequest_memorynorvm_memory is specified, the value is
set by the configuration variableJOB_DEFAULT_REQUESTMEMORY. The actual amount of memory used by
a job is represented by the job ClassAd attributeMemoryUsage .

For pools that enable dynamiccondor_startdprovisioning, a dynamic slot will be created with at least this much
RAM.

The expression

&& (RequestMemory <= Target.Memory)

is appended to therequirementsexpression for the job.

Characters may be appended to a numerical value to indicate units. K or KB indicates KiB,210 numbers of bytes.
Mor MBindicates MiB,220 numbers of bytes.Gor GBindicates GiB,230 numbers of bytes.T or TB indicates
TiB, 240 numbers of bytes.

request_<name> =<quantity> The required amount of the custom machine resource identified by <name> that
this job needs. The custom machine resource is defined in the machine’s configuration. Machines that have
available GPUs will define<name> to beGPUs.

requirements =<ClassAd Boolean Expression> The requirements command is a boolean ClassAd expression
which uses C-like operators. In order for any job in this cluster to run on a given machine, this requirements
expression must evaluate to true on the given machine.

For scheduler and local universe jobs, the requirements expression is evaluated against theScheduler
ClassAd which represents the thecondor_schedddaemon running on the submit machine, rather than a remote
machine. Like all commands in the submit description file, ifmultiple requirements commands are present,
all but the last one are ignored. By default,condor_submitappends the following clauses to the requirements
expression:

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 922

1. Arch and OpSys are set equal to the Arch and OpSys of the submit machine. In other words: unless you
request otherwise, HTCondor will give your job machines with the same architecture and operating system
version as the machine runningcondor_submit.

2. Cpus>= RequestCpus, if the job ClassAd attributeRequestCpus is defined.

3. Disk >= RequestDisk, if the job ClassAd attributeRequestDisk is defined. Otherwise, Disk>=
DiskUsage is appended to the requirements. TheDiskUsage attribute is initialized to the size of the
executable plus the size of any files specified in atransfer_input_files command. It exists to ensure there
is enough disk space on the target machine for HTCondor to copy over both the executable and needed
input files. TheDiskUsage attribute represents the maximum amount of total disk spacerequired by
the job in kilobytes. HTCondor automatically updates theDiskUsage attribute approximately every 20
minutes while the job runs with the amount of space being usedby the job on the execute machine.

4. Memory>= RequestMemory, if the job ClassAd attributeRequestMemory is defined.

5. If Universe is set to Vanilla, FileSystemDomain is set equal to the submit machine’s FileSystemDomain.

View the requirements of a job which has already been submitted (along with everything else about the job
ClassAd) with the commandcondor_q -l; see the command reference forcondor_qon page 844. Also, see the
HTCondor Users Manual for complete information on the syntax and available attributes that can be used in the
ClassAd expression.

FILE TRANSFER COMMANDS

dont_encrypt_input_files =< file1,file2,file...> A comma and/or space separated list of input files that arenot to
be network encrypted when transferred with the file transfermechanism. Specification of files in this manner
overrides configuration that would use encryption. Each input file must also be in the list given bytrans-
fer_input_files. When a path to an input file or directory is specified, this specifies the path to the file on the
submit side. A single wild card character (*) may be used in each file name.

dont_encrypt_output_files =< file1,file2,file...> A comma and/or space separated list of output files that arenot
to be network encrypted when transferred back with the file transfer mechanism. Specification of files in this
manner overrides configuration that would use encryption. The output file(s) must also either be in the list given
by transfer_output_filesor be discovered and to be transferred back with the file transfer mechanism. When a
path to an output file or directory is specified, this specifiesthe path to the file on the execute side. A single wild
card character (*) may be used in each file name.

encrypt_execute_directory =<True | False> Defaults toFalse . If set toTrue , HTCondor will encrypt the con-
tents of the remote scratch directory of the machine where the job is executed. This encryption is transparent to
the job itself, but ensures that files left behind on the localdisk of the execute machine, perhaps due to a system
crash, will remain private. In addition,condor_submitwill append to the job’srequirementsexpression

&& (TARGET.HasEncryptExecuteDirectory)

to ensure the job is matched to a machine that is capable of encrypting the contents of the execute directory.
This support is limited to Windows platforms that use the NTFS file system and Linux platforms with the
ecryptfs-utilspackage installed.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 923

encrypt_input_files =< file1,file2,file...> A comma and/or space separated list of input files that are to be network
encrypted when transferred with the file transfer mechanism. Specification of files in this manner overrides con-
figuration that wouldnot use encryption. Each input file must also be in the list given by transfer_input_files.
When a path to an input file or directory is specified, this specifies the path to the file on the submit side. A
single wild card character (*) may be used in each file name. The method of encryption utilized will be as
agreed upon in security negotiation; if that negotiation failed, then the file transfer mechanism must also fail for
files to be network encrypted.

encrypt_output_files =< file1,file2,file...> A comma and/or space separated list of output files that are tobe net-
work encrypted when transferred back with the file transfer mechanism. Specification of files in this manner
overrides configuration that wouldnot use encryption. The output file(s) must also either be in the list given
by transfer_output_files or be discovered and to be transferred back with the file transfer mechanism. When
a path to an output file or directory is specified, this specifies the path to the file on the execute side. A single
wild card character (*) may be used in each file name. The method of encryption utilized will be as agreed upon
in security negotiation; if that negotiation failed, then the file transfer mechanism must also fail for files to be
network encrypted.

max_transfer_input_mb =<ClassAd Integer Expression> This integer expression specifies the maximum al-
lowed total size in MiB of the input files that are transferredfor a job. This expression doesnot apply to
grid universe, standard universe, or files transferred via file transfer plug-ins. The expression may refer to at-
tributes of the job. The special value -1 indicates no limit.If not defined, the value set by configuration variable
MAX_TRANSFER_INPUT_MBis used. If the observed size of all input files at submit time is larger than the
limit, the job will be immediately placed on hold with aHoldReasonCode value of 32. If the job passes this
initial test, but the size of the input files increases or the limit decreases so that the limit is violated, the job will
be placed on hold at the time when the file transfer is attempted.

max_transfer_output_mb =<ClassAd Integer Expression> This integer expression specifies the maximum al-
lowed total size in MiB of the output files that are transferred for a job. This expression doesnot apply to
grid universe, standard universe, or files transferred via file transfer plug-ins. The expression may refer to at-
tributes of the job. The special value -1 indicates no limit.If not set, the value set by configuration variable
MAX_TRANSFER_OUTPUT_MBis used. If the total size of the job’s output files to be transferred is larger than
the limit, the job will be placed on hold with aHoldReasonCode value of 33. The output will be transferred
up to the point when the limit is hit, so some files may be fully transferred, some partially, and some not at all.

output_destination =<destination-URL> When present, defines a URL that specifies both a plug-in and a destina-
tion for the transfer of the entire output sandbox or a subsetof output files as specified by the submit command
transfer_output_files. The plug-in does the transfer of files, and no files are sent back to the submit machine.
The HTCondor Administrator’s manual has full details.

should_transfer_files =<YES | NO | IF_NEEDED > Theshould_transfer_filessetting is used to define if HT-
Condor should transfer files to and from the remote machine where the job runs. The file transfer mechanism
is used to run jobs which are not in the standard universe (andcan therefore use remote system calls for file
access) on machines which do not have a shared file system withthe submit machine.should_transfer_files
equal toYESwill cause HTCondor to always transfer files for the job.NO disables HTCondor’s file trans-
fer mechanism.IF_NEEDEDwill not transfer files for the job if it is matched with a resource in the same
FileSystemDomain as the submit machine (and therefore, on a machine with the same shared file system).
If the job is matched with a remote resource in a differentFileSystemDomain , HTCondor will transfer the
necessary files.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 924

For more information about this and other settings related to transferring files, see the HTCondor User’s manual
section on the file transfer mechanism.

Note thatshould_transfer_filesis not supported for jobs submitted to the grid universe.

skip_filechecks =<True | False> WhenTrue , file permission checks for the submitted job are disabled. When
False , file permissions are checked; this is the behavior when thiscommand is not present in the submit
description file. File permissions are checked for read permissions on all input files, such as those defined by
commandsinput andtransfer_input_files, and for write permission to output files, such as a log file defined
by log and output files defined withoutput or transfer_output_files.

stream_error = <True | False> If True , thenstderr is streamed back to the machine from which the job was
submitted. IfFalse , stderr is stored locally and transferred back when the job completes. This command
is ignored if the job ClassAd attributeTransferErr is False . The default value isFalse . This command
must be used in conjunction witherror , otherwisestderr will sent to /dev/null on Unix machines and
ignored on Windows machines.

stream_input =<True | False> If True , thenstdin is streamed from the machine on which the job was sub-
mitted. The default value isFalse . The command is only relevant for jobs submitted to the vanilla or java
universes, and it is ignored by the grid universe. This command must be used in conjunction withinput , other-
wisestdin will be /dev/null on Unix machines and ignored on Windows machines.

stream_output =<True | False> If True , thenstdout is streamed back to the machine from which the job was
submitted. IfFalse , stdout is stored locally and transferred back when the job completes. This command
is ignored if the job ClassAd attributeTransferOut is False . The default value isFalse . This command
must be used in conjunction withoutput, otherwisestdout will sent to /dev/null on Unix machines and
ignored on Windows machines.

transfer_executable =<True | False> This command is applicable to jobs submitted to the grid and vanilla uni-
verses. Iftransfer_executableis set toFalse , then HTCondor looks for the executable on the remote machine,
and does not transfer the executable over. This is useful foran already pre-staged executable; HTCondor behaves
more like rsh. The default value isTrue .

transfer_input_files =< file1,file2,file...> A comma-delimited list of all the files and directories to be transferred
into the working directory for the job, before the job is started. By default, the file specified in theexecutable
command and any file specified in theinput command (for example,stdin) are transferred.

When a path to an input file or directory is specified, this specifies the path to the file on the submit side. The file
is placed in the job’s temporary scratch directory on the execute side, and it is named using the base name of the
original path. For example,/path/to/input_file becomesinput_file in the job’s scratch directory.

A directory may be specified by appending the forward slash character (/) as a trailing path separator. This
syntax is used for both Windows and Linux submit hosts. A directory example using a trailing path separator
is input_data/ . When a directory is specified with the trailing path separator, the contents of the directory
are transferred, but the directory itself is not transferred. It is as if each of the items within the directory were
listed in the transfer list. When there is no trailing path separator, the directory is transferred, its contents are
transferred, and these contents are placed inside the transferred directory.

For grid universe jobs other than HTCondor-C, the transfer of directories is not currently supported.

Symbolic links to files are transferred as the files they pointto. Transfer of symbolic links to directories is not
currently supported.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 925

For vanilla and vm universe jobs only, a file may be specified bygiving a URL, instead of a file name. The
implementation for URL transfers requires both configuration and available plug-in.

transfer_output_files =< file1,file2,file...> This command forms an explicit list of output files and directories to be
transferred back from the temporary working directory on the execute machine to the submit machine. If there
are multiple files, they must be delimited with commas. Setting transfer_output_files to the empty string ("")
means that no files are to be transferred.

For HTCondor-C jobs and all other non-grid universe jobs, iftransfer_output_files is not specified, HTCondor
will automatically transfer back all files in the job’s temporary working directory which have been modified or
created by the job. Subdirectories are not scanned for output, so if output from subdirectories is desired, the
output list must be explicitly specified. For grid universe jobs other than HTCondor-C, desired output files must
also be explicitly listed. Another reason to explicitly list output files is for a job that creates many files, and the
user wants only a subset transferred back.

For grid universe jobs other than with grid typecondor, to have files other than standard output and standard
error transferred from the execute machine back to the submit machine, do usetransfer_output_files, listing
all files to be transferred. These files are found on the execute machine in the working directory of the job.

When a path to an output file or directory is specified, it specifies the path to the file on the execute side. As
a destination on the submit side, the file is placed in the job’s initial working directory, and it is named using
the base name of the original path. For example,path/to/output_file becomesoutput_file in the
job’s initial working directory. The name and path of the filethat is written on the submit side may be modified
by usingtransfer_output_remaps. Note that this remap function only works with files but not with directories.

A directory may be specified using a trailing path separator.An example of a trailing path separator is the slash
character on Unix platforms; a directory example using a trailing path separator isinput_data/ . When a
directory is specified with a trailing path separator, the contents of the directory are transferred, but the directory
itself is not transferred. It is as if each of the items withinthe directory were listed in the transfer list. When
there is no trailing path separator, the directory is transferred, its contents are transferred, and these contents are
placed inside the transferred directory.

For grid universe jobs other than HTCondor-C, the transfer of directories is not currently supported.

Symbolic links to files are transferred as the files they pointto. Transfer of symbolic links to directories is not
currently supported.

transfer_output_remaps= < “ name = newname ; name2= newname2 ... ”> This specifies the name (and op-
tionally path) to use when downloading output files from the completed job. Normally, output files are trans-
ferred back to the initial working directory with the same name they had in the execution directory. This gives
you the option to save them with a different path or name. If you specify a relative path, the final path will be
relative to the job’s initial working directory.

namedescribes an output file name produced by your job, andnewnamedescribes the file name it should be
downloaded to. Multiple remaps can be specified by separating each with a semicolon. If you wish to remap file
names that contain equals signs or semicolons, these special characters may be escaped with a backslash. You
cannot specify directories to be remapped.

when_to_transfer_output =< ON_EXIT | ON_EXIT_OR_EVICT > Setting when_to_transfer_output equal
to ON_EXITwill cause HTCondor to transfer the job’s output files back tothe submitting machine only when
the job completes (exits on its own).

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 926

TheON_EXIT_OR_EVICToption is intended for fault tolerant jobs which periodically save their own state and
can restart where they left off. In this case, files are spooled to the submit machine any time the job leaves a
remote site, either because it exited on its own, or was evicted by the HTCondor system for any reason prior to
job completion. The files spooled back are placed in a directory defined by the value of theSPOOLconfiguration
variable. Any output files transferred back to the submit machine are automatically sent back out again as input
files if the job restarts.

POLICY COMMANDS

max_retries =<integer> The maximum number of retries allowed for this job (must be non-negative). If the job
fails (does not exit with thesuccess_exit_codeexit code) it will be retried up tomax_retries times (unless
retries are ceased because of theretry_until command). Ifmax_retries is not defined, and eitherretry_until
or success_exit_codeis, the value ofDEFAULT_JOB_MAX_RETRIESwill be used for the maximum number
of retries.

The combination of themax_retries, retry_until , and success_exit_codecommands causes an appropri-
ate OnExitRemove expression to be automatically generated. If retry command(s) andon_exit_remove
are both defined, theOnExitRemove expression will be generated by OR’ing the expression specified in
OnExitRemove and the expression generated by the retry commands.

retry_until <Integer | ClassAd Boolean Expression> An integer value or boolean expression that prevents further
retries from taking place, even ifmax_retries have not been exhausted. Ifretry_until is an integer, the job
exiting with that exit code will cause retries to cease. Ifretry_until is a ClassAd expression, the expression
evaluating toTrue will cause retries to cease.

success_exit_code =<integer> The exit code that is considered successful for this job. Defaults to 0 if not defined.

Note: non-zero values of success_exit_code should generally not be used for DAG node jobs. At the
present time,condor_dagmandoes not take into account the value ofsuccess_exit_code. This means that,
if success_exit_codeis set to a non-zero value,condor_dagmanwill consider the job failed when it actually
succeeds. For single-proc DAG node jobs, this can be overcome by using a POST script that takes into account
the value ofsuccess_exit_code(although this is not recommended). For multi-proc DAG nodejobs, there is
currently no way to overcome this limitation.

hold = <True | False> If hold is set toTrue , then the submitted job will be placed into the Hold state. Jobs in the
Hold state will not run until released bycondor_release. Defaults toFalse .

keep_claim_idle =<integer> An integer number of seconds that a job requests thecondor_scheddto wait before
releasing its claim after the job exits or after the job is removed.

The process by which thecondor_scheddclaims acondor_startdis somewhat time-consuming. To amortize this
cost, thecondor_scheddtries to reuse claims to run subsequent jobs, after a job using a claim is done. However,
it can only do this if there is an idle job in the queue at the moment the previous job completes. Sometimes,
and especially for the node jobs when using DAGMan, there is asubsequent job about to be submitted, but it
has not yet arrived in the queue when the previous job completes. As a result, thecondor_scheddreleases the
claim, and the next job must wait an entire negotiation cycleto start. When this submit command is defined
with a non-negative integer, when the job exits, thecondor_scheddtries as usual to reuse the claim. If it cannot,
instead of releasing the claim, thecondor_scheddkeeps the claim until either the number of seconds given as a
parameter, or a new job which matches that claim arrives, whichever comes first. Thecondor_startdin question

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 927

will remain in the Claimed/Idle state, and the original job will be "charged" (in terms of priority) for the time in
this state.

leave_in_queue =<ClassAd Boolean Expression> When the ClassAd Expression evaluates toTrue , the job is
not removed from the queue upon completion. This allows the user of a remotely spooled job to retrieve output
files in cases where HTCondor would have removed them as part of the cleanup associated with completion.
The job will only exit the queue once it has been marked for removal (via condor_rm, for example) and the
leave_in_queueexpression has becomeFalse . leave_in_queuedefaults toFalse .
As an example, if the job is to be removed once the output is retrieved withcondor_transfer_data, then use

leave_in_queue = (JobStatus == 4) && ((StageOutFinish =?= U NDEFINED) ||\
(StageOutFinish == 0))

next_job_start_delay =<ClassAd Boolean Expression> This expression specifies the number of seconds to delay
after starting up this job before the next job is started. Themaximum allowed delay is specified by the HTCondor
configuration variableMAX_NEXT_JOB_START_DELAY, which defaults to 10 minutes. This command does
not apply toscheduleror local universe jobs.

This command has been historically used to implement a form of job start throttling from the job submitter’s
perspective. It was effective for the case of multiple job submission where the transfer of extremely large input
data sets to the execute machine caused machine performanceto suffer. This command is no longer useful, as
throttling should be accomplished through configuration ofthecondor_schedddaemon.

on_exit_hold =<ClassAd Boolean Expression> The ClassAd expression is checked when the job exits, and if
True , places the job into the Hold state. IfFalse (the default value when not defined), then nothing hap-
pens and theon_exit_remove expression is checked to determine if that needs to be applied.

For example: Suppose a job is known to run for a minimum of an hour. If the job exits after less than an hour,
the job should be placed on hold and an e-mail notification sent, instead of being allowed to leave the queue.

on_exit_hold = (time() - JobStartDate) < (60 * $(MINUTE))

This expression places the job on hold if it exits for any reason before running for an hour. An e-mail will be
sent to the user explaining that the job was placed on hold because this expression becameTrue .

periodic_ * expressions take precedence overon_exit_ * expressions, and* _hold expressions take
precedence over a* _remove expressions.

Only job ClassAd attributes will be defined for use by this ClassAd expression. This expression is available for
the vanilla, java, parallel, grid, local and scheduler universes. It is additionally available, when submitted from
a Unix machine, for the standard universe.

on_exit_hold_reason =<ClassAd String Expression> When the job is placed on hold due to theon_exit_hold
expression becomingTrue , this expression is evaluated to set the value ofHoldReason in the job ClassAd.
If this expression isUNDEFINEDor produces an empty or invalid string, a default description is used.

on_exit_hold_subcode =<ClassAd Integer Expression> When the job is placed on hold due to theon_exit_hold
expression becomingTrue , this expression is evaluated to set the value ofHoldReasonSubCode in the job
ClassAd. The default subcode is 0. TheHoldReasonCode will be set to 3, which indicates that the job went
on hold due to a job policy expression.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 928

on_exit_remove =<ClassAd Boolean Expression> The ClassAd expression is checked when the job exits, and if
True (the default value when undefined), then it allows the job to leave the queue normally. IfFalse , then the
job is placed back into the Idle state. If the user job runs under the vanilla universe, then the job restarts from
the beginning. If the user job runs under the standard universe, then it continues from where it left off, using the
last checkpoint.
For example, suppose a job occasionally segfaults, but chances are that the job will finish successfully if the
job is run again with the same data. Theon_exit_removeexpression can cause the job to run again with the
following command. Assume that the signal identifier for thesegmentation fault is 11 on the platform where the
job will be running.

on_exit_remove = (ExitBySignal == False) || (ExitSignal != 11)

This expression lets the job leave the queue if the job was notkilled by a signal or if it was killed by a signal
other than 11, representing segmentation fault in this example. So, if the exited due to signal 11, it will stay in
the job queue. In any other case of the job exiting, the job will leave the queue as it normally would have done.

As another example, if the job should only leave the queue if it exited on its own with status 0, this
on_exit_removeexpression works well:

on_exit_remove = (ExitBySignal == False) && (ExitCode == 0)

If the job was killed by a signal or exited with a non-zero exitstatus, HTCondor would leave the job in the queue
to run again.

periodic_ * expressions take precedence overon_exit_ * expressions, and* _hold expressions take
precedence over a* _remove expressions.

Only job ClassAd attributes will be defined for use by this ClassAd expression.

periodic_hold =<ClassAd Boolean Expression> This expression is checked periodically when the job is not in the
Held state. If it becomesTrue , the job will be placed on hold. If unspecified, the default value isFalse .

periodic_ * expressions take precedence overon_exit_ * expressions, and* _hold expressions take
precedence over a* _remove expressions.

Only job ClassAd attributes will be defined for use by this ClassAd expression. Note that, by de-
fault, this expression is only checked once every 60 seconds. The period of these evaluations can
be adjusted by setting thePERIODIC_EXPR_INTERVAL, MAX_PERIODIC_EXPR_INTERVAL, and
PERIODIC_EXPR_TIMESLICEconfiguration macros.

periodic_hold_reason =<ClassAd String Expression> When the job is placed on hold due to theperiodic_hold
expression becomingTrue , this expression is evaluated to set the value ofHoldReason in the job ClassAd.
If this expression isUNDEFINEDor produces an empty or invalid string, a default description is used.

periodic_hold_subcode =<ClassAd Integer Expression> When the job is placed on hold due to theperi-
odic_hold expression becoming true, this expression is evaluated to set the value ofHoldReasonSubCode
in the job ClassAd. The default subcode is 0. TheHoldReasonCode will be set to 3, which indicates that the
job went on hold due to a job policy expression.

periodic_release =<ClassAd Boolean Expression> This expression is checked periodically when the job is in the
Held state. If the expression becomesTrue , the job will be released.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 929

Only job ClassAd attributes will be defined for use by this ClassAd expression. Note that, by de-
fault, this expression is only checked once every 60 seconds. The period of these evaluations can
be adjusted by setting thePERIODIC_EXPR_INTERVAL, MAX_PERIODIC_EXPR_INTERVAL, and
PERIODIC_EXPR_TIMESLICEconfiguration macros.

periodic_remove =<ClassAd Boolean Expression> This expression is checked periodically. If it becomesTrue ,
the job is removed from the queue. If unspecified, the defaultvalue isFalse .

See the Examples section of this manual page for an example ofa periodic_removeexpression.

periodic_ * expressions take precedence overon_exit_ * expressions, and* _hold expressions take
precedence over a* _remove expressions. So, theperiodic_remove expression takes precedent over
theon_exit_remove expression, if the two describe conflicting actions.

Only job ClassAd attributes will be defined for use by this ClassAd expression. Note that, by de-
fault, this expression is only checked once every 60 seconds. The period of these evaluations can
be adjusted by setting thePERIODIC_EXPR_INTERVAL, MAX_PERIODIC_EXPR_INTERVAL, and
PERIODIC_EXPR_TIMESLICEconfiguration macros.

COMMANDS SPECIFIC TO THE STANDARD UNIVERSE

allow_startup_script = <True | False> If True, a standard universe job will execute a script instead of submitting
the job, and the consistency check to see if the executable has been linked usingcondor_compileis omitted. The
executablecommand within the submit description file specifies the nameof the script. The script is used to do
preprocessing before the job is submitted. The shell scriptends with anexecof the job executable, such that the
process id of the executable is the same as that of the shell script. Here is an example script that gets a copy of
a machine-specific executable before theexec.

#! /bin/sh

get the host name of the machine
$host=`uname -n`

grab a standard universe executable designed specificall y
for this host
scp elsewhere@cs.wisc.edu:${host} executable

The PID MUST stay the same, so exec the new standard universe process.
exec executable ${1+"$@"}

If this command is not present (defined), then the value defaults to false.

append_files = file1, file2, ...If your job attempts to access a file mentioned in this list, HTCondor will force all writes
to that file to be appended to the end. Furthermore, condor_submit will not truncate it. This list uses the same
syntax as compress_files, shown above.

This option may yield some surprising results. If several jobs attempt to write to the same file, their output may
be intermixed. If a job is evicted from one or more machines during the course of its lifetime, such an output
file might contain several copies of the results. This optionshould be only be used when you wish a certain file
to be treated as a running log instead of a precise result.

This option only applies to standard-universe jobs.

buffer_files= < “ name = (size,block-size) ; name2= (size,block-size) ... ”>

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 930

buffer_size= <bytes-in-buffer>

buffer_block_size= <bytes-in-block> HTCondor keeps a buffer of recently-used data for each file a job accesses.
This buffer is used both to cache commonly-used data and to consolidate small reads and writes into larger
operations that get better throughput. The default settings should produce reasonable results for most programs.

These options only apply to standard-universe jobs.

If needed, you may set the buffer controls individually for each file using the buffer_files option. For example,
to set the buffer size to 1 MiB and the block size to 256 KiB for the file input.data , use this command:

buffer_files = "input.data=(1000000,256000)"

Alternatively, you may use these two options to set the default sizes for all files used by your job:

buffer_size = 1000000
buffer_block_size = 256000

If you do not set these, HTCondor will use the values given by these two configuration file macros:

DEFAULT_IO_BUFFER_SIZE = 1000000
DEFAULT_IO_BUFFER_BLOCK_SIZE = 256000

Finally, if no other settings are present, HTCondor will usea buffer of 512 KiB and a block size of 32 KiB.

compress_files = file1, file2, ...If your job attempts to access any of the files mentioned in this list, HTCondor will
automatically compress them (if writing) or decompress them (if reading). The compress format is the same as
used by GNU gzip.

The files given in this list may be simple file names or completepaths and may include∗ as a wild card.
For example, this list causes the file /tmp/data.gz, any file named event.gz, and any file ending in .gzip to be
automatically compressed or decompressed as needed:

compress_files = /tmp/data.gz, event.gz, * .gzip

Due to the nature of the compression format, compressed filesmust only be accessed sequentially. Random
access reading is allowed but is very slow, while random access writing is simply not possible. This restriction
may be avoided by using both compress_files and fetch_files atthe same time. When this is done, a file is kept
in the decompressed state at the execution machine, but is compressed for transfer to its original location.

This option only applies to standard universe jobs.

fetch_files = file1, file2, ...If your job attempts to access a file mentioned in this list, HTCondor will automatically
copy the whole file to the executing machine, where it can be accessed quickly. When your job closes the file, it
will be copied back to its original location. This list uses the same syntax as compress_files, shown above.

This option only applies to standard universe jobs.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 931

file_remaps= < “ name = newname ; name2= newname2 ... ”> Directs HTCondor to use a new file name in
place of an old one.namedescribes a file name that your job may attempt to open, andnewnamedescribes the
file name it should be replaced with.newnamemay include an optional leading access specifier,local: or
remote: . If left unspecified, the default access specifier isremote: . Multiple remaps can be specified by
separating each with a semicolon.

This option only applies to standard universe jobs.

If you wish to remap file names that contain equals signs or semicolons, these special characters may be escaped
with a backslash.

Example One: Suppose that your job reads a file nameddataset.1 . To instruct HTCondor to force your
job to readother.dataset instead, add this to the submit file:

file_remaps = "dataset.1=other.dataset"

Example Two: Suppose that your run many jobs which all read in the same large file, calledvery.big .
If this file can be found in the same place on a local disk in every machine in the pool, (say
/bigdisk/bigfile ,) you can instruct HTCondor of this fact by remappingvery.big to
/bigdisk/bigfile and specifying that the file is to be read locally, which will be much faster than
reading over the network.

file_remaps = "very.big = local:/bigdisk/bigfile"

Example Three: Several remaps can be applied at once by separating each witha semicolon.

file_remaps = "very.big = local:/bigdisk/bigfile ; datase t.1 = other.dataset"

local_files = file1, file2, ...If your job attempts to access a file mentioned in this list, HTCondor will cause it to be
read or written at the execution machine. This is most usefulfor temporary files not used for input or output.
This list uses the same syntax as compress_files, shown above.

local_files = /tmp/ *

This option only applies to standard universe jobs.

want_remote_io =<True | False> This option controls how a file is opened and manipulated in a standard universe
job. If this option is true, which is the default, then thecondor_shadowmakes all decisions about how each and
every file should be opened by the executing job. This entailsa network round trip (or more) from the job to
thecondor_shadowand back again for every singleopen() in addition to other needed information about the
file. If set to false, then when the job queries thecondor_shadowfor the first time about how to open a file, the
condor_shadowwill inform the job to automatically perform all of its file manipulation on the local file system
on the execute machine and any file remapping will be ignored.This means that theremust be a shared file
system (such as NFS or AFS) between the execute machine and the submit machine and thatALL paths that
the job could open on the execute machine must be valid. The ability of the standard universe job to checkpoint,
possibly to a checkpoint server, is not affected by this attribute. However, when the job resumes it will be
expecting the same file system conditions that were present when the job checkpointed.

COMMANDS FOR THE GRID

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 932

batch_queue =<queuename> Used for pbs, lsf, and sge grid universe jobs. Specifies the name of the
PBS/LSF/SGE job queue into which the job should be submitted. If not specified, the default queue is used.

boinc_authenticator_file =<pathname> For grid typeboinc jobs, specifies a path and file name of the authoriza-
tion file that grants permission for HTCondor to use the BOINCservice. There is no default value when not
specified.

cream_attributes =<name=value;. . .;name=value> Provides a list of attribute/value pairs to be set in a CREAM
job description of a grid universe job destined for the CREAMgrid system. The pairs are separated by semi-
colons, and written in New ClassAd syntax.

delegate_job_GSI_credentials_lifetime =<seconds> Specifies the maximum number of seconds for which dele-
gated proxies should be valid. The default behavior when this command is not specified is determined by the
configuration variableDELEGATE_JOB_GSI_CREDENTIALS_LIFETIME, which defaults to one day. A
value of 0 indicates that the delegated proxy should be validfor as long as allowed by the credential used to
create the proxy. This setting currently only applies to proxies delegated for non-grid jobs and for HTCondor-C
jobs. It does not currently apply to globus grid jobs, which always behave as though this setting were 0. This
variable has no effect if the configuration variableDELEGATE_JOB_GSI_CREDENTIALSis False , because
in that case the job proxy is copied rather than delegated.

ec2_access_key_id =<pathname> For grid typeec2jobs, identifies the file containing the access key.

ec2_ami_id =<EC2 xMI ID > For grid typeec2 jobs, identifies the machine image. Services compatible with the
EC2 Query API may refer to these with abbreviations other than AMI, for exampleEMI is valid for Eucalyptus.

ec2_availability_zone =<zone name> For grid typeec2 jobs, specifies the Availability Zone that the instance
should be run in. This command is optional, unlessec2_ebs_volumesis set. As an example, one current
zone isus-east-1b .

ec2_block_device_mapping =<block-device>:<kernel-device>,<block-device>:<kernel-device>, . . . For
grid typeec2jobs, specifies the block device to kernel device mapping. This command is optional.

ec2_ebs_volumes =<ebs name>:<device name>,<ebs name>:<device name>,. . . For grid typeec2 jobs, op-
tionally specifies a list of Elastic Block Store (EBS) volumes to be made available to the instance and the device
names they should have in the instance.

ec2_elastic_ip =<elastic IP address> For grid typeec2jobs, and optional specification of an Elastic IP address that
should be assigned to this instance.

ec2_iam_profile_arn =<IAM profile ARN > For grid typeec2jobs, an Amazon Resource Name (ARN) identifying
which Identity and Access Management (IAM) (instance) profile to associate with the instance.

ec2_iam_profile_name=<IAM profile name> For grid typeec2 jobs, a name identifying which Identity and Ac-
cess Management (IAM) (instance) profile to associate with the instance.

ec2_instance_type =<instance type> For grid typeec2 jobs, identifies the instance type. Different services may
offer different instance types, so no default value is set.

ec2_keypair =<ssh key-pair name> For grid typeec2jobs, specifies the name of an SSH key-pair that is already
registered with the EC2 service. The associated private keycan be used tosshinto the virtual machine once it
is running.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 933

ec2_keypair_file =<pathname> For grid typeec2 jobs, specifies the complete path and file name of a file into
which HTCondor will write an SSH key for use with ec2 jobs. Thekey can be used tossh into the virtual
machine once it is running. Ifec2_keypairis specified for a job,ec2_keypair_fileis ignored.

ec2_parameter_names = ParameterName1, ParameterName2, ... For grid typeec2jobs, a space or comma sepa-
rated list of the names of additional parameters to pass wheninstantiating an instance.

ec2_parameter_<name> = <value> For grid typeec2 jobs, specifies the value for the correspondingly named
(instance instantiation) parameter.<name> is the parameter name specified in the submit command
ec2_parameter_names, but with any periods replaced by underscores.

ec2_secret_access_key =<pathname> For grid typeec2jobs, specifies the path and file name containing the secret
access key.

ec2_security_groups = group1, group2, ...For grid typeec2 jobs, defines the list of EC2 security groups which
should be associated with the job.

ec2_security_ids = id1, id2, ...For grid typeec2 jobs, defines the list of EC2 security group IDs which should be
associated with the job.

ec2_spot_price =<bid> For grid typeec2jobs, specifies the spot instance bid, which is the most that the job sub-
mitter is willing to pay per hour to run this job.

ec2_tag_names =<name0,name1,name...> For grid typeec2 jobs, specifies the case of tag names that will be
associated with the running instance. This is only necessary if a tag name case matters. By default the list will
be automatically generated.

ec2_tag_<name> = <value> For grid typeec2jobs, specifies a tag to be associated with the running instance. The
tag name will be lower-cased, useec2_tag_namesto change the case.

WantNameTag =<True | False> For grid typeec2 jobs, a job may request that its ’name’ tag be (not) set by
HTCondor. If the job does not otherwise specify any tags, notsetting its name tag will eliminate a call by the
EC2 GAHP, improving performance.

ec2_user_data =<data> For grid typeec2jobs, provides a block of data that can be accessed by the virtual machine.
If both ec2_user_dataandec2_user_data_fileare specified for a job, the two blocks of data are concatenated,
with the data from thisec2_user_datasubmit command occurring first.

ec2_user_data_file =<pathname> For grid typeec2 jobs, specifies a path and file name whose contents can be
accessed by the virtual machine. If bothec2_user_dataandec2_user_data_fileare specified for a job, the two
blocks of data are concatenated, with the data from thatec2_user_datasubmit command occurring first.

ec2_vpc_ip =<a.b.c.d> For grid typeec2jobs, that are part of a Virtual Private Cloud (VPC), an optional specifica-
tion of the IP address that this instance should have within the VPC.

ec2_vpc_subnet =<subnet specification string> For grid typeec2 jobs, an optional specification of the Virtual
Private Cloud (VPC) that this instance should be a part of.

gce_auth_file =<pathname> For grid typegce jobs, specifies a path and file name of the authorization file that
grants permission for HTCondor to use the Google account. There is no default value when not specified.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 934

gce_image =<image id> For grid typegce jobs, the identifier of the virtual machine image representing the HT-
Condor job to be run. This virtual machine image must alreadybe register with GCE and reside in Google’s
Cloud Storage service.

gce_json_file =<pathname> For grid typegce jobs, specifies the path and file name of a file that contains JSON
elements that should be added to the instance description submitted to the GCE service.

gce_machine_type =<machine type> For grid typegcejobs, the long form of the URL that describes the machine
configuration that the virtual machine instance is to run on.

gce_metadata =<name=value,. . .,name=value> For grid typegcejobs, a comma separated list of name and value
pairs that define metadata for a virtual machine instance that is an HTCondor job.

gce_metadata_file =<pathname> For grid typegce jobs, specifies a path and file name of the file that contains
metadata for a virtual machine instance that is an HTCondor job. Within the file, each name and value pair is on
its own line; so, the pairs are separated by the newline character.

gce_preemptible =<True | False> For grid typegcejobs, specifies whether the virtual machine instance shouldbe
preemptible. The default is for the instance to not be preemptible.

globus_rematch =<ClassAd Boolean Expression> This expression is evaluated by thecondor_gridmanager
whenever:

1. theglobus_resubmitexpression evaluates toTrue

2. thecondor_gridmanagerdecides it needs to retry a submission (as when a previous submission failed to
commit)

If globus_rematchevaluates toTrue , thenbeforethe job is submitted again to globus, thecondor_gridmanager
will request that thecondor_schedddaemon renegotiate with the matchmaker (thecondor_negotiator). The
result is this job will be matched again.

globus_resubmit =<ClassAd Boolean Expression> The expression is evaluated by thecondor_gridmanagereach
time thecondor_gridmanagergets a job ad to manage. Therefore, the expression is evaluated:

1. when a grid universe job is first submitted to HTCondor-G

2. when a grid universe job is released from the hold state

3. when HTCondor-G is restarted (specifically, whenever thecondor_gridmanageris restarted)

If the expression evaluates toTrue , then any previous submission to the grid universe will be forgotten and this
job will be submitted again as a fresh submission to the grid universe. This may be useful if there is a desire
to give up on a previous submission and try again. Note that this may result in the same job running more than
once. Do not treat this operation lightly.

globus_rsl =<RSL-string> Used to provide any additional Globus RSL string attributeswhich are not covered by
other submit description file commands or job attributes. Used forgrid universe jobs, where the grid resource
has agrid-type-string of gt2.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 935

grid_resource =<grid-type-string><grid-specific-parameter-list> For eachgrid-type-string value, there are
further type-specific values that must specified. This submit description file command allows each to be given
in a space-separated list. Allowablegrid-type-string values arebatch, condor, cream, ec2, gt2, gt5, lsf,
nordugrid , pbs, sge, andunicore. The HTCondor manual chapter on Grid Computing details the variety of
grid types.

For agrid-type-string of batch, the single parameter is the name of the local batch system, and will be one of
pbs , lsf , or sge .

For agrid-type-string of condor, the first parameter is the name of the remotecondor_schedddaemon. The
second parameter is the name of the pool to which the remotecondor_schedddaemon belongs.

For agrid-type-string of cream, there are three parameters. The first parameter is the web services address of
the CREAM server. The second parameter is the name of the batch system that sits behind the CREAM server.
The third parameter identifies a site-specific queue within the batch system.

For agrid-type-string of ec2, one additional parameter specifies the EC2 URL.

For agrid-type-string of gt2, the single parameter is the name of the pre-WS GRAM resourceto be used.

For agrid-type-string of gt5, the single parameter is the name of the pre-WS GRAM resourceto be used, which
is the same as for thegrid-type-string of gt2.

For agrid-type-string of lsf, no additional parameters are used.

For agrid-type-string of nordugrid , the single parameter is the name of the NorduGrid resource to be used.

For agrid-type-string of pbs, no additional parameters are used.

For agrid-type-string of sge, no additional parameters are used.

For agrid-type-string of unicore, the first parameter is the name of the Unicore Usite to be used. The second
parameter is the name of the Unicore Vsite to be used.

keystore_alias =<name> A string to locate the certificate in a Java keystore file, as used for aunicore job.

keystore_file =<pathname> The complete path and file name of the Java keystore file containing the certificate to
be used for aunicore job.

keystore_passphrase_file =<pathname> The complete path and file name to the file containing the passphrase
protecting a Java keystore file containing the certificate. Relevant for aunicore job.

MyProxyCredentialName =<symbolic name> The symbolic name that identifies a credential to theMyProxy
server. This symbolic name is set as the credential is initially stored on the server (usingmyproxy-init).

MyProxyHost = <host>:<port> The Internet address of the host that is theMyProxyserver. Thehost may be
specified by either a host name (as inhead.example.com) or an IP address (of the form 123.456.7.8). The
port number is an integer.

MyProxyNewProxyLifetime = <number-of-minutes> The new lifetime (in minutes) of the proxy after it is re-
freshed.

MyProxyPassword =<password> The password needed to refresh a credential on theMyProxyserver. This pass-
word is set when the user initially stores credentials on theserver (usingmyproxy-init). As an alternative to using
MyProxyPasswordin the submit description file, the password may be specified as a command line argument
to condor_submitwith the-passwordargument.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 936

MyProxyRefreshThreshold =<number-of-seconds> The time (in seconds) before the expiration of a proxy that
the proxy should be refreshed. For example, ifMyProxyRefreshThreshold is set to the value 600, the proxy
will be refreshed 10 minutes before it expires.

MyProxyServerDN = <credential subject> A string that specifies the expected Distinguished Name (credential
subject, abbreviated DN) of theMyProxyserver. It must be specified when theMyProxyserver DN does not
follow the conventional naming scheme of a host credential.This occurs, for example, when theMyProxyserver
DN begins with a user credential.

nordugrid_rsl = <RSL-string> Used to provide any additional RSL string attributes which are not covered by regu-
lar submit description file parameters. Used when theuniverseis grid , and the type of grid system isnordugrid .

transfer_error = <True | False> For jobs submitted to the grid universe only. IfTrue , then the error output (from
stderr) from the job is transferred from the remote machine back to the submit machine. The name of the file
after transfer is given by theerror command. IfFalse , no transfer takes place (from the remote machine to
submit machine), and the name of the file is given by theerror command. The default value isTrue .

transfer_input = <True | False> For jobs submitted to the grid universe only. IfTrue , then the job input (stdin)
is transferred from the machine where the job was submitted to the remote machine. The name of the file that is
transferred is given by theinput command. IfFalse , then the job’s input is taken from a pre-staged file on the
remote machine, and the name of the file is given by theinput command. The default value isTrue .

For transferring files other thanstdin , seetransfer_input_files.

transfer_output = <True | False> For jobs submitted to the grid universe only. IfTrue , then the output (from
stdout) from the job is transferred from the remote machine back to the submit machine. The name of the file
after transfer is given by theoutput command. IfFalse , no transfer takes place (from the remote machine to
submit machine), and the name of the file is given by theoutput command. The default value isTrue .

For transferring files other thanstdout , seetransfer_output_files.

use_x509userproxy =<True | False> Set this command toTrue to indicate that the job requires an X.509 user
proxy. If x509userproxyis set, then that file is used for the proxy. Otherwise, the proxy is looked for in the
standard locations. Ifx509userproxyis set or if the job is a grid universe job of grid typegt2, gt5, cream, or
nordugrid , then the value ofuse_x509userproxyis forced toTrue . Defaults toFalse .

x509userproxy =<full-pathname> Used to override the default path name for X.509 user certificates. The default
location for X.509 proxies is the/tmp directory, which is generally a local file system. Setting this value would
allow HTCondor to access the proxy in a shared file system (forexample, AFS). HTCondor will use the proxy
specified in the submit description file first. If nothing is specified in the submit description file, it will use the
environment variable X509_USER_PROXY. If that variable isnot present, it will search in the default location.

x509userproxy is relevant when theuniverse is vanilla, or when theuniverse is grid and the type of grid
system is one ofgt2, gt5, condor, cream, or nordugrid . Defining a value causes the proxy to be delegated to
the execute machine. Further, VOMS attributes defined in theproxy will appear in the job ClassAd.

COMMANDS FOR PARALLEL, JAVA, and SCHEDULER UNIVERSES

hold_kill_sig = <signal-number> For the scheduler universe only,signal-number is the signal delivered to the job
when the job is put on hold withcondor_hold. signal-number may be either the platform-specific name or
value of the signal. If this command is not present, the valueof kill_sig is used.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 937

jar_files = <file_list> Specifies a list of additional JAR files to include when using the Java universe. JAR files will
be transferred along with the executable and automaticallyadded to the classpath.

java_vm_args =<argument_list> Specifies a list of additional arguments to the Java VM itself, When HTCondor
runs the Java program, these are the arguments that go beforethe class name. This can be used to set VM-specific
arguments like stack size, garbage-collector arguments and initial property values.

machine_count =<max> For the parallel universe, a single value (max) is required. It is neither a maximum or
minimum, but the number of machines to be dedicated toward running the job.

remove_kill_sig =<signal-number> For the scheduler universe only,signal-number is the signal delivered to the
job when the job is removed withcondor_rm. signal-numbermay be either the platform-specific name or value
of the signal. This example shows it both ways for a Linux signal:

remove_kill_sig = SIGUSR1
remove_kill_sig = 10

If this command is not present, the value ofkill_sig is used.

COMMANDS FOR THE VM UNIVERSE

vm_disk = file1:device1:permission1, file2:device2:permission2:format2,. . . A list of comma separated disk files.
Each disk file is specified by 4 colon separated fields. The firstfield is the path and file name of the disk file. The
second field specifies the device. The third field specifies permissions, and the optional fourth field specifies the
image format. If a disk file will be transferred by HTCondor, then the first field should just be the simple file
name (no path information).
An example that specifies two disk files:

vm_disk = /myxen/diskfile.img:sda1:w,/myxen/swap.img: sda2:w

vm_checkpoint =<True | False> A boolean value specifying whether or not to take checkpoints. If not specified,
the default value isFalse . In the current implementation, setting bothvm_checkpointandvm_networking
to True does not yet work in all cases. Networking cannot be used if a vm universe job uses a checkpoint in
order to continue execution after migration to another machine.

vm_macaddr =<MACAddr > Defines that MAC address that the virtual machine’s network interface should have,
in the standard format of six groups of two hexadecimal digits separated by colons.

vm_memory =<MBytes-of-memory> The amount of memory in MBytes that a vm universe job requires.

vm_networking = <True | False> Specifies whether to use networking or not. In the current implementation, set-
ting bothvm_checkpointandvm_networking to True does not yet work in all cases. Networking cannot be
used if a vm universe job uses a checkpoint in order to continue execution after migration to another machine.

vm_networking_type =<nat | bridge > When vm_networking is True , this definition augments the job’s re-
quirements to match only machines with the specified networking. If not specified, then either networking type
matches.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 938

vm_no_output_vm =<True | False> WhenTrue , prevents HTCondor from transferring output files back to the
machine from which the vm universe job was submitted. If not specified, the default value isFalse .

vm_type =<vmware | xen | kvm> Specifies the underlying virtual machine software that thisjob expects.

vmware_dir = <pathname> The complete path and name of the directory where VMware-specific files and appli-
cations such as the VMDK (Virtual Machine Disk Format) and VMX (Virtual Machine Configuration) reside.
This command is optional; when not specified, all relevant VMware image files are to be listed usingtrans-
fer_input_files.

vmware_should_transfer_files =<True | False> Specifies whether HTCondor will transfer VMware-specific files
located as specified byvmware_dir to the execute machine (True) or rely on access through a shared file sys-
tem (False). Omission of this required command (for VMware vm universejobs) results in an error message
from condor_submit, and the job will not be submitted.

vmware_snapshot_disk =<True | False> WhenTrue , causes HTCondor to utilize a VMware snapshot disk for
new or modified files. If not specified, the default value isTrue .

xen_initrd = <image-file> Whenxen_kernelgives a file name for the kernel image to use, this optional command
may specify a path to a ramdisk (initrd) image file. If the image file will be transferred by HTCondor,then
the value should just be the simple file name (no path information).

xen_kernel =<included | path-to-kernel> A value ofincluded specifies that the kernel is included in the disk file.
If not one of these values, then the value is a path and file nameof the kernel to be used. If a kernel file will be
transferred by HTCondor, then the value should just be the simple file name (no path information).

xen_kernel_params =<string> A string that is appended to the Xen kernel command line.

xen_root =<string> A string that is appended to the Xen kernel command line to specify the root device. This
string is required whenxen_kernelgives a path to a kernel. Omission for this required case results in an error
message during submission.

COMMANDS FOR THE DOCKER UNIVERSE

docker_image =< image-name> Defines the name of the Docker image that is the basis for the docker container.

ADVANCED COMMANDS

accounting_group =<accounting-group-name> Causes jobs to negotiate under the given accounting group. This
value is advertised in the job ClassAd asAcctGroup . The HTCondor Administrator’s manual contains more
information about accounting groups.

accounting_group_user =<accounting-group-user-name> Sets the user name associated with the accounting
group name for resource usage accounting purposes. If not set, defaults to the value of the job ClassAd at-
tributeOwner. This value is advertised in the job ClassAd asAcctGroupUser . If an accounting group has
not been set with theaccounting_groupcommand, this command is ignored.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 939

concurrency_limits =<string-list> A list of resources that this job needs. The resources are presumed to have
concurrency limits placed upon them, thereby limiting the number of concurrent jobs in execution which need
the named resource. Commas and space characters delimit theitems in the list. Each item in the list is a string
that identifies the limit, or it is a ClassAd expression that evaluates to a string, and it is evaluated in the context
of machine ClassAd being considered as a match. Each item in the list also may specify a numerical value
identifying the integer number of resources required for the job. The syntax follows the resource name by a
colon character (:) and the numerical value. Details on concurrency limits arein the HTCondor Administrator’s
manual.

concurrency_limits_expr =<ClassAd String Expression> A ClassAd expression that represents the list of re-
sources that this job needs after evaluation. The ClassAd expression may specify machine ClassAd attributes
that are evaluated against a matched machine. After evaluation, the list setsconcurrency_limits.

copy_to_spool =<True | False> If copy_to_spoolis True , thencondor_submitcopies the executable to the local
spool directory before running it on a remote host. As copying can be quite time consuming and unnecessary,
the default value isFalse for all job universes other than the standard universe. WhenFalse , condor_submit
does not copy the executable to a local spool directory. The default is True in standard universe, because
resuming execution from a checkpoint can only be guaranteedto work using precisely the same executable that
created the checkpoint.

coresize =<size> Should the user’s program abort and produce a core file,coresizespecifies the maximum size in
bytes of the core file which the user wishes to keep. Ifcoresizeis not specified in the command file, the system’s
user resource limitcoredumpsize is used (note thatcoredumpsize is not an HTCondor parameter – it is
an operating system parameter that can be viewed with thelimit or ulimit command on Unix and in the Registry
on Windows). A value of -1 results in no limits being applied to the core file size. If HTCondor is running
as root, acoresizesetting greater than the systemcoredumpsize limit will override the system setting; if
HTCondor isnot running as root, the systemcoredumpsize limit will override coresize.

cron_day_of_month =<Cron-evaluated Day> The set of days of the month for which a deferral time applies.The
HTCondor User’s manual section on Time Scheduling for Job Execution has further details.

cron_day_of_week =<Cron-evaluated Day> The set of days of the week for which a deferral time applies. The
HTCondor User’s manual section on Time Scheduling for Job Execution has further details.

cron_hour = <Cron-evaluated Hour> The set of hours of the day for which a deferral time applies. The HTCondor
User’s manual section on Time Scheduling for Job Execution has further details.

cron_minute =<Cron-evaluated Minute> The set of minutes within an hour for which a deferral time applies. The
HTCondor User’s manual section on Time Scheduling for Job Execution has further details.

cron_month =<Cron-evaluated Month> The set of months within a year for which a deferral time applies. The
HTCondor User’s manual section on Time Scheduling for Job Execution has further details.

cron_prep_time =<ClassAd Integer Expression> Analogous todeferral_prep_time. The number of seconds
prior to a job’s deferral time that the job may be matched and sent to an execution machine.

cron_window =<ClassAd Integer Expression> Analogous to the submit commanddeferral_window. It allows
cron jobs that miss their deferral time to begin execution.

The HTCondor User’s manual section on Time Scheduling for Job Execution has further details.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 940

dagman_log =<pathname> DAGMan inserts this command to specify an event log that it watches to maintain the
state of the DAG. If thelog command is not specified in the submit file, DAGMan uses thelog command to
specify the event log.

deferral_prep_time =<ClassAd Integer Expression> The number of seconds prior to a job’s deferral time that the
job may be matched and sent to an execution machine.

The HTCondor User’s manual section on Time Scheduling for Job Execution has further details.

deferral_time = <ClassAd Integer Expression> Allows a job to specify the time at which its execution is to begin,
instead of beginning execution as soon as it arrives at the execution machine. The deferral time is an expression
that evaluates to a Unix Epoch timestamp (the number of seconds elapsed since 00:00:00 on January 1, 1970,
Coordinated Universal Time). Deferral time is evaluated with respect to the execution machine. This option
delays the start of execution, but not the matching and claiming of a machine for the job. If the job is not
available and ready to begin execution at the deferral time,it has missed its deferral time. A job that misses its
deferral time will be put on hold in the queue.

The HTCondor User’s manual section on Time Scheduling for Job Execution has further details.

Due to implementation details, a deferral time may not be used for scheduler universe jobs.

deferral_window = <ClassAd Integer Expression> The deferral window is used in conjunction with thedefer-
ral_time command to allow jobs that miss their deferral time to begin execution.

The HTCondor User’s manual section on Time Scheduling for Job Execution has further details.

description =<string> A string that sets the value of the job ClassAd attributeJobDescription . When set,
tools which display the executable such ascondor_qwill instead use this string.

email_attributes =<list-of-job-ad-attributes> A comma-separated list of attributes from the job ClassAd. These
attributes and their values will be included in the e-mail notification of job completion.

image_size =<size> Advice to HTCondor specifying the maximum virtual image size to which the job will grow
during its execution. HTCondor will then execute the job only on machines which have enough resources,
(such as virtual memory), to support executing the job. If not specified, HTCondor will automatically make a
(reasonably accurate) estimate about the job’s size and adjust this estimate as the program runs. If specified
and underestimated, the job may crash due to the inability toacquire more address space; for example, if
malloc() fails. If the image size is overestimated, HTCondor may havedifficulty finding machines which
have the required resources.sizeis specified in KiB. For example, for an image size of 8 MiB,sizeshould be
8000.

initialdir = <directory-path> Used to give jobs a directory with respect to file input and output. Also provides a
directory (on the machine from which the job is submitted) for the job event log, when a full path is not specified.

For vanilla universe jobs where there is a shared file system,it is the current working directory on the machine
where the job is executed.

For vanilla or grid universe jobs where file transfer mechanisms are utilized (there isnot a shared file system),
it is the directory on the machine from which the job is submitted where the input files come from, and where
the job’s output files go to.

For standard universe jobs, it is the directory on the machine from which the job is submitted where thecon-
dor_shadowdaemon runs; the current working directory for file input andoutput accomplished through remote
system calls.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 941

For scheduler universe jobs, it is the directory on the machine from which the job is submitted where the job
runs; the current working directory for file input and outputwith respect to relative path names.

Note that the path to the executable isnot relative toinitialdir ; if it is a relative path, it is relative to the directory
in which thecondor_submitcommand is run.

job_ad_information_attrs = <attribute-list > A comma-separated list of job ClassAd attribute names. The named
attributes and their values are written to the job event log whenever any event is being written to the log. This
implements the same thing as the configuration variableEVENT_LOG_INFORMATION_ATTRS(see page 242),
but it applies to the job event log, instead of the system event log.

JobBatchName =<batch_name> Set the batch name for this submit. The batch name is displayed by condor_q
-batch. It is intended for use by users to give meaningful names to their jobs and to influence howcondor_q
groups jobs for display. This value in a submit file can be overridden by specifying the-batch-nameargument
on thecondor_submitcommand line.

job_lease_duration =<number-of-seconds> For vanilla, parallel, VM, and java universe jobs only, the duration in
seconds of a job lease. The default value is 2,400, or forty minutes. If a job lease is not desired, the value can be
explicitly set to 0 to disable the job lease semantics. The value can also be a ClassAd expression that evaluates
to an integer. The HTCondor User’s manual section on SpecialEnvironment Considerations has further details.

job_machine_attrs =<attr1, attr2, . . .> A comma and/or space separated list of machine attribute names that
should be recorded in the job ClassAd in addition to the ones specified by thecondor_schedddaemon’s
system configuration variableSYSTEM_JOB_MACHINE_ATTRS. When there are multiple run attempts,
history of machine attributes from previous run attempts may be kept. The number of run attempts
to store may be extended beyond the system-specified historylength by using the submit file command
job_machine_attrs_history_length. A machine attribute namedX will be inserted into the job ClassAd as
an attribute namedMachineAttrX0 . The previous value of this attribute will be namedMachineAttrX1 ,
the previous to that will be namedMachineAttrX2 , and so on, up to the specified history length. A history
of length 1 means that onlyMachineAttrX0 will be recorded. The value recorded in the job ClassAd is the
evaluation of the machine attribute in the context of the jobClassAd when thecondor_schedddaemon initiates
the start up of the job. If the evaluation results in anUndefined or Error result, the value recorded in the
job ad will beUndefined or Error , respectively.

want_graceful_removal =<boolean expression> WhenTrue , this causes a graceful shutdown of the job when the
job is removed or put on hold, giving it time to clean up or savestate. Otherwise, the job is abruptly killed. The
default isfalse .

kill_sig = <signal-number> When HTCondor needs to kick a job off of a machine, it will sendthe job the signal
specified bysignal-number. signal-number needs to be an integer which represents a valid signal on the
execution machine. For jobs submitted to the standard universe, the default value is the number forSIGTSTP
which tells the HTCondor libraries to initiate a checkpointof the process. For jobs submitted to other universes,
the default value, when not defined, isSIGTERM, which is the standard way to terminate a program in Unix.

kill_sig_timeout = <seconds> This submit command should no longer be used as of HTCondor version 7.7.3; use
job_max_vacate_timeinstead. Ifjob_max_vacate_timeis not defined, this defines the number of seconds that
HTCondor should wait following the sending of the kill signal defined bykill_sig and forcibly killing the job.
The actual amount of time between sending the signal and forcibly killing the job is the smallest of this value
and the configuration variableKILLING_TIMEOUT , as defined on the execute machine.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 942

load_profile =<True | False> WhenTrue , loads the account profile of the dedicated run account for Windows
jobs. May not be used withrun_as_owner.

match_list_length =<integer value> Defaults to the value zero (0). Whenmatch_list_length is defined with an
integer value greater than zero (0), attributes are inserted into the job ClassAd. The maximum number of
attributes defined is given by the integer value. The job ClassAds introduced are given as

LastMatchName0 = "most-recent-Name"
LastMatchName1 = "next-most-recent-Name"

The value for each introduced ClassAd is given by the value oftheNameattribute from the machine ClassAd
of a previous execution (match). As a job is matched, the definitions for these attributes will roll, with
LastMatchName1 becomingLastMatchName2 , LastMatchName0 becomingLastMatchName1 ,
andLastMatchName0 being set by the most recent value of theNameattribute.

An intended use of these job attributes is in the requirements expression. The requirements can allow a job to
prefer a match with either the same or a different resource than a previous match.

job_max_vacate_time =<integer expression> An integer-valued expression (in seconds) that may be used to ad-
just the time given to an evicted job for gracefully shuttingdown. If the job’s setting is less than the machine’s,
the job’s is used. If the job’s setting is larger than the machine’s, the result depends on whether the job has any
excess retirement time. If the job has more retirement time left than the machine’s max vacate time setting, then
retirement time will be converted into vacating time, up to the amount requested by the job.

Setting this expression does not affect the job’s resource requirements or preferences. For a job to only run on
a machine with a minimumMachineMaxVacateTime , or to preferentially run on such machines, explicitly
specify this in the requirements and/or rank expressions.

max_job_retirement_time =<integer expression> An integer-valued expression (in seconds) that does nothing
unless the machine that runs the job has been configured to provide retirement time. Retirement time is a grace
period given to a job to finish when a resource claim is about tobe preempted. The default behavior in many
cases is to take as much retirement time as the machine offers, so this command will rarely appear in a submit
description file.

When a resource claim is to be preempted, this expression in the submit file specifies the maximum run time
of the job (in seconds, since the job started). This expression has no effect, if it is greater than the maximum
retirement time provided by the machine policy. If the resource claim isnot preempted, this expression and the
machine retirement policy are irrelevant. If the resource claim is preempted the job will be allowed to run until
the retirement time expires, at which point it is hard-killed. The job will be soft-killed when it is getting close to
the end of retirement in order to give it time to gracefully shut down. The amount of lead-time for soft-killing is
determined by the maximum vacating time granted to the job.

Standard universe jobs and any jobs running withnice_userpriority have a defaultmax_job_retirement_time
of 0, so no retirement time is utilized by default. In all other cases, no default value is provided, so the maximum
amount of retirement time is utilized by default.

Setting this expression does not affect the job’s resource requirements or preferences. For a job to only run on
a machine with a minimumMaxJobRetirementTime , or to preferentially run on such machines, explicitly
specify this in the requirements and/or rank expressions.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 943

nice_user =<True | False> Normally, when a machine becomes available to HTCondor, HTCondor decides which
job to run based upon user and job priorities. Settingnice_userequal toTrue tells HTCondor not to use your
regular user priority, but that this job should have last priority among all users and all jobs. So jobs submitted in
this fashion run only on machines which no other non-nice_user job wants — a true bottom-feeder job! This is
very handy if a user has some jobs they wish to run, but do not wish to use resources that could instead be used
to run other people’s HTCondor jobs. Jobs submitted in this fashion have"nice-user." prepended to the
owner name when viewed fromcondor_qor condor_userprio. The default value isFalse .

noop_job =<ClassAd Boolean Expression> When this boolean expression isTrue , the job is immediately re-
moved from the queue, and HTCondor makes no attempt at running the job. The log file for the job will show a
job submitted event and a job terminated event, along with anexit code of 0, unless the user specifies a different
signal or exit code.

noop_job_exit_code =<return value> When noop_job is in the submit description file and evaluates toTrue ,
this command allows the job to specify the return value as shown in the job’s log file job terminated event. If
not specified, the job will show as having terminated with status 0. This overrides any value specified with
noop_job_exit_signal.

noop_job_exit_signal =<signal number> Whennoop_job is in the submit description file and evaluates toTrue ,
this command allows the job to specify the signal number thatthe job’s log event will show the job having
terminated with.

remote_initialdir = <directory-path> The path specifies the directory in which the job is to be executed on the
remote machine. This is currently supported in all universes except for the standard universe.

rendezvousdir =<directory-path> Used to specify the shared file system directory to be used forfile system au-
thentication when submitting to a remote scheduler. Shouldbe a path to a preexisting directory.

run_as_owner =<True | False> A boolean value that causes the job to be run under the login ofthe submitter, if
supported by the joint configuration of the submit and execute machines. On Unix platforms, this defaults to
True , and on Windows platforms, it defaults toFalse . May not be used withload_profile. See the HTCondor
manual Platform-Specific Information chapter for administrative details on configuring Windows to support this
option.

stack_size =<size in bytes> This command applies only to Linux platform jobs that are notstandard universe jobs.
An integer number of bytes, representing the amount of stackspace to be allocated for the job. This value
replaces the default allocation of stack space, which is unlimited in size.

submit_event_notes =<note> A string that is appended to the submit event in the job’s log file. For DAGMan
jobs, the stringDAG Node: and the node’s name is automatically defined forsubmit_event_notes, causing
the logged submit event to identify the DAG node job submitted.

+<attribute> = <value> A line that begins with a ’+’ (plus) character instructscondor_submitto insert the given
attribute into the job ClassAd with the givenvalue. Note that setting an attribute should not be used in place
of one of the specific commands listed above. Often, the command name does not directly correspond to an
attribute name; furthermore, many submit commands result in actions more complex than simply setting an
attribute or attributes. See 1002 for a list of HTCondor job attributes.

PRE AND POST SCRIPTS IMPLEMENTED WITH SPECIALLY-NAMED ATTRIBUTES

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 944

+PreCmd ="<executable>" A vanilla universe job may specify that a script is to be run onthe execute machine
before the job, and this is called a prescript. Definition of this specifically-named attribute causes the script,
identified by path and file name, to be executed. The prescriptcould prepare or initialize the job. Note that this
definition of a prescript is different from the PRE script described in DAGMan. The prescript is not automatically
transferred with the job, as the main executable is, so it must be entered into thetransfer_input_files list, when
file transfer is enabled.

+PreArgs ="<argument_list>" Defines command line arguments for the prescript, presumingthe Old argument
syntax.

+PreArguments ="<argument_list>" Defines command line arguments for the prescript, presumingthe New ar-
gument syntax. An exception to the syntax is that double quotes must be escaped with a backslash instead of
another double quote.

Note that if both +PreArgs and +PreArguments are specified, the +PreArguments value is used and the +PreArgs
value is ignored.

+PreEnv ="<environment_vars>" Defines the environment for the prescript, presuming the Oldenvironment syn-
tax.

+PreEnvironment = "<environment_vars>" Defines the environment for the prescript, presuming the Newenvi-
ronment syntax.

Note that if both +PreEnv and +PreEnvironment are specified,the +PreEnvironment value is used and the
+PreEnv value is ignored.

+PostCmd ="<executable>" A vanilla universe job may specify that a script is to be run onthe execute machine
after the job exits, and this is called a postscript. Definition of this specifically-named attribute causes the script,
identified by path and file name, to be executed. The postscript is run if the job exits, but not if the job is
evicted. Note that this definition of a postscript is different from the POST script described in DAGMan. The
postscript is not automatically transferred with the job, as the main executable is, so it must be entered into the
transfer_input_files list, when file transfer is enabled.

+PostArgs ="<argument_list>" Defines command line arguments for the postscript, presuming the Old argument
syntax.

+PostArguments ="<argument_list>" Defines command line arguments for the postscript, presuming the New
argument syntax. An exception to the syntax is that double quotes must be escaped with a backslash instead of
another double quote mark.

Note that if both +PostArgs and +PostArguments are specified, the +PostArguments value is used and the
+PostArgs value is ignored.

+PostEnv ="<environment_vars>" Defines the environment for the postscript, presuming the Old environment
syntax.

+PostEnvironment ="<environment_vars>" Defines the environment for the postscript, presuming the New en-
vironment syntax.

Note that if both +PostEnv and +PostEnvironment are specified, the +PostEnvironment value is used and the
+PostEnv value is ignored.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 945

If any of the prescript or postscript values are not enclosedin double quotes, they are silently ignored.

Below is an example of the use of starter pre and post scripts:

+PreCmd = "my_pre"
+PreArgs = "pre\"arg1 prea'rg2"
+PreEnv = "one=1;two=\"2\""
+PostCmd = "my_post"
+PostArguments = "post\"arg1 'post''ar g2'"
+PostEnvironment = "one=1 two=\"2\""

For this examplePreArgs generates a first argument ofpre"a1" and a second argument ofpre'a2 .
PostArguments generates a first argument ofpost"a1 and a second argument ofpost'a 2 .

MACROS AND COMMENTS

In addition to commands, the submit description file can contain macros and comments.

Macros Parameterless macros in the form of$(macro_name:default initial value) may be used any-
where in HTCondor submit description files to provide textual substitution at submit time. Macros can be
defined by lines in the form of

<macro_name> = <string>

Two pre-defined macros are supplied by the submit description file parser. The$(Cluster) or
$(ClusterId) macro supplies the value of theClusterId job ClassAd attribute, and the$(Process)
or $(ProcId) macro supplies the value of theProcId job ClassAd attribute. These macros are intended to
aid in the specification of input/output files, arguments, etc., for clusters with lots of jobs, and/or could be used
to supply an HTCondor process with its own cluster and process numbers on the command line.

The$(Node) macro is defined for parallel universe jobs, and is especially relevant for MPI applications. It
is a unique value assigned for the duration of the job that essentially identifies the machine (slot) on which a
program is executing. Values assigned start at 0 and increase monotonically. The values are assigned as the
parallel job is about to start.

Recursive definition of macros is permitted. An example of a construction that works is the following:

foo = bar
foo = snap $(foo)

As a result,foo = snap bar .

Note that both left- and right- recursion works, so

foo = bar
foo = $(foo) snap

has as its resultfoo = bar snap .

The construction

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 946

foo = $(foo) bar

by itself will not work, as it does not have an initial base case. Mutually recursive constructions such as:

B = bar
C = $(B)
B = $(C) boo

will not work, and will fill memory with expansions.

A default value may be specified, for use if the macro has no definition. Consider the example

D = $(E:24)

WhereE is not defined within the submit description file, the defaultvalue 24 is used, resulting in

D = 24

This is of limited value, as the scope of macro substitution is the submit description file. Thus, either the macro
is or is not defined within the submit description file. If the macro is defined, then the default value is useless. If
the macro is not defined, then there is no point in using it in a submit command.

To use the dollar sign character ($) as a literal, without macro expansion, use

$(DOLLAR)

In addition to the normal macro, there is also a special kind of macro called asubstitution macrothat allows the
substitution of a machine ClassAd attribute value defined onthe resource machine itself (gotten after a match to
the machine has been made) into specific commands within the submit description file. The substitution macro
is of the form:

$$(attribute)

As this form of the substitution macro is only evaluated within the context of the machine ClassAd, use of a
scope resolution prefixTARGET.or MY. is not allowed.

A common use of this form of the substitution macro is for the heterogeneous submission of an executable:

executable = povray.$$(OpSys).$$(Arch)

Values for theOpSys andArch attributes are substituted at match time for any given resource. This example
allows HTCondor to automatically choose the correct executable for the matched machine.

An extension to the syntax of the substitution macro provides an alternative string to use if the machine attribute
within the substitution macro is undefined. The syntax appears as:

$$(attribute:string_if_attribute_undefined)

An example using this extended syntax provides a path name toa required input file. Since the file can be placed
in different locations on different machines, the file’s path name is given as an argument to the program.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 947

arguments = $$(input_file_path:/usr/foo)

On the machine, if the attributeinput_file_path is not defined, then the path/usr/foo is used instead.

A further extension to the syntax of the substitution macro allows the evaluation of a ClassAd expression to de-
fine the value. In this form, the expression may refer to machine attributes by prefacing them with theTARGET.
scope resolution prefix. To place a ClassAd expression into the substitution macro, square brackets are added to
delimit the expression. The syntax appears as:

$$([ClassAd expression])

An example of a job that uses this syntax may be one that wants to know how much memory it can use. The
application cannot detect this itself, as it would potentially use all of the memory on a multi-slot machine. So
the job determines the memory per slot, reducing it by 10% to account for miscellaneous overhead, and passes
this as a command line argument to the application. In the submit description file will be

arguments = --memory $$([TARGET.Memory * 0.9])

To insert two dollar sign characters ($$) as literals into a ClassAd string, use

$$(DOLLARDOLLAR)

The environment macro, $ENV, allows the evaluation of an environment variable to be used in setting a submit
description file command. The syntax used is

$ENV(variable)

An example submit description file command that uses this functionality evaluates the submitter’s home direc-
tory in order to set the path and file name of a log file:

log = $ENV(HOME)/jobs/logfile

The environment variable is evaluated when the submit description file is processed.

The $RANDOM_CHOICE macro allows a random choice to be made from a given list of parameters at sub-
mission time. For an expression, if some randomness needs tobe generated, the macro may appear as

$RANDOM_CHOICE(0,1,2,3,4,5,6)

When evaluated, one of the parameters values will be chosen.

Comments Blank lines and lines beginning with a pound sign (’#’) character are ignored by the submit description
file parser.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 948

Submit Variables

While processing thequeuecommand in a submit file or from the command line,condor_submitwill set the values of
several automatic submit variables so that they can be referred to by statements in the submit file. With the exception
of Cluster and Process, if these variables are set by the submit file, they will not be modified duringqueueprocessing.

ClusterId Set to the integer value that theClusterId attribute that the job ClassAd will have when the job is
submitted. All jobs in a single submit will normally have thesame value for theClusterId . If the -dry-run
argument is specified, The value will be 1.

Cluster Alternate name for the ClusterId submit variable. Before HTCondor version 8.4 this was the only name.

ProcId Set to the integer value that theProcId attribute of the job ClassAd will have when the job is submitted. The
value will start at 0 and increment by 1 for each job submitted.

ProcessAlternate name for the ProcId submit variable. Before HTCondor version 8.4 this was the only name.

Node For parallel universes, set to the value #pArAlLeLnOdE# or #MpInOdE# depending on the parallel universe
type For other universes it is set to nothing.

Step Set to the step value as it varies from 0 to N-1 where N is the number provided on thequeueargument. This
variable changes at the same rate as ProcId when it changes atall. For submit files that don’t make use of the
queue number option, Step will always be 0. For submit files that don’t make use of any of the foreach options,
Step and ProcId will always be the same.

ItemIndex Set to the index within the item list being processed by the various queue foreach options. For submit files
that don’t make use of any queue foreach list, ItemIndex willalways be 0 For submit files that make use of a
slice to select only some items in a foreach list, ItemIndex will only be set to selected values.

Row Alternate name for ItemIndex.

Item when a queue foreach option is used and no variable list is supplied, this variable will be set to the value of the
current item.

The automatic variables below are set before parsing the submit file, and will not vary during processing unless
the submit file itself sets them.

ARCH Set to the CPU architecture of the machine runningcondor_submit. The value will be the same as the auto-
matic configuration variable of the same name.

OPSYS Set to the name of the operating system on the machine runningcondor_submit. The value will be the same
as the automatic configuration variable of the same name.

OPSYSANDVER Set to the name and major version of the operating system on the machine runningcondor_submit.
The value will be the same as the automatic configuration variable of the same name.

OPSYSMAJORVER Set to the major version of the operating system on the machine runningcondor_submit. The
value will be the same as the automatic configuration variable of the same name.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 949

OPSYSVER Set to the version of the operating system on the machine running condor_submit. The value will be the
same as the automatic configuration variable of the same name.

SPOOL Set to the full path of the HTCondor spool directory. The value will be the same as the automatic configura-
tion variable of the same name.

IsLinux Set to true if the operating system of the machine runningcondor_submitis a Linux variant. Set to false
otherwise.

IsWindows Set to true if the operating system of the machine runningcondor_submitis a Microsoft Windows variant.
Set to false otherwise.

SUBMIT_FILE Set to the full pathname of the submit file being processed bycondor_submit. If submit statements
are read from standard input, it is set to nothing.

Exit Status

condor_submitwill exit with a status value of 0 (zero) upon success, and a non-zero value upon failure.

Examples

• Submit Description File Example 1: This example queues three jobs for execution by HTCondor. The first
will be given command line arguments of15 and2000, and it will write its standard output tofoo.out1 .
The second will be given command line arguments of30 and2000, and it will write its standard output to
foo.out2 . Similarly the third will have arguments of45and6000, and it will usefoo.out3 for its standard
output. Standard error output (if any) from all three programs will appear infoo.error .

####################
#
submit description file
Example 1: queuing multiple jobs with differing
command line arguments and output files.
#
####################

Executable = foo
Universe = vanilla

Arguments = 15 2000
Output = foo.out0
Error = foo.err0
Queue

Arguments = 30 2000
Output = foo.out1
Error = foo.err1
Queue

Arguments = 45 6000
Output = foo.out2

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 950

Error = foo.err2
Queue

Or you can get the same results as the above submit file by usinga list of arguments with the Queue statement

####################
#
submit description file
Example 1b: queuing multiple jobs with differing
command line arguments and output files, alternate syntax
#
####################

Executable = foo
Universe = vanilla

generate different output and error filenames for each pro cess
Output = foo.out$(Process)
Error = foo.err$(Process)

Queue Arguments From (
15 2000
30 2000
45 6000

)

• Submit Description File Example 2: This submit description file example queues 150 runs of programfoowhich
must have been compiled and linked for an Intel x86 processorrunning RHEL 3. HTCondor will not attempt to
run the processes on machines which have less than 32 Megabytes of physical memory, and it will run them on
machines which have at least 64 Megabytes, if such machines are available. Stdin, stdout, and stderr will refer
to in.0 , out.0 , anderr.0 for the first run of this program (process 0). Stdin, stdout, and stderr will refer
to in.1 , out.1 , anderr.1 for process 1, and so forth. A log file containing entries about where and when
HTCondor runs, takes checkpoints, and migrates processes in this cluster will be written into filefoo.log .

####################
#
Example 2: Show off some fancy features including
use of pre-defined macros and logging.
#
####################

Executable = foo
Universe = standard
Requirements = OpSys == "LINUX" && Arch =="INTEL"
Rank = Memory >= 64
Request_Memory = 32 Mb
Image_Size = 28 Mb

Error = err.$(Process)
Input = in.$(Process)
Output = out.$(Process)
Log = foo.log
Queue 150

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 951

• Submit Description File Example 3: This example targets the /bin/sleepprogram to run only on a platform
running a RHEL 6 operating system. The example presumes thatthe pool contains machines running more than
one version of Linux, and this job needs the particular operating system to run correctly.

####################
#
Example 3: Run on a RedHat 6 machine
#
####################
Universe = vanilla
Executable = /bin/sleep
Arguments = 30
Requirements = (OpSysAndVer == "RedHat6")

Error = err.$(Process)
Input = in.$(Process)
Output = out.$(Process)
Log = sleep.log
Queue

• Command Line example: The following command uses the-appendoption to add two commands before the
job(s) is queued. A log file and an error log file are specified. The submit description file is unchanged.

condor_submit -a "log = out.log" -a "error = error.log" mysu bmitfile

Note that each of the added commands is contained within quote marks because there are space characters within
the command.

• periodic_remove example: A job should be removed from the queue, if the total suspension time of the
job is more than half of the run time of the job.
Including the command

periodic_remove = CumulativeSuspensionTime >
((RemoteWallClockTime - CumulativeSuspensionTime) / 2.0)

in the submit description file causes this to happen.

General Remarks

• For security reasons, HTCondor will refuse to run any jobs submitted by user root (UID = 0) or by a user whose
default group is group wheel (GID = 0). Jobs submitted by userroot or a user with a default group of wheel will
appear to sit forever in the queue in an idle state.

• All path names specified in the submit description file must be less than 256 characters in length, and command
line arguments must be less than 4096 characters in length; otherwise,condor_submitgives a warning message
but the jobs will not execute properly.

• Somewhat understandably, behavior gets bizarre if the user makes the mistake of requesting multiple HTCondor
jobs to write to the same file, and/or if the user alters any files that need to be accessed by an HTCondor job
which is still in the queue. For example, the compressing of data or output files before an HTCondor job has
completed is a common mistake.

HTCondor Version 8.6.4, Command Reference

condor_submit(1) 952

• To disable checkpointing for Standard Universe jobs, include the line:

+WantCheckpoint = False

in the submit description file before the queue command(s).

See Also

HTCondor User Manual

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_submit_dag(1) 953

condor_submit_dag

Manage and queue jobs within a specified DAG for execution on remote machines

Synopsis

condor_submit_dag[-help | -version]

condor_submit_dag[-no_submit] [-verbose] [-force] [-maxidle NumberOfProcs] [-maxjobs NumberOfClusters]
[-dagman DagmanExecutable] [-maxpre NumberOfPreScripts] [-maxpost NumberOfPostScripts]
[-notification value] [-noeventchecks] [-allowlogerror] [-r schedd_name] [-debug level] [-usedagdir]
[-outfile_dir directory] [-config ConfigFileName] [-insert_sub_file FileName] [-append Command]
[-batch-name batch_name] [-autorescue0|1] [-dorescuefrom number] [-allowversionmismatch] [-no_recurse]
[-do_recurse] [-update_submit] [-import_env] [-DumpRescue] [-valgrind] [-DontAlwaysRunPost]
[-AlwaysRunPost] [-priority number] [-dont_use_default_node_log] [-schedd-daemon-ad-fileFileName]
[-schedd-address-fileFileName] [-suppress_notification] [-dont_suppress_notification] [-DoRecovery]
DAGInputFile1[DAGInputFile2. . .DAGInputFileN]

Description

condor_submit_dagis the program for submitting a DAG (directed acyclic graph)of jobs for execution under HTCon-
dor. The program enforces the job dependencies defined in oneor moreDAGInputFiles. EachDAGInputFilecontains
commands to direct the submission of jobs implied by the nodes of a DAG to HTCondor. Extensive documentation is
in the HTCondor User Manual section on DAGMan.

Some options may be specified on the command line or in the configuration or in a node job’s submit description file.
Precedence is given to command line options or configurationover settings from a submit description file. An example
is e-mail notifications. When configuration variableDAGMAN_SUPPRESS_NOTIFICATIONis its default value of
True , and a node job’s submit description file contains

notification = Complete

e-mail will not be sent upon completion, as the value ofDAGMAN_SUPPRESS_NOTIFICATIONis enforced.

Options

-help Display usage information and exit.

-version Display version information and exit.

HTCondor Version 8.6.4, Command Reference

condor_submit_dag(1) 954

-no_submit Produce the HTCondor submit description file for DAGMan, butdo not submit DAGMan as an
HTCondor job.

-verbose Causecondor_submit_dagto give verbose error messages.

-force Requirecondor_submit_dagto overwrite the files that it produces, if the files already exist. Note that
dagman.out will be appended to, not overwritten. If new-style rescue DAG mode is in effect, and any
new-style rescue DAGs exist, the-force flag will cause them to be renamed, and the original DAG will berun.
If old-style rescue DAG mode is in effect, any existing old-style rescue DAGs will be deleted, and the original
DAG will be run.

-maxidle NumberOfProcsSets the maximum number of idle procs allowed beforecondor_dagmanstops submitting
more node jobs. Note that for this argument, each individualproc within a cluster counts as a towards the limit,
which is inconsistent with-maxjobs . Once idle procs start to run,condor_dagmanwill resume submitting jobs
once the number of idle procs falls below the specified limit.NumberOfProcsis a non-negative integer. If this
option is omitted, the number of idle procs is limited by the configuration variableDAGMAN_MAX_JOBS_IDLE
(see 3.5.24), which defaults to 1000. To disable this limit,setNumberOfProcsto 0. Note that submit description
files that queue multiple procs can cause theNumberOfProcslimit to be exceeded. Settingqueue 5000 in the
submit description file, where-maxidleis set to 250 will result in a cluster of 5000 new procs being submitted
to thecondor_schedd, not 250. In this case,condor_dagmanwill resume submitting jobs when the number of
idle procs falls below 250.

-maxjobsNumberOfClustersSets the maximum number of clusters within the DAG that will be submitted to
HTCondor at one time. Note that for this argument, each cluster counts as one job, no matter how many
individual procs are in the cluster.NumberOfClustersis a non-negative integer. If this option is omitted, the
number of clusters is limited by the configuration variableDAGMAN_MAX_JOBS_SUBMITTED(see 3.5.24),
which defaults to 0 (unlimited).

-dagmanDagmanExecutableAllows the specification of an alternatecondor_dagmanexecutable to be used instead
of the one found in the user’s path. This must be a fully qualified path.

-maxpre NumberOfPreScriptsSets the maximum number of PRE scripts within the DAG that maybe running at
one time.NumberOfPreScriptsis a non-negative integer. If this option is omitted, the number of PRE scripts is
limited by the configuration variableDAGMAN_MAX_PRE_SCRIPTS(see 3.5.24), which defaults to 20.

-maxpostNumberOfPostScriptsSets the maximum number of POST scripts within the DAG that may be running at
one time.NumberOfPostScriptsis a non-negative integer. If this option is omitted, the number of POST scripts
is limited by the configuration variableDAGMAN_MAX_POST_SCRIPTS(see 3.5.24), which defaults to 20.

-notification value Sets the e-mail notification for DAGMan itself. This information will be used within the HTCon-
dor submit description file for DAGMan. This file is produced by condor_submit_dag. See the description of

HTCondor Version 8.6.4, Command Reference

condor_submit_dag(1) 955

notification within condor_submitmanual page for a specification ofvalue.

-noeventchecksThis argument is no longer used; it is now ignored. Its functionality is now implemented by the
DAGMAN_ALLOW_EVENTSconfiguration variable.

-allowlogerror As of verson 8.5.5 this argument is no longer supported, and setting it will generate a warning.

-r schedd_nameSubmit condor_dagmanto a remote machine, specifically thecondor_schedddaemon on that
machine. Thecondor_dagmanjob will not run on the localcondor_schedd(the submit machine), but on the
specified one. This is implemented using the-remote option tocondor_submit. Note that this option does not
currently specify input files forcondor_dagman, nor the individual nodes to be taken along! It is assumed that
any necessary files will be present on the remote computer, possibly via a shared file system between the local
computer and the remote computer. It is also necessary that the user has appropriate permissions to submit a
job to the remote machine; the permissions are the same as those required to usecondor_submit’s -remote
option. If other options are desired, including transfer ofother input files, consider using the-no_submit
option, modifying the resulting submit file for specific needs, and then usingcondor_submiton that.

-debug level Passes the thelevel of debugging output desired tocondor_dagman. level is an integer, with values
of 0-7 inclusive, where 7 is the most verbose output. See thecondor_dagmanmanual page for detailed
descriptions of these values. If not specified, no-debugvalue is passed tocondor_dagman.

-usedagdir This optional argument causescondor_dagmanto run each specified DAG as ifcondor_submit_daghad
been run in the directory containing that DAG file. This option is most useful when running multiple DAGs in
a singlecondor_dagman. Note that the-usedagdir flag must not be used when running an old-style Rescue
DAG.

-outfile_dir directory Specifies the directory in which the.dagman.out file will be written. Thedirectory may
be specified relative to the current working directory ascondor_submit_dagis executed, or specified with an
absolute path. Without this option, the.dagman.out file is placed in the same directory as the first DAG
input file listed on the command line.

-configConfigFileName Specifies a configuration file to be used for this DAGMan run. Note that the options
specified in the configuration file apply to all DAGs if multiple DAGs are specified. Further note that it is a fatal
error if the configuration file specified by this option conflicts with a configuration file specified in any of the
DAG files, if they specify one.

-insert_sub_fileFileName Specifies a file to insert into the.condor.sub file created bycondor_submit_dag.
The specified file must contain only legal submit file commands. Only one file can be inserted. (If both the
DAGMAN_INSERT_SUB_FILE configuration variable and-insert_sub_file are specified,-insert_sub_file
overrides DAGMAN_INSERT_SUB_FILE.) The specified file is inserted into the.condor.sub file before
the Queue command and before any commands specified with the-appendoption.

HTCondor Version 8.6.4, Command Reference

condor_submit_dag(1) 956

-appendCommand Specifies a command to append to the.condor.sub file created bycondor_submit_dag. The
specified command is appended to the.condor.sub file immediately before the Queue command. Multiple
commands are specified by using the-appendoption multiple times. Each new command is given in a separate
-append option. Commands with spaces in them must be enclosed in double quotes. Commands specified
with the-appendoption are appended to the.condor.sub file after commands inserted from a file specified
by the-insert_sub_fileoption or the DAGMAN_INSERT_SUB_FILE configuration variable, so the-append
command(s) will override commands from the inserted file if the commands conflict.

-batch-namebatch_nameSet the batch name for this DAG/workflow. The batch name is displayed bycondor_q
-batch. It is intended for use by users to give meaningful names to their workflows and to influence how
condor_qgroups jobs for display. As of version 8.5.5, the batch name set with this argument is propagated to
all node jobs of the given DAG (including sub-DAGs), overriding any batch names set in the individual submit
files. Note: set the batch name to ’ ’ (space) to avoid overriding batch names specified in node job submit
files. If no batch name is set, the batch name defaults toDagFile+cluster(whereDagFile is the primary DAG
file of the top-level DAGMan, andcluster is the HTCondor cluster of the top-level DAGMan); the default will
override any lower-level batch names.

-autorescue0|1 Whether to automatically run the newest rescue DAG for the given DAG file, if one exists (0 =
false , 1 = true).

-dorescuefromnumber Forcescondor_dagmanto run the specified rescue DAG number for the given DAG. A value
of 0 is the same as not specifying this option. Specifying a non-existent rescue DAG is a fatal error.

-allowversionmismatch This optional argument causescondor_dagmanto allow a version mismatch between
condor_dagmanitself and the.condor.sub file produced bycondor_submit_dag(or, in other words,
betweencondor_submit_dagand condor_dagman). WARNING! This option should be used only if abso-
lutely necessary. Allowing version mismatches can cause subtle problems when running DAGs. (Note that,
starting with version 7.4.0,condor_dagmanno longer requires an exact version match between itself andthe
.condor.sub file. Instead, a "minimum compatible version" is defined, andany.condor.sub file of that
version or newer is accepted.)

-no_recurse This optional argument causescondor_submit_dagto not run itself recursively on nested DAGs (this is
now the default; this flag has been kept mainly for backwards compatibility).

-do_recurse This optional argument causescondor_submit_dagto run itself recursively on nested DAGs. The
default is now that it doesnot run itself recursively; instead the.condor.sub files for nested DAGs
are generated "lazily" bycondor_dagmanitself. DAG nodes specified with theSUBDAG EXTERNAL
keyword or with submit file names ending in.condor.sub are considered nested DAGs. The
DAGMAN_GENERATE_SUBDAG_SUBMITSconfiguration variable may be relevant.

-update_submit This optional argument causes an existing.condor.sub file to not be treated as an error; rather,
the .condor.sub file will be overwritten, but the existing values of-maxjobs, -maxidle, -maxpre, and

HTCondor Version 8.6.4, Command Reference

condor_submit_dag(1) 957

-maxpostwill be preserved.

-import_env This optional argument causescondor_submit_dagto import the current environment into the
environment command of the.condor.sub file it generates.

-DumpRescueThis optional argument tellscondor_dagmanto immediately dump a rescue DAG and then exit, as
opposed to actually running the DAG. This feature is mainly intended for testing. The Rescue DAG file is
produced whether or not there are parse errors reading the original DAG input file. The name of the file differs
if there was a parse error.

-valgrind This optional argument causes the submit description file generated for the submission ofcondor_dagman
to be modified. The executable becomesvalgrind run oncondor_dagman, with a specific set of arguments
intended for testingcondor_dagman. Note that this argument is intended for testing purposes only. Using the
-valgrind option without the necessaryvalgrind software installed will cause the DAG to fail. If the DAG does
run, it will run much more slowly than usual.

-DontAlwaysRunPost This option causes the submit description file generated forthe submission ofcondor_dagman
to be modified. It causescondor_dagmanto not run the POST script of a node if the PRE script fails. (This
was the default behavior prior to HTCondor version 7.7.2, and is again the default behavior from version 8.5.4
onwards.)

-AlwaysRunPost This option causes the submit description file generated forthe submission ofcondor_dagmanto
be modified. It causescondor_dagmanto always run the POST script of a node, even if the PRE script fails.
(This was the default behavior for HTCondor version 7.7.2 through version 8.5.3.)

-priority number Sets the minimum job priority of node jobs submitted and running under thecondor_dagmanjob
submitted by thiscondor_submit_dagcommand.

-dont_use_default_node_log This option is disabled as of HTCondor version 8.3.1. This causes a compatibility
error if the HTCondor version number of the condor_scheddis 7.9.0 or older.Tells condor_dagmanto use
the file specified by the job ClassAd attributeUserLog to monitor job status. If this command line argument
is used, then the job event log file cannot be defined with a macro.

-schedd-daemon-ad-fileFileName Specifies a full path to a daemon ad file dropped by acondor_schedd.
Therefore this allows submission to a specific scheduler if several are available without repeatedly
querying the condor_collector. The value for this argument defaults to the configuration attribute
SCHEDD_DAEMON_AD_FILE.

HTCondor Version 8.6.4, Command Reference

condor_submit_dag(1) 958

-schedd-address-fileFileName Specifies a full path to an address file dropped by acondor_schedd. Therefore
this allows submission to a specific scheduler if several areavailable without repeatedly querying thecon-
dor_collector. The value for this argument defaults to the configuration attributeSCHEDD_ADDRESS_FILE.

-suppress_notification Causes jobs submitted bycondor_dagmanto not send email notification for events. The
same effect can be achieved by setting configuration variable DAGMAN_SUPPRESS_NOTIFICATIONto
True . This command line option is independent of the-notification command line option, which controls
notification for thecondor_dagmanjob itself.

-dont_suppress_notificationCauses jobs submitted bycondor_dagmanto defer to content within the submit
description file when deciding to send email notification forevents. The same effect can be achieved by
setting configuration variableDAGMAN_SUPPRESS_NOTIFICATIONto False . This command line flag is
independent of the-notification command line option, which controls notification for thecondor_dagmanjob
itself. If both -dont_suppress_notificationand-suppress_notificationare specified with the same command
line, the last argument is used.

-DoRecovery Causescondor_dagmanto start in recovery mode. (This means that it reads the relevant job user log(s)
and "catches up" to the given DAG’s previous state before submitting any new jobs.)

Exit Status

condor_submit_dagwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

Examples

To run a single DAG:

% condor_submit_dag diamond.dag

To run a DAG when it has already been run and the output files exist:

% condor_submit_dag -force diamond.dag

To run a DAG, limiting the number of idle node jobs in the DAG toa maximum of five:

% condor_submit_dag -maxidle 5 diamond.dag

To run a DAG, limiting the number of concurrent PRE scripts to10 and the number of concurrent POST scripts to five:

HTCondor Version 8.6.4, Command Reference

condor_submit_dag(1) 959

% condor_submit_dag -maxpre 10 -maxpost 5 diamond.dag

To run two DAGs, each of which is set up to run in its own directory:

% condor_submit_dag -usedagdir dag1/diamond1.dag dag2/d iamond2.dag

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_suspend(1) 960

condor_suspend

suspend jobs from the HTCondor queue

Synopsis

condor_suspend[-help | -version]

condor_suspend [-debug] [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr "<a.b.c.d:port>"] cluster| cluster.process| user| -constraintexpression| -all

Description

condor_suspendsuspends one or more jobs from the HTCondor job queue. When a job is suspended, the match
between thecondor_scheddand machine is not been broken, such that the claim is still valid. But, the job is not
making any progress and HTCondor is no longer generating a load on the machine. If the-nameoption is specified,
the namedcondor_scheddis targeted for processing. Otherwise, the localcondor_scheddis targeted. The job(s) to be
suspended are identified by one of the job identifiers, as described below. For any given job, only the owner of the job
or one of the queue super users (defined by theQUEUE_SUPER_USERSmacro) can suspend the job.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host name and an
optional port number

-namescheddnameSend the command to a machine identified byscheddname

-addr " <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-debug Causes debugging information to be sent tostderr , based on the value of the configuration variable
TOOL_DEBUG.

cluster Suspend all jobs in the specified cluster

HTCondor Version 8.6.4, Command Reference

condor_suspend(1) 961

cluster.processSuspend the specific job in the cluster

user Suspend jobs belonging to specified user

-constraint expressionSuspend all jobs which match the job ClassAd expression constraint

-all Suspend all the jobs in the queue

Exit Status

condor_suspendwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

Examples

To suspend all jobs except for a specific user:

% condor_suspend -constraint 'Owner =!= "foo"'

Runcondor_continueto continue execution.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_tail(1) 962

condor_tail

Display the last contents of a running job’s standard outputor file

Synopsis

condor_tail[-help] | [-version]

condor_tail [-pool centralmanagerhostname[:portnumber]] [-name name] [-debug] [-maxbytes numbytes]
[-auto-retry] [-follow] [-no-stdout] [-stderr] job-ID [filename1] [filename2. . .]

Description

condor_taildisplays the last bytes of a file in the sandbox of a running jobidentified by the command line argument
job-ID. stdout is tailed by default. The number of bytes displayed is limited to 1024, unless changed by specifying
the -maxbytesoption. This limit is applied for each individual tail of a file; for example, when following a file, the
limit is applied each subsequent time output is obtained.

Options

-help Display usage information and exit.

-version Display version information and exit.

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host name and an
optional port number.

-namename Query thecondor_schedddaemon identified withname.

-debug Display extra debugging information.

-maxbytesnumbytesLimits the maximum number of bytes transferred per tail access. If not specified, the maximum
number of bytes is 1024.

-auto-retry Retry the tail of the file(s) every 2 seconds, if the job is not yet running.

-follow Repetitively tail the file(s), until interrupted.

HTCondor Version 8.6.4, Command Reference

condor_tail(1) 963

-no-stdout Do not tailstdout .

-stderr Tail stderr instead ofstdout .

Exit Status

The exit status ofcondor_tailis zero on success.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_transfer_data(1) 964

condor_transfer_data

transfer spooled data

Synopsis

condor_transfer_data[-help | -version]

condor_transfer_data [-pool centralmanagerhostname[:portnumber] | -namescheddname]|
[-addr "<a.b.c.d:port>"] cluster. . .| cluster.process. . .| user. . . | -constraint expression. . .

condor_transfer_data [-pool centralmanagerhostname[:portnumber] | -namescheddname]|
[-addr "<a.b.c.d:port>"] -all

Description

condor_transfer_datacauses HTCondor to transfer spooled data. It is meant to be used in conjunction with the-spool
option ofcondor_submit, as in

condor_submit -spool mysubmitfile

Submission of a job with the-spool option causes HTCondor to spool all input files, the job eventlog, and any
proxy across a connection to the machine where thecondor_schedddaemon is running. After spooling these files, the
machine from which the job is submitted may disconnect from the network or modify its local copies of the spooled
files.

When the job finishes, the job hasJobStatus = 4, meaning that the job has completed. The output of the job is
spooled, andcondor_transfer_dataretrieves the output of the completed job.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host name and an
optional port number

-namescheddnameSend the command to a machine identified byscheddname

HTCondor Version 8.6.4, Command Reference

condor_transfer_data(1) 965

-addr " <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

cluster Transfer spooled data belonging to the specified cluster

cluster.processTransfer spooled data belonging to a specific job in the cluster

user Transfer spooled data belonging to the specified user

-constraint expressionTransfer spooled data for jobs which match the job ClassAd expression constraint

-all Transfer all spooled data

Exit Status

condor_transfer_datawill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_transform_ads(1) 966

condor_transform_ads

Transform ClassAds according to specified rules, and outputthe transformed ClassAds.

Synopsis

condor_transform_ads[-help [rules]]

condor_transform_ads-rules rules-file [-in[:<form>] infile] [-out[:<form>[, nosort]] outfile] [<key>=<value>]
[-long] [-json] [-xml] [-verbose] [-terse] [-debug] [-unit-test] [-testing] [-convertoldroutes] [infile1 . . .infileN]

Note that exactly one rules file, and at least one input file, must be specified. If no output file is specified, output will
be written tostdout .

Description

condor_transform_adsreads ClassAds from a set of input files, transforms them according to rules defined in a rules
file, and outputs the resulting transformed ClassAds.

See https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=TjsAdTransformLanguage for a description of the transform
language.

Options

-help [rules] Display usage information and exit.-help rulesdisplays information about the available transformation
rules.

-rules rules-file Specifies the file containing definitions of the transformation rules.

-in[:<form>] infile Specifies an input file containing ClassAd(s) to be transformed.<form>, if specified, is one of:

• long: traditional long form (default)

• xml: XML form

• json: JSON ClassAd form

• new: "new" ClassAd form without newlines

• auto: guess format by reading the input

If - is specified forinfile, input is read fromstdin .

-out[:<form>[, nosort] outfile Specifies an output file to receive the transformed ClassAd(s). <form>, if specified,
is one of:

HTCondor Version 8.6.4, Command Reference

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=TjsAdTransformLanguage

condor_transform_ads(1) 967

• long: traditional long form (default)

• xml: XML form

• json: JSON ClassAd form

• new: "new" ClassAd form without newlines

• auto: use the same format as the first input

ClassAds are storted by attribute unlessnosort is specified.

[<key>=<value>] Assign key/value pairs before rules file is parsed; can be used to pass arguments to rules. (More
detail needed here.)

-long Use long form for both input and output ClassAd(s). (This is the default.)

-json Use JSON form for both input and output ClassAd(s).

-xml Use XML form for both input and output ClassAd(s).

-verbose Verbose mode, echo transform rules as they are executed.

-terse Disable the-verboseoption.

-debug More information needed here.

-unit-test More information needed here.

-testing More information needed here.

-convertoldroutes More information needed here.

Exit Status

condor_transform_adswill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one)
upon failure.

HTCondor Version 8.6.4, Command Reference

condor_transform_ads(1) 968

Examples

Here’s a simple example that transforms the given input ClassAds according to the given rules:

File: my_input
ResidentSetSize = 500
DiskUsage = 2500000
NumCkpts = 0
TransferrErr = false
Err = "/dev/null"

File: my_rules
EVALSET MemoryUsage (ResidentSetSize / 100)
EVALMACRO WantDisk = (DiskUsage * 2)
SET RequestDisk ($(WantDisk) / 1024)
RENAME NumCkpts NumCheckPoints
DELETE /(.+)Err/

Command:
condor_transform_ads -rules my_rules -in my_input

Output:
DiskUsage = 2500000
Err = "/dev/null"
MemoryUsage = 5
NumCheckPoints = 0
RequestDisk = (5000000 / 1024)
ResidentSetSize = 500

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_update_machine_ad(1) 969

condor_update_machine_ad

update a machine ClassAd

Synopsis

condor_update_machine_ad[-help | -version]

condor_update_machine_ad [-pool centralmanagerhostname[:portnumber]] [-name startdname]
path/to/update-ad

Description

condor_update_machine_admodifies the specifiedcondor_startddaemon’s machine ClassAd. The ClassAd in the
file given bypath/to/update-ad represents the changed attributes. The changes persists until the condor_startd
restarts. If no file is specified on the command line,condor_update_machine_adreads the update ClassAd from
stdin .

Contents of the file orstdin must contain a complete ClassAd. Each linemustbe terminated by a newline character,
including the last line of the file. Lines are of the form

<attribute> = <value>

Changes to certain ClassAd attributes will cause thecondor_startdto regenerate values for other ClassAd at-
tributes. An example of this is settingHasVM. This will causeOfflineUniverses , VMOfflineTime , and
VMOfflineReason to change.

Options

-help Display usage information and exit

-version Display the HTCondor version and exit

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host name and an
optional port number

-namestartdnameSend the command to a machine identified bystartdname

HTCondor Version 8.6.4, Command Reference

condor_update_machine_ad(1) 970

General Remarks

This tool is intended for the use of system administrators when dealing with offline universes.

Examples

To re-enable matching with the VM universe jobs, place onstdin a complete ClassAd (including the ending newline
character) to change the value of ClassAd attributeHasVM:

echo "HasVM = True
" | condor_update_machine_ad

To prevent vm universe jobs from matching with the machine:

echo "HasVM = False
" | condor_update_machine_ad

To prevent vm universe jobs from matching with the machine and specify a reason:

echo "HasVM = False
VMOfflineReason = \"Cosmic rays.\"
" | condor_update_machine_ad

Note that the quotes around the reason are required by ClassAds, and they must be escaped because of the shell.
Using a file instead ofstdin may be preferable in these situations, because neither quoting nor escape characters are
needed.

Exit Status

condor_update_machine_adwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_updates_stats(1) 971

condor_updates_stats

Display output fromcondor_status

Synopsis

condor_updates_stats[-- help | - h] | [-- version]

condor_updates_stats[-- long | - l] [-- history=<min>-<max>] [-- interval=<seconds>] [-- notime] [-- time]
[-- summary | - s]

Description

condor_updates_statsparses the output fromcondor_status, and it displays the information relating to update statistics
in a useful format. The statistics are displayed with the most recent update first; the most recent update is numbered
with the smallest value.

The number of historic points that represent updates is configurable on a per-source basis by configuration variable
COLLECTOR_DAEMON_HISTORY_SIZE.

Options

—help Display usage information and exit.

-h Same as—help.

—version Display HTCondor version information and exit.

—long All update statistics are displayed. Without this option, the statistics are condensed.

-l Same as—long.

—history=<min>-<max> Sets the range of update numbers that are printed. By default, the entire history is
displayed. To limit the range, the minimum and/or maximum number may be specified. If a minimum is not
specified, values from 0 to the maximum are displayed. If the maximum is not specified, all values after the
minimum are displayed. When both minimum and maximum are specified, the range to be displayed includes
the endpoints as well as all values in between. If no= sign is given, command-line parsing fails, and usage
information is displayed. If an= sign is given, with no minimum or maximum values, the defaultof the entire
history is displayed.

HTCondor Version 8.6.4, Command Reference

condor_updates_stats(1) 972

—interval=<seconds> The assumed update interval, in seconds. Assumed times for the the updates are displayed,
making the use of the—time option together with the—interval option redundant.

—notime Do not display assumed times for the the updates. If more thanone of the options—notime and—time
are provided, the final one within the command line parsed determines the display.

—time Display assumed times for the the updates. If more than one ofthe options—notime and —time are
provided, the final one within the command line parsed determines the display.

—summary Display only summary information, not the entire history for each machine.

-s Same as—summary.

Exit Status

condor_updates_statswill exit with a status value of 0 (zero) upon success, and it will exit with a nonzero value upon
failure.

Examples

Assuming the default of 128 updates kept, and assuming that the update interval is 5 minutes,condor_updates_stats
displays:

$ condor_status -l host1 | condor_updates_stats --interva l=300
(Reading from stdin)

*** Name/Machine = 'HOST1.cs.wisc.edu' MyType = 'Machine' ***
Type: Main

Stats: Total=2277, Seq=2276, Lost=3 (0.13%)
0 @ Mon Feb 16 12:55:38 2004: Ok

...
28 @ Mon Feb 16 10:35:38 2004: Missed
29 @ Mon Feb 16 10:30:38 2004: Ok

...
127 @ Mon Feb 16 02:20:38 2004: Ok

Within this display, update numbered 27, which occurs laterin time than the missed update numbered 28, is Ok. Each
change in state, in reverse time order, displays in this condensed version.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

HTCondor Version 8.6.4, Command Reference

condor_updates_stats(1) 973

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_urlfetch(1) 974

condor_urlfetch

fetch configuration given a URL

Synopsis

condor_urlfetch[-<daemon>] url local-url-cache-file

Description

Depending on the command line arguments,condor_urlfetchsends the result of a query from theurl to both standard
output and to a file specified bylocal-url-cache-file, or it sends the contents of the file specified bylocal-url-cache-file
to standard output.

condor_urlfetchis intended to be used as the program to run when defining configuration, such as in the nonfunctional
example:

LOCAL_CONFIG_FILE = $(LIBEXEC)/condor_urlfetch -$(SUBS YSTEM) \
http://www.example.com/htcondor-baseconfig local.con fig |

The pipe character (|) at the end of this definition of the location of a configuration file changes the use of the definition.
It causes the command listed on the right hand side of this assignment statement to be invoked, and standard output
becomes the configuration. The value of$(SUBSYSTEM)becomes the daemon that caused this configuration to be
read. If$(SUBSYSTEM)evaluates toMASTER, then the URL query always occurs, and the result is sent to standard
output as well as written to the file specified by argumentlocal-url-cache-file. When$(SUBSYSTEM)evaluates to
a daemon other thanMASTER, then the URL query only occurs if the file specified bylocal-url-cache-filedoesnot
exist. If the file specified bylocal-url-cache-filedoes exist, then the contents of this file is sent to standard output.

Note that if the configuration kept at the URL site changes, and reconfiguration is requested, the-<daemon>argument
needs to be-MASTER. This is the only way to guarantee that there will be a query ofthe changed URL contents, such
that they will make their way into the configuration.

Options

-<daemon> The upper case name of the daemon issuing the request for the configuration output. If-MASTER, then
the URL query always occurs. If a daemon other than-MASTER, for exampleSTARTDor SCHEDD, then the
URL query only occurs if the file defined bylocal-url-cache-filedoes not exist.

HTCondor Version 8.6.4, Command Reference

condor_urlfetch(1) 975

Exit Status

condor_urlfetchwill exit with a status value of 0 (zero) upon success and non zero otherwise.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_userlog(1) 976

condor_userlog

Display and summarize job statistics from job log files.

Synopsis

condor_userlog[-help] [-total | -raw] [-debug] [-evict] [-j cluster| cluster.proc] [-all] [-hostname] logfile . . .

Description

condor_userlogparses the information in job log files and displays summaries for each workstation allocation and for
each job. See thecondor_submitmanual page for instructions for specifying that HTCondor write a log file for your
jobs.

If -total is not specified,condor_userlogwill first display a record for each workstation allocation,which includes the
following information:

Job The cluster/process id of the HTCondor job.

Host The host where the job ran. By default, the host’s IP address is displayed. If-hostnameis specified, the host
name will be displayed instead.

Start Time The time (month/day hour:minute) when the job began runningon the host.

Evict Time The time (month/day hour:minute) when the job was evicted from the host.

Wall Time The time (days+hours:minutes) for which this workstation was allocated to the job.

Good Time The allocated time (days+hours:min) which contributed to the completion of this job. If the job exited
during the allocation, then this value will equal “Wall Time.” If the job performed a checkpoint, then the value
equals the work saved in the checkpoint during this allocation. If the job did not exit or perform a checkpoint
during this allocation, the value will be 0+00:00. This value can be greater than 0 and less than “Wall Time” if
the application completed a periodic checkpoint during theallocation but failed to checkpoint when evicted.

CPU UsageThe CPU time (days+hours:min) which contributed to the completion of this job.

condor_userlogwill then display summary statistics per host:

Host/Job The IP address or host name for the host.

Wall Time The workstation time (days+hours:minutes) allocated by this host to the jobs specified in the query. By
default, all jobs in the log are included in the query.

Good Time The time (days+hours:minutes) allocated on this host whichcontributed to the completion of the jobs
specified in the query.

HTCondor Version 8.6.4, Command Reference

condor_userlog(1) 977

CPU UsageThe CPU time (days+hours:minutes) obtained from this host which contributed to the completion of the
jobs specified in the query.

Avg Alloc The average length of an allocation on this host (days+hours:minutes).

Avg Lost The average amount of work lost (days+hours:minutes) when ajob was evicted from this host without
successfully performing a checkpoint.

Goodput This percentage is computed as Good Time divided by Wall Time.

Util. This percentage is computed as CPU Usage divided by Good Time.

condor_userlogwill then display summary statistics per job:

Host/Job The cluster/process id of the HTCondor job.

Wall Time The total workstation time (days+hours:minutes) allocated to this job.

Good Time The total time (days+hours:minutes) allocated to this job which contributed to the job’s completion.

CPU UsageThe total CPU time (days+hours:minutes) which contributedto this job’s completion.

Avg Alloc The average length of a workstation allocation obtained by this job in minutes (days+hours:minutes).

Avg Lost The average amount of work lost (days+hours:minutes) when this job was evicted from a host without
successfully performing a checkpoint.

Goodput This percentage is computed as Good Time divided by Wall Time.

Util. This percentage is computed as CPU Usage divided by Good Time.

Finally, condor_userlogwill display a summary for all hosts and jobs.

Options

-help Get a brief description of the supported options

-total Only display job totals

-raw Display raw data only

-debug Debug mode

-j Select a specific cluster or cluster.proc

HTCondor Version 8.6.4, Command Reference

condor_userlog(1) 978

-evict Select only allocations which ended due to eviction

-all Select all clusters and all allocations

-hostname Display host name instead of IP address

General Remarks

Since the HTCondor job log file format does not contain a year field in the timestamp, all entries are assumed to occur
in the current year. Allocations which begin in one year and end in the next will be silently ignored.

Exit Status

condor_userlogwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_userprio(1) 979

condor_userprio

Manage user priorities

Synopsis

condor_userprio-help

condor_userprio [-pool centralmanagerhostname[:portnumber]] [Edit option] | [Display options]
[-inputfile filename]

Description

condor_userprioeither modifies priority-related information or displays priority-related information. Displayed infor-
mation comes from the accountant log, where thecondor_negotiatordaemon stores historical usage information in the
file at$(SPOOL)/Accountantnew.log . Which fields are displayed changes based on command line arguments.
condor_userpriowith no arguments, lists the active users along with their priorities, in increasing priority order. The
-all option can be used to display more detailed information about each user, resulting in a rather wide display, and
includes the following columns:

Effective Priority The effective priority value of the user, which is used to calculate the user’s share when allocating
resources. A lower value means a higher priority, and the minimum value (highest priority) is 0.5. The effective
priority is calculated by multiplying the real priority by the priority factor.

Real Priority The value of the real priority of the user. This value followsthe user’s resource usage.

Priority Factor The system administrator can set this value for each user, thus controlling a user’s effective priority
relative to other users. This can be used to create differentclasses of users.

Res UsedThe number of resources currently used.

Accumulated UsageThe accumulated number of resource-hours used by the user since the usage start time.

Usage Start Time The time since when usage has been recorded for the user. Thistime is set when a user job runs
for the first time. It is reset to the present time when the usage for the user is reset.

Last Usage Time The most recent time a resource usage has been recorded for the user.

By default only users for whom usage was recorded in the last 24 hours, or whose priority is greater than the minimum
are listed.

The-pool option can be used to contact a different central manager than the local one (the default).

For security purposes of authentication and authorization, specifying an Edit Option requires the ADMINISTRATOR
level of access.

HTCondor Version 8.6.4, Command Reference

condor_userprio(1) 980

Options

-help Display usage information and exit.

-pool centralmanagerhostname[:portnumber]Contact the specifiedcentralmanagerhostnamewith an optional port
number, instead of the local central manager. This can be used to check other pools. NOTE: The host name (and
optional port) specified refer to the host name (and port) of thecondor_negotiatorto query for user priorities.
This is slightly different than most HTCondor tools that support a -pool option, and instead expect the host
name (and port) of thecondor_collector.

-inputfile filename Introduced for debugging purposes, read priority information from filename. The contents
of filenameare expected to be the same as captured output from running acondor_userprio -long
command.

-deleteusername (Edit option) Remove the specifiedusernamefrom HTCondor’s accounting.

-resetall (Edit option) Reset the accumulated usage of all the users tozero.

-resetusageusername (Edit option) Reset the accumulated usage of the user specified byusernameto zero.

-setaccumusername value(Edit option) Set the accumulated usage of the user specifiedby usernameto the specified
floating pointvalue.

-setbeginusername value(Edit option) Set the begin usage time of the user specified byusernameto the specified
value.

-setfactorusername value(Edit option) Set the priority factor of the user specified byusernameto the specified
value.

-setlastusername value(Edit option) Set the last usage time of the user specified byusernameto the specifiedvalue.

-setprio username value(Edit option) Set the real priority of the user specified byusernameto the specifiedvalue.

-activefrom month day year(Display option) Display information for users who have some recorded accumulated
usage since the specified date.

-all (Display option) Display all available fields about each group or user.

HTCondor Version 8.6.4, Command Reference

condor_userprio(1) 981

-allusers (Display option) Display information for all the users who have some recorded accumulated usage.

-negotiator (Display option) Force the query to come from the negotiatorinstead of the collector.

-autoformat[:jlhVr,tng] attr1 [attr2 ...] or -af[:jlhVr,tng] attr1 [attr2 ...] (Display option) Display attribute(s) or
expression(s) formatted in a default way according to attribute types. This option takes an arbitrary number
of attribute names as arguments, and prints out their values, with a space between each value and a newline
character after the last value. It is like the-format option without format strings.

It is assumed that no attribute names begin with a dash character, so that the next word that begins with dash
is the start of the next option. Theautoformat option may be followed by a colon character and formatting
qualifiers to deviate the output formatting from the default:

j print the job ID as the first field,

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are quoted),

r print "raw", or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces before each field.

Use-af:h to get tabular values with headings.

Use-af:lrng to get -long equivalent format.

The newline and comma characters maynot be used together. Thel andh characters maynot be used together.

-constraint <expr> (Display option) To be used in conjunction with the-long -modular or the-autoformat options.
Displays users and groups that match the<expr> .

-debug[:<opts>] (Display option) Without:<opts> specified, use configured debug level to send debugging output
to stderr . With :<opts> specified, these options are debug levels that override any configured debug levels
for this command’s execution to send debugging output tostderr .

-flat (Display option) Display information such that users within hierarchical groups arenot listed with their group.

-getreslistusername (Display option) Display all the resources currently allocated to the user specified byusername.

-grouporder (Display option) Display submitter information with accounting group entries at the top of the list, and
in breadth-first order within the group hierarchy tree.

HTCondor Version 8.6.4, Command Reference

condor_userprio(1) 982

-grouprollup (Display option) For hierarchical groups, the display shows sums as computed for groups, and these
sums include sub groups.

-hierarchical (Display option) Display information such that users within hierarchical groups are listed with their
group.

-legacy (Display option) For use with the-long option, displays attribute names and values as a single ClassAd.

-long (Display option) A verbose output which displays entire ClassAds.

-modular (Display option) Modifies the display when using the-long option, such that attribute names and values
are shown as distinct ClassAds.

-most (Display option) Display fields considered to be the most useful. This is the default set of fields displayed.

-priority (Display option) Display fields with user priority information.

-quotas (Display option) Display fields relevant to hierarchical group quotas.

-usage (Display option) Display usage information for each group or user.

Examples

Example 1Since the output varies due to command line arguments, here is an example of the default output for a pool
that does not use Hierarchical Group Quotas. This default output is the same as given with the-mostDisplay option.

Last Priority Update: 1/19 13:14
Effective Priority Res Total Usage Time Since

User Name Priority Factor In Use (wghted-hrs) Last Usage
---------------------- ------------ --------- ------ -- ---------- ----------
www-cndr@cs.wisc.edu 0.56 1.00 0 591998.44 0+16:30
joey@cs.wisc.edu 1.00 1.00 1 990.15 <now>
suzy@cs.wisc.edu 1.53 1.00 0 261.78 0+09:31
leon@cs.wisc.edu 1.63 1.00 2 12597.82 <now>
raj@cs.wisc.edu 3.34 1.00 0 8049.48 0+01:39
jose@cs.wisc.edu 3.62 1.00 4 58137.63 <now>
betsy@cs.wisc.edu 13.47 1.00 0 1475.31 0+22:46
petra@cs.wisc.edu 266.02 500.00 1 288082.03 <now>
carmen@cs.wisc.edu 329.87 10.00 634 2685305.25 <now>
carlos@cs.wisc.edu 687.36 10.00 0 76555.13 0+14:31
ali@proj1.wisc.edu 5000.00 10000.00 0 1315.56 0+03:33
apu@nnland.edu 5000.00 10000.00 0 482.63 0+09:56

HTCondor Version 8.6.4, Command Reference

condor_userprio(1) 983

pop@proj1.wisc.edu 26688.11 10000.00 1 49560.88 <now>
franz@cs.wisc.edu 29352.06 500.00 109 600277.88 <now>
martha@nnland.edu 58030.94 10000.00 0 48212.79 0+12:32
izzi@nnland.edu 62106.40 10000.00 0 6569.75 0+02:26
marta@cs.wisc.edu 62577.84 500.00 29 193706.30 <now>
kris@proj1.wisc.edu 100597.94 10000.00 0 20814.24 0+04:2 6
boss@proj1.wisc.edu 318229.25 10000.00 3 324680.47 <now>
---------------------- ------------ --------- ------ -- ---------- ----------
Number of users: 19 784 4969073.00 0+23:59

Example 2This is an example of the default output for a pool that uses hierarchical groups, and the groups accept
surplus. This leads to a very wide display.

% condor_userprio -pool crane.cs.wisc.edu -allusers
Last Priority Update: 1/19 13:18
Group Config Use Effective Priority Res Total Usage Time Since

User Name Quota Surplus Priority Factor In Use (wghted-hrs) Last Usag e
------------------------------------ --------- ------ - ------------ --------- ------ ------------ ----------
<none> 0.00 yes 1.00 0 6.78 9+03:52

johnsm@crane.cs.wisc.edu 0.50 1.00 0 6.62 9+19:42
John.Smith@crane.cs.wisc.edu 0.50 1.00 0 0.02 9+03:52
Sedge@crane.cs.wisc.edu 0.50 1.00 0 0.05 13+03:03
Duck@crane.cs.wisc.edu 0.50 1.00 0 0.02 31+00:28
other@crane.cs.wisc.edu 0.50 1.00 0 0.04 16+03:42

Duck 2.00 no 1.00 0 0.02 13+02:57
goose@crane.cs.wisc.edu 0.50 1.00 0 0.02 13+02:57

Sedge 4.00 no 1.00 0 0.17 9+03:07
johnsm@crane.cs.wisc.edu 0.50 1.00 0 0.13 9+03:08
Half@crane.cs.wisc.edu 0.50 1.00 0 0.02 31+00:02
John.Smith@crane.cs.wisc.edu 0.50 1.00 0 0.05 9+03:07
other@crane.cs.wisc.edu 0.50 1.00 0 0.01 28+19:34

------------------------------------ --------- ------ - ------------ --------- ------ ------------ ----------
Number of users: 10 ByQuota 0 6.97

Exit Status

condor_userpriowill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_vacate(1) 984

condor_vacate

Vacate jobs that are running on the specified hosts

Synopsis

condor_vacate[-help | -version]

condor_vacate[-graceful | -fast] [-debug] [-pool centralmanagerhostname[:portnumber]] [-namehostname|
hostname| -addr "<a.b.c.d:port>" | "<a.b.c.d:port>" | -constraint expression| -all]

Description

condor_vacatecauses HTCondor to checkpoint any running jobs on a set of machines and force the jobs to vacate the
machine. The job(s) remains in the submitting machine’s jobqueue.

Given the (default)-graceful option, a job running under the standard universe will first produce a checkpoint and
then the job will be killed. HTCondor will then restart the job somewhere else, using the checkpoint to continue from
where it left off. A job running under the vanilla universe iskilled, and HTCondor restarts the job from the beginning
somewhere else.condor_vacatehas no effect on a machine with no HTCondor job currently running.

There is generally no need for the user or administrator to explicitly run condor_vacate. HTCondor takes care of jobs
in this way automatically following the policies given in configuration files.

Options

-help Display usage information

-version Display version information

-graceful Inform the job to checkpoint, then soft-kill it.

-fast Hard-kill jobs instead of checkpointing them

-debug Causes debugging information to be sent tostderr , based on the value of the configuration variable
TOOL_DEBUG.

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host name and an
optional port number

HTCondor Version 8.6.4, Command Reference

condor_vacate(1) 985

-namehostnameSend the command to a machine identified byhostname

hostnameSend the command to a machine identified byhostname

-addr " <a.b.c.d:port>" Send the command to a machine’s master located at"<a.b.c.d:port>"

" <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-constraint expressionApply this command only to machines matching the given ClassAd expression

-all Send the command to all machines in the pool

Exit Status

condor_vacatewill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

Examples

To send acondor_vacatecommand to two named machines:

% condor_vacate robin cardinal

To send thecondor_vacatecommand to a machine within a pool of machines other than the local pool, use the-pool
option. The argument is the name of the central manager for the pool. Note that one or more machines within the pool
must be specified as the targets for the command. This commandsends the command to a the single machine named
cae17within the pool of machines that hascondor.cae.wisc.eduas its central manager:

% condor_vacate -pool condor.cae.wisc.edu -name cae17

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_vacate_job(1) 986

condor_vacate_job

vacate jobs in the HTCondor queue from the hosts where they are running

Synopsis

condor_vacate_job[-help | -version]

condor_vacate_job [-pool centralmanagerhostname[:portnumber] | -namescheddname]|
[-addr "<a.b.c.d:port>"] [-fast] cluster. . .| cluster.process. . .| user. . . | -constraint expression. . .

condor_vacate_job [-pool centralmanagerhostname[:portnumber] | -namescheddname]|
[-addr "<a.b.c.d:port>"] [-fast] -all

Description

condor_vacate_jobfinds one or more jobs from the HTCondor job queue and vacates them from the host(s) where
they are currently running. The jobs remain in the job queue and return to the idle state.

A job running under the standard universe will first produce acheckpoint and then the job will be killed. HTCondor
will then restart the job somewhere else, using the checkpoint to continue from where it left off. A job running under
any other universe will be sent a soft kill signal (SIGTERM bydefault, or whatever is defined as theSoftKillSig
in the job ClassAd), and HTCondor will restart the job from the beginning somewhere else.

If the -fast option is used, the job(s) will be immediately killed, meaning that standard universe jobs will not be allowed
to checkpoint, and the job will have to revert to the last checkpoint or start over from the beginning.

If the -nameoption is specified, the namedcondor_scheddis targeted for processing. If the-addr option is used, the
condor_scheddat the given address is targeted for processing. Otherwise,the localcondor_scheddis targeted. The
jobs to be vacated are identified by one or more job identifiers, as described below. For any given job, only the owner
of the job or one of the queue super users (defined by theQUEUE_SUPER_USERSmacro) can vacate the job.

Usingcondor_vacate_jobon jobs which are not currently running has no effect.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host name and an
optional port number

HTCondor Version 8.6.4, Command Reference

condor_vacate_job(1) 987

-namescheddnameSend the command to a machine identified byscheddname

-addr " <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

cluster Vacate all jobs in the specified cluster

cluster.processVacate the specific job in the cluster

user Vacate jobs belonging to specified user

-constraint expressionVacate all jobs which match the job ClassAd expression constraint

-all Vacate all the jobs in the queue

-fast Perform a fast vacate and hard kill the jobs

General Remarks

Do not confusecondor_vacate_jobwith condor_vacate. condor_vacateis given a list of hosts to vacate, regardless
of what jobs happen to be running on them. Only machine ownersand administrators have permission to usecon-
dor_vacateto evict jobs from a given host.condor_vacate_jobis given a list of job to vacate, regardless of which
hosts they happen to be running on. Only the owner of the jobs or queue super users have permission to usecon-
dor_vacate_job.

Examples

To vacate job 23.0:

% condor_vacate_job 23.0

To vacate all jobs of a user named Mary:

% condor_vacate_job mary

To vacate all standard universe jobs owned by Mary:

% condor_vacate_job -constraint 'JobUniverse == 1 && Owner == "mary"'

Note that the entire constraint, including the quotation marks, must be enclosed in single quote marks for most shells.

HTCondor Version 8.6.4, Command Reference

condor_vacate_job(1) 988

Exit Status

condor_vacate_jobwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon
failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_version(1) 989

condor_version

print HTCondor version and platform information

Synopsis

condor_version[-help]

condor_version[-arch] [-opsys] [-syscall]

Description

With no arguments,condor_versionprints the currently installed HTCondor version number andplatform information.
The version number includes a build identification number, as well as the date built.

Options

help Print usage information

arch Print this machine’s ClassAd value forArch

opsys Print this machine’s ClassAd value forOpSys

syscall Get any requested version and/or platform information fromthe libcondorsyscall.a that this HTCon-
dor pool is configured to use, instead of using the values thatare compiled into the tool itself. This option may
be used in combination with any other options to modify wherethe information is coming from.

Exit Status

condor_versionwill exit with a status value of 0 (zero) upon success, and it should never exit with a failing value.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

HTCondor Version 8.6.4, Command Reference

condor_version(1) 990

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_wait(1) 991

condor_wait

Wait for jobs to finish

Synopsis

condor_wait [-help | -version]

condor_wait[-debug] [-status] [-echo] [-wait seconds] [-num number-of-jobs] log-file [job ID]

Description

condor_waitwatches a job event log file (created with thelog command within a submit description file) and returns
when one or more jobs from the log have completed or aborted.

Becausecondor_waitexpects to find at least one job submitted event in the log file,at least one job must have been
successfully submitted withcondor_submitbeforecondor_waitis executed.

condor_waitwill wait forever for jobs to finish, unless a shorter wait time is specified.

Options

-help Display usage information

-version Display version information

-debug Show extra debugging information.

-status Show job start and terminate information.

-echo Print the events out tostdout .

-wait secondsWait no more than the integer number ofseconds. The default is unlimited time.

-num number-of-jobsWait for the integernumber-of-jobsjobs to end. The default is all jobs in the log file.

log file The name of the log file to watch for information about the job.

HTCondor Version 8.6.4, Command Reference

condor_wait(1) 992

job ID A specific job or set of jobs to watch. If thejob ID is only the job ClassAd attributeClusterId , then
condor_waitwaits for all jobs with the givenClusterId . If the job ID is a pair of the job ClassAd attributes,
given byClusterId .ProcId , thencondor_waitwaits for the specific job with thisjob ID . If this option is
not specified, all jobs that exist in the log file whencondor_waitis invoked will be watched.

General Remarks

condor_waitis an inexpensive way to test or wait for the completion of a job or a whole cluster, if you are trying to
get a process outside of HTCondor to synchronize with a job orset of jobs.

It can also be used to wait for the completion of a limited subset of jobs, via the-num option.

Examples

condor_wait logfile

This command waits for all jobs that exist inlogfile to complete.

condor_wait logfile 40

This command waits for all jobs that exist inlogfile with a job ClassAd attributeClusterId of 40 to complete.

condor_wait -num 2 logfile

This command waits for any two jobs that exist inlogfile to complete.

condor_wait logfile 40.1

This command waits for job 40.1 that exists inlogfile to complete.

condor_wait -wait 3600 logfile 40.1

This waits for job 40.1 to complete by watchinglogfile , but it will not wait more than one hour (3600 seconds).

Exit Status

condor_waitexits with 0 if and only if the specified job or jobs have completed or aborted.condor_waitreturns 1
if unrecoverable errors occur, such as a missing log file, if the job does not exist in the log file, or the user-specified
waiting time has expired.

HTCondor Version 8.6.4, Command Reference

condor_wait(1) 993

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

condor_who(1) 994

condor_who

Display information about owners of jobs and jobs running onan execute machine

Synopsis

condor_who[help options] [address options] [display options]

Description

condor_whoqueries and displays information about the user that owns the jobs running on a machine. It is intended
to be run on an execute machine.

The options that may be supplied tocondor_whobelong to three groups:

• Help optionsprovide information about thecondor_whotool.

• Address optionsallow destination specification for query.

• Display optionscontrol the formatting and which of the queried informationto display.

At any time, only onehelp option and oneaddress optionmay be specified. Any number ofdisplay optionsmay be
specified.

condor_whoobtains its information about jobs by talking to one or morecondor_startddaemons. So,condor_who
must identify the command port of anycondor_startddaemons. Anaddress optionprovides this information. Ifno
address optionis given on the command line, thencondor_whosearches using this ordering:

1. A defined value of the environment variableCONDOR_CONFIGspecifies the directory where log and address
files are to be scanned for needed information.

2. With the aim of finding allcondor_startddaemons,condor_whoutilizes the same algorithm it would using the
-allpids option. The Linuxpsor the Windowstasklistprogram obtains all PIDs. As Linuxroot or Windows
administrator , the Linux lsof or the Windowsnetstatidentifies open sockets and from there the PIDs of
listen sockets. Correlating the two lists of PIDs results inidentifying the command ports of allcondor_startd
daemons.

Options

-help (help option) Display usage information

HTCondor Version 8.6.4, Command Reference

condor_who(1) 995

-daemons (help option) Display information about the daemons running on the specified machine, including the
daemon’s PID, IP address and command port

-diagnostic (help option) Display extra information helpful for debugging

-verbose (help option) Display PIDs and addresses of daemons

-addresshostaddress(address option) Identify thecondor_startdhost address to query

-allpids (address option) Query all localcondor_startddaemons

-logdir directoryname(address option) Specifies the directory containing log andaddress files thatcondor_whowill
scan to search for command ports ofcondor_startdaemons to query

-pid PID (address option) Use the givenPID to identify thecondor_startddaemon to query

-long (display option) Display entire ClassAds

-wide (display option) Displays fields without truncating them inorder to fit screen width

-format fmt attr (display option) Display attributeattr in formatfmt. To display the attribute or expression the format
must contain a singleprintf(3) -style conversion specifier. Attributes must be from the resource ClassAd.
Expressions are ClassAd expressions and may refer to attributes in the resource ClassAd. If the attribute is
not present in a given ClassAd and cannot be parsed as an expression, then the format option will be silently
skipped. %r prints the unevaluated, or raw values. The conversion specifier must match the type of the attribute
or expression. %s is suitable for strings such asName, %d for integers such asLastHeardFrom , and %f for
floating point numbers such asLoadAvg . %v identifies the type of the attribute, and then prints the value in an
appropriate format. %V identifies the type of the attribute,and then prints the value in an appropriate format as
it would appear in the-long format. As an example, strings used with %V will have quote marks. An incorrect
format will result in undefined behavior. Do not use more thanone conversion specifier in a given format. More
than one conversion specifier will result in undefined behavior. To output multiple attributes repeat the-format
option once for each desired attribute. Likeprintf(3) -style formats, one may include other text that will
be reproduced directly. A format without any conversion specifiers may be specified, but an attribute is still
required. Include\n to specify a line break.

-autoformat[:lhVr,tng] attr1 [attr2 ...] or -af[:lhVr,tng] attr1 [attr2 ...] (display option) Display attribute(s) or ex-
pression(s) formatted in a default way according to attribute types. This option takes an arbitrary number of
attribute names as arguments, and prints out their values, with a space between each value and a newline char-
acter after the last value. It is like the-format option without format strings.

HTCondor Version 8.6.4, Command Reference

condor_who(1) 996

It is assumed that no attribute names begin with a dash character, so that the next word that begins with dash
is the start of the next option. Theautoformat option may be followed by a colon character and formatting
qualifiers to deviate the output formatting from the default:

l label each field,

h print column headings before the first line of output,

V use %V rather than %v for formatting (string values are quoted),

r print "raw", or unevaluated values,

, add a comma character after each field,

t add a tab character before each field instead of the default space character,

n add a newline character after each field,

g add a newline character between ClassAds, and suppress spaces before each field.

Use-af:h to get tabular values with headings.

Use-af:lrng to get -long equivalent format.

The newline and comma characters maynot be used together. Thel andh characters maynot be used together.

Examples

Example 1Sample output from the local machine, which is running a single HTCondor job. Note that the output of
thePROGRAMfield will be truncated to fit the display, similar to the artificial truncation shown in this example output.

% condor_who

OWNER CLIENT SLOT JOB RUNTIME PID PROGRAM
smith1@crane.cs.wisc.edu crane.cs.wisc.edu 2 320.0 0+00 :00:08 7776 D:\scratch\condor\execut

Example 2Verbose sample output.

% condor_who -verbose

LOG directory "D:\scratch\condor\master\test/log"

Daemon PID Exit Addr Log, Log.Old
------ --- ---- ---- ---, -------
Collector 6788 <128.105.136.32:7977> CollectorLog, Coll ectorLog.old
Credd 8148 <128.105.136.32:9620> CredLog, CredLog.old
Master 5976 <128.105.136.32:64980> MasterLog,
Match MatchLog, MatchLog.old
Negotiator 6600 NegotiatorLog, NegotiatorLog.old
Schedd 6336 <128.105.136.32:64985> SchedLog, SchedLog.o ld
Shadow ShadowLog,
Slot1 StarterLog.slot1,
Slot2 7272 <128.105.136.32:65026> StarterLog.slot2,
Slot3 StarterLog.slot3,
Slot4 StarterLog.slot4,

HTCondor Version 8.6.4, Command Reference

condor_who(1) 997

SoftKill SoftKillLog,
Startd 7416 <128.105.136.32:64984> StartLog, StartLog.o ld
Starter StarterLog,
TOOL TOOLLog,

OWNER CLIENT SLOT JOB RUNTIME PID PROGRAM
smith1@crane.cs.wisc.edu crane.cs.wisc.edu 2 320.0 0+00 :01:28 7776 D:\scratch\condor\execut

Exit Status

condor_whowill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

gidd_alloc (1) 998

gidd_alloc

find a GID within the specified range which is not used by any process

Synopsis

gidd_allocmin-gid max-gid

Description

This program will scan the alive PIDs, looking for which GID is unused in the supplied, inclusive range specified by
the required argumentsmin-gidandmax-gid. Upon finding one, it will add the GID to its own supplementarygroup
list, and then scan the PIDs again expecting to find only itself using the GID. If no collision has occurred, the program
exits, otherwise it retries.

General Remarks

This is a program only available for the Linux ports of HTCondor.

Exit Status

gidd_allocwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4, Command Reference

procd_ctl (1) 999

procd_ctl

command line interface to thecondor_procd

Synopsis

procd_ctl -h

procd_ctl -A address-file[command]

Description

This is a programmatic interface to thecondor_procddaemon. It may be used to cause thecondor_procdto do
anything that thecondor_procdis capable of doing, such as tracking and managing process families.

This is a program only available for the Linux ports of HTCondor.

The-h option prints out usage information and exits. Theaddress-filespecification within the-A argument specifies
the path and file name of the address file which the named pipe clients must use to speak with thecondor_procd.

One command is given to thecondor_procd. The choices for the command are defined by the Options.

Options

TRACK_BY_ASSOCIATED_GID GID [PID] Use the specifiedGID to track the specified family rooted atPID. If
the optionalPID is not specified, then the PID used is the one given or assumed by condor_procd.

GET_USAGE [PID] Get the total usage information about the PID family atPID. If the optionalPID is not
specified, then the PID used is the one given or assumed bycondor_procd.

DUMP [PID] Print out information about both the rootPID being watched and the tree of processes under this root
PID. If the optionalPID is not specified, then the PID used is the one given or assumed by condor_procd.

LIST [PID] With no PID given, print out information about all the watched processes. If the optionalPID is
specified, print out information about the process specifiedby PID and all its child processes.

SIGNAL_PROCESSsignal [PID] Send thesignal to the process specified byPID. If the optionalPID is not
specified, then the PID used is the one given or assumed bycondor_procd.

HTCondor Version 8.6.4, Command Reference

1000

SUSPEND_FAMILY PID Suspend the process family rooted atPID.

CONTINUE_FAMILY PID Continue execution of the process family rooted atPID.

KILL_FAMILY PID Kill the process family rooted atPID.

UNREGISTER_FAMILY PID Stop tracking the process family rooted atPID.

SNAPSHOT Perform a snapshot of the tracked family tree.

QUIT Disconnect from thecondor_procdand exit.

General Remarks

This program may be used in a standalone mode, independent ofHTCondor, to track process families. The programs
procd_ctlandgidd_allocare used with thecondor_procdin standalone mode to interact with the daemon and inquire
about certain state of running processes on the machine, respectively.

Exit Status

procd_ctlwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one) upon failure.

Author

Center for High Throughput Computing, University of Wisconsin–Madison

Copyright

Copyright © 1990-2016 Center for High Throughput Computing, Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

HTCondor Version 8.6.4 Reference Manual

CHAPTER

TWELVE

Appendix A: ClassAd Attributes

ClassAd Types

ClassAd attributes vary, depending on the entity producingthe ClassAd. Therefore, each ClassAd has an attribute
namedMyType, which describes the type of ClassAd. In addition, thecondor_collectorappends attributes to any
daemon’s ClassAd, whenever thecondor_collectoris queried. These additional attributes are listed in the unnumbered
subsection labeled ClassAd Attributes Added by thecondor_collectoron page 1056.

Here is a list of defined values forMyType, as well as a reference to a list attributes relevant to that type.

Job Each submitted job describes its state, for use by thecondor_negotiatordaemon in finding a machine upon
which to run the job. ClassAd attributes that appear in a job ClassAd are listed and described in the unnumbered
subsection labeled Job ClassAd Attributes on page 1002.

Machine Each machine in the pool (and hence, thecondor_startddaemon running on that machine) describes its
state. ClassAd attributes that appear in a machine ClassAd are listed and described in the unnumbered subsection
labeled Machine ClassAd Attributes on page 1020.

DaemonMaster Eachcondor_masterdaemon describes its state. ClassAd attributes that appearin a DaemonMaster
ClassAd are listed and described in the unnumbered subsection labeled DaemonMaster ClassAd Attributes on
page 1037.

Scheduler Eachcondor_schedddaemon describes its state. ClassAd attributes that appearin a Scheduler ClassAd
are listed and described in the unnumbered subsection labeled Scheduler ClassAd Attributes on page 1038.

Negotiator Eachcondor_negotiatordaemon describes its state. ClassAd attributes that appearin a Negotia-
tor ClassAd are listed and described in the unnumbered subsection labeled Negotiator ClassAd Attributes on
page 1049.

1001

1002

Submitter Each submitter is described by a ClassAd. ClassAd attributes that appear in a Submitter ClassAd are
listed and described in the unnumbered subsection labeled Submitter ClassAd Attributes on page 1051.

Defrag Eachcondor_defragdaemon describes its state. ClassAd attributes that appearin a Defrag ClassAd are
listed and described in the unnumbered subsection labeled Defrag ClassAd Attributes on page 1052.

Collector Eachcondor_collectordaemon describes its state. ClassAd attributes that appearin a Collector ClassAd
are listed and described in the unnumbered subsection labeled Collector ClassAd Attributes on page 1054.

Query This section has not yet been written

In addition, statistics are published for each DaemonCore daemon. These attributes are listed and described in the
unnumbered subsection labeled DaemonCore Statistics Attributes on page 1056.

Job ClassAd Attributes

Absent: Boolean set to trueTrue if the ad is absent.

AcctGroup: The accounting group name, as set in the submit description file via theaccounting_groupcommand.
This attribute is only present if an accounting group was requested by the submission. See section 3.6.7 for
more information about accounting groups.

AcctGroupUser: The user name associated with the accounting group. This attribute is only present if an account-
ing group was requested by the submission.

AllRemoteHosts: String containing a comma-separated list of all the remote machines running a parallel or mpi
universe job.

Args: A string representing the command line arguments passed to the job, when those arguments are specified using
theold syntax, as specified in section 11.

Arguments: A string representing the command line arguments passed to the job, when those arguments are speci-
fied using thenewsyntax, as specified in section 11.

BatchQueue: For grid universe jobs destined for PBS, LSF or SGE, the name of the queue in the remote batch
system.

BlockReadKbytes: The integer number of KiB read from disk for this job.

BlockReads: The integer number of disk blocks read for this job.

BlockWriteKbytes: The integer number of KiB written to disk for this job.

BlockWrites: The integer number of blocks written to disk for this job.

BoincAuthenticatorFile: Used for grid type boinc jobs; a string taken from the definition of the submit
description file commandboinc_authenticator_file. Defines the path and file name of the file containing the
authenticator string to use to authenticate to the BOINC service.

HTCondor Version 8.6.4 Reference Manual

1003

CkptArch: String describing the architecture of the machine this job executed on at the time it last produced a
checkpoint. If the job has never produced a checkpoint, thisattribute isundefined .

CkptOpSys: String describing the operating system of the machine this job executed on at the time it last produced
a checkpoint. If the job has never produced a checkpoint, this attribute isundefined .

ClusterId: Integer cluster identifier for this job. A cluster is a group of jobs that were submitted together. Each job
has its own unique job identifier within the cluster, but shares a common cluster identifier. The value changes
each time a job or set of jobs are queued for execution under HTCondor.

Cmd: The path to and the file name of the job to be executed.

CommittedTime: The number of seconds of wall clock time that the job has been allocated a machine, excluding
the time spent on run attempts that were evicted without a checkpoint. LikeRemoteWallClockTime , this
includes time the job spent in a suspended state, so the totalcommitted wall time spent running is

CommittedTime - CommittedSuspensionTime

CommittedSlotTime: This attribute is identical toCommittedTime except that the time is multiplied by
the SlotWeight of the machine(s) that ran the job. This relies onSlotWeight being listed in
SYSTEM_JOB_MACHINE_ATTRS.

CommittedSuspensionTime: A running total of the number of seconds the job has spent in suspension during
time in which the job was not evicted without a checkpoint. This number is updated when the job is checkpointed
and when it exits.

CompletionDate: The time when the job completed, or the value 0 if the job has not yet completed. Measured in
the number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970).

ConcurrencyLimits: A string list, delimited by commas and space characters. Theitems in the list identify
named resources that the job requires. The value can be a ClassAd expression which, when evaluated in the
context of the job ClassAd and a matching machine ClassAd, results in a string list.

CumulativeSlotTime: This attribute is identical toRemoteWallClockTime except that the time is multi-
plied by theSlotWeight of the machine(s) that ran the job. This relies onSlotWeight being listed in
SYSTEM_JOB_MACHINE_ATTRS.

CumulativeSuspensionTime: A running total of the number of seconds the job has spent in suspension for the
life of the job.

CumulativeTransferTime: The total time, in seconds, that condor has spent transferring the input and output
sandboxes for the life of the job.

CurrentHosts: The number of hosts in the claimed state, due to this job.

DAGManJobId: For a DAGMan node job only, theClusterId job ClassAd attribute of thecondor_dagmanjob
which is the parent of this node job. For nested DAGs, this attribute holds only theClusterId of the job’s
immediate parent.

HTCondor Version 8.6.4 Reference Manual

1004

DAGParentNodeNames: For a DAGMan node job only, a comma separated list of eachJobNamewhich is a parent
node of this job’s node. This attribute is passed through to the job via thecondor_submitcommand line, if it
does not exceed the line length defined with_POSIX_ARG_MAX. For example, if a node job has two parents
with JobNames B and C, thecondor_submitcommand line will contain

-append +DAGParentNodeNames=B,C

DAGManNodesLog: For a DAGMan node job only, gives the path to an event log used exclusively by DAGMan to
monitor the state of the DAG’s jobs. Events are written to this log file in addition to any log file specified in the
job’s submit description file.

DAGManNodesMask: For a DAGMan node job only, a comma-separated list of the event codes that should be
written to the log specified byDAGManNodesLog, known as the auxiliary log. All events not specified in the
DAGManNodesMaskstring are not written to the auxiliary event log. The value of this attribute is determined
by DAGMan, and it is passed to the job via thecondor_submitcommand line. By default, the following events
are written to the auxiliary job log:

• Submit , event code is 0

• Execute , event code is 1

• Executable error , event code is 2

• Job evicted , event code is 4

• Job terminated , event code is 5

• Shadow exception , event code is 7

• Job aborted , event code is 9

• Job suspended , event code is 10

• Job unsuspended , event code is 11

• Job held , event code is 12

• Job released , event code is 13

• Post script terminated , event code is 16

• Globus submit , event code is 17

• Grid submit , event code is 27

If DAGManNodesLogis not defined, it has no effect. The value ofDAGManNodesMaskdoes not affect events
recorded in the job event log file referred to byUserLog .

DelegateJobGSICredentialsLifetime: An integer that specifies the maximum number of seconds for
which delegated proxies should be valid. The default behavior is determined by the configuration setting
DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME, which defaults to one day. A value of 0 indicates that
the delegated proxy should be valid for as long as allowed by the credential used to create the proxy. This setting
currently only applies to proxies delegated for non-grid jobs and HTCondor-C jobs. It does not currently apply
to globus grid jobs, which always behave as though this setting were 0. This setting has no effect if the config-
uration settingDELEGATE_JOB_GSI_CREDENTIALSis false, because in that case the job proxy is copied
rather than delegated.

HTCondor Version 8.6.4 Reference Manual

1005

DiskUsage: Amount of disk space (KiB) in the HTCondor execute directoryon the execute machine that this job
has used. An initial value may be set at the job’s request, placing into the job’s submit description file a setting
such as

1 megabyte initial value
+DiskUsage = 1024

vm universe jobs will default to an initial value of the disk image size. If not initialized by the job, non-vm
universe jobs will default to an initial value of the sum of the job’s executable and all input files.

EC2AccessKeyId: Used for grid type ec2 jobs; a string taken from the definitionof the submit description file
commandec2_access_key_id. Defines the path and file name of the file containing the EC2 Query API’s access
key.

EC2AmiID: Used for grid type ec2 jobs; a string taken from the definitionof the submit description file command
ec2_ami_id. Identifies the machine image of the instance.

EC2BlockDeviceMapping: Used for grid type ec2 jobs; a string taken from the definitionof the submit descrip-
tion file commandec2_block_device_mapping. Defines the map from block device names to kernel device
names for the instance.

EC2ElasticIp: Used for grid type ec2 jobs; a string taken from the definitionof the submit description file com-
mandec2_elastic_ip. Specifies an Elastic IP address to associate with the instance.

EC2IamProfileArn: Used for grid type ec2 jobs; a string taken from the definitionof the submit description file
commandec2_iam_profile_arn. Specifies the IAM (instance) profile to associate with this instance.

EC2IamProfileName: Used for grid type ec2 jobs; a string taken from the definitionof the submit description file
commandec2_iam_profile_name. Specifies the IAM (instance) profile to associate with this instance.

EC2InstanceName: Used for grid type ec2 jobs; a string set for the job once the instance starts running, as assigned
by the EC2 service, that represents the unique ID assigned tothe instance by the EC2 service.

EC2InstanceName: Used for grid type ec2 jobs; a string set for the job once the instance starts running, as assigned
by the EC2 service, that represents the unique ID assigned tothe instance by the EC2 service.

EC2InstanceType: Used for grid type ec2 jobs; a string taken from the definitionof the submit description file
commandec2_instance_type. Specifies a service-specific instance type.

EC2KeyPair: Used for grid type ec2 jobs; a string taken from the definitionof the submit description file command
ec2_keypair. Defines the key pair associated with the EC2 instance.

EC2ParameterNames: Used for grid type ec2 jobs; a string taken from the definitionof the submit description
file commandec2_parameter_names. Contains a space or comma separated list of the names of additional
parameters to pass when instantiating an instance.

EC2SpotPrice: Used for grid type ec2 jobs; a string taken from the definitionof the submit description file com-
mandec2_spot_price. Defines the maximum amount per hour a job submitter is willing to pay to run this
job.

HTCondor Version 8.6.4 Reference Manual

1006

EC2SpotRequestID: Used for grid type ec2 jobs; identifies the spot request HTCondor made on behalf of this
job.

EC2StatusReasonCode: Used for grid type ec2 jobs; reports the reason for the most recent EC2-level state
transition. Can be used to determine if a spot request was terminated due to a rise in the spot price.

EC2TagNames: Used for grid type ec2 jobs; a string taken from the definitionof the submit description file command
ec2_tag_names. Defines the set, and case, of tags associated with the EC2 instance.

EC2KeyPairFile: Used for grid type ec2 jobs; a string taken from the definitionof the submit description file
commandec2_keypair_file. Defines the path and file name of the file into which to write theSSH key used to
access the image, once it is running.

EC2RemoteVirtualMachineName: Used for grid type ec2 jobs; a string set for the job once the instance starts
running, as assigned by the EC2 service, that represents thehost name upon which the instance runs, such that
the user can communicate with the running instance.

EC2SecretAccessKey: Used for grid type ec2 jobs; a string taken from the definitionof the submit description
file commandec2_secret_access_key. Defines that path and file name of the file containing the EC2 Query
API’s secret access key.

EC2SecurityGroups: Used for grid type ec2 jobs; a string taken from the definitionof the submit description file
commandec2_security_groups. Defines the list of EC2 security groups which should be associated with the
job.

EC2SecurityIDs: Used for grid type ec2 jobs; a string taken from the definitionof the submit description file
commandec2_security_ids. Defines the list of EC2 security group IDs which should be associated with the
job.

EC2UserData: Used for grid type ec2 jobs; a string taken from the definitionof the submit description file command
ec2_user_data. Defines a block of data that can be accessed by the virtual machine.

EC2UserDataFile: Used for grid type ec2 jobs; a string taken from the definitionof the submit description file
commandec2_user_data_file. Specifies a path and file name of a file containing data that canbe accessed by
the virtual machine.

EmailAttributes: A string containing a comma-separated list of job ClassAd attributes. For each attribute name
in the list, its value will be included in the e-mail notification upon job completion.

EncryptExecuteDirectory: A boolean value taken from the submit description file command en-
crypt_execute_directory. It specifies if HTCondor should encrypt the remote scratch directory on the machine
where the job executes.

EnteredCurrentStatus: An integer containing the epoch time of when the job entered into its current status So
for example, if the job is on hold, the ClassAd expression

time() - EnteredCurrentStatus

will equal the number of seconds that the job has been on hold.

HTCondor Version 8.6.4 Reference Manual

1007

Env: A string representing the environment variables passed to the job, when those arguments are specified using the
old syntax, as specified in section 11.

Environment: A string representing the environment variables passed to the job, when those arguments are speci-
fied using thenewsyntax, as specified in section 11.

ExecutableSize: Size of the executable in KiB.

ExitBySignal: An attribute that isTrue when a user job exits via a signal andFalse otherwise. For some grid
universe jobs, how the job exited is unavailable. In this case,ExitBySignal is set toFalse .

ExitCode: When a user job exits by means other than a signal, this is the exit return code of the user job. For some
grid universe jobs, how the job exited is unavailable. In this case,ExitCode is set to 0.

ExitSignal: When a user job exits by means of an unhandled signal, this attribute takes on the numeric value of
the signal. For some grid universe jobs, how the job exited isunavailable. In this case,ExitSignal will be
undefined.

ExitStatus: The way that HTCondor previously dealt with a job’s exit status. This attribute should no longer
be used. It is not always accurate in heterogeneous pools, orif the job exited with a signal. Instead, see the
attributes:ExitBySignal , ExitCode , andExitSignal .

GceAuthFile: Used for grid type gce jobs; a string taken from the definitionof the submit description file command
gce_auth_file. Defines the path and file name of the file containing authorization credentials to use the GCE
service.

GceImage: Used for grid type gce jobs; a string taken from the definitionof the submit description file command
gce_image. Identifies the machine image of the instance.

GceJsonFile: Used for grid type gce jobs; a string taken from the definitionof the submit description file command
gce_json_file. Specifies the path and file name of a file containing a set of JSON object members that should be
added to the instance description submitted to the GCE service.

GceMachineType: Used for grid type gce jobs; a string taken from the definitionof the submit description file
commandgce_machine_type. Specifies the hardware profile that should be used for a GCE instance.

GceMetadata: Used for grid type gce jobs; a string taken from the definitionof the submit description file command
gce_metadata. Defines a set of name/value pairs that can be accessed by the virtual machine.

GceMetadataFile: Used for grid type gce jobs; a string taken from the definitionof the submit description file
commandgce_metadata_file. Specifies a path and file name of a file containing a set of name/value pairs that
can be accessed by the virtual machine.

GcePreemptible: Used for grid type gce jobs; a boolean taken from the definition of the submit description
file commandgce_preemptible. Specifies whether the virtual machine instance created in GCE should be
preemptible.

GlobalJobId: A string intended to be a unique job identifier within a pool. It currently contains thecondor_schedd
daemonNameattribute, a job identifier composed of attributesClusterId andProcId separated by a period,
and the job’s submission time in seconds since 1970-01-01 00:00:00 UTC, separated by# characters. The value
submit.example.com#152.3#1358363336 is an example.

HTCondor Version 8.6.4 Reference Manual

1008

GridJobStatus: A string containing the job’s status as reported by the remote job management system.

GridResource: A string defined by the right hand side of the the submit description file commandgrid_resource.
It specifies the target grid type, plus additional parameters specific to the grid type.

HoldKillSig: Currently only for scheduler and local universe jobs, a string containing a name of a signal to be
sent to the job if the job is put on hold.

HoldReason: A string containing a human-readable message about why a jobis on hold. This is the message that
will be displayed in response to the commandcondor_q -hold . It can be used to determine if a job should
be released or not.

HoldReasonCode: An integer value that represents the reason that a job was puton hold.

HTCondor Version 8.6.4 Reference Manual

1009

Integer Code Reason for Hold HoldReasonSubCode

1 The user put the job on hold withcondor_hold.
2 Globus middleware reported an error. The GRAM error number.
3 ThePERIODIC_HOLDexpression evaluated toTrue .
4 The credentials for the job are invalid.
5 A job policy expression evaluated toUndefined .
6 Thecondor_starterfailed to start the executable. The Unix errno number.
7 The standard output file for the job could not be opened. The Unix errno number.
8 The standard input file for the job could not be opened. The Unix errno number.
9 The standard output stream for the job could not be opened. The Unix errno number.
10 The standard input stream for the job could not be opened. The Unix errno number.
11 An internal HTCondor protocol error was encountered when

transferring files.
12 Thecondor_starteror condor_shadowfailed to receive or write

job files.
The Unix errno number.

13 Thecondor_starteror condor_shadowfailed to read or send job
files.

The Unix errno number.

14 The initial working directory of the job cannot be accessed. The Unix errno number.
15 The user requested the job be submitted on hold.
16 Input files are being spooled.
17 A standard universe job is not compatible with thecon-

dor_shadowversion available on the submitting machine.
18 An internal HTCondor protocol error was encountered when

transferring files.
19 <Keyword>_HOOK_PREPARE_JOBwas defined but could

not be executed or returned failure.
20 The job missed its deferred execution time and therefore failed

to run.
21 The job was put on hold becauseWANT_HOLDin the machine

policy was true.
22 Unable to initialize job event log.
23 Failed to access user account.
24 No compatible shadow.
25 Invalid cron settings.
26 SYSTEM_PERIODIC_HOLDevaluated to true.
27 The system periodic job policy evaluated to undefined.
28 Failed while using glexec to set up the job’s working directory

(chown sandbox to the user).
30 Failed while using glexec to prepare output for transfer (chown

sandbox to condor).
32 The maximum total input file transfer size was exceeded. (See

MAX_TRANSFER_INPUT_MB.)
33 The maximum total output file transfer size was exceeded. (See

MAX_TRANSFER_OUTPUT_MB.)
34 Memory usage exceeds a memory limit.
35 Specified Docker image was invalid.
36 Job failed when sent the checkpoint signal it requested.

HTCondor Version 8.6.4 Reference Manual

1010

HoldReasonSubCode: An integer value that represents further information to go along with the
HoldReasonCode , for some values ofHoldReasonCode . SeeHoldReasonCode for the values.

HookKeyword: A string that uniquely identifies a set of job hooks, and addedto the ClassAd once a job is fetched.

ImageSize: Maximum observed memory image size (i.e. virtual memory) ofthe job in KiB. The initial value
is equal to the size of the executable for non-vm universe jobs, and 0 for vm universe jobs. When the
job writes a checkpoint, theImageSize attribute is set to the size of the checkpoint file (since the check-
point file contains the job’s memory image). A vanilla universe job’s ImageSize is recomputed inter-
nally every 15 seconds. How quickly this updated information becomes visible tocondor_qis controlled by
SHADOW_QUEUE_UPDATE_INTERVALandSTARTER_UPDATE_INTERVAL.

Under Linux,ProportionalSetSize is a better indicator of memory usage for jobs with significant sharing
of memory between processes, becauseImageSize is simply the sum of virtual memory sizes across all of
the processes in the job, which may count the same memory pages more than once.

IwdFlushNFSCache: A boolean expression that controls whether or not HTCondor attempts to flush a submit
machine’s NFS cache, in order to refresh an HTCondor job’s initial working directory. The value will beTrue ,
unless a job explicitly adds this attribute, setting it toFalse .

JobAdInformationAttrs: A comma-separated list of attribute names. The named attributes and their values are
written in the job event log whenever any event is being written to the log. This is the same as the configuration
settingEVENT_LOG_INFORMATION_ATTRS(see page 242) but it applies to the job event log instead of the
system event log.

JobDescription: A string that may be defined for a job by settingdescription in the submit description file.
When set, tools which display the executable such ascondor_qwill instead use this string. For interactive jobs
that do not have a submit description file, this string will default to "Interactive job" .

JobCurrentStartDate: Time at which the job most recently began running. Measured in the number of seconds
since the epoch (00:00:00 UTC, Jan 1, 1970).

JobCurrentStartExecutingDate: Time at which the job most recently finished transferring itsinput sandbox
and began executing. Measured in the number of seconds sincethe epoch (00:00:00 UTC, Jan 1, 1970)

JobCurrentStartTransferOutputDate: Time at which the job most recently finished executing and began
transferring its output sandbox. Measured in the number of seconds since the epoch (00:00:00 UTC, Jan 1,
1970)

JobLeaseDuration: The number of seconds set for a job lease, the amount of time that a job may continue
running on a remote resource, despite its submitting machine’s lack of response. See section 2.14.4 for details
on job leases.

JobMaxVacateTime: An integer expression that specifies the time in seconds requested by the job for being al-
lowed to gracefully shut down.

JobNotification: An integer indicating what events should be emailed to the user. The integer values correspond
to the user choices for the submit commandnotification.

HTCondor Version 8.6.4 Reference Manual

1011

Value Notification value

0 Never
1 Always
2 Complete
3 Error

JobPrio: Integer priority for this job, set bycondor_submitor condor_prio. The default value is 0. The higher the
number, the greater (better) the priority.

JobRunCount: This attribute is retained for backwards compatibility. Itmay go away in the future. It is equiva-
lent to NumShadowStarts for all universes exceptscheduler. For thescheduleruniverse, this attribute is
equivalent toNumJobStarts .

JobStartDate: Time at which the job first began running. Measured in the number of seconds since the epoch
(00:00:00 UTC, Jan 1, 1970). Due to a long standing bug in the 8.6 series and earlier, the job classad that is
internal to thecondor_startdandcondor_startersets this to the time that the job most recently began executing.
This bug is scheduled to be fixed in the 8.7 series.

JobStatus: Integer which indicates the current status of the job.

Value Status

1 Idle
2 Running
3 Removed
4 Completed
5 Held
6 Transferring Output
7 Suspended

JobUniverse: Integer which indicates the job universe.

Value Universe

1 standard
5 vanilla, docker
7 scheduler
8 MPI
9 grid
10 java
11 parallel
12 local
13 vm

HTCondor Version 8.6.4 Reference Manual

1012

KeepClaimIdle: An integer value that represents the number of seconds that thecondor_scheddwill continue to
keep a claim, in the Claimed Idle state, after the job with this attribute defined completes, and there are no other
jobs ready to run from this user. This attribute may improve the performance of linear DAGs, in the case when
a dependent job can not be scheduled until its parent has completed. Extending the claim on the machine may
permit the dependent job to be scheduled with less delay thanwith waiting for thecondor_negotiatorto match
with a new machine.

KillSig: The Unix signal number that the job wishes to be sent before being forcibly killed. It is relevant only for
jobs running on Unix machines.

KillSigTimeout: This attribute is replaced by the functionality inJobMaxVacateTime as of HTCondor ver-
sion 7.7.3. The number of seconds that the job (other than thestandard universe) requests thecondor_starter
wait after sending the signal defined asKillSig and before forcibly removing the job. The actual amount of
time will be the minimum of this value and the execute machine’s configuration variableKILLING_TIMEOUT .

LastCheckpointPlatform: An opaque string which is theCheckpointPlatform identifier from the last
machine where this standard universe job had successfully produced a checkpoint.

LastCkptServer: Host name of the last checkpoint server used by this job. Whena pool is using multiple check-
point servers, this tells the job where to find its checkpointfile.

LastCkptTime: Time at which the job last performed a successful checkpoint. Measured in the number of seconds
since the epoch (00:00:00 UTC, Jan 1, 1970).

LastMatchTime: An integer containing the epoch time when the job was last successfully matched with a resource
(gatekeeper) Ad.

LastRejMatchReason: If, at any point in the past, this job failed to match with a resource ad, this attribute will
contain a string with a human-readable message about why thematch failed.

LastRejMatchTime: An integer containing the epoch time when HTCondor-G last tried to find a match for the
job, but failed to do so.

LastRemotePool: The name of thecondor_collectorof the pool in which a job ran via flocking in the most recent
run attempt. This attribute is not defined if the job did not run via flocking.

LastSuspensionTime: Time at which the job last performed a successful suspension. Measured in the number
of seconds since the epoch (00:00:00 UTC, Jan 1, 1970).

LastVacateTime: Time at which the job was last evicted from a remote workstation. Measured in the number of
seconds since the epoch (00:00:00 UTC, Jan 1, 1970).

LeaveJobInQueue: A boolean expression that defaults toFalse , causing the job to be removed from the queue
upon completion. An exception is if the job is submitted using condor_submit -spool . For this case, the
default expression causes the job to be kept in the queue for 10 days after completion.

LocalSysCpu: An accumulated number of seconds of system CPU time that the job caused to the machine upon
which the job was submitted.

LocalUserCpu: An accumulated number of seconds of user CPU time that the jobcaused to the machine upon
which the job was submitted.

HTCondor Version 8.6.4 Reference Manual

1013

MachineAttr<X><N>: Machine attribute of name<X> that is placed into this job ClassAd, as specified by the
configuration variableSYSTEM_JOB_MACHINE_ATTRS. With the potential for multiple run attempts,<N>
represents an integer value providing historical values ofthis machine attribute for multiple runs. The most
recent run will have a value of<N> equal to0. The next most recent run will have a value of<N> equal to1.

MaxHosts: The maximum number of hosts that this job would like to claim.As long asCurrentHosts is the
same asMaxHosts , no more hosts are negotiated for.

MaxJobRetirementTime: Maximum time in seconds to let this job run uninterrupted before kicking it off when
it is being preempted. This can only decrease the amount of time from what the corresponding startd expression
allows.

MaxTransferInputMB: This integer expression specifies the maximum allowed totalsize in Mbytes of the input
files that are transferred for a job. This expression doesnot apply to grid universe, standard universe, or files
transferred via file transfer plug-ins. The expression may refer to attributes of the job. The special value -1
indicates no limit. If not set, the system settingMAX_TRANSFER_INPUT_MBis used. If the observed size
of all input files at submit time is larger than the limit, the job will be immediately placed on hold with a
HoldReasonCode value of 32. If the job passes this initial test, but the size of the input files increases or the
limit decreases so that the limit is violated, the job will beplaced on hold at the time when the file transfer is
attempted.

MaxTransferOutputMB: This integer expression specifies the maximum allowed totalsize in Mbytes of the out-
put files that are transferred for a job. This expression doesnotapply to grid universe, standard universe, or files
transferred via file transfer plug-ins. The expression may refer to attributes of the job. The special value -1 indi-
cates no limit. If not set, the system settingMAX_TRANSFER_OUTPUT_MBis used. If the total size of the job’s
output files to be transferred is larger than the limit, the job will be placed on hold with aHoldReasonCode
value of 33. The output will be transferred up to the point when the limit is hit, so some files may be fully
transferred, some partially, and some not at all.

MemoryUsage: An integer expression in units of Mbytes that represents thepeak memory usage for the job. Its
purpose is to be compared with the value defined by a job with the request_memorysubmit command, for
purposes of policy evaluation.

MinHosts: The minimum number of hosts that must be in the claimed state for this job, before the job may enter
the running state.

NextJobStartDelay: An integer number of seconds delay time after this job startsuntil the next job is started.
The value is limited by the configuration variableMAX_NEXT_JOB_START_DELAY.

NiceUser: Boolean value which whenTrue indicates that this job is anice job, raising its user priority value, thus
causing it to run on a machine only when no other HTCondor jobswant the machine.

Nonessential: A boolean value only relevant to grid universe jobs, which whenTrue tells HTCondor to simply
abort (remove) any problematic job, instead of putting the job on hold. It is the equivalent of doingcondor_rm
followed bycondor_rm-forcex any time the job would have otherwise gone on hold. If not explicitly set to
True , the default value will beFalse .

NTDomain: A string that identifies the NT domain under which a job’s owner authenticates on a platform running
Windows.

HTCondor Version 8.6.4 Reference Manual

1014

NumCkpts: A count of the number of checkpoints written by this job during its lifetime.

NumGlobusSubmits: An integer that is incremented each time thecondor_gridmanagerreceives confirmation of
a successful job submission into Globus.

NumJobCompletions: An integer, initialized to zero, that is incremented by thecondor_shadoweach time the
job’s executable exits of its own accord, with or without errors, and successfully completes file transfer (if
requested). Jobs which have done so normally enter the completed state; this attribute is therefore normally only
of use when, for example,on_exit_remove or on_exit_hold is set.

NumJobMatches: An integer that is incremented by thecondor_scheddeach time the job is matched with a resource
ad by the negotiator.

NumJobReconnects: An integer count of the number of times a job successfully reconnected after being discon-
nected. This occurs when thecondor_shadowandcondor_starterlose contact, for example because of transient
network failures or acondor_shadowor condor_scheddrestart. This attribute is only defined for jobs that can
reconnected: those in thevanilla andjava universes.

NumJobStarts: An integer count of the number of times the job started executing. This is not (yet) defined for
standard universe jobs.

NumPids: A count of the number of child processes that this job has.

NumRestarts: A count of the number of restarts from a checkpoint attemptedby this job during its lifetime.

NumShadowExceptions: An integer count of the number of times thecondor_shadowdaemon had a fatal error
for a given job.

NumShadowStarts: An integer count of the number of times acondor_shadowdaemon was started for a given
job. This attribute is not defined forscheduleruniverse jobs, since they do not have acondor_shadowdaemon
associated with them. Forlocal universe jobs, this attributeis defined, even though the process that manages
the job is technically acondor_starterrather than acondor_shadow. This keeps the management of the local
universe and other universes as similar as possible.Note that this attribute is incremented every time the
job is matched, even if the match is rejected by the execute machine; in other words, the value of this
attribute may be greater than the number of times the job actually ran.

NumSystemHolds: An integer that is incremented each time HTCondor-G places ajob on hold due to some sort of
error condition. This counter is useful, since HTCondor-G will always place a job on hold when it gives up on
some error condition. Note that if the user places the job on hold using thecondor_holdcommand, this attribute
is not incremented.

OtherJobRemoveRequirements: A string that defines a list of jobs. When the job with this attribute defined is
removed, all other jobs defined by the list are also removed. The string is an expression that defines a constraint
equivalent to the one implied by the command

condor_rm -constraint <constraint>

This attribute is used for jobs managed withcondor_dagmanto ensure that node jobs of the DAG are removed
when thecondor_dagmanjob itself is removed. Note that the list of jobs defined by this attribute must not form
a cyclic removal of jobs, or thecondor_scheddwill go into an infinite loop when any of the jobs is removed.

HTCondor Version 8.6.4 Reference Manual

1015

OutputDestination: A URL, as defined by submit commandoutput_destination.

Owner: String describing the user who submitted this job.

ParallelShutdownPolicy: A string that is only relevant to parallel universe jobs. Without this attribute defined,
the default policy applied to parallel universe jobs is to consider the whole job completed when the first node
exits, killing processes running on all remaining nodes. Ifdefined to the following strings, HTCondor’s behavior
changes:

"WAIT_FOR_ALL" HTCondor will wait until every node in the parallel job has completed to consider the job
finished.

PreJobPrio1: An integer value representing a user’s priority to affect ofchoice of jobs to run. A larger value gives
higher priority. The range of valid values isINT_MIN + 1 to INT_MAX. When not explicitly set for a job,
INT_MIN , the lowest possible priority, is used for comparison purposes. This attribute, when set, is considered
first: beforePreJobPrio2 , beforeJobPrio , beforePostJobPrio1 , beforePostJobPrio2 , and before
QDate .

PreJobPrio2: An integer value representing a user’s priority to affect ofchoice of jobs to run. A larger value gives
higher priority. The range of valid values isINT_MIN + 1 to INT_MAX. When not explicitly set for a job,
INT_MIN , the lowest possible priority, is used for comparison purposes. This attribute, when set, is considered
after PreJobPrio1 , but beforeJobPrio , beforePostJobPrio1 , beforePostJobPrio2 , and before
QDate .

PostJobPrio1: An integer value representing a user’s priority to affect ofchoice of jobs to run. A larger value
gives higher priority. The range of valid values isINT_MIN + 1 to INT_MAX. When not explicitly set for
a job, INT_MIN , the lowest possible priority, is used for comparison purposes. This attribute, when set, is
considered afterPreJobPrio1 , after PreJobPrio1 , and afterJobPrio , but beforePostJobPrio2 ,
and beforeQDate .

PostJobPrio2: An integer value representing a user’s priority to affect ofchoice of jobs to run. A larger value
gives higher priority. The range of valid values isINT_MIN + 1 to INT_MAX. When not explicitly set
for a job, INT_MIN , the lowest possible priority, is used for comparison purposes. This attribute, when set,
is considered afterPreJobPrio1 , afterPreJobPrio1 , afterJobPrio , and afterPostJobPrio1 , but
beforeQDate .

PreserveRelativeExecutable: WhenTrue , thecondor_starterwill not prependIwd to Cmd, whenCmdis
a relative path name andTransferExecutable is False . The default value isFalse . This attribute is
primarily of interest for users ofUSER_JOB_WRAPPERfor the purpose of allowing an executable’s location to
be resolved by the user’s path in the job wrapper.

ProcId: Integer process identifier for this job. Within a cluster of many jobs, each job has the sameClusterId ,
but will have a uniqueProcId . Within a cluster, assignment of aProcId value will start with the value 0.
The job (process) identifier described here is unrelated to operating system PIDs.

ProportionalSetSizeKb: On Linux execute machines with kernel version more recent than 2.6.27, this is the
maximum observed proportional set size (PSS) in KiB, summedacross all processes in the job. If the execute
machine does not support monitoring of PSS or PSS has not yet been measured, this attribute will be undefined.

HTCondor Version 8.6.4 Reference Manual

1016

PSS differs fromImageSize in how memory shared between processes is accounted. The PSSfor one pro-
cess is the sum of that process’ memory pages divided by the number of processes sharing each of the pages.
ImageSize is the same, except there is no division by the number of processes sharing the pages.

QDate: Time at which the job was submitted to the job queue. Measuredin the number of seconds since the epoch
(00:00:00 UTC, Jan 1, 1970).

RecentBlockReadKbytes: The integer number of KiB read from disk for this job over the previous time interval
defined by configuration variableSTATISTICS_WINDOW_SECONDS.

RecentBlockReads: The integer number of disk blocks read for this job over the previous time interval defined
by configuration variableSTATISTICS_WINDOW_SECONDS.

RecentBlockWriteKbytes: The integer number of KiB written to disk for this job over theprevious time inter-
val defined by configuration variableSTATISTICS_WINDOW_SECONDS.

RecentBlockWrites: The integer number of blocks written to disk for this job overthe previous time interval
defined by configuration variableSTATISTICS_WINDOW_SECONDS.

ReleaseReason: A string containing a human-readable message about why the job was released from hold.

RemoteIwd: The path to the directory in which a job is to be executed on a remote machine.

RemotePool: The name of thecondor_collectorof the pool in which a job is running via flocking. This attribute is
not defined if the job is not running via flocking.

RemoteSysCpu: The total number of seconds of system CPU time (the time spentat system calls) the job used on
remote machines. This does not count time spent on run attempts that were evicted without a checkpoint.

CumulativeRemoteSysCpu: The total number of seconds of system CPU time the job used on remote machines,
summed over all execution attempts.

RemoteUserCpu: The total number of seconds of user CPU time the job used on remote machines. This does not
count time spent on run attempts that were evicted without a checkpoint. A job in the virtual machine universe
will only report this attribute if run on a KVM hypervisor.

CumulativeRemoteUserCpu: The total number of seconds of user CPU time the job used on remote machines,
summed over all execution attempts.

RemoteWallClockTime: Cumulative number of seconds the job has been allocated a machine. This also includes
time spent in suspension (if any), so the total real time spent running is

RemoteWallClockTime - CumulativeSuspensionTime

Note that this number does not get reset to zero when a job is forced to migrate from one machine to another.
CommittedTime , on the other hand, is just likeRemoteWallClockTime except it does get reset to 0
whenever the job is evicted without a checkpoint.

RemoveKillSig: Currently only for scheduler universe jobs, a string containing a name of a signal to be sent to
the job if the job is removed.

HTCondor Version 8.6.4 Reference Manual

1017

RequestCpus: The number of CPUs requested for this job. If dynamiccondor_startdprovisioning is enabled, it is
the minimum number of CPUs that are needed in the created dynamic slot.

RequestDisk: The amount of disk space in KiB requested for this job. If dynamic condor_startdprovisioning is
enabled, it is the minimum amount of disk space needed in the created dynamic slot.

RequestedChroot: A full path to the directory that the job requests thecondor_starteruse as an argument to
chroot() .

RequestMemory: The amount of memory space in MiB requested for this job. If dynamiccondor_startdprovi-
sioning is enabled, it is the minimum amount of memory neededin the created dynamic slot. If not set by the
job, its definition is specified by configuration variableJOB_DEFAULT_REQUESTMEMORY.

ResidentSetSize: Maximum observed physical memory in use by the job in KiB while running.

StackSize: Utilized for Linux jobs only, the number of bytes allocated for stack space for this job. This number of
bytes replaces the default allocation of 512 Mbytes.

StageOutFinish: An attribute representing a Unix epoch time that is defined for a job that is spooled to a remote
site usingcondor_submit -spool or HTCondor-C and causes HTCondor to hold the output in the spool
while the job waits in the queue in theCompleted state. This attribute is defined when retrieval of the output
finishes.

StageOutStart: An attribute representing a Unix epoch time that is defined for a job that is spooled to a remote
site usingcondor_submit -spool or HTCondor-C and causes HTCondor to hold the output in the spool
while the job waits in the queue in theCompleted state. This attribute is defined when retrieval of the output
begins.

StreamErr: An attribute utilized only for grid universe jobs. The default value is True . If True , and
TransferErr is True , then standard error is streamed back to the submit machine,instead of doing the
transfer (as a whole) after the job completes. IfFalse , then standard error is transferred back to the submit
machine (as a whole) after the job completes. IfTransferErr is False , then this job attribute is ignored.

StreamOut: An attribute utilized only for grid universe jobs. The default value is True . If True , and
TransferOut is True , then job output is streamed back to the submit machine, instead of doing the transfer
(as a whole) after the job completes. IfFalse , then job output is transferred back to the submit machine (as a
whole) after the job completes. IfTransferOut is False , then this job attribute is ignored.

SubmitterAutoregroup: A boolean attribute defined by thecondor_negotiatorwhen it makes a match. It will
beTrue if the resource was claimed via negotiation when the configuration variableGROUP_AUTOREGROUP
wasTrue . It will be False otherwise.

SubmitterGlobalJobId: When HTCondor-C submits a job to a remotecondor_schedd, it sets this attribute in
the remote job ad to match theGlobalJobId attribute of the original, local job.

SubmitterGroup: The accounting group name defined by thecondor_negotiatorwhen it makes a match.

SubmitterNegotiatingGroup: The accounting group name under which the resource negotiated when it was
claimed, as set by thecondor_negotiator.

TotalSuspensions: A count of the number of times this job has been suspended during its lifetime.

HTCondor Version 8.6.4 Reference Manual

1018

TransferErr: An attribute utilized only for grid universe jobs. The default value isTrue . If True , then the error
output from the job is transferred from the remote machine back to the submit machine. The name of the file
after transfer is the file referred to by job attributeErr . If False , no transfer takes place (remote to submit
machine), and the name of the file is the file referred to by job attributeErr .

TransferExecutable: An attribute utilized only for grid universe jobs. The default value isTrue . If True ,
then the job executable is transferred from the submit machine to the remote machine. The name of the file (on
the submit machine) that is transferred is given by the job attributeCmd. If False , no transfer takes place, and
the name of the file used (on the remote machine) will be as given in the job attributeCmd.

TransferIn: An attribute utilized only for grid universe jobs. The default value isTrue . If True , then the job
input is transferred from the submit machine to the remote machine. The name of the file that is transferred
is given by the job attributeIn . If False , then the job’s input is taken from a file on the remote machine
(pre-staged), and the name of the file is given by the job attributeIn .

TransferInputSizeMB: The total size in Mbytes of input files to be transferred for the job. Files transferred via
file transfer plug-ins are not included. This attribute is automatically set bycondor_submit; jobs submitted via
other submission methods, such as SOAP, may not define this attribute.

TransferOut: An attribute utilized only for grid universe jobs. The default value isTrue . If True , then the
output from the job is transferred from the remote machine back to the submit machine. The name of the file
after transfer is the file referred to by job attributeOut . If False , no transfer takes place (remote to submit
machine), and the name of the file is the file referred to by job attributeOut .

TransferringInput: A boolean value that indicates whether the job is currently transferring input files. The
value isUndefined if the job is not scheduled to run or has not yet attempted to start transferring input. When
this value isTrue , to see whether the transfer is active or queued, checkTransferQueued .

TransferringOutput: A boolean value that indicates whether the job is currently transferring output files. The
value isUndefined if the job is not scheduled to run or has not yet attempted to start transferring output.
When this value isTrue , to see whether the transfer is active or queued, checkTransferQueued .

TransferQueued: A boolean value that indicates whether the job is currently waiting to transfer files because of
limits placed byMAX_CONCURRENT_DOWNLOADSor MAX_CONCURRENT_UPLOADS.

UserLog: The full path and file name on the submit machine of the log file of job events.

WantGracefulRemoval: A boolean expression that, whenTrue , specifies that a graceful shutdown of the job
should be done when the job is removed or put on hold.

WindowsBuildNumber: An integer, extracted from the platform type of the machine upon which this job is sub-
mitted, representing a build number for a Windows operatingsystem. This attribute only exists for jobs submit-
ted from Windows machines.

WindowsMajorVersion: An integer, extracted from the platform type of the machine upon which this job is
submitted, representing a major version number (currently5 or 6) for a Windows operating system. This attribute
only exists for jobs submitted from Windows machines.

WindowsMinorVersion: An integer, extracted from the platform type of the machine upon which this job is
submitted, representing a minor version number (currently0, 1, or 2) for a Windows operating system. This
attribute only exists for jobs submitted from Windows machines.

HTCondor Version 8.6.4 Reference Manual

1019

X509UserProxy: The full path and file name of the file containing the X.509 userproxy.

X509UserProxyEmail:

For a job with an X.509 proxy credential, this is the email address extracted from the proxy.

X509UserProxyExpiration: For a job that defines the submit description file commandx509userproxy, this
is the time at which the indicated X.509 proxy credential will expire, measured in the number of seconds since
the epoch (00:00:00 UTC, Jan 1, 1970).

X509UserProxyFirstFQAN: For a vanilla or grid universe job that defines the submit description file command
x509userproxy, this is the VOMS Fully Qualified Attribute Name (FQAN) of theprimary role of the credential.
A credential may have multiple roles defined, but by convention the one listed first is the primary role.

X509UserProxyFQAN: For a vanilla or grid universe job that defines the submit description file command
x509userproxy, this is a serialized list of the DN and all FQAN. A comma is used as a separator, and any
existing commas in the DN or FQAN are replaced with the string,. Likewise, any ampersands in the
DN or FQAN are replaced with& .

X509UserProxySubject: For a vanilla or grid universe job that defines the submit description file command
x509userproxy, this attribute contains the Distinguished Name (DN) of thecredential used to submit the job.

X509UserProxyVOName: For a vanilla or grid universe job that defines the submit description file command
x509userproxy, this is the name of the VOMS virtual organization (VO) that the user’s credential is part of.

The following job ClassAd attributes are relevant only forvm universe jobs.

VM_MACAddr: The MAC address of the virtual machine’s network interface,in the standard format of six groups
of two hexadecimal digits separated by colons. This attribute is currently limited to apply only to Xen virtual
machines.

The following job ClassAd attributes appear in the job ClassAd only for thecondor_dagmanjob submitted under
DAGMan. They represent status information for the DAG.

DAG_InRecovery: The value 1 if the DAG is in recovery mode, and The value 0 otherwise.

DAG_NodesDone: The number of DAG nodes that have finished successfully. Thismeans that the entire node has
finished, not only an actual HTCondor job or jobs.

DAG_NodesFailed: The number of DAG nodes that have failed. This value includesall retries, if there are any.

DAG_NodesPostrun: The number of DAG nodes for which a POST script is running or has been deferred because
of a POST script throttle setting.

DAG_NodesPrerun: The number of DAG nodes for which a PRE script is running or hasbeen deferred because of
a PRE script throttle setting.

DAG_NodesQueued: The number of DAG nodes for which the actual HTCondor job or jobs are queued. The
queued jobs may be in any state.

HTCondor Version 8.6.4 Reference Manual

1020

DAG_NodesReady: The number of DAG nodes that are ready to run, but which have not yet started running.

DAG_NodesTotal: The total number of nodes in the DAG, including the FINAL node, if there is a FINAL node.

DAG_NodesUnready: The number of DAG nodes that are not ready to run. This is a nodein which one or more of
the parent nodes has not yet finished.

DAG_Status: The overall status of the DAG, with the same values as the macro $DAG_STATUSused in DAGMan
FINAL nodes.

Value Status

0 OK
1 error; an error condition different than those listed here
2 one or more nodes in the DAG have failed
3 the DAG has been aborted by an ABORT-DAG-ON specification
4 removed; the DAG has been removed bycondor_rm
5 a cycle was found in the DAG
6 the DAG has been suspended (see section 2.10.8)

The following job ClassAd attributes donot appear in the job ClassAd as kept by thecondor_schedddaemon.
They appear in the job ClassAd written to the job’s execute directory while the job is running.

CpusProvisioned: The number of Cpus allocated to the job. With statically-allocated slots, it is the number of
Cpus allocated to the slot. With dynamically-allocated slots, it is based upon the job attributeRequestCpus ,
but may be larger due to the minimum given to a dynamic slot.

DiskProvisioned: The amount of disk space in KiB allocated to the job. With statically-allocated slots, it is the
amount of disk space allocated to the slot. With dynamically-allocated slots, it is based upon the job attribute
RequestDisk , but may be larger due to the minimum given to a dynamic slot.

MemoryProvisioned: The amount of memory in MiB allocated to the job. With statically-allocated slots, it is
the amount of memory space allocated to the slot. With dynamically-allocated slots, it is based upon the job
attributeRequestMemory , but may be larger due to the minimum given to a dynamic slot.

<Name>Provisioned: The amount of the custom resource identified by<Name>allocated to the job. For jobs
using GPUs,<Name>will be GPUs. With statically-allocated slots, it is the amount of the resource allocated
to the slot. With dynamically-allocated slots, it is based upon the job attributeRequest<Name> , but may be
larger due to the minimum given to a dynamic slot.

Machine ClassAd Attributes

Activity: String which describes HTCondor job activity on the machine. Can have one of the following values:

HTCondor Version 8.6.4 Reference Manual

1021

"Idle": There is no job activity

"Busy": A job is busy running

"Suspended": A job is currently suspended

"Vacating": A job is currently checkpointing

"Killing": A job is currently being killed

"Benchmarking": The startd is running benchmarks

"Retiring": Waiting for a job to finish or for the maximum retirement time to expire

Arch: String with the architecture of the machine. Currently supported architectures have the following string defi-
nitions:

"INTEL": Intel x86 CPU (Pentium, Xeon, etc).

"X86_64": AMD/Intel 64-bit X86

These strings show definitions for architectures no longer supported:

"IA64": Intel Itanium

"SUN4u": Sun UltraSparc CPU

"SUN4x": A Sun Sparc CPU other than an UltraSparc, i.e. sun4m or sun4c CPU found in older Sparc work-
stations such as the Sparc 10, Sparc 20, IPC, IPX, etc.

"PPC": 32-bit PowerPC

"PPC64": 64-bit PowerPC

CanHibernate: Thecondor_startdhas the capability to shut down or hibernate a machine when certain config-
urable criteria are met. However, before thecondor_startdcan shut down a machine, the hardware itself must
support hibernation, as must the operating system. When thecondor_startdinitializes, it checks for this support.
If the machine has the ability to hibernate, then this boolean ClassAd attribute will beTrue . By default, it is
False .

CheckpointPlatform: A string which opaquely encodes various aspects about a machine’s operating system,
hardware, and kernel attributes. It is used to identify systems where previously taken checkpoints for the stan-
dard universe may resume.

ClockDay: The day of the week, where 0 = Sunday, 1 = Monday,. . ., and 6 = Saturday.

ClockMin: The number of minutes passed since midnight.

CondorLoadAvg: The load average contributed by HTCondor, either from remote jobs or running benchmarks.

CondorVersion: A string containing the HTCondor version number for thecondor_startddaemon, the release
date, and the build identification number.

ConsoleIdle: The number of seconds since activity on the system console keyboard or console mouse has last
been detected. The value can be modified withSLOTS_CONNECTED_TO_CONSOLEas defined at 3.5.9.

Cpus: The number of CPUs (cores) in this slot. It is 1 for a single CPUslot, 2 for a dual CPU slot, etc. For a
partitionable slot, it is the remaining number of CPUs in thepartitionable slot.

HTCondor Version 8.6.4 Reference Manual

1022

CpuFamily: On Linux machines, the Cpu family, as defined in the /proc/cpuinfo file.

CpuModel: On Linux machines, the Cpu model number, as defined in the /proc/cpuinfo file.

CpuCacheSize: On Linux machines, the size of the L3 cache, in kbytes, as defined in the /proc/cpuinfo file.

CurrentRank: A float which represents this machine owner’s affinity for running the HTCondor job which it is
currently hosting. If not currently hosting an HTCondor job, CurrentRank is 0.0. When a machine is
claimed, the attribute’s value is computed by evaluating the machine’sRank expression with respect to the
current job’s ClassAd.

DetectedCpus: Set by the value of configuration variableDETECTED_CORES.

DetectedMemory: Set by the value of configuration variableDETECTED_MEMORY. Specified in MiB.

Disk: The amount of disk space on this machine available for the jobin KiB (for example, 23000 = 23 MiB).
Specifically, this is the amount of disk space available in the directory specified in the HTCondor configuration
files by theEXECUTEmacro, minus any space reserved with theRESERVED_DISKmacro. For static slots,
this value will be the same as machine ClassAd attributeTotalSlotDisk . For partitionable slots, this value
will be the quantity of disk space remaining in the partitionable slot.

Draining: This attribute isTrue when the slot is draining and undefined if not.

DrainingRequestId: This attribute contains a string that is the request id of thedraining request that put this slot
in a draining state. It is undefined if the slot is not draining.

DotNetVersions: The .NET framework versions currently installed on this computer. Default format is a comma
delimited list. Current definitions:

"1.1": for .Net Framework 1.1

"2.0": for .Net Framework 2.0

"3.0": for .Net Framework 3.0

"3.5": for .Net Framework 3.5

"4.0Client": for .Net Framework 4.0 Client install

"4.0Full": for .Net Framework 4.0 Full install

DynamicSlot: For SMP machines that allow dynamic partitioning of a slot, this boolean value identifies that this
dynamic slot may be partitioned.

EnteredCurrentActivity: Time at which the machine entered the current Activity (seeActivity entry
above). On all platforms (including NT), this is measured inthe number of integer seconds since the Unix
epoch (00:00:00 UTC, Jan 1, 1970).

ExpectedMachineGracefulDrainingBadput: The job run time in cpu-seconds that would be lost if grace-
ful draining were initiated at the time this ClassAd was published. This calculation assumes that jobs will run
for the full retirement time and then be evicted without saving a checkpoint.

HTCondor Version 8.6.4 Reference Manual

1023

ExpectedMachineGracefulDrainingCompletion: The estimated time at which graceful draining of the
machine could complete if it were initiated at the time this ClassAd was published and there are no active
claims. This is measured in the number of integer seconds since the Unix epoch (00:00:00 UTC, Jan 1, 1970).
This value is computed with the assumption that the machine policy will not suspend jobs during draining while
the machine is waiting for the job to use up its retirement time. If suspension happens, the upper bound on
how long draining could take is unlimited. To avoid suspension during draining, theSUSPENDandCONTINUE
expressions could be configured to pay attention to theDraining attribute.

ExpectedMachineGracefulQuickBadput: The job run time in cpu-seconds that would be lost if quick or
fast draining were initiated at the time this ClassAd was published. This calculation assumes that all evicted
jobs will not save a checkpoint.

ExpectedMachineQuickDrainingCompletion: Time at which quick or fast draining of the machine could
complete if it were initiated at the time this ClassAd was published and there are no active claims. This is
measured in the number of integer seconds since the Unix epoch (00:00:00 UTC, Jan 1, 1970).

FileSystemDomain: A domain name configured by the HTCondor administrator whichdescribes a cluster of
machines which all access the same, uniformly-mounted, networked file systems usually via NFS or AFS. This
is useful for Vanilla universe jobs which require remote fileaccess.

HasDocker: A boolean value set toTrue if the machine is capable of executing docker universe jobs.

HasEncryptExecuteDirectory: A boolean value set toTrue if the machine is capable of encrypting execute
directories.

HasFileTransfer: A boolean value that whenTrue identifies that the machine can use the file transfer mecha-
nism.

HasFileTransferPluginMethods: A string of comma-separated file transfer protocols that themachine can
support. The value can be modified withFILETRANSFER_PLUGINSas defined at 3.5.12.

Has_sse4_1: A boolean value set toTrue if the machine being advertised supports the SSE 4.1 instructions, and
Undefined otherwise.

Has_sse4_2: A boolean value set toTrue if the machine being advertised supports the SSE 4.2 instructions, and
Undefined otherwise.

has_ssse3: A boolean value set toTrue if the machine being advertised supports the SSSE 3 instructions, and
Undefined otherwise.

has_avx: A boolean value set toTrue if the machine being advertised supports the avx instructions, and
Undefined otherwise.

HasSingularity: A boolean value set toTrue if the machine being advertised supports running jobs within
Singularity containers.

HasVM: If the configuration triggers the detection of virtual machine software, a boolean value reporting the success
thereof; otherwise undefined. May also becomeFalse if HTCondor determines that it can’t start a VM (even
if the appropriate software is detected).

HTCondor Version 8.6.4 Reference Manual

1024

IsWakeAble: A boolean value that whenTrue identifies that the machine has the capability to be woken into a
fully powered and running state by receiving a Wake On LAN (WOL) packet. This ability is a function of the
operating system, the network adapter in the machine (notably, wireless network adapters usually do not have
this function), and BIOS settings. When thecondor_startdinitializes, it tries to detect if the operating system
and network adapter both support waking from hibernation byreceipt of a WOL packet. The default value is
False .

IsWakeEnabled: If the hardware and software have the capacity to be woken into a fully powered and running
state by receiving a Wake On LAN (WOL) packet, this feature can still be disabled via the BIOS or software. If
BIOS or the operating system have disabled this feature, thecondor_startdsets this boolean attribute toFalse .

JobPreemptions: The total number of times a running job has been preempted on this machine.

JobRankPreemptions: The total number of times a running job has been preempted on this machine due to the
machine’s rank of jobs since thecondor_startdstarted running.

JobStarts: The total number of jobs which have been started on this machine since thecondor_startdstarted
running.

JobUserPrioPreemptions: The total number of times a running job has been preempted on this machine based
on a fair share allocation of the pool since thecondor_startdstarted running.

JobVM_VCPUS: An attribute defined if a vm universe job is running on this slot. Defined by the number of virtualized
CPUs in the virtual machine.

KeyboardIdle: The number of seconds since activity on any keyboard or mouseassociated with this machine
has last been detected. UnlikeConsoleIdle , KeyboardIdle also takes activity on pseudo-terminals
into account. Pseudo-terminals have virtual keyboard activity from telnet and rlogin sessions. Note that
KeyboardIdle will always be equal to or less thanConsoleIdle . The value can be modified with
SLOTS_CONNECTED_TO_KEYBOARDas defined at 3.5.9.

KFlops: Relative floating point performance as determined via a Linpack benchmark.

LastDrainStartTime: Time when draining of thiscondor_startdwas last initiated (e.g. due tocondor_defrag
or condor_drain).

LastHeardFrom: Time when the HTCondor central manager last received a status update from this machine. Ex-
pressed as the number of integer seconds since the Unix epoch(00:00:00 UTC, Jan 1, 1970). Note: This attribute
is only inserted by the central manager once it receives the ClassAd. It is not present in thecondor_startdcopy
of the ClassAd. Therefore, you could not use this attribute in definingcondor_startdexpressions (and you
would not want to).

LoadAvg: A floating point number representing the current load average.

Machine: A string with the machine’s fully qualified host name.

MachineMaxVacateTime: An integer expression that specifies the time in seconds the machine will allow the job
to gracefully shut down.

HTCondor Version 8.6.4 Reference Manual

1025

MaxJobRetirementTime: When thecondor_startdwants to kick the job off, a job which has run for less than
this number of seconds will not be hard-killed. Thecondor_startdwill wait for the job to finish or to exceed this
amount of time, whichever comes sooner. If the job vacating policy grants the job X seconds of vacating time, a
preempted job will be soft-killed X seconds before the end ofits retirement time, so that hard-killing of the job
will not happen until the end of the retirement time if the jobdoes not finish shutting down before then. This is
an expression evaluated in the context of the job ClassAd, soit may refer to job attributes as well as machine
attributes.

Memory: The amount of RAM in MiB in this slot. For static slots, this value will be the same as in
TotalSlotMemory . For a partitionable slot, this value will be the quantity remaining in the partitionable
slot.

Mips: Relative integer performance as determined via a Dhrystonebenchmark.

MonitorSelfAge: The number of seconds that this daemon has been running.

MonitorSelfCPUUsage: The fraction of recent CPU time utilized by this daemon.

MonitorSelfImageSize: The amount of virtual memory consumed by this daemon in KiB.

MonitorSelfRegisteredSocketCount: The current number of sockets registered by this daemon.

MonitorSelfResidentSetSize: The amount of resident memory used by this daemon in KiB.

MonitorSelfSecuritySessions: The number of open (cached) security sessions for this daemon.

MonitorSelfTime: The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC,
Jan 1, 1970), at which this daemon last checked and set the attributes with names that begin with the string
MonitorSelf .

MyAddress: String with the IP and port address of thecondor_startddaemon which is publishing this machine
ClassAd. When using CCB,condor_shared_port, and/or an additional private network interface, that informa-
tion will be included here as well.

MyType: The ClassAd type; always set to the literal string"Machine" .

Name: The name of this resource; typically the same value as theMachine attribute, but could be customized
by the site administrator. On SMP machines, thecondor_startdwill divide the CPUs up into separate
slots, each with with a unique name. These names will be of theform “slot#@full.hostname”, for example,
“slot1@vulture.cs.wisc.edu”, which signifies slot number1 from vulture.cs.wisc.edu.

Offline<name>: A string that lists specific instances of a user-defined machine resource, identified byname.
Each instance is currently unavailable for purposes of match making.

OfflineUniverses: A ClassAd list that specifies which job universes are presently offline, both as strings and as
the corresponding job universe number. Could be used the thestartd to refuse to start jobs in offline universes:

START = OfflineUniverses is undefined || (! member(JobUniv erse, OfflineUniverses))

May currently only contain"VM" and13 .

HTCondor Version 8.6.4 Reference Manual

1026

OpSys: String describing the operating system running on this machine. Currently supported operating systems have
the following string definitions:

"LINUX": for LINUX 2.0.x, LINUX 2.2.x, LINUX 2.4.x, LINUX 2.6.x, or LINUX 3.10.0 kernel systems, as
well as Scientific Linux, Ubuntu versions 14.04, and Debian 7.0 (wheezy) and 8.0 (jessie)

"OSX": for Darwin

"FREEBSD7": for FreeBSD 7

"FREEBSD8": for FreeBSD 8

"WINDOWS": for all versions of Windows

"SOLARIS5.10": for Solaris 2.10 or 5.10

"SOLARIS5.11": for Solaris 2.11 or 5.11

These strings show definitions for operating systems no longer supported:

"SOLARIS28": for Solaris 2.8 or 5.8

"SOLARIS29": for Solaris 2.9 or 5.9

OpSysAndVer: A string indicating an operating system and a version number.

For Linux operating systems, it is the value of theOpSysNameattribute concatenated with the string version
of theOpSysMajorVersion attribute:

"RedHat5": for RedHat Linux version 5

"RedHat6": for RedHat Linux version 6

"RedHat7": for RedHat Linux version 7

"Fedora16": for Fedora Linux version 16

"Debian6": for Debian Linux version 6

"Debian7": for Debian Linux version 7

"Debian8": for Debian Linux version 8

"Ubuntu14": for Ubuntu 14.04

"SL5": for Scientific Linux version 5

"SL6": for Scientific Linux version 6

"SLFermi5": for Fermi’s Scientific Linux version 5

"SLFermi6": for Fermi’s Scientific Linux version 6

"SLCern5": for CERN’s Scientific Linux version 5

"SLCern6": for CERN’s Scientific Linux version 6

For MacOS operating systems, it is the value of theOpSysShortName attribute concatenated with the string
version of theOpSysVer attribute:

"MacOSX605": for MacOS version 10.6.5 (Snow Leopard)

"MacOSX703": for MacOS version 10.7.3 (Lion)

HTCondor Version 8.6.4 Reference Manual

1027

For BSD operating systems, it is the value of theOpSysNameattribute concatenated with the string version of
theOpSysMajorVersion attribute:

"FREEBSD7": for FreeBSD version 7

"FREEBSD8": for FreeBSD version 8

For Solaris Unix operating systems, it is the same value as the OpSys attribute:

"SOLARIS5.10": for Solaris 2.10 or 5.10

"SOLARIS5.11": for Solaris 2.11 or 5.11

For Windows operating systems, it is the value of theOpSys attribute concatenated with the string version of
theOpSysMajorVersion attribute:

"WINDOWS500": for Windows 2000

"WINDOWS501": for Windows XP

"WINDOWS502": for Windows Server 2003

"WINDOWS600": for Windows Vista

"WINDOWS601": for Windows 7

OpSysLegacy: A string that holds the long-standing values for theOpSys attribute. Currently supported operating
systems have the following string definitions:

"LINUX": for LINUX 2.0.x, LINUX 2.2.x, LINUX 2.4.x, LINUX 2.6.x, or LINUX 3.10.0 kernel systems, as
well as Scientific Linux, Ubuntu versions 14.04, and Debian 7and 8

"OSX": for Darwin

"FREEBSD7": for FreeBSD version 7

"FREEBSD8": for FreeBSD version 8

"SOLARIS5.10": for Solaris 2.10 or 5.10

"SOLARIS5.11": for Solaris 2.11 or 5.11

"WINDOWS": for all versions of Windows

OpSysLongName: A string giving a full description of the operating system. For Linux platforms, this is generally
the string taken from/etc/hosts , with extra characters stripped off Debian versions.

"Red Hat Enterprise Linux Server release 5.7 (Tikanga)": for RedHat Linux version
5

"Red Hat Enterprise Linux Server release 6.2 (Santiago)": for RedHat Linux ver-
sion 6

"Red Hat Enterprise Linux Server release 7.0 (Maipo)": for RedHat Linux version 7.0

"Ubuntu 14.04.1 LTS": for Ubuntu 14.04 point release 1

"Debian GNU/Linux 7": for Debian 7.0 (wheezy)

"Debian GNU/Linux 8": for Debian 8.0 (jessie)

HTCondor Version 8.6.4 Reference Manual

1028

"Fedora release 16 (Verne)": for Fedora Linux version 16

"MacOSX 6.5": for MacOS version 10.6.5 (Snow Leopard)

"MacOSX 7.3": for MacOS version 10.7.3 (Lion)

"FreeBSD8.2-RELEASE-p3": for FreeBSD version 8

"SOLARIS5.10": for Solaris 2.10 or 5.10

"SOLARIS5.11": for Solaris 2.11 or 5.11

"Windows XP SP3": for Windows XP

"Windows 7 SP2": for Windows 7

OpSysMajorVersion: An integer value representing the major version of the operating system.

5: for RedHat Linux version 5 and derived platforms such as Scientific Linux

6: for RedHat Linux version 6 and derived platforms such as Scientific Linux

7: for RedHat Linux version 7

14: for Ubuntu 14.04

7: for Debian 7

8: for Debian 8

16: for Fedora Linux version 16

6: for MacOS version 10.6.5 (Snow Leopard)

7: for MacOS version 10.7.3 (Lion)

7: for FreeBSD version 7

8: for FreeBSD version 8

5: for Solaris 2.10, 5.10, 2.11, or 5.11

501: for Windows XP

600: for Windows Vista

601: for Windows 7

OpSysName: A string containing a terse description of the operating system.

"RedHat": for RedHat Linux version 6 and 7

"Fedora": for Fedora Linux version 16

"Ubuntu": for Ubuntu versions 14.04

"Debian": for Debian versions 7 and 8

"SnowLeopard": for MacOS version 10.6.5 (Snow Leopard)

"Lion": for MacOS version 10.7.3 (Lion)

"FREEBSD": for FreeBSD version 7 or 8

"SOLARIS5.10": for Solaris 2.10 or 5.10

"SOLARIS5.11": for Solaris 2.11 or 5.11

HTCondor Version 8.6.4 Reference Manual

1029

"WindowsXP": for Windows XP

"WindowsVista": for Windows Vista

"Windows7": for Windows 7

"SL": for Scientific Linux

"SLFermi": for Fermi’s Scientific Linux

"SLCern": for CERN’s Scientific Linux

OpSysShortName: A string containing a short name for the operating system.

"RedHat": for RedHat Linux version 5, 6 or 7

"Fedora": for Fedora Linux version 16

"Debian": for Debian Linux version 6 or 7 or 8

"Ubuntu": for Ubuntu versions 14.04

"MacOSX": for MacOS version 10.6.5 (Snow Leopard) or for MacOS version10.7.3 (Lion)

"FreeBSD": for FreeBSD version 7 or 8

"SOLARIS5.10": for Solaris 2.10 or 5.10

"SOLARIS5.11": for Solaris 2.11 or 5.11

"XP": for Windows XP

"Vista": for Windows Vista

"7": for Windows 7

"SL": for Scientific Linux

"SLFermi": for Fermi’s Scientific Linux

"SLCern": for CERN’s Scientific Linux

OpSysVer: An integer value representing the operating system versionnumber.

700: for RedHat Linux version 7.0

602: for RedHat Linux version 6.2

1600: for Fedora Linux version 16.0

1404: for Ubuntu 14.04

700: for Debian 7.0

800: for Debian 8.0

704: for FreeBSD version 7.4

802: for FreeBSD version 8.2

605: for MacOS version 10.6.5 (Snow Leopard)

703: for MacOS version 10.7.3 (Lion)

500: for Windows 2000

501: for Windows XP

HTCondor Version 8.6.4 Reference Manual

1030

502: for Windows Server 2003

600: for Windows Vista or Windows Server 2008

601: for Windows 7 or Windows Server 2008

PartitionableSlot: For SMP machines, a boolean value identifying that this slotmay be partitioned.

RecentJobPreemptions: The total number of jobs which have been preempted from this machine in the last
twenty minutes.

RecentJobRankPreemptions: The total number of times a running job has been preempted on this machine
due to the machine’s rank of jobs in the last twenty minutes.

RecentJobStarts: The total number of jobs which have been started on this machine in the last twenty minutes.

RecentJobUserPrio: The total number of times a running job has been preempted on this machine based on a
fair share allocation of the pool in the last twenty minutes.

Requirements: A boolean, which when evaluated within the context of the machine ClassAd and a job ClassAd,
must evaluate to TRUE before HTCondor will allow the job to use this machine.

RetirementTimeRemaining: An integer number of seconds afterMyCurrentTime when the running job can
be evicted.MaxJobRetirementTime is the expression of how much retirement time the machine offers
to new jobs, whereasRetirementTimeRemaining is the negotiated amount of time remaining for the
current running job. This may be less than the amount offeredby the machine’sMaxJobRetirementTime
expression, because the job may ask for less.

SingularityVersion: A string containing the version of Singularity available, if the machine being advertised
supports running jobs within a Singularity container (seeHasSingularity).

SlotID: For SMP machines, the integer that identifies the slot. The value will beX for the slot with

name="slotX@full.hostname"

For non-SMP machines with one slot, the value will be 1. NOTE: This attribute was added in HTCondor version
6.9.3. For older versions of HTCondor, seeVirtualMachineID below.

SlotType: For SMP machines with partitionable slots, the partitionable slot will have this attribute set to
"Partitionable" , and all dynamic slots will have this attribute set to"Dynamic" .

SlotWeight: This specifies the weight of the slot when calculating usage,computing fair shares, and enforc-
ing group quotas. For example, claiming a slot withSlotWeight = 2 is equivalent to claiming two
SlotWeight = 1 slots. See the description ofSlotWeight on page 275.

StartdIpAddr: String with the IP and port address of thecondor_startddaemon which is publishing this ma-
chine ClassAd. When using CCB,condor_shared_port, and/or an additional private network interface, that
information will be included here as well.

State: String which publishes the machine’s HTCondor state. Can be:

"Owner": The machine owner is using the machine, and it is unavailableto HTCondor.

HTCondor Version 8.6.4 Reference Manual

1031

"Unclaimed": The machine is available to run HTCondor jobs, but a good match is either not available or
not yet found.

"Matched": The HTCondor central manager has found a good match for this resource, but an HTCondor
scheduler has not yet claimed it.

"Claimed": The machine is claimed by a remotecondor_scheddand is probably running a job.

"Preempting": An HTCondor job is being preempted (possibly via checkpointing) in order to clear the
machine for either a higher priority job or because the machine owner wants the machine back.

"Drained": This slot is not accepting jobs, because the machine is beingdrained.

TargetType: Describes what type of ClassAd to match with. Always set to the string literal"Job" , because
machine ClassAds always want to be matched with jobs, and vice-versa.

TotalCondorLoadAvg: The load average contributed by HTCondor summed across all slots on the machine,
either from remote jobs or running benchmarks.

TotalCpus: The number of CPUs (cores) that are on the machine. This is in contrast withCpus, which is the
number of CPUs in the slot.

TotalDisk: The quantity of disk space in KiB available across the machine (not the slot). For partitionable slots,
where there is one partitionable slot per machine, this value will be the same as machine ClassAd attribute
TotalSlotDisk .

TotalLoadAvg: A floating point number representing the current load average summed across all slots on the
machine.

TotalMachineDrainingBadput: The total job runtime in cpu-seconds that has been lost due tojob evictions
caused by draining since thiscondor_startdbegan executing. In this calculation, it is assumed that jobs are
evicted without checkpointing.

TotalMachineDrainingUnclaimedTime: The total machine-wide time in cpu-seconds that has not beenused
(i.e. not matched to a job submitter) due to draining since this condor_startdbegan executing.

TotalMemory: The quantity of RAM in MiB available across the machine (not the slot). For partitionable slots,
where there is one partitionable slot per machine, this value will be the same as machine ClassAd attribute
TotalSlotMemory .

TotalSlotCpus: The number of CPUs (cores) in this slot. For static slots, this value will be the same as inCpus.

TotalSlotDisk: The quantity of disk space in KiB given to this slot. For static slots, this value will be the same
as machine ClassAd attributeDisk . For partitionable slots, where there is one partitionableslot per machine,
this value will be the same as machine ClassAd attributeTotalDisk .

TotalSlotMemory: The quantity of RAM in MiB given to this slot. For static slots, this value will be the same as
machine ClassAd attributeMemory. For partitionable slots, where there is one partitionableslot per machine,
this value will be the same as machine ClassAd attributeTotalMemory .

TotalSlots: A sum of the static slots, partitionable slots, and dynamic slots on the machine at the current time.

HTCondor Version 8.6.4 Reference Manual

1032

TotalTimeBackfillBusy: The number of seconds that this machine (slot) has accumulated within the backfill
busy state and activity pair since thecondor_startdbegan executing. This attribute will only be defined if it has
a value greater than 0.

TotalTimeBackfillIdle: The number of seconds that this machine (slot) has accumulated within the backfill
idle state and activity pair since thecondor_startdbegan executing. This attribute will only be defined if it has
a value greater than 0.

TotalTimeBackfillKilling: The number of seconds that this machine (slot) has accumulated within the back-
fill killing state and activity pair since thecondor_startdbegan executing. This attribute will only be defined if
it has a value greater than 0.

TotalTimeClaimedBusy: The number of seconds that this machine (slot) has accumulated within the claimed
busy state and activity pair since thecondor_startdbegan executing. This attribute will only be defined if it has
a value greater than 0.

TotalTimeClaimedIdle: The number of seconds that this machine (slot) has accumulated within the claimed
idle state and activity pair since thecondor_startdbegan executing. This attribute will only be defined if it has
a value greater than 0.

TotalTimeClaimedRetiring: The number of seconds that this machine (slot) has accumulated within the
claimed retiring state and activity pair since thecondor_startdbegan executing. This attribute will only be
defined if it has a value greater than 0.

TotalTimeClaimedSuspended: The number of seconds that this machine (slot) has accumulated within the
claimed suspended state and activity pair since thecondor_startdbegan executing. This attribute will only be
defined if it has a value greater than 0.

TotalTimeMatchedIdle: The number of seconds that this machine (slot) has accumulated within the matched
idle state and activity pair since thecondor_startdbegan executing. This attribute will only be defined if it has
a value greater than 0.

TotalTimeOwnerIdle: The number of seconds that this machine (slot) has accumulated within the owner idle
state and activity pair since thecondor_startdbegan executing. This attribute will only be defined if it hasa
value greater than 0.

TotalTimePreemptingKilling: The number of seconds that this machine (slot) has accumulated within the
preempting killing state and activity pair since thecondor_startdbegan executing. This attribute will only be
defined if it has a value greater than 0.

TotalTimePreemptingVacating: The number of seconds that this machine (slot) has accumulated within the
preempting vacating state and activity pair since thecondor_startdbegan executing. This attribute will only be
defined if it has a value greater than 0.

TotalTimeUnclaimedBenchmarking: The number of seconds that this machine (slot) has accumulated within
the unclaimed benchmarking state and activity pair since thecondor_startdbegan executing. This attribute will
only be defined if it has a value greater than 0.

TotalTimeUnclaimedIdle: The number of seconds that this machine (slot) has accumulated within the un-
claimed idle state and activity pair since thecondor_startdbegan executing. This attribute will only be defined
if it has a value greater than 0.

HTCondor Version 8.6.4 Reference Manual

1033

UidDomain: a domain name configured by the HTCondor administrator whichdescribes a cluster of machines
which all have the samepasswd file entries, and therefore all have the same logins.

VirtualMachineID: Starting with HTCondor version 6.9.3, this attribute is nowlonger used. Instead, use
SlotID , as described above. This will only be present ifALLOW_VM_CRUFTis TRUE.

VirtualMemory: The amount of currently available virtual memory (swap space) expressed in KiB. On Linux
platforms, it is the sum of paging space and physical memory,which more accurately represents the virtual
memory size of the machine.

VM_AvailNum: The maximum number of vm universe jobs that can be started on this machine. This maximum is
set by the configuration variableVM_MAX_NUMBER.

VM_Guest_Mem: An attribute defined if a vm universe job is running on this slot. Defined by the amount of memory
in use by the virtual machine, given in Mbytes.

VM_Memory: Gives the amount of memory available for starting additional VM jobs on this machine, given in
Mbytes. The maximum value is set by the configuration variableVM_MEMORY.

VM_Networking: A boolean value indicating whether networking is allowed for virtual machines on this machine.

VM_Type: The type of virtual machine software that can run on this machine. The value is set by the configuration
variableVM_TYPE.

VMOfflineReason: The reason the VM universe went offline (usually because a VM universe job failed to launch).

VMOfflineTime: The time that the VM universe went offline.

WindowsBuildNumber: An integer, extracted from the platform type, representinga build number for a Windows
operating system. This attribute only exists on Windows machines.

WindowsMajorVersion: An integer, extracted from the platform type, representinga major version number (cur-
rently 5 or 6) for a Windows operating system. This attributeonly exists on Windows machines.

WindowsMinorVersion: An integer, extracted from the platform type, representinga minor version number (cur-
rently 0, 1, or 2) for a Windows operating system. This attribute only exists on Windows machines.

In addition, there are a few attributes that are automatically inserted into the machine ClassAd whenever a resource
is in the Claimed state:

ClientMachine: The host name of the machine that has claimed this resource

RemoteAutoregroup: A boolean attribute which isTrue if this resource was claimed via negotiation when the
configuration variableGROUP_AUTOREGROUPis True . It is False otherwise.

RemoteGroup: The accounting group name corresponding to the submitter that claimed this resource.

HTCondor Version 8.6.4 Reference Manual

1034

RemoteNegotiatingGroup: The accounting group name under which this resource negotiated when it was
claimed. This attribute will frequently be the same as attribute RemoteGroup , but it may differ in cases
such as when configuration variableGROUP_AUTOREGROUPis True , in which case it will have the name of
the root group, identified as<none> .

RemoteOwner: The name of the user who originally claimed this resource.

RemoteUser: The name of the user who is currently using this resource. In general, this will always be the same as
theRemoteOwner , but in some cases, a resource can be claimed by one entity that hands off the resource to
another entity which uses it. In that case,RemoteUser would hold the name of the entity currently using the
resource, whileRemoteOwner would hold the name of the entity that claimed the resource.

PreemptingOwner: The name of the user who is preempting the job that is currently running on this resource.

PreemptingUser: The name of the user who is preempting the job that is currently running on this resource. The
relationship betweenPreemptingUser andPreemptingOwner is the same as the relationship between
RemoteUser andRemoteOwner .

PreemptingRank: A float which represents this machine owner’s affinity for running the HTCondor job which
is waiting for the current job to finish or be preempted. If notcurrently hosting an HTCondor job,
PreemptingRank is undefined. When a machine is claimed and there is already a job running, the attribute’s
value is computed by evaluating the machine’sRank expression with respect to the preempting job’s ClassAd.

TotalClaimRunTime: A running total of the amount of time (in seconds) that all jobs (under the same claim) ran
(have spent in the Claimed/Busy state).

TotalClaimSuspendTime: A running total of the amount of time (in seconds) that all jobs (under the same
claim) have been suspended (in the Claimed/Suspended state).

TotalJobRunTime: A running total of the amount of time (in seconds) that a single job ran (has spent in the
Claimed/Busy state).

TotalJobSuspendTime: A running total of the amount of time (in seconds) that a single job has been suspended
(in the Claimed/Suspended state).

There are a few attributes that are only inserted into the machine ClassAd if a job is currently executing. If the
resource is claimed but no job are running, none of these attributes will be defined.

JobId: The job’s identifier (for example,152.3), as seen fromcondor_qon the submitting machine.

JobStart: The time stamp in integer seconds of when the job began executing, since the Unix epoch (00:00:00
UTC, Jan 1, 1970). For idle machines, the value isUNDEFINED.

LastPeriodicCheckpoint: If the job has performed a periodic checkpoint, this attribute will be defined and
will hold the time stamp of when the last periodic checkpointwas begun. If the job has yet to perform a periodic
checkpoint, or cannot checkpoint at all, theLastPeriodicCheckpoint attribute will not be defined.

There are a few attributes that are applicable to machines that are offline, that is, hibernating.

HTCondor Version 8.6.4 Reference Manual

1035

MachineLastMatchTime: The Unix epoch time when this offline ClassAd would have been matched to
a job, if the machine were online. In addition, the slot1 ClassAd of a multi-slot machine will have
slot<X>_MachineLastMatchTime defined, where<X> is replaced by the slot id of each of the slots
with MachineLastMatchTime defined.

Offline: A boolean value, that whenTrue , indicates this machine is in an offline state in thecondor_collector.
Such ClassAds are stored persistently, such that they will continue to exist after thecondor_collectorrestarts.

Unhibernate: A boolean expression that specifies when a hibernating machine should be woken up, for example,
by condor_rooster.

For machines with user-defined or custom resource specifications, including GPUs, the following attributes will
be in the ClassAd for each slot. In the name of the attribute,<name> is substituted with the configured name given to
the resource.

Assigned<name>: A space separated list that identifies which of these resources are currently assigned to slots.

Offline<name>: A space separated list that indicates which of these resources is unavailable for match making.

Total<name>: An integer quantity of the total number of these resources.

For machines with custom resource specifications that include GPUs, the following attributes may be in the
ClassAd for each slot, depending on the value of configuration variableMACHINE_RESOURCE_INVENTORY_GPUs
and what GPUs are detected. In the name of the attribute,<name> is substituted with theprefix stringassigned for
the GPU.

<name>BoardTempC: For NVIDIA devices, a dynamic attribute representing the temperature in Celsius of the
board containing the GPU.

<name>Capability: The CUDA-defined capability for the GPU.

<name>ClockMhz: For CUDA or Open CL devices, the integer clocking speed of theGPU in MHz.

<name>ComputeUnits: For CUDA or Open CL devices, the integer number of compute units per GPU.

<name>CoresPerCU: For CUDA devices, the integer number of cores per compute unit.

<name>DeviceName: For CUDA or Open CL devices, a string representing the manufacturer’s proprietary device
name.

<name>DieTempC: For NVIDIA devices, a dynamic attribute representing the temperature in Celsius of the GPU
die.

<name>DriverVersion: For CUDA devices, a string representing the manufacturer’sdriver version.

<name>ECCEnabled: For CUDA or Open CL devices, a boolean value representing whether error correction is
enabled.

HTCondor Version 8.6.4 Reference Manual

1036

<name>EccErrorsDoubleBit: For NVIDIA devices, a count of the number of double bit errorsdetected for
this GPU.

<name>EccErrorsSingleBit: For NVIDIA devices, a count of the number of single bit errorsdetected for this
GPU.

<name>FanSpeedPct: For NVIDIA devices, a value between 0 and 100 (inclusive), used to represent the level of
fan operation as percentage of full fan speed.

<name>GlobalMemoryMb: For CUDA or Open CL devices, the quantity of memory in Mbytes in this GPU.

<name>OpenCLVersion: For Open CL devices, a string representing the manufacturer’s version number.

<name>RuntimeVersion: For CUDA devices, a string representing the manufacturer’sversion number.

The following attributes are advertised for a machine in which partitionable slot preemption is enabled.

ChildAccountingGroup: A ClassAd list containing the values of theAccountingGroup attribute for each
dynamic slot of the partitionable slot.

ChildActivity: A ClassAd list containing the values of theActivity attribute for each dynamic slot of the
partitionable slot.

ChildCpus: A ClassAd list containing the values of theCpus attribute for each dynamic slot of the partitionable
slot.

ChildCurrentRank: A ClassAd list containing the values of theCurrentRank attribute for each dynamic slot
of the partitionable slot.

ChildEnteredCurrentState: A ClassAd list containing the values of theEnteredCurrentState at-
tribute for each dynamic slot of the partitionable slot.

ChildMemory: A ClassAd list containing the values of theMemory attribute for each dynamic slot of the partition-
able slot.

ChildName: A ClassAd list containing the values of theNameattribute for each dynamic slot of the partitionable
slot.

ChildRemoteOwner: A ClassAd list containing the values of theRemoteOwner attribute for each dynamic slot
of the partitionable slot.

ChildRemoteUser: A ClassAd list containing the values of theRemoteUser attribute for each dynamic slot of
the partitionable slot.

ChildRetirementTimeRemaining: A ClassAd list containing the values of the
RetirementTimeRemaining attribute for each dynamic slot of the partitionable slot.

ChildState: A ClassAd list containing the values of theState attribute for each dynamic slot of the partitionable
slot.

HTCondor Version 8.6.4 Reference Manual

1037

PslotRollupInformation: A boolean value set toTrue in both the partitionable and dynamic slots, when con-
figuration variableADVERTISE_PSLOT_ROLLUP_INFORMATIONis True , such that thecondor_negotiator
knows when partitionable slot preemption is possible and can directly preempt a dynamic slot when appropriate.

Finally, the single attribute,CurrentTime , is defined by the ClassAd environment.

CurrentTime: Evaluates to the the number of integer seconds since the Unixepoch (00:00:00 UTC, Jan 1, 1970).

DaemonMaster ClassAd Attributes

CkptServer: A string with with the fully qualified host name of the machinerunning a checkpoint server.

CondorVersion: A string containing the HTCondor version number, the release date, and the build identification
number.

DaemonStartTime: The time that this daemon was started, represented as the number of second elapsed since the
Unix epoch (00:00:00 UTC, Jan 1, 1970).

Machine: A string with the machine’s fully qualified host name.

MasterIpAddr: String with the IP and port address of thecondor_masterdaemon which is publishing this Dae-
monMaster ClassAd.

MonitorSelfAge: The number of seconds that this daemon has been running.

MonitorSelfCPUUsage: The fraction of recent CPU time utilized by this daemon.

MonitorSelfImageSize: The amount of virtual memory consumed by this daemon in Kbytes.

MonitorSelfRegisteredSocketCount: The current number of sockets registered by this daemon.

MonitorSelfResidentSetSize: The amount of resident memory used by this daemon in Kbytes.

MonitorSelfSecuritySessions: The number of open (cached) security sessions for this daemon.

MonitorSelfTime: The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC,
Jan 1, 1970), at which this daemon last checked and set the attributes with names that begin with the string
MonitorSelf .

MyAddress: String with the IP and port address of thecondor_masterdaemon which is publishing this ClassAd.

MyCurrentTime: The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan
1, 1970), at which thecondor_masterdaemon last sent a ClassAd update to thecondor_collector.

Name: The name of this resource; typically the same value as theMachine attribute, but could be customized
by the site administrator. On SMP machines, thecondor_startdwill divide the CPUs up into separate
slots, each with with a unique name. These names will be of theform “slot#@full.hostname”, for example,
“slot1@vulture.cs.wisc.edu”, which signifies slot number1 from vulture.cs.wisc.edu.

HTCondor Version 8.6.4 Reference Manual

1038

PublicNetworkIpAddr: Description is not yet written.

RealUid: The UID under which thecondor_masteris started.

UpdateSequenceNumber: An integer, starting at zero, and incremented with each ClassAd update sent to the
condor_collector. Thecondor_collectoruses this value to sequence the updates it receives.

Scheduler ClassAd Attributes

Autoclusters: A Statistics attribute defining the number of active autoclusters.

CollectorHost: The name of the maincondor_collectorwhich thiscondor_schedddaemon reports to, as copied
from COLLECTOR_HOST. If a condor_scheddflocks to othercondor_collectordaemons, this attribute still
represents the "home"condor_collector, so this value can be used to discover if acondor_scheddis currently
flocking.

CondorVersion: A string containing the HTCondor version number, the release date, and the build identification
number.

DaemonCoreDutyCycle: A Statistics attribute defining the ratio of the time spent handling messages and events
to the elapsed time for the time period defined byStatsLifetime of this condor_schedd. A value near 0.0
indicates an idle daemon, while a value near 1.0 indicates a daemon running at or above capacity.

DaemonStartTime: The time that this daemon was started, represented as the number of second elapsed since the
Unix epoch (00:00:00 UTC, Jan 1, 1970).

DetectedCpus: The number of detected machine CPUs/cores.

DetectedMemory: The amount of detected machine RAM in MBytes.

JobQueueBirthdate: Description is not yet written.

JobsAccumBadputTime: A Statistics attribute defining the sum of the all of the time jobs which did not complete
successfully have spent running over the lifetime of thiscondor_schedd.

JobsAccumExceptionalBadputTime: A Statistics attribute defining the sum of the all of the time jobs which
did not complete successfully due tocondor_shadowexceptions have spent running over the lifetime of this
condor_schedd.

JobsAccumRunningTime: A Statistics attribute defining the sum of the all of the time jobs have spent running in
the time interval defined by attributeStatsLifetime .

JobsAccumTimeToStart: A Statistics attribute defining the sum of all the time jobs have spent waiting to start
in the time interval defined by attributeStatsLifetime .

JobsBadputRuntimes: A Statistics attribute defining a histogram count of jobs that did not complete success-
fully, as classified by time spent running, over the lifetimeof thiscondor_schedd. Counts within the histogram
are separated by a comma and a space, where the time interval classification is defined in the ClassAd attribute
JobsRuntimesHistogramBuckets .

HTCondor Version 8.6.4 Reference Manual

1039

JobsBadputSizes: A Statistics attribute defining a histogram count of jobs that did not complete success-
fully, as classified by image size, over the lifetime of thiscondor_schedd. Counts within the histogram
are separated by a comma and a space, where the size classification is defined in the ClassAd attribute
JobsSizesHistogramBuckets .

JobsCheckpointed: A Statistics attribute defining the number of times jobs thathave exited with acon-
dor_shadowexit code ofJOB_CKPTEDin the time interval defined by attributeStatsLifetime .

JobsCompleted: A Statistics attribute defining the number of jobs successfully completed in the time interval
defined by attributeStatsLifetime .

JobsCompletedRuntimes: A Statistics attribute defining a histogram count of jobs that completed successfully
as classified by time spent running, over the lifetime of thiscondor_schedd. Counts within the histogram are
separated by a comma and a space, where the time interval classification is defined in the ClassAd attribute
JobsRuntimesHistogramBuckets .

JobsCompletedSizes: A Statistics attribute defining a histogram count of jobs that completed success-
fully as classified by image size, over the lifetime of thiscondor_schedd. Counts within the histogram
are separated by a comma and a space, where the size classification is defined in the ClassAd attribute
JobsSizesHistogramBuckets .

JobsCoredumped: A Statistics attribute defining the number of times that jobshave exited with acondor_shadow
exit code ofJOB_COREDUMPEDin the time interval defined by attributeStatsLifetime .

JobsDebugLogError: A Statistics attribute defining the number of times that jobshave exited with acon-
dor_shadowexit code ofDPRINTF_ERRORin the time interval defined by attributeStatsLifetime .

JobsExecFailed: A Statistics attribute defining the number of times that jobshave exited with acondor_shadow
exit code ofJOB_EXEC_FAILEDin the time interval defined by attributeStatsLifetime .

JobsExited: A Statistics attribute defining the number of times that jobsthat exited (successfully or not) in the
time interval defined by attributeStatsLifetime .

JobsExitedAndClaimClosing: A Statistics attribute defining the number of times jobs haveexited with a
condor_shadowexit code ofJOB_EXITED_AND_CLAIM_CLOSINGin the time interval defined by attribute
StatsLifetime .

JobsExitedNormally: A Statistics attribute defining the number of times that jobshave exited with acon-
dor_shadowexit code ofJOB_EXITED or with an exit code ofJOB_EXITED_AND_CLAIM_CLOSINGin
the time interval defined by attributeStatsLifetime .

JobsExitException: A Statistics attribute defining the number of times that jobshave exited with acon-
dor_shadowexit code ofJOB_EXCEPTIONor with an unknown status in the time interval defined by attribute
StatsLifetime .

JobsKilled: A Statistics attribute defining the number of times that jobshave exited with acondor_shadowexit
code ofJOB_KILLED in the time interval defined by attributeStatsLifetime .

JobsMissedDeferralTime: A Statistics attribute defining the number of times that jobshave exited with
a condor_shadowexit code ofJOB_MISSED_DEFERRAL_TIMEin the time interval defined by attribute
StatsLifetime .

HTCondor Version 8.6.4 Reference Manual

1040

JobsNotStarted: A Statistics attribute defining the number of times that jobshave exited with acondor_shadow
exit code ofJOB_NOT_STARTEDin the time interval defined by attributeStatsLifetime .

JobsRestartReconnectsAttempting: A Statistics attribute defining the number ofcondor_startddaemons
thecondor_scheddis currently attempting to reconnect to, in order to recovera job that was running when the
condor_scheddwas restarted.

JobsRestartReconnectsBadput: A Statistics attribute defining a histogram count ofcondor_startddaemons
that thecondor_scheddcould not reconnect to in order to recover a job that was running when thecon-
dor_scheddwas restarted, as classified by the time the job spent running. Counts within the histogram are
separated by a comma and a space, where the time interval classification is defined in the ClassAd attribute
JobsRuntimesHistogramBuckets .

JobsRestartReconnectsFailed: A Statistics attribute defining the number ofcondor_startddaemons the
condor_scheddtried and failed to reconnect to in order to recover a job thatwas running when thecon-
dor_scheddwas restarted.

JobsRestartReconnectsInterrupted: A Statistics attribute defining the number ofcondor_startddaemons
thecondor_scheddattempted to reconnect to, in order to recover a job that was running when thecondor_schedd
was restarted, but the attempt was interrupted, for example, because the job was removed.

JobsRestartReconnectsLeaseExpired: A Statistics attribute defining the number ofcondor_startddae-
mons thecondor_scheddcould not attempt to reconnect to, in order to recover a job that was running when the
condor_scheddwas restarted, because the job lease had already expired.

JobsRestartReconnectsSucceeded: A Statistics attribute defining the number ofcondor_startddaemons
thecondor_scheddhas successfully reconnected to, in order to recover a job that was running when thecon-
dor_scheddwas restarted.

JobsRunning: A Statistics attribute representing the number of jobs currently running.

JobsRunningRuntimes: A Statistics attribute defining a histogram count of jobs currently running, as classified
by elapsed runtime. Counts within the histogram are separated by a comma and a space, where the time interval
classification is defined in the ClassAd attributeJobsRuntimesHistogramBuckets .

JobsRunningSizes: A Statistics attribute defining a histogram count of jobs currently running, as classified by
image size. Counts within the histogram are separated by a comma and a space, where the size classification is
defined in the ClassAd attributeJobsSizesHistogramBuckets .

JobsRuntimesHistogramBuckets: A Statistics attribute defining the predefined bucket boundaries for his-
togram statistics that classify run times. Defined as

JobsRuntimesHistogramBuckets = "30Sec, 1Min, 3Min, 10Min , 30Min, 1Hr, 3Hr,
6Hr, 12Hr, 1Day, 2Day, 4Day, 8Day, 16Day"

JobsShadowNoMemory: A Statistics attribute defining the number of times that jobshave exited because there was
not enough memory to start thecondor_shadowin the time interval defined by attributeStatsLifetime .

JobsShouldHold: A Statistics attribute defining the number of times that jobshave exited with acondor_shadow
exit code ofJOB_SHOULD_HOLDin the time interval defined by attributeStatsLifetime .

HTCondor Version 8.6.4 Reference Manual

1041

JobsShouldRemove: A Statistics attribute defining the number of times that jobshave exited with acon-
dor_shadowexit code ofJOB_SHOULD_REMOVEin the time interval defined by attributeStatsLifetime .

JobsShouldRequeue: A Statistics attribute defining the number of times that jobshave exited with acon-
dor_shadowexit code ofJOB_SHOULD_REQUEUEin the time interval defined by attributeStatsLifetime .

JobsSizesHistogramBuckets: A Statistics attribute defining the predefined bucket boundaries for histogram
statistics that classify image sizes. Defined as

JobsSizesHistogramBuckets = "64Kb, 256Kb, 1Mb, 4Mb, 16Mb, 64Mb, 256Mb,
1Gb, 4Gb, 16Gb, 64Gb, 256Gb"

Note that these values imply powers of two in numbers of bytes.

JobsStarted: A Statistics attribute defining the number of jobs started inthe time interval defined by attribute
StatsLifetime .

JobsSubmitted: A Statistics attribute defining the number of jobs submittedin the time interval defined by at-
tributeStatsLifetime .

Machine: A string with the machine’s fully qualified host name.

MaxJobsRunning: The same integer value as set by the evaluation of the configuration variable
MAX_JOBS_RUNNING. See the definition at section 3.5.10 on page 280.

MonitorSelfAge: The number of seconds that this daemon has been running.

MonitorSelfCPUUsage: The fraction of recent CPU time utilized by this daemon.

MonitorSelfImageSize: The amount of virtual memory consumed by this daemon in Kbytes.

MonitorSelfRegisteredSocketCount: The current number of sockets registered by this daemon.

MonitorSelfResidentSetSize: The amount of resident memory used by this daemon in Kbytes.

MonitorSelfSecuritySessions: The number of open (cached) security sessions for this daemon.

MonitorSelfTime: The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC,
Jan 1, 1970), at which this daemon last checked and set the attributes with names that begin with the string
MonitorSelf .

MyAddress: String with the IP and port address of thecondor_schedddaemon which is publishing this ClassAd.

MyCurrentTime: The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan
1, 1970), at which thecondor_schedddaemon last sent a ClassAd update to thecondor_collector.

Name: The name of this resource; typically the same value as theMachine attribute, but could be customized
by the site administrator. On SMP machines, thecondor_startdwill divide the CPUs up into separate
slots, each with with a unique name. These names will be of theform “slot#@full.hostname”, for example,
“slot1@vulture.cs.wisc.edu”, which signifies slot number1 from vulture.cs.wisc.edu.

NumJobStartsDelayed: The number times a job requiring acondor_shadowdaemon could have been
started, but was not started because of the values of configuration variablesJOB_START_COUNTand
JOB_START_DELAY.

HTCondor Version 8.6.4 Reference Manual

1042

NumPendingClaims: The number of machines (condor_startddaemons) matched to thiscondor_schedddaemon,
which thiscondor_scheddknows about, but has not yet managed to claim.

NumUsers: The integer number of distinct users with jobs in thiscondor_schedd’s queue.

PublicNetworkIpAddr: Description is not yet written.

RecentDaemonCoreDutyCycle: A Statistics attribute defining the ratio of the time spent handling messages and
events to the elapsed time in the previous time interval defined by attributeRecentStatsLifetime .

RecentJobsAccumBadputTime: A Statistics attribute defining the sum of the all of the time that jobs
which did not complete successfully have spent running in the previous time interval defined by attribute
RecentStatsLifetime .

RecentJobsAccumRunningTime: A Statistics attribute defining the sum of the all of the time jobs which have
exited in the previous time interval defined by attributeRecentStatsLifetime spent running.

RecentJobsAccumTimeToStart: A Statistics attribute defining the sum of all the time jobs which have exited
in the previous time interval defined by attributeRecentStatsLifetime had spent waiting to start.

RecentJobsBadputRuntimes: A Statistics attribute defining a histogram count of jobs that did not com-
plete successfully, as classified by time spent running, in the previous time interval defined by attribute
RecentStatsLifetime . Counts within the histogram are separated by a comma and a space, where the
time interval classification is defined in the ClassAd attributeJobsRuntimesHistogramBuckets .

RecentJobsBadputSizes: A Statistics attribute defining a histogram count of jobs that did not com-
plete successfully, as classified by image size, in the previous time interval defined by attribute
RecentStatsLifetime . Counts within the histogram are separated by a comma and a space, where the
size classification is defined in the ClassAd attributeJobsSizesHistogramBuckets .

RecentJobsCheckpointed: A Statistics attribute defining the number of times jobs thathave exited
with a condor_shadowexit code of JOB_CKPTEDin the previous time interval defined by attribute
RecentStatsLifetime .

RecentJobsCompleted: A Statistics attribute defining the number of jobs successfully completed in the previous
time interval defined by attributeRecentStatsLifetime .

RecentJobsCompletedRuntimes: A Statistics attribute defining a histogram count of jobs that com-
pleted successfully, as classified by time spent running, inthe previous time interval defined by attribute
RecentStatsLifetime . Counts within the histogram are separated by a comma and a space, where the
time interval classification is defined in the ClassAd attributeJobsRuntimesHistogramBuckets .

RecentJobsCompletedSizes: A Statistics attribute defining a histogram count of jobs that completed success-
fully, as classified by image size, in the previous time interval defined by attributeRecentStatsLifetime .
Counts within the histogram are separated by a comma and a space, where the size classification is defined in
the ClassAd attributeJobsSizesHistogramBuckets .

RecentJobsCoredumped: A Statistics attribute defining the number of times that jobshave exited with
a condor_shadowexit code of JOB_COREDUMPEDin the previous time interval defined by attribute
RecentStatsLifetime .

HTCondor Version 8.6.4 Reference Manual

1043

RecentJobsDebugLogError: A Statistics attribute defining the number of times that jobshave exited
with a condor_shadowexit code ofDPRINTF_ERRORin the previous time interval defined by attribute
RecentStatsLifetime .

RecentJobsExecFailed: A Statistics attribute defining the number of times that jobshave exited with
a condor_shadowexit code of JOB_EXEC_FAILED in the previous time interval defined by attribute
RecentStatsLifetime .

RecentJobsExited: A Statistics attribute defining the number of times that jobshave exited normally in the
previous time interval defined by attributeRecentStatsLifetime .

RecentJobsExitedAndClaimClosing: A Statistics attribute defining the number of times that jobshave ex-
ited with acondor_shadowexit code ofJOB_EXITED_AND_CLAIM_CLOSINGin the previous time interval
defined by attributeRecentStatsLifetime .

RecentJobsExitedNormally: A Statistics attribute defining the number of times that jobshave exited with a
condor_shadowexit code ofJOB_EXITED or with an exit code ofJOB_EXITED_AND_CLAIM_CLOSING
in the previous time interval defined by attributeRecentStatsLifetime .

RecentJobsExitException: A Statistics attribute defining the number of times that jobshave exited with a
condor_shadowexit code ofJOB_EXCEPTIONor with an unknown status in the previous time interval defined
by attributeRecentStatsLifetime .

RecentJobsKilled: A Statistics attribute defining the number of times that jobshave exited with
a condor_shadowexit code of JOB_KILLED in the previous time interval defined by attribute
RecentStatsLifetime .

RecentJobsMissedDeferralTime: A Statistics attribute defining the number of times that jobshave exited
with acondor_shadowexit code ofJOB_MISSED_DEFERRAL_TIMEin the previous time interval defined by
attributeRecentStatsLifetime .

RecentJobsNotStarted: A Statistics attribute defining the number of times that jobshave exited with
a condor_shadowexit code of JOB_NOT_STARTEDin the previous time interval defined by attribute
RecentStatsLifetime .

RecentJobsShadowNoMemory: A Statistics attribute defining the number of times that jobshave exited because
there was not enough memory to start thecondor_shadowin the previous time interval defined by attribute
RecentStatsLifetime .

RecentJobsShouldHold: A Statistics attribute defining the number of times that jobshave exited with
a condor_shadowexit code of JOB_SHOULD_HOLDin the previous time interval defined by attribute
RecentStatsLifetime .

RecentJobsShouldRemove: A Statistics attribute defining the number of times that jobshave exited with
a condor_shadowexit code ofJOB_SHOULD_REMOVEin the previous time interval defined by attribute
RecentStatsLifetime .

RecentJobsShouldRequeue: A Statistics attribute defining the number of times that jobshave exited with
a condor_shadowexit code ofJOB_SHOULD_REQUEUEin the previous time interval defined by attribute
RecentStatsLifetime .

HTCondor Version 8.6.4 Reference Manual

1044

RecentJobsStarted: A Statistics attribute defining the number of jobs started inthe previous time interval de-
fined by attributeRecentStatsLifetime .

RecentJobsSubmitted: A Statistics attribute defining the number of jobs submittedin the previous time interval
defined by attributeRecentStatsLifetime .

RecentShadowsReconnections: A Statistics attribute defining the number of times thatcondor_shadowdae-
mons lost connection to theircondor_starterdaemons and successfully reconnected in the previous time inter-
val defined by attributeRecentStatsLifetime . This statistic only appears in the Scheduler ClassAd if the
level of verbosity set by the configuration variableSTATISTICS_TO_PUBLISH is set to 2 or higher.

RecentShadowsRecycled: A Statistics attribute defining the number of timescondor_shadowprocesses
have been recycled for use with a new job in the previous time interval defined by attribute
RecentStatsLifetime . This statistic only appears in the Scheduler ClassAd if thelevel of verbosity set
by the configuration variableSTATISTICS_TO_PUBLISH is set to 2 or higher.

RecentShadowsStarted: A Statistics attribute defining the number ofcondor_shadowdaemons started in the
previous time interval defined by attributeRecentStatsLifetime .

RecentStatsLifetime: A Statistics attribute defining the time in seconds over which statistics values have been
collected for attributes with names that begin withRecent . This value starts at 0, and it may grow to a value
as large as the value defined for attributeRecentWindowMax .

RecentStatsTickTime: A Statistics attribute defining the time that attributes with names that begin with
Recent were last updated, represented as the number of seconds elapsed since the Unix epoch (00:00:00
UTC, Jan 1, 1970). This statistic only appears in the Scheduler ClassAd if the level of verbosity set by the
configuration variableSTATISTICS_TO_PUBLISH is set to 2 or higher.

RecentWindowMax: A Statistics attribute defining the maximum time in seconds over which attributes
with names that begin withRecent are collected. The value is set by the configuration vari-
able STATISTICS_WINDOW_SECONDS, which defaults to 1200 seconds (20 minutes). This statis-
tic only appears in the Scheduler ClassAd if the level of verbosity set by the configuration variable
STATISTICS_TO_PUBLISH is set to 2 or higher.

ScheddIpAddr: String with the IP and port address of thecondor_schedddaemon which is publishing this Sched-
uler ClassAd.

ServerTime: Description is not yet written.

ShadowsReconnections: A Statistics attribute defining the number of timescondor_shadows lost connec-
tion to theircondor_starters and successfully reconnected in the previousStatsLifetime seconds. This
statistic only appears in the Scheduler ClassAd if the levelof verbosity set by the configuration variable
STATISTICS_TO_PUBLISH is set to 2 or higher.

ShadowsRecycled: A Statistics attribute defining the number of timescondor_shadowprocesses have been re-
cycled for use with a new job in the previousStatsLifetime seconds. This statistic only appears in the
Scheduler ClassAd if the level of verbosity set by the configuration variableSTATISTICS_TO_PUBLISH is
set to 2 or higher.

ShadowsRunning: A Statistics attribute defining the number ofcondor_shadowdaemons currently running that
are owned by thiscondor_schedd.

HTCondor Version 8.6.4 Reference Manual

1045

ShadowsRunningPeak: A Statistics attribute defining the maximum number ofcondor_shadowdaemons running
at one time that were owned by thiscondor_scheddover the lifetime of thiscondor_schedd.

ShadowsStarted: A Statistics attribute defining the number ofcondor_shadowdaemons started in the previous
time interval defined by attributeStatsLifetime .

StartLocalUniverse: The same boolean value as set in the configuration variable
START_LOCAL_UNIVERSE. See the definition at section 3.5.10 on page 279.

StartSchedulerUniverse: The same boolean value as set in the configuration variable
START_SCHEDULER_UNIVERSE. See the definition at section 3.5.10 on page 280.

StatsLastUpdateTime: A Statistics attribute defining the time that statistics about jobs were last updated,
represented as the number of seconds elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970). This
statistic only appears in the Scheduler ClassAd if the levelof verbosity set by the configuration variable
STATISTICS_TO_PUBLISH is set to 2 or higher.

StatsLifetime: A Statistics attribute defining the time in seconds over which statistics have been collected for
attributes with names that donot begin withRecent . This statistic only appears in the Scheduler ClassAd if
the level of verbosity set by the configuration variableSTATISTICS_TO_PUBLISH is set to 2 or higher.

TotalFlockedJobs: The total number of jobs from thiscondor_schedddaemon that are currently flocked to other
pools.

TotalHeldJobs: The total number of jobs from thiscondor_schedddaemon that are currently on hold.

TotalIdleJobs: The total number of jobs from thiscondor_schedddaemon that are currently idle, not including
local or scheduler universe jobs.

TotalJobAds: The total number of all jobs (in all states) from thiscondor_schedddaemon.

TotalLocalJobsIdle: The total number oflocal universe jobs from thiscondor_schedddaemon that are cur-
rently idle.

TotalLocalJobsRunning: The total number oflocal universe jobs from thiscondor_schedddaemon that are
currently running.

TotalRemovedJobs: The current number of all running jobs from thiscondor_schedddaemon that have remove
requests.

TotalRunningJobs: The total number of jobs from thiscondor_schedddaemon that are currently running, not
including local or scheduler universe jobs.

TotalSchedulerJobsIdle: The total number ofscheduler universejobs from thiscondor_schedddaemon
that are currently idle.

TotalSchedulerJobsRunning: The total number ofscheduler universejobs from thiscondor_schedddae-
mon that are currently running.

TransferQueueUserExpr A ClassAd expression that provides the name of the transfer queue that thecon-
dor_scheddwill be using for job file transfer.

HTCondor Version 8.6.4 Reference Manual

1046

UpdateInterval: The interval, in seconds, between publication of thiscondor_scheddClassAd and the previous
publication.

UpdateSequenceNumber: An integer, starting at zero, and incremented with each ClassAd update sent to the
condor_collector. Thecondor_collectoruses this value to sequence the updates it receives.

VirtualMemory: Description is not yet written.

WantResAd: A boolean value that whenTrue causes thecondor_negotiatordaemon to send to thiscondor_schedd
daemon a full machine ClassAd corresponding to a matched job.

When using file transfer concurrency limits, the following additional I/O usage statistics are published. These
includes the sum and rate of bytes transferred as well as timespent reading and writing to files and to the network.
These statistics are reported for the sum of all users and mayalso be reported individually for recently active users
by increasing the verbosity levelSTATISTICS_TO_PUBLISH = TRANSFER:2. Each of the per-user statistics
is prefixed by a user name in the formOwner_<username>_FileTransferUploadBytes . In this case, the
attribute represents activity by the specified user. The published user name is actually the file transfer queue name, as
defined by configuration variableTRANSFER_QUEUE_USER_EXPR. This expression defaults toOwner_ followed
by the name of the job owner. The attributes that are rates have a suffix that specifies the time span of the exponential
moving average. By default the time spans that are publishedare 1m, 5m, 1h, and 1d. This can be changed by
configuring configuration variableTRANSFER_IO_REPORT_TIMESPANS. These attributes are only reported once
a full time span has accumulated.

FileTransferDiskThrottleExcess_<timespan> The exponential moving average of the disk load that
exceeds the upper limit set for the disk load throttle. Periods of time in which there is no excess and no
waiting transfers do not contribute to the average. This attribute is published only if configuration variable
FILE_TRANSFER_DISK_LOAD_THROTTLEis defined.

FileTransferDiskThrottleHigh The desired upper limit for the disk load from file transfers,as configured
by FILE_TRANSFER_DISK_LOAD_THROTTLE. This attribute is published only if configuration variable
FILE_TRANSFER_DISK_LOAD_THROTTLEis defined.

FileTransferDiskThrottleLevel The current concurrency limit set by the disk load throttle.The limit
is applied to the sum of uploads and downloads. This attribute is published only if configuration variable
FILE_TRANSFER_DISK_LOAD_THROTTLEis defined.

FileTransferDiskThrottleLow The lower limit for the disk load from file transfers, as configured by
FILE_TRANSFER_DISK_LOAD_THROTTLE. This attribute is published only if configuration variable
FILE_TRANSFER_DISK_LOAD_THROTTLEis defined.

FileTransferDiskThrottleShortfall_<timespan> The exponential moving average of the disk load
that falls below the upper limit set for the disk load throttle. Periods of time in which there is no excess and
no waiting transfers do not contribute to the average. This attribute is published only if configuration variable
FILE_TRANSFER_DISK_LOAD_THROTTLEis defined.

FileTransferDownloadBytes Total number of bytes downloaded as output from jobs since
this condor_scheddwas started. If STATISTICS_TO_PUBLISH contains TRANSFER:2, for
each active user, this attribute is also published prefixed by the user name, with the name

HTCondor Version 8.6.4 Reference Manual

1047

Owner_<username>_FileTransferDownloadBytes . The published user name is actually the
file transfer queue name, as defined by configuration variableTRANSFER_QUEUE_USER_EXPR.

FileTransferDownloadBytesPerSecond_<timespan> Exponential moving average over the specified
time span of the rate at which bytes have been downloaded as output from jobs. The time spans that are pub-
lished are configured byTRANSFER_IO_REPORT_TIMESPANS, which defaults to 1m, 5m, 1h, and 1d. When
less than one full time span has accumulated, the attribute is not published. IfSTATISTICS_TO_PUBLISH
containsTRANSFER:2, for each active user, this attribute is also published prefixed by the user name,
with the nameOwner_<username>_FileTransferDownloadBytesPerSecond _<timespan> .
The published user name is actually the file transfer queue name, as defined by configuration variable
TRANSFER_QUEUE_USER_EXPR.

FileTransferFileReadLoad_<timespan> Exponential moving average over the specified time span
of the rate at which submit-side file transfer processes havespent time reading from files to be
transferred as input to jobs. One file transfer process spending nearly all of its time reading
files will generate a load close to 1.0. The time spans that arepublished are configured by
TRANSFER_IO_REPORT_TIMESPANS, which defaults to 1m, 5m, 1h, and 1d. When less than one
full time span has accumulated, the attribute is not published. If STATISTICS_TO_PUBLISH contains
TRANSFER:2, for each active user, this attribute is also published prefixed by the user name, with the name
Owner_<username>_FileTransferFileReadLoad_<timespan >. The published user name is ac-
tually the file transfer queue name, as defined by configuration variableTRANSFER_QUEUE_USER_EXPR.

FileTransferFileReadSeconds Total number of submit-side transfer process seconds spentreading from
files to be transferred as input to jobs since thiscondor_scheddwas started. IfSTATISTICS_TO_PUBLISH
containsTRANSFER:2, for each active user, this attribute is also published prefixed by the user name, with the
nameOwner_<username>_FileTransferFileReadSeconds . The published user name is actually
the file transfer queue name, as defined by configuration variableTRANSFER_QUEUE_USER_EXPR.

FileTransferFileWriteLoad_<timespan> Exponential moving average over the specified time span
of the rate at which submit-side file transfer processes havespent time writing to files trans-
ferred as output from jobs. One file transfer process spending nearly all of its time writing to
files will generate a load close to 1.0. The time spans that arepublished are configured by
TRANSFER_IO_REPORT_TIMESPANS, which defaults to 1m, 5m, 1h, and 1d. When less than one
full time span has accumulated, the attribute is not published. If STATISTICS_TO_PUBLISH contains
TRANSFER:2, for each active user, this attribute is also published prefixed by the user name, with the name
Owner_<username>_FileTransferFileWriteLoad_<timespa n>. The published user name is ac-
tually the file transfer queue name, as defined by configuration variableTRANSFER_QUEUE_USER_EXPR.

FileTransferFileWriteSeconds Total number of submit-side transfer process seconds spentwriting to files
transferred as output from jobs since thiscondor_scheddwas started. IfSTATISTICS_TO_PUBLISH contains
TRANSFER:2, for each active user, this attribute is also published prefixed by the user name, with the name
Owner_<username>_FileTransferFileWriteSeconds . The published user name is actually the
file transfer queue name, as defined by configuration variableTRANSFER_QUEUE_USER_EXPR.

FileTransferNetReadLoad_<timespan> Exponential moving average over the specified time span of the
rate at which submit-side file transfer processes have spenttime reading from the network when transfer-
ring output from jobs. One file transfer process spending nearly all of its time reading from the network
will generate a load close to 1.0. The reason a file transfer process may spend a long time writing to the

HTCondor Version 8.6.4 Reference Manual

1048

network could be a network bottleneck on the path between thesubmit and execute machine. It could also
be caused by slow reads from the disk on the execute side. The time spans that are published are config-
ured byTRANSFER_IO_REPORT_TIMESPANS, which defaults to 1m, 5m, 1h, and 1d. When less than
one full time span has accumulated, the attribute is not published. IfSTATISTICS_TO_PUBLISH contains
TRANSFER:2, for each active user, this attribute is also published prefixed by the user name, with the name
Owner_<username>_FileTransferNetReadLoad_<timespan> . The published user name is actu-
ally the file transfer queue name, as defined by configuration variableTRANSFER_QUEUE_USER_EXPR.

FileTransferNetReadSeconds Total number of submit-side transfer process seconds spentreading from the
network when transferring output from jobs since thiscondor_scheddwas started. The reason a file transfer
process may spend a long time writing to the network could be anetwork bottleneck on the path between the
submit and execute machine. It could also be caused by slow reads from the disk on the execute side. If
STATISTICS_TO_PUBLISH containsTRANSFER:2, for each active user, this attribute is also published
prefixed by the user name, with the nameOwner_<username>_FileTransferNetReadSeconds .
The published user name is actually the file transfer queue name, as defined by configuration variable
TRANSFER_QUEUE_USER_EXPR.

FileTransferNetWriteLoad_<timespan> Exponential moving average over the specified time span of
the rate at which submit-side file transfer processes have spent time writing to the network when transfer-
ring input to jobs. One file transfer process spending nearlyall of its time writing to the network will
generate a load close to 1.0. The reason a file transfer process may spend a long time writing to the net-
work could be a network bottleneck on the path between the submit and execute machine. It could also
be caused by slow writes to the disk on the execute side. The time spans that are published are config-
ured byTRANSFER_IO_REPORT_TIMESPANS, which defaults to 1m, 5m, 1h, and 1d. When less than
one full time span has accumulated, the attribute is not published. IfSTATISTICS_TO_PUBLISH contains
TRANSFER:2, for each active user, this attribute is also published prefixed by the user name, with the name
Owner_<username>_FileTransferNetWriteLoad_<timespan >. The published user name is ac-
tually the file transfer queue name, as defined by configuration variableTRANSFER_QUEUE_USER_EXPR.

FileTransferNetWriteSeconds Total number of submit-side transfer process seconds spentwriting to the
network when transferring input to jobs since thiscondor_scheddwas started. The reason a file transfer pro-
cess may spend a long time writing to the network could be a network bottleneck on the path between the
submit and execute machine. It could also be caused by slow writes to the disk on the execute side. The
time spans that are published are configured byTRANSFER_IO_REPORT_TIMESPANS, which defaults to
1m, 5m, 1h, and 1d. When less than one full time span has accumulated, the attribute is not published. If
STATISTICS_TO_PUBLISH containsTRANSFER:2, for each active user, this attribute is also published
prefixed by the user name, with the nameOwner_<username>_FileTransferNetWriteSeconds .
The published user name is actually the file transfer queue name, as defined by configuration variable
TRANSFER_QUEUE_USER_EXPR.

FileTransferUploadBytes Total number of bytes uploaded as input to jobs since thiscondor_scheddwas
started. IfSTATISTICS_TO_PUBLISH containsTRANSFER:2, for each active user, this attribute is also pub-
lished prefixed by the user name, with the nameOwner_<username>_FileTransferUploadBytes .
The published user name is actually the file transfer queue name, as defined by configuration variable
TRANSFER_QUEUE_USER_EXPR.

FileTransferUploadBytesPerSecond_<timespan> Exponential moving average over the specified time
span of the rate at which bytes have been uploaded as input to jobs. The time spans that are published are

HTCondor Version 8.6.4 Reference Manual

1049

configured byTRANSFER_IO_REPORT_TIMESPANS, which defaults to 1m, 5m, 1h, and 1d. When less
than one full time span has accumulated, the attribute is notpublished. IfSTATISTICS_TO_PUBLISH
containsTRANSFER:2, for each active user, this attribute is also published prefixed by the user name,
with the nameOwner_<username>_FileTransferUploadBytesPerSecond_< timespan> . The
published user name is actually the file transfer queue name,as defined by configuration variable
TRANSFER_QUEUE_USER_EXPR.

TransferQueueMBWaitingToDownload Number of megabytes of output files waiting to be downloaded.

TransferQueueMBWaitingToUpload Number of megabytes of input files waiting to be uploaded.

TransferQueueNumWaitingToDownload Number of jobs waiting to transfer output files.

TransferQueueNumWaitingToUpload Number of jobs waiting to transfer input files.

Negotiator ClassAd Attributes

CondorVersion: A string containing the HTCondor version number, the release date, and the build identification
number.

DaemonStartTime: The time that this daemon was started, represented as the number of second elapsed since the
Unix epoch (00:00:00 UTC, Jan 1, 1970).

LastNegotiationCycleActiveSubmitterCount<X>: The integer number of submitters thecon-
dor_negotiatorattempted to negotiate with in the negotiation cycle. The number<X> appended to the attribute
name indicates how many negotiation cycles ago this cycle happened.

LastNegotiationCycleCandidateSlots<X>: The number of slot ClassAds after filtering by
NEGOTIATOR_SLOT_POOLSIZE_CONSTRAINT. This is the number of slots actually considered for
matching. The number<X> appended to the attribute name indicates how many negotiation cycles ago this
cycle happened.

LastNegotiationCycleDuration<X>: The number of seconds that it took to complete the negotiation cycle.
The number<X> appended to the attribute name indicates how many negotiation cycles ago this cycle happened.

LastNegotiationCycleEnd<X>: The time, represented as the number of seconds since the Unixepoch, at
which the negotiation cycle ended. The number<X> appended to the attribute name indicates how many nego-
tiation cycles ago this cycle happened.

LastNegotiationCycleMatches<X>: The number of successful matches that were made in the negotiation
cycle. The number<X> appended to the attribute name indicates how many negotiation cycles ago this cycle
happened.

LastNegotiationCycleMatchRate<X>: The number of matched jobs divided by the duration of this cycle
giving jobs per second. The number<X> appended to the attribute name indicates how many negotiation cycles
ago this cycle happened.

HTCondor Version 8.6.4 Reference Manual

1050

LastNegotiationCycleMatchRateSustained<X>: The number of matched jobs divided by the period of
this cycle giving jobs per second. The period is the time elapsed between the end of the previous cycle and
the end of this cycle, and so this rate includes the interval between cycles. The number<X> appended to the
attribute name indicates how many negotiation cycles ago this cycle happened.

LastNegotiationCycleNumIdleJobs<X>: The number of idle jobs considered for matchmaking. The num-
ber<X> appended to the attribute name indicates how many negotiation cycles ago this cycle happened.

LastNegotiationCycleNumJobsConsidered<X>: The number of jobs requests returned from the sched-
ulers for consideration. The number<X> appended to the attribute name indicates how many negotiation cycles
ago this cycle happened.

LastNegotiationCycleNumSchedulers<X>: The number of individual schedulers negotiated with during
matchmaking. The number<X> appended to the attribute name indicates how many negotiation cycles ago this
cycle happened.

LastNegotiationCyclePeriod<X>: The number of seconds elapsed between the end of the previousnego-
tiation cycle and the end of this cycle. The number<X> appended to the attribute name indicates how many
negotiation cycles ago this cycle happened.

LastNegotiationCyclePhase1Duration<X>: The duration, in seconds, of Phase 1 of the negotiation cycle:
the process of getting submitter and machine ClassAds from thecondor_collector. The number<X> appended
to the attribute name indicates how many negotiation cyclesago this cycle happened.

LastNegotiationCyclePhase2Duration<X>: The duration, in seconds, of Phase 2 of the negotiation cycle:
the process of filtering slots and processing accounting group configuration. The number<X> appended to the
attribute name indicates how many negotiation cycles ago this cycle happened.

LastNegotiationCyclePhase3Duration<X>: The duration, in seconds, of Phase 3 of the negotiation cycle:
sorting submitters by priority. The number<X> appended to the attribute name indicates how many negotiation
cycles ago this cycle happened.

LastNegotiationCyclePhase4Duration<X>: The duration, in seconds, of Phase 4 of the negotiation cycle:
the process of matching slots to jobs in conjunction with theschedulers. The number<X> appended to the
attribute name indicates how many negotiation cycles ago this cycle happened.

LastNegotiationCycleRejections<X>: The number of rejections that occurred in the negotiation cycle.
The number<X> appended to the attribute name indicates how many negotiation cycles ago this cycle happened.

LastNegotiationCycleSlotShareIter<X>: The number of iterations performed during the negotiation cy-
cle. Each iteration includes the reallocation of remainingslots to accounting groups, as defined by the imple-
mentation of hierarchical group quotas, together with the negotiation for those slots. The maximum number of
iterations is limited by the configuration variableGROUP_QUOTA_MAX_ALLOCATION_ROUNDS.The number
<X> appended to the attribute name indicates how many negotiation cycles ago this cycle happened.

LastNegotiationCycleSubmittersFailed<X>: A string containing a space and comma-separated
list of the names of all submitters who failed to negotiate inthe negotiation cycle. One pos-
sible cause of failure is a communication timeout. This listdoes not include submitters who
ran out of time due toNEGOTIATOR_MAX_TIME_PER_SUBMITTER. Those are listed separately in
LastNegotiationCycleSubmittersOutOfTime<X> . The number<X> appended to the attribute
name indicates how many negotiation cycles ago this cycle happened.

HTCondor Version 8.6.4 Reference Manual

1051

LastNegotiationCycleSubmittersOutOfTime<X>: A string containing a space and comma separated list
of the names of all submitters who ran out of time due toNEGOTIATOR_MAX_TIME_PER_SUBMITTERin
the negotiation cycle. The number<X> appended to the attribute name indicates how many negotiation cycles
ago this cycle happened.

LastNegotiationCycleSubmittersShareLimit: A string containing a space and comma separated list of
names of submitters who encountered their fair-share slot limit during the negotiation cycle. The number<X>
appended to the attribute name indicates how many negotiation cycles ago this cycle happened.

LastNegotiationCycleTime<X>: The time, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970), at which the negotiation cycle started. The number<X> appended to the attribute
name indicates how many negotiation cycles ago this cycle happened.

LastNegotiationCycleTotalSlots<X>: The total number of slot ClassAds received by thecon-
dor_negotiator. The number<X> appended to the attribute name indicates how many negotiation cycles ago
this cycle happened.

LastNegotiationCycleTrimmedSlots<X>: The number of slot ClassAds left after trimming currently
claimed slots (when enabled). The number<X> appended to the attribute name indicates how many negoti-
ation cycles ago this cycle happened.

Machine: A string with the machine’s fully qualified host name.

MyAddress: String with the IP and port address of thecondor_negotiatordaemon which is publishing this ClassAd.

MyCurrentTime: The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan
1, 1970), at which thecondor_schedddaemon last sent a ClassAd update to thecondor_collector.

Name: The name of this resource; typically the same value as theMachine attribute, but could be customized
by the site administrator. On SMP machines, thecondor_startdwill divide the CPUs up into separate slots,
each with with a unique name. These names will be of the formslot#@full.hostname , for example,
slot1@vulture.cs.wisc.edu , which signifies slot number 1 fromvulture.cs.wisc.edu .

NegotiatorIpAddr: String with the IP and port address of thecondor_negotiatordaemon which is publishing
this Negotiator ClassAd.

PublicNetworkIpAddr: Description is not yet written.

UpdateSequenceNumber: An integer, starting at zero, and incremented with each ClassAd update sent to the
condor_collector. Thecondor_collectoruses this value to sequence the updates it receives.

Submitter ClassAd Attributes

CondorVersion: A string containing the HTCondor version number, the release date, and the build identification
number.

FlockedJobs: The number of jobs from this submitter that are running in another pool.

HeldJobs: The number of jobs from this submitter that are in the hold state.

HTCondor Version 8.6.4 Reference Manual

1052

IdleJobs: The number of jobs from this submitter that are now idle. Scheduler and Local universe jobs are not
included in this count.

LocalJobsIdle: The number of Local universe jobs from this submitter that are now idle.

LocalJobsRunning: The number of Local universe jobs from this submitter that are running.

MyAddress: The IP address associated with thecondor_schedddaemon used by the submitter.

Name: The fully qualified name of the user or accounting group. It will be of the formname@submit.domain .

RunningJobs: The number of jobs from this submitter that are running now. Scheduler and Local universe jobs
are not included in this count.

ScheddIpAddr: The IP address associated with thecondor_schedddaemon used by the submitter. This attribute is
obsolete Use MyAddress instead.

ScheddName: The fully qualified host name of the machine that the submitter submitted from. It will be of the form
submit.domain .

SchedulerJobsIdle: The number of Scheduler universe jobs from this submitter that are now idle.

SchedulerJobsRunning: The number of Scheduler universe jobs from this submitter that are running.

SubmitterTag: The fully qualified host name of the central manager of the pool used by the submitter, if the job
flocked to the local pool. Or, it will be the empty string if submitter submitted from within the local pool.

WeightedIdleJobs: A total number of requested cores across all Idle jobs from the submitter, weighted by the
slot weight. As an example, ifSLOT_WEIGHT = CPUS, and a job requests two CPUs, the weight of that job
is two.

WeightedRunningJobs: A total number of requested cores across all Running jobs from the submitter.

Defrag ClassAd Attributes

AvgDrainingBadput: Fraction of time CPUs in the pool have spent on jobs that were killed during draining of
the machine. This is calculated in each polling interval by looking atTotalMachineDrainingBadput .
Therefore, it treats evictions of jobs that do and do not produce checkpoints the same. When thecondor_startd
restarts, its counters start over from 0, so the average is only over the time since the daemons have been alive.

AvgDrainingUnclaimedTime: Fraction of time CPUs in the pool have spent unclaimed by a user
during draining of the machine. This is calculated in each polling interval by looking at
TotalMachineDrainingUnclaimedTime . When thecondor_startdrestarts, its counters start over from
0, so the average is only over the time since the daemons have been alive.

DaemonStartTime: The time that this daemon was started, represented as the number of seconds elapsed since
the Unix epoch (00:00:00 UTC, Jan 1, 1970).

DrainedMachines: A count of the number of fully drained machines which have arrived during the run time of
thiscondor_defragdaemon.

HTCondor Version 8.6.4 Reference Manual

1053

DrainFailures: Total count of failed attempts to initiate draining during the lifetime of thiscondor_defragdae-
mon.

DrainSuccesses: Total count of successful attempts to initiate draining during the lifetime of thiscondor_defrag
daemon.

Machine: A string with the machine’s fully qualified host name.

MachinesDraining: Number of machines that were observed to be draining in the last polling interval.

MachinesDrainingPeak: Largest number of machines that were ever observed to be draining.

MeanDrainedArrived: The mean time in seconds between arrivals of fully drained machines.

MonitorSelfAge: The number of seconds that this daemon has been running.

MonitorSelfCPUUsage: The fraction of recent CPU time utilized by this daemon.

MonitorSelfImageSize: The amount of virtual memory consumed by this daemon in KiB.

MonitorSelfRegisteredSocketCount: The current number of sockets registered by this daemon.

MonitorSelfResidentSetSize: The amount of resident memory used by this daemon in KiB.

MonitorSelfSecuritySessions: The number of open (cached) security sessions for this daemon.

MonitorSelfTime: The time, represented as the number of seconds elapsed sincethe Unix epoch (00:00:00 UTC,
Jan 1, 1970), at which this daemon last checked and set the attributes with names that begin with the string
MonitorSelf .

MyAddress: String with the IP and port address of thecondor_defragdaemon which is publishing this ClassAd.

MyCurrentTime: The time, represented as the number of seconds elapsed sincethe Unix epoch (00:00:00 UTC,
Jan 1, 1970), at which thecondor_defragdaemon last sent a ClassAd update to thecondor_collector.

Name: The name of this daemon; typically the same value as theMachine attribute, but could be customized by the
site administrator via the configuration variableDEFRAG_NAME.

RecentDrainFailures: Count of failed attempts to initiate draining during the past RecentStatsLifetime
seconds.

RecentDrainSuccesses: Count of successful attempts to initiate draining during the past
RecentStatsLifetime seconds.

RecentStatsLifetime: A Statistics attribute defining the time in seconds over which statistics values have been
collected for attributes with names that begin withRecent .

UpdateSequenceNumber: An integer, starting at zero, and incremented with each ClassAd update sent to the
condor_collector. Thecondor_collectoruses this value to sequence the updates it receives.

WholeMachines: Number of machines that were observed to be defragmented in the last polling interval.

WholeMachinesPeak: Largest number of machines that were ever observed to be simultaneously defragmented.

HTCondor Version 8.6.4 Reference Manual

1054

Collector ClassAd Attributes

CollectorIpAddr: String with the IP and port address of thecondor_collectordaemon which is publishing this
ClassAd.

CondorVersion: A string containing the HTCondor version number, the release date, and the build identification
number.

CurrentJobsRunningAll: An integer value representing the sum of all jobs running under all universes.

CurrentJobsRunning<universe>: An integer value representing the current number of jobs running under
the universe which forms the attribute name. For example

CurrentJobsRunningVanilla = 567

identifies that thecondor_collectorcounts 567 vanilla universe jobs currently running.<universe> is one
of Unknown, Standard , Vanilla , Scheduler , Java , Parallel , VM, or Local . There are other
universes, but they are not listed here, as they represent ones that are no longer used in Condor.

DaemonStartTime: The time that this daemon was started, represented as the number of second elapsed since the
Unix epoch (00:00:00 UTC, Jan 1, 1970).

HostsClaimed: Description is not yet written.

HostsOwner: Description is not yet written.

HostsTotal: Description is not yet written.

HostsUnclaimed: Description is not yet written.

IdleJobs: Description is not yet written.

Machine: A string with the machine’s fully qualified host name.

MaxJobsRunning<universe: An integer value representing the sum of allMaxJobsRunning<universe>
values.

MaxJobsRunning<universe>: An integer value representing largest number of currently running jobs ever seen
under the universe which forms the attribute name, over the life of thiscondor_collectorprocess. For example

MaxJobsRunningVanilla = 401

identifies that thecondor_collectorsaw 401 vanilla universe jobs currently running at one pointin time, and
that was the largest number it had encountered.<universe> is one ofUnknown, Standard , Vanilla ,
Scheduler , Java , Parallel , VM, orLocal . There are other universes, but they are not listed here, as they
represent ones that are no longer used in Condor.

MyAddress: String with the IP and port address of thecondor_collectordaemon which is publishing this ClassAd.

MyCurrentTime: The time, represented as the number of second elapsed since the Unix epoch (00:00:00 UTC, Jan
1, 1970), at which thecondor_schedddaemon last sent a ClassAd update to thecondor_collector.

HTCondor Version 8.6.4 Reference Manual

1055

Name: The name of this resource; typically the same value as theMachine attribute, but could be customized
by the site administrator. On SMP machines, thecondor_startdwill divide the CPUs up into separate
slots, each with with a unique name. These names will be of theform “slot#@full.hostname”, for example,
“slot1@vulture.cs.wisc.edu”, which signifies slot number1 from vulture.cs.wisc.edu.

RunningJobs: Definition not yet written.

StartdAds: The integer number of uniquecondor_startddaemon ClassAds counted at the most recent time the
condor_collectorupdated its own ClassAd.

StartdAdsPeak: The largest integer number of uniquecondor_startddaemon ClassAds seen at any one time,
since thecondor_collectorbegan executing.

SubmitterAds: The integer number of unique submitters counted at the most recent time thecondor_collector
updated its own ClassAd.

SubmitterAdsPeak: The largest integer number of unique submitters seen at any one time, since thecon-
dor_collectorbegan executing.

UpdateInterval: Description is not yet written.

UpdateSequenceNumber: An integer that begins at 0, and increments by one each time the same ClassAd is
again advertised.

UpdatesInitial: A Statistics attribute representing a count of unique ClassAds seen, over the lifetime
of this condor_collector. Counts per ClassAd are advertised in attributes named by ClassAd type as
UpdatesInitial_<ClassAd-Name> . <ClassAd-Name> is each of CkptSrvr , Collector ,
Defrag , Master , Schedd , Start , StartdPvt , andSubmittor .

UpdatesLost: A Statistics attribute representing the count of updates lost, over the lifetime of this
condor_collector. Counts per ClassAd are advertised in attributes named by ClassAd type as
UpdatesLost_<ClassAd-Name> . <ClassAd-Name> is each ofCkptSrvr , Collector , Defrag ,
Master , Schedd , Start , StartdPvt , andSubmittor .

UpdatesLostMax: A Statistics attribute defining the largest number of updates lost at any point in time, over the
lifetime of thiscondor_collector. ClassAd sequence numbers are used to detect lost ClassAds.

UpdatesLostRatio: A Statistics attribute defining the floating point ratio of the total number of updates to the
number of updates lost over the lifetime of thiscondor_collector. ClassAd sequence numbers are used to detect
lost ClassAds. A value of 1 indicates that all ClassAds have been lost.

UpdatesTotal: A Statistics attribute representing the count of the numberof ClassAd updates received over the
lifetime of this condor_collector. Counts per ClassAd are advertised in attributes named by ClassAd type as
UpdatesTotal_<ClassAd-Name> . <ClassAd-Name> is each ofCkptSrvr , Collector , Defrag ,
Master , Schedd , Start , StartdPvt , andSubmittor .

HTCondor Version 8.6.4 Reference Manual

1056

ClassAd Attributes Added by thecondor_collector

AuthenticatedIdentity: The authenticated name assigned by thecondor_collectorto the daemon that pub-
lished the ClassAd.

AuthenticationMethod: The authentication method used by thecondor_collector to determine the
AuthenticatedIdentity .

LastHeardFrom: The time inserted into a daemon’s ClassAd representing the time that thiscondor_collectorlast
received a message from the daemon. Time is represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970). This attribute is added ifCOLLECTOR_DAEMON_STATSis True .

UpdatesHistory: A bitmap representing the status of the most recent updates received from the daemon. This
attribute is only added ifCOLLECTOR_DAEMON_HISTORY_SIZEis non-zero. See page 307 for more infor-
mation on this setting. This attribute is added ifCOLLECTOR_DAEMON_STATSis True .

UpdatesLost: An integer count of the number of updates from the daemon thatthe condor_collectorcan
definitively determine were lost since thecondor_collectorstarted running. This attribute is added if
COLLECTOR_DAEMON_STATSis True .

UpdatesSequenced: An integer count of the number of updates received from the daemon, for which thecon-
dor_collectorcan tell how many were or were not lost, since thecondor_collectorstarted running. This attribute
is added ifCOLLECTOR_DAEMON_STATSis True .

UpdatesTotal: An integer count started when thecondor_collectorstarted running, representing the sum of the
number of updates actually received from the daemon plus thenumber of updates that thecondor_collector
determined were lost. This attribute is added ifCOLLECTOR_DAEMON_STATSis True .

DaemonCore Statistics Attributes

DebugOuts: Description not yet written.

PipeMessages: Description not yet written.

PipeRuntime: Description not yet written.

SelectWaittime: Description not yet written.

SignalRuntime: Description not yet written.

Signals: Description not yet written.

SocketRuntime: Description not yet written.

SockMessages: Description not yet written.

TimerRuntime: Description not yet written.

TimersFired: Description not yet written.

HTCondor Version 8.6.4 Reference Manual

CHAPTER

THIRTEEN

Appendix B: Codes and Other Needed Values

When acondor_shadowdaemon exits, thecondor_shadowexit code is recorded in thecondor_scheddlog, and it
identifies why the job exited. Prose in the log appears of the form

Shadow pid XXXXX for job XX.X exited with status YYY

whereYYYis the exit code, or

Shadow pid XXXXX for job XX.X reports job exit reason 100.

where the exit code is the value 100. Table 13.1 lists these codes.

Table 13.2 lists codes that appear as the first field within a job event log file. See more detailed descriptions of
these values in section 2.6.7.

1057

1058

Table 13.1:condor_shadowExit Codes
Value Error Name Description

4 JOB_EXCEPTION the job exited with an exception
44 DPRINTF_ERROR there was a fatal error with dprintf()
100 JOB_EXITED the job exited (not killed)
101 JOB_CKPTED the job did produce a checkpoint
102 JOB_KILLED the job was killed
103 JOB_COREDUMPED the job was killed and a core file was produced
105 JOB_NO_MEM not enough memory to start the condor_shadow
106 JOB_SHADOW_USAGE incorrect arguments to condor_shadow
107 JOB_NOT_CKPTED the job vacated without a checkpoint
107 JOB_SHOULD_REQUEUE same number as JOB_NOT_CKPTED,

to achieve the same behavior.
This exit code implies that we want
the job to be put back in the job queue
and run again.

108 JOB_NOT_STARTED can not connect to thecondor_startdor request refused
109 JOB_BAD_STATUS job status != RUNNING on start up
110 JOB_EXEC_FAILED exec failed for some reason other than ENOMEM
111 JOB_NO_CKPT_FILE there is no checkpoint file (as it was lost)
112 JOB_SHOULD_HOLD the job should be put on hold
113 JOB_SHOULD_REMOVE the job should be removed
114 JOB_MISSED_DEFERRAL_TIME the job goes on hold, because it did not run within the

specified window of time
115 JOB_EXITED_AND_CLAIM_CLOSING the job exited (not killed) but thecondor_startd

is not accepting any more jobs on this claim

HTCondor Version 8.6.4 Reference Manual

1059

Table 13.2: Event Codes in a Job Event Log
Event Code Description

000 Submit
001 Execute
002 Executable error
003 Checkpointed
004 Job evicted
005 Job terminated
006 Image size
007 Shadow exception
008 Generic
009 Job aborted
010 Job suspended
011 Job unsuspended
012 Job held
013 Job released
014 Node execute
015 Node terminated
016 Post script terminated
017 Globus submit (no longer used)
018 Globus submit failed
019 Globus resource up (no longer used)
020 Globus resource down (no longer used)
021 Remote error
022 Job disconnected
023 Job reconnected
024 Job reconnect failed
025 Grid resource up
026 Grid resource down
027 Grid submit
028 Job ClassAd attribute values added to event log
029 Job status unknown
030 Job status known
031 Grid job stage in
032 Grid job stage out
033 Job ClassAd attribute update
034 DAGMan PRE_SKIP defined

HTCondor Version 8.6.4 Reference Manual

1060

Table 13.3: Well-Known Port Numbers
Server Port Number

condor_negotiator 9614 (obsolete, now dynamically allocated)
condor_collector 9618
GT2 gatekeeper 2119
gridftp 2811
GT4 web services 8443

Table 13.4: DaemonCore Commands
Number Name

60000 DC_RAISESIGNAL
60001 DC_PROCESSEXIT
60002 DC_CONFIG_PERSIST
60003 DC_CONFIG_RUNTIME
60004 DC_RECONFIG
60005 DC_OFF_GRACEFUL
60006 DC_OFF_FAST
60007 DC_CONFIG_VAL
60008 DC_CHILDALIVE
60009 DC_SERVICEWAITPIDS
60010 DC_AUTHENTICATE
60011 DC_NOP
60012 DC_RECONFIG_FULL
60013 DC_FETCH_LOG
60014 DC_INVALIDATE_KEY
60015 DC_OFF_PEACEFUL
60016 DC_SET_PEACEFUL_SHUTDOWN
60017 DC_TIME_OFFSET
60018 DC_PURGE_LOG

Table 13.5: DaemonCore Daemon Exit Codes
Exit Code Description

0 Normal exit of daemon
99 DAEMON_SHUTDOWNevaluated toTrue

HTCondor Version 8.6.4 Reference Manual

INDEX

-maxidle macro, 743
<DaemonName>_ENVIRONMENTmacro, 257
<Keyword>_HOOK_EVICT_CLAIMmacro, 353, 560
<Keyword>_HOOK_FETCH_WORKmacro, 352, 353,

559, 560, 563
<Keyword>_HOOK_JOB_CLEANUPmacro, 354, 567
<Keyword>_HOOK_JOB_EXIT macro, 353, 562
<Keyword>_HOOK_JOB_EXIT_TIMEOUT macro,

353
<Keyword>_HOOK_JOB_FINALIZE macro, 354, 566
<Keyword>_HOOK_PREPARE_JOBmacro, 353, 561,

1009
<Keyword>_HOOK_REPLY_CLAIMmacro, 353
<Keyword>_HOOK_REPLY_FETCHmacro, 352, 560
<Keyword>_HOOK_TRANSLATE_JOBmacro, 353,

566, 609
<Keyword>_HOOK_UPDATE_JOB_INFOmacro, 353,

561, 562, 566
<NAME>_LIMIT macro, 314
<Name>Provisioned

job ClassAd attribute, 1020
<SUBSYS>_CLASSAD_USER_MAP_NAMESmacro,

235
<SUBSYS>_DEBUGmacro, 570
<SUBSYS>_LOCKmacro, 570
<SUBSYS>_LOGmacro, 570
<SUBSYS>_LOG_KEEP_OPENmacro, 570
<none> group, 367
<var>_ATTRS macro, 745
<var>_EXPRS macro, 745
$

as a literal character in a submit description file, 946
$ENV

in submit description file, 947

$RANDOM_CHOICE()
in submit description file, 947

$RANDOM_CHOICE() function macro, 27, 198, 220
$RANDOM_INTEGER()

in configuration, 27, 198, 220
$$

as literal characters in a submit description file, 947
_CONDOR_JOB_AD environment variable, 43
_CONDOR_JOB_IWD environment variable, 43
_CONDOR_MACHINE_AD environment variable, 43
_CONDOR_SCRATCH_DIR environment variable, 43
_CONDOR_SLOT environment variable, 43
_CONDOR_WRAPPER_ERROR_FILE environment

variable, 43

ABORT_ON_EXCEPTIONmacro, 231
Absent

job ClassAd attribute, 1002
absent ClassAd, 474
ABSENT_EXPIRE_ADS_AFTERmacro, 308, 474
ABSENT_REQUIREMENTSmacro, 308, 474
ABSENT_SUBMITTER_LIFETIMEmacro, 284
ABSENT_SUBMITTER_UPDATE_RATEmacro, 284
ACCOUNTANT_LOCAL_DOMAINmacro, 309
accounting

by group, 366
AcctGroup

job ClassAd attribute, 1002
AcctGroupUser

job ClassAd attribute, 1002
activities and state figure, 379
activity

of a machine, 378
transitions, 379–389

1061

INDEX 1062

transitions summary, 388
ADD_SIGNIFICANT_ATTRIBUTESmacro, 293
ADD_WINDOWS_FIREWALL_EXCEPTIONmacro, 261
administrator’s manual, 158–522
ADVERTISE_IPV4_FIRST macro, 235
ADVERTISE_PSLOT_ROLLUP_INFORMATION

macro, 263
AFS

interaction with, 155
AfterHours macro, 392
agents

condor_shadow, 14
ALIVE_INTERVAL macro, 266, 285, 377
ALL_DEBUGmacro, 241
ALLOW_* macros macro, 436
ALLOW_ADMIN_COMMANDSmacro, 261
ALLOW_ADMINISTRATORmacro, 434
ALLOW_ADVERTISE_MASTERmacro, 434
ALLOW_ADVERTISE_SCHEDDmacro, 434
ALLOW_ADVERTISE_STARTDmacro, 434
ALLOW_CLIENTmacro, 335, 416
ALLOW_CLIENTmacro, 434
ALLOW_CONFIGmacro, 665
ALLOW_CONFIGmacro, 434
ALLOW_DAEMONmacro, 434
ALLOW_NEGOTIATORmacro, 434
ALLOW_OWNERmacro, 434
ALLOW_PSLOT_PREEMPTIONmacro, 313, 740
ALLOW_READmacro, 434
ALLOW_SCRIPTS_TO_RUN_AS_EXECUTABLES

macro, 232
ALLOW_SOAPmacro, 434
ALLOW_VM_CRUFTmacro, 43, 275, 1033
ALLOW_WRITEmacro, 164
ALLOW_WRITEmacro, 434
AllRemoteHosts

job ClassAd attribute, 1002
ALWAYS_REUSEADDRmacro, 251
ALWAYS_USE_LOCAL_CKPT_SERVERmacro, 256
ALWAYS_VM_UNIV_USE_NOBODYmacro, 341
Amazon EC2 Query API, 591
API

Chirp, 634
Command line, 634
DRMAA, 623
Perl module, 634

Python bindings, 642
ReadUserLog class, 624
Web Service, 611

APPEND_PREF_STANDARDmacro, 302
APPEND_PREF_VANILLAmacro, 302
APPEND_RANKmacro, 302
APPEND_RANK_STANDARDmacro, 302
APPEND_RANK_VANILLAmacro, 302
APPEND_REQ_STANDARDmacro, 302
APPEND_REQ_VANILLAmacro, 302
APPEND_REQUIREMENTSmacro, 302
ARCHmacro, 201, 223
Args

job ClassAd attribute, 1002
Arguments

job ClassAd attribute, 1002
argv[0]

HTCondor use of, 157
ASSIGN_CPU_AFFINITY macro, 299
AUTH_SSL_CLIENT_CADIRmacro, 339, 425
AUTH_SSL_CLIENT_CAFILEmacro, 339, 425
AUTH_SSL_CLIENT_CERTFILEmacro, 339, 425
AUTH_SSL_CLIENT_KEYFILEmacro, 339, 425
AUTH_SSL_SERVER_CADIRmacro, 339, 425
AUTH_SSL_SERVER_CAFILEmacro, 339, 425
AUTH_SSL_SERVER_CERTFILEmacro, 339, 425
AUTH_SSL_SERVER_KEYFILEmacro, 339, 425
authentication, 420–429

GSI, 422
Kerberos, 426
Kerberos principal, 426
SSL, 425
unified map file, 423, 430
using a file system, 429
using a remote file system, 429
Windows, 429

authorization
for security, 433
of Unix netgroups, 436

AUTO_INCLUDE_SHARED_PORT_IN_DAEMON_LIST
macro, 247

automatic variables
in submit description file, 22

available platforms, 5

Backfill, 498

HTCondor Version 8.6.4 Reference Manual

INDEX 1063

BOINC Configuration in HTCondor, 500
BOINC Installation, 500
BOINC Overview, 499
Defining HTCondor policy, 498
Overview, 498

backfill state, 375, 386
BACKFILL_SYSTEMmacro, 270, 498
BASE_CGROUPmacro, 317, 506
batch grid type, 589
batch system, 9
BATCH_GAHPmacro, 320, 590
BATCH_GAHP_CHECK_STATUS_ATTEMPTSmacro,

320
BatchQueue

job ClassAd attribute, 1002
BENCHMARKS_<JobName>_ARGSmacro, 357
BENCHMARKS_<JobName>_CWDmacro, 357
BENCHMARKS_<JobName>_ENVmacro, 357
BENCHMARKS_<JobName>_EXECUTABLEmacro,

355
BENCHMARKS_<JobName>_JOB_LOADmacro, 356
BENCHMARKS_<JobName>_KILLmacro, 356
BENCHMARKS_<JobName>_MODEmacro, 355
BENCHMARKS_<JobName>_PERIODmacro, 355
BENCHMARKS_<JobName>_PREFIXmacro, 355
BENCHMARKS_<JobName>_SLOTSmacro, 355
BENCHMARKS_CONFIG_VALmacro, 354
BENCHMARKS_JOBLISTmacro, 355
BENCHMARKS_MAX_JOB_LOADmacro, 356
BIN macro, 225
BIND_ALL_INTERFACESmacro, 246, 456
BlockReadKbytes

job ClassAd attribute, 1002
BlockReads

job ClassAd attribute, 1002
BlockWriteKbytes

job ClassAd attribute, 1002
BlockWrites

job ClassAd attribute, 1002
BOINC, 598
BOINC grid jobs, 598
BOINC_Arguments macro, 501, 503
BOINC_Environment macro, 501
BOINC_Error macro, 501
BOINC_Executable macro, 500, 501, 503
BOINC_GAHPmacro, 321

BOINC_InitialDir macro, 500, 501, 503
BOINC_Output macro, 501
BOINC_Owner macro, 500, 501, 504
BOINC_Universe macro, 501
BoincAuthenticatorFile

job ClassAd attribute, 1002
Bosco commands

bosco_cluster, 749
bosco_findplatform, 751
bosco_install, 752
bosco_ssh_start, 753
bosco_start, 754
bosco_stop, 755
bosco_uninstall, 756

bosco_cluster command, 749
bosco_findplatform command, 751
bosco_install command, 752
bosco_ssh_start command, 753
bosco_start command, 754
bosco_stop command, 755
bosco_uninstall command, 756

C_GAHP_CONTACT_SCHEDD_DELAYmacro, 320
C_GAHP_DEBUGmacro, 240
C_GAHP_LOGmacro, 320, 577
C_GAHP_WORKER_THREAD_LOGmacro, 320
CCB (HTCondor Connection Brokering), 459
CCB_ADDRESSmacro, 246, 459, 460
CCB_HEARTBEAT_INTERVALmacro, 246
CCB_POLLING_INTERVALmacro, 247
CCB_POLLING_MAX_INTERVALmacro, 247
CCB_POLLING_TIMESLICEmacro, 247
CCB_READ_BUFFERmacro, 247
CCB_RECONNECT_FILEmacro, 247
CCB_SWEEP_INTERVALmacro, 247
CCB_WRITE_BUFFERmacro, 247
central manager, 158, 159

installation issues, 164
certificate

X.509, 422
CERTIFICATE_MAPFILE macro, 339, 340, 430
CERTIFICATE_MAPFILE_ASSUME_HASH_KEYS

macro, 340, 430, 720
cgroup based process tracking, 505
CGROUP_MEMORY_LIMIT_POLICYmacro, 298, 508
cgroups

HTCondor Version 8.6.4 Reference Manual

INDEX 1064

resource limits, 508
checkpoint, 2, 3, 14, 542

compression, 543
implementation, 542
library interface, 545
periodic, 3, 543
stand alone, 543

checkpoint image, 14
checkpoint server, 159

configuration of, 465
installation, 464–468
multiple servers, 466

CHECKPOINT_PLATFORMmacro, 264
Chirp, 66

Chirp.jar, 68
ChirpClient, 67
ChirpInputStream, 67
ChirpOutputStream, 67

Chirp API, 634
CHIRP_DELAYED_UPDATE_MAX_ATTRSmacro, 300
CHIRP_DELAYED_UPDATE_PREFIXmacro, 300
CHOWN_JOB_SPOOL_FILESmacro, 294, 732
CKPT_PROBEmacro, 231
CKPT_SERVER_CHECK_PARENT_INTERVALmacro,

255
CKPT_SERVER_CLASSAD_FILEmacro, 255
CKPT_SERVER_CLEAN_INTERVALmacro, 255
CKPT_SERVER_CLIENT_TIMEOUTmacro, 292
CKPT_SERVER_CLIENT_TIMEOUT_RETRYmacro,

292
CKPT_SERVER_DEBUGmacro, 465
CKPT_SERVER_DIRmacro, 255, 465
CKPT_SERVER_HOSTmacro, 255, 458, 466
CKPT_SERVER_INTERVALmacro, 255
CKPT_SERVER_LOGmacro, 465
CKPT_SERVER_MAX_PROCESSESmacro, 255
CKPT_SERVER_MAX_RESTORE_PROCESSESmacro,

256
CKPT_SERVER_MAX_STORE_PROCESSESmacro,

256
CKPT_SERVER_REMOVE_STALE_CKPT_INTERVAL

macro, 255
CKPT_SERVER_SOCKET_BUFSIZEmacro, 255
CKPT_SERVER_STALE_CKPT_AGE_CUTOFFmacro,

256
CkptArch

job ClassAd attribute, 1002
CkptOpSys

job ClassAd attribute, 1003
claim lease, 377
CLAIM_PARTITIONABLE_LEFTOVERSmacro, 272
CLAIM_WORKLIFEmacro, 266, 388
claimed state, 375, 383
ClassAd, 2, 3, 10, 523–542

absent ClassAd, 474
attributes, 10, 526
Collector attributes, 1054
DaemonCore statistics attributes, 1056
DaemonMaster attributes, 1037
Defrag attributes, 1052
expression examples, 537
expression functions, 526
expression operators, 526, 536
expression syntax of Old ClassAds, 525
job, 10
job attributes, 1002
machine, 10
machine attributes, 1020
machine example, 11
Negotiator attributes, 1049
Scheduler attributes, 1038
scope of evaluation, MY., 535
scope of evaluation, TARGET., 535
submitter attributes, 1051

ClassAd attribute
CurrentTime, 1037
rank, 29, 539
rank examples, 30
requirements, 29, 539

ClassAd attribute added by the condor_collector, 1056
AuthenticatedIdentity, 1056
AuthenticationMethod, 1056
LastHeardFrom, 1056
UpdatesHistory, 307, 1056
UpdatesLost, 307, 1056
UpdatesSequenced, 307, 1056
UpdatesTotal, 307, 1056

ClassAd attribute, ephemeral
RemoteAutoregroup, 363
RemoteGroup, 363
RemoteGroupQuota, 363
RemoteGroupResourcesInUse, 363

HTCondor Version 8.6.4 Reference Manual

INDEX 1065

RemoteNegotiatingGroup, 363
RemoteUserPrio, 363
RemoteUserResourcesInUse, 363
Slot<N>_RemoteUserPrio, 363
SubmitterAutoregroup, 363
SubmitterGroup, 363
SubmitterGroupQuota, 363
SubmitterGroupResourcesInUse, 363
SubmitterNegotiatingGroup, 363
SubmitterUserPrio, 363
SubmitterUserResourcesInUse, 363

ClassAd Collector attribute
CollectorIpAddr, 1054
CondorVersion, 1054
CurrentJobsRunning<universe>, 1054
CurrentJobsRunningAll, 1054
DaemonStartTime, 1054
HostsClaimed, 1054
HostsOwner, 1054
HostsTotal, 1054
HostsUnclaimed, 1054
IdleJobs, 1054
Machine, 1054
MaxJobsRunning<universe>, 1054
MaxJobsRunningAll, 1054
MyAddress, 1054
MyCurrentTime, 1054
Name, 1054
RunningJobs, 1055
StartdAds, 1055
StartdAdsPeak, 1055
SubmitterAds, 1055
SubmitterAdsPeak, 1055
UpdateInterval, 1055
UpdateSequenceNumber, 1055
UpdatesInitial, 1055
UpdatesInitial_<ClassAd-Name>, 1055
UpdatesLost, 1055
UpdatesLost_<ClassAd-Name>, 1055
UpdatesLostMax, 1055
UpdatesLostRatio, 1055
UpdatesTotal, 1055
UpdatesTotal_<ClassAd-Name>, 1055

ClassAd DaemonMaster attribute
CkptServer, 1037
CondorVersion, 1037

DaemonStartTime, 1037
Machine, 1037
MasterIpAddr, 1037
MonitorSelfAge, 1037
MonitorSelfCPUUsage, 1037
MonitorSelfImageSize, 1037
MonitorSelfRegisteredSocketCount, 1037
MonitorSelfResidentSetSize, 1037
MonitorSelfSecuritySessions, 1037
MonitorSelfTime, 1037
MyAddress, 1037
MyCurrentTime, 1037
Name, 1037
PublicNetworkIpAddr, 1037
RealUid, 1038
UpdateSequenceNumber, 1038

ClassAd Defrag attribute
AvgDrainingBadput, 1052
AvgDrainingUnclaimedTime, 1052
DaemonStartTime, 1052
DrainedMachines, 1052
DrainFailures, 1052
DrainSuccesses, 1053
Machine, 1053
MachinesDraining, 1053
MachinesDrainingPeak, 1053
MeanDrainedArrived, 1053
MonitorSelfAge, 1053
MonitorSelfCPUUsage, 1053
MonitorSelfImageSize, 1053
MonitorSelfRegisteredSocketCount, 1053
MonitorSelfResidentSetSize, 1053
MonitorSelfSecuritySessions, 1053
MonitorSelfTime, 1053
MyAddress, 1053
MyCurrentTime, 1053
Name, 1053
RecentDrainFailures, 1053
RecentDrainSuccesses, 1053
RecentStatsLifetime, 1053
UpdateSequenceNumber, 1053
WholeMachines, 1053
WholeMachinesPeak, 1053

ClassAd functions, 526
ceiling(), 529
debug(), 533

HTCondor Version 8.6.4 Reference Manual

INDEX 1066

envV1ToV2(), 533
eval(), 395, 527
floor(), 529
formatTime(), 532
ifThenElse(), 527
int(), 528
interval(), 532
isBoolean(), 528
isError(), 528
isInteger(), 528
isReal(), 528
isString(), 528
isUndefined(), 528
join(), 530
mergeEnvironment(), 533
pow(), 529
quantize(), 529
random(), 530
real(), 528
regexp(), 534
regexps(), 534
round(), 530
size(), 531
split(), 531
splitSlotName(), 531
splitUserName(), 531
strcat(), 530
strcmp(), 531
stricmp(), 531
string(), 528
stringList_regexpMember(), 534
stringListAvg(), 533
stringListIMember(), 534
stringListMax(), 534
stringListMember(), 534
stringListMin(), 533
stringListsIntersect(), 534
stringListSize(), 533
stringListSum(), 533
substr(), 530
time(), 532
toLower(), 531
toUpper(), 531
unparse(), 527
userHome(), 535
userMap(), 535

ClassAd job attribute
<Name>Provisioned, 1020
Absent, 1002
AccountingGroup, 366
AcctGroup, 366, 1002
AcctGroupUser, 366, 1002
AllRemoteHosts, 1002
Args, 1002
Arguments, 1002
BatchQueue, 1002
BlockReadKbytes, 1002
BlockReads, 1002
BlockWriteKbytes, 1002
BlockWrites, 1002
BoincAuthenticatorFile, 1002
CkptArch, 1002
CkptOpSys, 1003
ClusterId, 945, 1003
Cmd, 1003
CommittedSlotTime, 1003
CommittedSuspensionTime, 1003
CommittedTime, 1003
CompletionDate, 1003
ConcurrencyLimits, 1003
CpusProvisioned, 1020
CumulativeRemoteSysCpu, 1016
CumulativeRemoteUserCpu, 1016
CumulativeSlotTime, 1003
CumulativeSuspensionTime, 1003
CumulativeTransferTime, 1003
CurrentHosts, 1003
DAG_InRecovery, 1019
DAG_NodesDone, 1019
DAG_NodesFailed, 1019
DAG_NodesPostrun, 1019
DAG_NodesPrerun, 1019
DAG_NodesQueued, 1019
DAG_NodesReady, 1019
DAG_NodesTotal, 1020
DAG_NodesUnready, 1020
DAG_Status, 1020
DAGManJobId, 1003
DAGManNodesLog, 1004
DAGManNodesMask, 1004
DAGParentNodeNames, 85, 1003
DeferralPrepTime, 150

HTCondor Version 8.6.4 Reference Manual

INDEX 1067

DeferralTime, 149
DeferralWindow, 149
DelegateJobGSICredentialsLifetime, 1004
DiskProvisioned, 1020
DiskUsage, 1004
EC2AccessKeyId, 1005
EC2AmiID, 1005
EC2BlockDeviceMapping, 1005
EC2ElasticIp, 1005
EC2IamProfileArn, 1005
EC2IamProfileName, 1005
EC2InstanceName, 1005
EC2InstanceType, 1005
EC2KeyPair, 1005
EC2KeyPairFile, 1006
EC2ParameterNames, 1005
EC2RemoteVirtualMachineName, 1006
EC2SecretAccessKey, 1006
EC2SecurityGroups, 1006
EC2SecurityIDs, 1006
EC2SpotPrice, 1005
EC2SpotRequestID, 1005
EC2StatusReasonCode, 1006
EC2TagNames, 1006
EC2UserData, 1006
EC2UserDataFile, 1006
EmailAttributes, 1006
EncryptExecuteDirectory, 1006
EnteredCurrentStatus, 1006
Env, 1006
Environment, 1007
ExecutableSize, 1007
ExitBySignal, 1007
ExitCode, 1007
ExitSignal, 1007
ExitStatus, 1007
GceAuthFile, 1007
GceImage, 1007
GceJsonFile, 1007
GceMachineType, 1007
GceMetadata, 1007
GceMetadataFile, 1007
GcePreemptible, 1007
GlobalJobId, 1007
GridJobStatus, 1007
GridResource, 1008

HoldKillSig, 1008
HoldReason, 1008
HoldReasonCode, 1008
HoldReasonSubCode, 1010
ImageSize, 1010
IwdFlushNFSCache, 156, 1010
JobAdInformationAttrs, 1010
JobCurrentStartDate, 1010
JobCurrentStartExecutingDate, 1010
JobCurrentStartTransferOutputDate, 1010
JobDescription, 1010
JobLeaseDuration, 157, 1010
JobMaxVacateTime, 1010
JobNotification, 1010
JobPrio, 1010
JobRunCount, 1011
JobStartDate, 1011
JobStatus, 1011
JobUniverse, 1011
KeepClaimIdle, 1012
KillSig, 1012
KillSigTimeout, 1012
LastCheckpointPlatform, 1012
LastCkptServer, 1012
LastCkptTime, 1012
LastMatchTime, 1012
LastRejMatchReason, 1012
LastRejMatchTime, 1012
LastRemotePool, 1012
LastSuspensionTime, 1012
LastVacateTime, 1012
LeaveJobInQueue, 1012
LocalSysCpu, 1012
LocalUserCpu, 1012
MachineAttr<X><N>, 1012
MaxHosts, 1013
MaxJobRetirementTime, 1013
MaxTransferInputMB, 1013
MaxTransferOutputMB, 1013
MemoryProvisioned, 1020
MemoryUsage, 1013
MinHosts, 1013
NextJobStartDelay, 1013
NiceUser, 1013
Nonessential, 1013
NTDomain, 1013

HTCondor Version 8.6.4 Reference Manual

INDEX 1068

NumCkpts, 1013
NumGlobusSubmits, 1014
NumJobCompletions, 1014
NumJobMatches, 1014
NumJobReconnects, 1014
NumJobStarts, 1014
NumPids, 1014
NumRestarts, 1014
NumShadowExceptions, 1014
NumShadowStarts, 1014
NumSystemHolds, 1014
OtherJobRemoveRequirements, 1014
OutputDestination, 1014
Owner, 1015
ParallelShutdownPolicy, 1015
PostJobPrio1, 1015
PostJobPrio2, 1015
PreJobPrio1, 1015
PreJobPrio2, 1015
PreserveRelativeExecutable, 1015
ProcId, 1015
ProportionalSetSizeKb, 1015
QDate, 1016
RecentBlockReadKbytes, 1016
RecentBlockReads, 1016
RecentBlockWriteKbytes, 1016
RecentBlockWrites, 1016
ReleaseReason, 1016
RemoteIwd, 1016
RemotePool, 1016
RemoteSysCpu, 1016
RemoteUserCpu, 1016
RemoteWallClockTime, 1016
RemoveKillSig, 1016
RequestCpus, 1016
RequestDisk, 1017
RequestedChroot, 1017
RequestMemory, 1017
ResidentSetSize, 1017
StackSize, 1017
StageOutFinish, 1017
StageOutStart, 1017
StreamErr, 1017
StreamOut, 1017
SubmitterAutoregroup, 1017
SubmitterGlobalJobId, 1017

SubmitterGroup, 1017
SubmitterNegotiatingGroup, 1017
TotalSuspensions, 1017
TransferErr, 1017
TransferExecutable, 1018
TransferIn, 1018
TransferInputSizeMB, 1018
TransferOut, 1018
TransferQueued, 1018
TransferringInput, 1018
TransferringOutput, 1018
UserLog, 1018
VM_MACAddr, 1019
WantGracefulRemoval, 1018
WindowsBuildNumber, 1018
WindowsMajorVersion, 1018
WindowsMinorVersion, 1018
X509UserProxy, 1018
X509UserProxyEmail, 1019
X509UserProxyExpiration, 1019
X509UserProxyFirstFQAN, 1019
X509UserProxyFQAN, 1019
X509UserProxySubject, 1019
X509UserProxyVOName, 1019

ClassAd machine attribute
Activity, 1020
Arch, 1021
AvailSince, 278
AvailTime, 278
AvailTimeEstimate, 278
CanHibernate, 1021
CheckpointPlatform, 1021
ClockDay, 1021
ClockMin, 1021
CondorLoadAvg, 401, 1021
CondorVersion, 1021
ConsoleIdle, 1021
CpuCacheSize, 1022
CpuFamily, 1021
CpuModel, 1022
Cpus, 1021
CurrentRank, 1022
DetectedCpus, 1022
DetectedMemory, 1022
Disk, 1022
DotNetVersions, 1022

HTCondor Version 8.6.4 Reference Manual

INDEX 1069

Draining, 1022
DrainingRequestId, 1022
DynamicSlot, 1022
EnteredCurrentActivity, 1022
ExpectedMachineGracefulDrainingBadput, 1022
ExpectedMachineGracefulDrainingCompletion,

1022
ExpectedMachineQuickDrainingBadput, 1023
ExpectedMachineQuickDrainingCompletion, 1023
FileSystemDomain, 1023
has_avx, 1023
Has_sse4_1, 1023
Has_sse4_2, 1023
has_ssse3, 1023
HasDocker, 517, 1023
HasEncryptExecuteDirectory, 1023
HasFileTransfer, 1023
HasFileTransferPluginMethods, 1023
HasSingularity, 1023
HasVM, 1023
HookKeyword, 1010
IsWakeAble, 1023
IsWakeEnabled, 1024
JobPreemptions, 1024
JobRankPreemptions, 1024
JobStarts, 1024
JobUserPrioPreemptions, 1024
JobVM_VCPUS, 1024
KeyboardIdle, 1024
KFlops, 1024
LastAvailInterval, 278
LastDrainStartTime, 1024
LastHeardFrom, 1024
LoadAvg, 401, 1024
Machine, 1024
MachineMaxVacateTime, 1024
MaxJobRetirementTime, 1024
Memory, 1025
Mips, 1025
MonitorSelfAge, 1025
MonitorSelfCPUUsage, 1025
MonitorSelfImageSize, 1025
MonitorSelfRegisteredSocketCount, 1025
MonitorSelfResidentSetSize, 1025
MonitorSelfSecuritySessions, 1025
MonitorSelfTime, 1025

MyAddress, 1025
MyType, 1025
Name, 1025
Offline<name>, 1025
OfflineUniverses, 1025
OpSys, 1025
OpSysAndVer, 1026
OpSysLegacy, 1027
OpSysLongName, 1027
OpSysMajorVersion, 1028
OpSysName, 1028
OpSysShortName, 1029
OpSysVer, 1029
PartitionableSlot, 1030
RecentJobPreemptions, 1030
RecentJobRankPreemptions, 1030
RecentJobStarts, 1030
RecentJobUserPrioPreemptions, 1030
Requirements, 1030
RetirementTimeRemaining, 1030
SingularityVersion, 1030
SlotID, 1030
SlotType, 1030
SlotWeight, 1030
StartdIpAddr, 1030
State, 1030
TargetType, 1031
TotalCondorLoadAvg, 401, 1031
TotalCpus, 1031
TotalDisk, 1031
TotalLoadAvg, 401, 1031
TotalMachineDrainingBadput, 1031
TotalMachineDrainingUnclaimedTime, 1031
TotalMemory, 1031
TotalSlotCpus, 1031
TotalSlotDisk, 1031
TotalSlotMemory, 1031
TotalSlots, 1031
TotalTimeBackfillBusy, 1031
TotalTimeBackfillIdle, 1032
TotalTimeBackfillKilling, 1032
TotalTimeClaimedBusy, 1032
TotalTimeClaimedIdle, 1032
TotalTimeClaimedRetiring, 1032
TotalTimeClaimedSuspended, 1032
TotalTimeMatchedIdle, 1032

HTCondor Version 8.6.4 Reference Manual

INDEX 1070

TotalTimeOwnerIdle, 1032
TotalTimePreemptingKilling, 1032
TotalTimePreemptingVacating, 1032
TotalTimeUnclaimedBenchmarking, 1032
TotalTimeUnclaimedIdle, 1032
UidDomain, 1032
VirtualMachineID, 1033
VirtualMemory, 1033
VM_AvailNum, 1033
VM_Guest_Mem, 1033
VM_Memory, 1033
VM_Networking, 1033
VM_Type, 1033
VMOfflineReason, 1033
VMOfflineTime, 1033
WindowsBuildNumber, 1033
WindowsMajorVersion, 1033
WindowsMinorVersion, 1033

ClassAd machine attribute (for a user-defined resource)
Assigned<name>, 1035
Offline<name>, 1035
Total<name>, 1035

ClassAd machine attribute (for GPU resources)
<name>BoardTempC, 1035
<name>Capability, 1035
<name>ClockMhz, 1035
<name>ComputeUnits, 1035
<name>CoresPerCU, 1035
<name>DeviceName, 1035
<name>DieTempC, 1035
<name>DriverVersion, 1035
<name>ECCEnabled, 1035
<name>EccErrorsDoubleBit, 1035
<name>EccErrorsSingleBit, 1036
<name>FanSpeedPct, 1036
<name>GlobalMemoryMb, 1036
<name>OpenCLVersion, 1036
<name>RuntimeVersion, 1036

ClassAd machine attribute (for pslot preemption)
ChildAccountingGroup, 1036
ChildActivity, 1036
ChildCpus, 1036
ChildCurrentRank, 1036
ChildEnteredCurrentState, 1036
ChildMemory, 1036
ChildName, 1036

ChildRemoteOwner, 1036
ChildRemoteUser, 1036
ChildRetirementTimeRemaining, 1036
ChildState, 1036
PslotRollupInformation, 1036

ClassAd machine attribute (in Claimed State)
ClientMachine, 1033
PreemptingOwner, 1034
PreemptingRank, 1034
PreemptingUser, 1034
RemoteAutoregroup, 1033
RemoteGroup, 1033
RemoteNegotiatingGroup, 1033
RemoteOwner, 1034
RemoteUser, 1034
TotalClaimRunTime, 1034
TotalClaimSuspendTime, 1034
TotalJobRunTime, 1034
TotalJobSuspendTime, 1034

ClassAd machine attribute (when offline)
MachineLastMatchTime, 1034
Offline, 1035
Unhibernate, 1035

ClassAd machine attribute (when running)
JobId, 1034
JobStart, 1034
LastPeriodicCheckpoint, 1034

ClassAd Negotiator attribute
CondorVersion, 1049
DaemonStartTime, 1049
LastNegotiationCycleActiveSubmitterCount<X>,

1049
LastNegotiationCycleCandidateSlots<X>, 1049
LastNegotiationCycleDuration<X>, 1049
LastNegotiationCycleEnd<X>, 1049
LastNegotiationCycleMatches<X>, 1049
LastNegotiationCycleMatchRate<X>, 1049
LastNegotiationCycleMatchRateSustained<X>,

1049
LastNegotiationCycleNumIdleJobs<X>, 1050
LastNegotiationCycleNumJobsConsidered<X>,

1050
LastNegotiationCycleNumSchedulers<X>, 1050
LastNegotiationCyclePeriod<X>, 1050
LastNegotiationCyclePhase1Duration<X>, 1050
LastNegotiationCyclePhase2Duration<X>, 1050

HTCondor Version 8.6.4 Reference Manual

INDEX 1071

LastNegotiationCyclePhase3Duration<X>, 1050
LastNegotiationCyclePhase4Duration<X>, 1050
LastNegotiationCycleRejections<X>, 1050
LastNegotiationCycleSlotShareIter<X>, 1050
LastNegotiationCycleSubmittersFailed<X>, 1050
LastNegotiationCycleSubmittersOutOfTime<X>,

1050
LastNegotiationCycleSubmittersShareLimit, 1051
LastNegotiationCycleTime<X>, 1051
LastNegotiationCycleTotalSlots<X>, 1051
LastNegotiationCycleTrimmedSlots<X>, 1051
Machine, 1051
MyAddress, 1051
MyCurrentTime, 1051
Name, 1051
NegotiatorIpAddr, 1051
PublicNetworkIpAddr, 1051
UpdateSequenceNumber, 1051

ClassAd Scheduler attribute
Autoclusters, 1038
CollectorHost, 1038
CondorVersion, 1038
DaemonCoreDutyCycle, 1038
DaemonStartTime, 1038
DetectedCpus, 1038
DetectedMemory, 1038
FileTransferDiskThrottleExcess, 1046
FileTransferDiskThrottleHigh, 1046
FileTransferDiskThrottleLevel, 1046
FileTransferDiskThrottleLow, 1046
FileTransferDiskThrottleShortfall, 1046
FileTransferDownloadBytes, 1046
FileTransferDownloadBytesPerSecond, 1047
FileTransferFileNetReadLoad, 1047
FileTransferFileReadLoad, 1047
FileTransferFileReadSeconds, 1047
FileTransferFileWriteLoad, 1047
FileTransferFileWriteSeconds, 1047
FileTransferNetReadSeconds, 1048
FileTransferNetWriteLoad, 1048
FileTransferNetWriteSeconds, 1048
FileTransferUploadBytes, 1048
FileTransferUploadBytesPerSecond, 1048
JobQueueBirthdate, 1038
JobsAccumBadputTime, 1038
JobsAccumExceptionalBadputTime, 1038

JobsAccumRunningTime, 1038
JobsAccumTimeToStart, 1038
JobsBadputRuntimes, 1038
JobsBadputSizes, 1038
JobsCheckpointed, 1039
JobsCompleted, 1039
JobsCompletedRuntimes, 1039
JobsCompletedSizes, 1039
JobsCoredumped, 1039
JobsDebugLogError, 1039
JobsExecFailed, 1039
JobsExited, 1039
JobsExitedAndClaimClosing, 1039
JobsExitedNormally, 1039
JobsExitException, 1039
JobsKilled, 1039
JobsMissedDeferralTime, 1039
JobsNotStarted, 1039
JobsRestartReconnectsAttempting, 1040
JobsRestartReconnectsBadput, 1040
JobsRestartReconnectsFailed, 1040
JobsRestartReconnectsInterrupted, 1040
JobsRestartReconnectsLeaseExpired, 1040
JobsRestartReconnectsSucceeded, 1040
JobsRunning, 1040
JobsRunningRuntimes, 1040
JobsRunningSizes, 1040
JobsRuntimesHistogramBuckets, 1040
JobsShadowNoMemory, 1040
JobsShouldHold, 1040
JobsShouldRemove, 1040
JobsShouldRequeue, 1041
JobsSizesHistogramBuckets, 1041
JobsStarted, 1041
JobsSubmitted, 1041
Machine, 1041
MaxJobsRunning, 1041
MonitorSelfAge, 1041
MonitorSelfCPUUsage, 1041
MonitorSelfImageSize, 1041
MonitorSelfRegisteredSocketCount, 1041
MonitorSelfResidentSetSize, 1041
MonitorSelfSecuritySessions, 1041
MonitorSelfTime, 1041
MyAddress, 1041
MyCurrentTime, 1041

HTCondor Version 8.6.4 Reference Manual

INDEX 1072

Name, 1041
NumJobStartsDelayed, 1041
NumPendingClaims, 1041
NumUsers, 1042
PublicNetworkIpAddr, 1042
RecentDaemonCoreDutyCycle, 1042
RecentJobsAccumBadputTime, 1042
RecentJobsAccumRunningTime, 1042
RecentJobsAccumTimeToStart, 1042
RecentJobsBadputRuntimes, 1042
RecentJobsBadputSizes, 1042
RecentJobsCheckpointed, 1042
RecentJobsCompleted, 1042
RecentJobsCompletedRuntimes, 1042
RecentJobsCompletedSizes, 1042
RecentJobsCoredumped, 1042
RecentJobsDebugLogError, 1042
RecentJobsExecFailed, 1043
RecentJobsExited, 1043
RecentJobsExitedAndClaimClosing, 1043
RecentJobsExitedNormally, 1043
RecentJobsExitException, 1043
RecentJobsKilled, 1043
RecentJobsMissedDeferralTime, 1043
RecentJobsNotStarted, 1043
RecentJobsShadowNoMemory, 1043
RecentJobsShouldHold, 1043
RecentJobsShouldRemove, 1043
RecentJobsShouldRequeue, 1043
RecentJobsStarted, 1043
RecentJobsSubmitted, 1044
RecentShadowsReconnections, 1044
RecentShadowsRecycled, 1044
RecentShadowsStarted, 1044
RecentStatsLifetime, 1044
RecentStatsTickTime, 1044
RecentWindowMax, 1044
ScheddIpAddr, 1044
ServerTime, 1044
ShadowsReconnections, 1044
ShadowsRecycled, 1044
ShadowsRunning, 1044
ShadowsRunningPeak, 1044
ShadowsStarted, 1045
StartLocalUniverse, 1045
StartSchedulerUniverse, 1045

StatsLastUpdateTime, 1045
StatsLifetime, 1045
TotalFlockedJobs, 1045
TotalHeldJobs, 1045
TotalIdleJobs, 1045
TotalJobAds, 1045
TotalLocalJobsIdle, 1045
TotalLocalJobsRunning, 1045
TotalRemovedJobs, 1045
TotalRunningJobs, 1045
TotalSchedulerJobsIdle, 1045
TotalSchedulerJobsRunning, 1045
TransferQueueMBWaitingToDownload, 1049
TransferQueueMBWaitingToUpload, 1049
TransferQueueNumWaitingToDownload, 1049
TransferQueueNumWaitingToUpload, 1049
TransferQueueUserExpr, 1045
UpdateInterval, 1045
UpdateSequenceNumber, 1046
VirtualMemory, 1046
WantResAd, 1046

ClassAd statistics attribute
DebugOuts, 1056
PipeMessages, 1056
PipeRuntime, 1056
SelectWaittime, 1056
SignalRuntime, 1056
Signals, 1056
SocketRuntime, 1056
SockMessages, 1056
TimerRuntime, 1056
TimersFired, 1056

ClassAd submitter attribute
CondorVersion, 1051
FlockedJobs, 1051
HeldJobs, 1051
IdleJobs, 1051
LocalJobsIdle, 1052
LocalJobsRunning, 1052
MyAddress, 1052
Name, 1052
RunningJobs, 1052
ScheddIpAddr, 1052
ScheddName, 1052
SchedulerJobsIdle, 1052
SchedulerJobsRunning, 1052

HTCondor Version 8.6.4 Reference Manual

INDEX 1073

SubmitterTag, 1052
WeightedIdleJobs, 1052
WeightedRunningJobs, 1052

CLASSAD_LIFETIMEmacro, 304, 474
CLASSAD_LOG_STRICT_PARSINGmacro, 230
CLASSAD_USER_LIBSmacro, 232, 542, 655
CLASSAD_USER_MAPDATA_<name>macro, 235
CLASSAD_USER_MAPFILE_<name>macro, 235
CLASSAD_USER_PYTHON_LIBmacro, 233
CLASSAD_USER_PYTHON_MODULESmacro, 232, 233
CLIENT_TIMEOUTmacro, 305
clipped platform

availability, 5
definition of, 5

cluster
definition, 1003

ClusterId
job ClassAd attribute, 945, 1003

CM_IP_ADDRmacro, 230
Cmd

job ClassAd attribute, 1003
COD

attributes, 548
ClusterId, 550
ProcID, 550

authorizing users, 547
condor_cod activate command, 550
condor_cod tool, 551
condor_cod_activate command, 554
condor_cod_deactivate command, 556
condor_cod_delegate_proxy command, 557
condor_cod_release command, 557
condor_cod_renew command, 556
condor_cod_request command, 553
condor_cod_resume command, 556
condor_cod_suspend command, 555
defining an application, 548
defining applications

Job ID, 550
defining attributes by configuration, 550
introduction, 546
limitations, 558
managing claims, 552
optional attributes, 549

Args, 549
Env, 549

Err, 549
In, 549
IWD, 549
JarFiles, 549
JobUniverse, 549
KillSig, 549
Out, 549
StarterUserLog, 550
StarterUserLogUseXML, 550

overview, 547
required attributes, 548

Cmd, 548
Owner, 548
RequestCpus, 548
RequestDisk, 548
RequestMemory, 549

COD (Computing on Demand), 546–558
COLLECTOR_ADDRESS_FILEmacro, 452
COLLECTOR_ADDRESS_FILEmacro, 243
COLLECTOR_ALLOW_ONLY_ONE_NEGOTIATOR

macro, 720
COLLECTOR_CLASS_HISTORY_SIZEmacro, 307
COLLECTOR_DAEMON_HISTORY_SIZEmacro, 307,

759, 971, 1056
COLLECTOR_DAEMON_STATSmacro, 307
COLLECTOR_DEBUGmacro, 308
COLLECTOR_FORWARD_FILTERINGmacro, 308, 721
COLLECTOR_FORWARD_INTERVALmacro, 308
COLLECTOR_FORWARD_WATCH_LISTmacro, 308
COLLECTOR_HOSTmacro, 224, 452, 1038
COLLECTOR_MAX_FILE_DESCRIPTORSmacro, 250
COLLECTOR_NAMEmacro, 306
COLLECTOR_PERSISTENT_AD_LOGmacro, 277,

308, 349, 474
COLLECTOR_PORTmacro, 225
COLLECTOR_QUERY_WORKERSmacro, 308
COLLECTOR_REQUIREMENTSmacro, 305
COLLECTOR_SOCKET_BUFSIZEmacro, 306
COLLECTOR_STATS_SWEEPmacro, 307
COLLECTOR_SUPER_ADDRESS_FILEmacro, 243
COLLECTOR_TCP_SOCKET_BUFSIZEmacro, 306
COLLECTOR_UPDATE_INTERVALmacro, 306
COLLECTOR_USES_SHARED_PORTmacro, 247
CommittedSlotTime

job ClassAd attribute, 1003
CommittedSuspensionTime

HTCondor Version 8.6.4 Reference Manual

INDEX 1074

job ClassAd attribute, 1003
CommittedTime

job ClassAd attribute, 1003
compilers

supported with condor_compile, 5
CompletionDate

job ClassAd attribute, 1003
COMPRESS_PERIODIC_CKPTmacro, 295
COMPRESS_VACATE_CKPTmacro, 295
Computing On Demand

Defining Applications
Job ID, 550
Optional attributes, 549
Required attributes, 548

Computing on Demand (see COD), 546
concurrency limits, 509
CONCURRENCY_LIMIT_DEFAULTmacro, 314, 509
CONCURRENCY_LIMIT_DEFAULT_<NAME>macro,

314
ConcurrencyLimits

job ClassAd attribute, 1003
Condor commands

condor_convert_history, 786
CONDOR_ADMINmacro, 164, 228, 834
condor_advertise command, 757
condor_check_userlogs command, 761
condor_checkpoint command, 762
condor_chirp, 765
condor_ckpt_server daemon, 161, 464
condor_cod command, 769
condor_collector, 461
condor_collector daemon, 160
condor_compile command, 772

list of supported compilers, 5
condor_config_val command, 774
condor_configure command, 169, 779, 817
condor_continue command, 784
condor_convert_history command, 786
condor_credd daemon, 161, 317, 664
condor_dagman command, 788
condor_dagman_metrics_reporter command, 794
condor_dbmsd source code contrib daemon, 677
condor_defrag daemon, 161, 409
CONDOR_DEVELOPERSmacro, 8, 137, 305, 795
CONDOR_DEVELOPERS_COLLECTORmacro, 8, 306
condor_drain command, 797

condor_fetchlog command, 799
condor_findhost command, 802
CONDOR_FSYNCmacro, 233
CONDOR_GAHPmacro, 320, 577
condor_gangliad daemon, 359, 471
condor_gather_info command, 804
condor_gpu_discovery command, 807
condor_gridmanager daemon, 161
condor_had daemon, 161, 477
condor_hdfs daemon, 162
condor_history command, 810
condor_hold command, 814
CONDOR_HOSTmacro, 224
CONDOR_ID environment variable, 43
CONDOR_IDS environment variable, 43, 165, 228, 229
CONDOR_IDSmacro, 165, 228, 445, 560
condor_install command, 779, 817
condor_job_router daemon, 161, 604
condor_job_router_info command, 822
condor_kbdd daemon, 161, 489
condor_lease_manager daemon, 161
condor_master daemon, 159, 824
condor_negotiator daemon, 160
condor_off command, 825
condor_on command, 828
condor_ping command, 831
condor_pool_job_report command, 834
condor_power command, 835
condor_preen command, 837
condor_prio command, 839
condor_procd command, 841
condor_procd daemon, 161
condor_q command, 844
CONDOR_Q_DASH_BATCH_IS_DEFAULTmacro, 284
CONDOR_Q_ONLY_MY_JOBSmacro, 284, 719, 730
CONDOR_Q_USE_V3_PROTOCOLmacro, 284
condor_qedit command, 859
condor_qsub command, 861
condor_quill source code contrib daemon, 677
condor_reconfig command, 866
condor_release command, 869
condor_replication daemon, 161, 478
condor_reschedule command, 871
condor_restart command, 873
condor_rm command, 876
condor_rmdir command, 879

HTCondor Version 8.6.4 Reference Manual

INDEX 1075

condor_rooster daemon, 161, 521
condor_router_history, 881
condor_router_q, 883
condor_router_rm command, 885
condor_run command, 887
condor_schedd daemon, 160
condor_set_shutdown command, 890
condor_shadow, 14, 51
condor_shadow daemon, 160
condor_shared_port daemon, 161, 454
condor_sos command, 896
CONDOR_SSH_KEYGENmacro, 74
condor_ssh_to_job command, 892
CONDOR_SSHDmacro, 74
condor_startd daemon, 160
condor_startddaemon, 371
condor_starter daemon, 160
condor_stats command, 898
condor_status command, 901
condor_store_cred command, 909
condor_submit command, 911
condor_submit variables, 948
condor_submit_dag command, 953
CONDOR_SUPPORT_EMAILmacro, 228
condor_suspend command, 960
condor_tail command, 962
condor_transfer_data command, 964
condor_transferer daemon, 161, 478
condor_transform_ads command, 966
condor_update_machine_ad command, 969
condor_updates_stats command, 971
condor_urlfetch command, 974
condor_userlog command, 976
condor_userprio command, 979
condor_vacate command, 984
condor_vacate_job command, 986
condor_version command, 989
CONDOR_VIEW_CLASSAD_TYPESmacro, 308
CONDOR_VIEW_HOSTmacro, 225, 250, 492, 493
CONDOR_VM environment variable, 43
condor_wait command, 991
condor_who command, 994
configuration

checkpoint server configuration variables, 255
condor_collector configuration variables, 304
condor_credd configuration variables, 317

condor_defrag configuration variables, 357
condor_gangliad configuration variables, 359
condor_gridmanager configuration variables, 318
condor_hdfs configuration variables, 676
condor_job_router configuration variables, 321
condor_lease_manager configuration variables, 324
condor_master configuration variables, 256
condor_negotiator configuration variables, 309
condor_preen configuration variables, 304
condor_rooster configuration variables, 349
condor_schedd configuration variables, 279
condor_schedd policy, 410
condor_shadow configuration variables, 294
condor_shared_port configuration variables, 350
condor_ssh_to_job configuration variables, 348
condor_startd configuration variables, 262
condor_startd policy, 370
condor_starter configuration variables, 296
condor_submit configuration variables, 301
daemon logging configuration variables, 236
DaemonCore configuration variables, 242
DAGMan configuration variables, 326
Error and warning syntax, 194
example, 373
for flocking, 575
function macros, 197, 219
grid configuration variables, 325
Grid Monitor configuration variables, 325
high availability configuration variables, 343
hook configuration variables, 352
HTCondor-wide configuration variables, 224
IF/ELSE syntax, 195, 217
INCLUDE syntax, 193, 214
multi-core machines, 400
network-related configuration variables, 246
of machines, to implement a given policy, 370
pre-defined macros, 199, 222
security configuration variables, 335
shared file system configuration variables, 251
SMP machines, 400
to use GPUs, 403
USE syntax, 202, 215
virtual machine configuration variables, 341
Windows platform configuration variables, 357

configuration change requiring a restart of HTCondor,
199, 221

HTCondor Version 8.6.4 Reference Manual

INDEX 1076

configuration file
evaluation order, 186, 208
macro definitions, 187, 209
macros, 201, 223
pre-defined macros, 199, 222
subsystem names, 200, 222

configuration files
location, 166

configuration macro
-maxidle , 743
<DaemonName>_ENVIRONMENT, 257
<Keyword>_HOOK_EVICT_CLAIM, 353, 560
<Keyword>_HOOK_FETCH_WORK, 352, 353,

559, 560, 563
<Keyword>_HOOK_JOB_CLEANUP, 354, 567
<Keyword>_HOOK_JOB_EXIT_TIMEOUT, 353
<Keyword>_HOOK_JOB_EXIT, 353, 562
<Keyword>_HOOK_JOB_FINALIZE , 354, 566
<Keyword>_HOOK_PREPARE_JOB, 353, 561,

1009
<Keyword>_HOOK_REPLY_CLAIM, 353
<Keyword>_HOOK_REPLY_FETCH, 352, 560
<Keyword>_HOOK_TRANSLATE_JOB, 353, 566,

609
<Keyword>_HOOK_UPDATE_JOB_INFO, 353,

561, 562, 566
<NAME>_LIMIT, 314
<SUBSYS>_<LEVEL>_LOG, 241
<SUBSYS>_ADDRESS_FILE, 243, 451
<SUBSYS>_ADMIN_EMAIL, 228
<SUBSYS>_ARGS, 257
<SUBSYS>_ATTRS, 244
<SUBSYS>_CLASSAD_USER_MAP_NAMES, 235
<SUBSYS>_DAEMON_AD_FILE, 244
<SUBSYS>_DEBUG, 239, 570
<SUBSYS>_ENABLE_SOAP_SSL, 347
<SUBSYS>_EXPRS, 244
<SUBSYS>_LOCK, 237, 570
<SUBSYS>_LOG_KEEP_OPEN, 237, 570
<SUBSYS>_LOG, 236, 570
<SUBSYS>_MAX_FILE_DESCRIPTORS, 247
<SUBSYS>_NOT_RESPONDING_TIMEOUT, 245
<SUBSYS>_SOAP_SSL_PORT, 347
<SUBSYS>_SUPER_ADDRESS_FILE, 243, 896
<SUBSYS>_TIMEOUT_MULTIPLIER, 250
<SUBSYS>_USERID, 257

<SUBSYS>, 256
<var>_ATTRS , 745
<var>_EXPRS , 745
ABORT_ON_EXCEPTION, 231
ABSENT_EXPIRE_ADS_AFTER, 308, 474
ABSENT_REQUIREMENTS, 308, 474
ABSENT_SUBMITTER_LIFETIME, 284
ABSENT_SUBMITTER_UPDATE_RATE, 284
ACCOUNTANT_LOCAL_DOMAIN, 309
ADD_SIGNIFICANT_ATTRIBUTES, 293
ADD_WINDOWS_FIREWALL_EXCEPTION, 261
ADVERTISE_IPV4_FIRST , 235
ADVERTISE_PSLOT_ROLLUP_INFORMATION,

263
ALIVE_INTERVAL , 266, 285, 377
ALLOW_* macros , 436
ALLOW_ADMIN_COMMANDS, 261
ALLOW_CLIENT, 335, 416
ALLOW_CONFIG, 665
ALLOW_PSLOT_PREEMPTION, 313, 740
ALLOW_SCRIPTS_TO_RUN_AS_EXECUTABLES,

232
ALLOW_VM_CRUFT, 43, 275, 1033
ALLOW_WRITE, 164
ALL_DEBUG, 241
ALWAYS_REUSEADDR, 251
ALWAYS_USE_LOCAL_CKPT_SERVER, 256
ALWAYS_VM_UNIV_USE_NOBODY, 341
APPEND_PREF_STANDARD, 302
APPEND_PREF_VANILLA, 302
APPEND_RANK_STANDARD, 302
APPEND_RANK_VANILLA, 302
APPEND_RANK, 302
APPEND_REQUIREMENTS, 302
APPEND_REQ_STANDARD, 302
APPEND_REQ_VANILLA, 302
ARCH, 201, 223
ASSIGN_CPU_AFFINITY, 299
AUTH_SSL_CLIENT_CADIR, 339, 425
AUTH_SSL_CLIENT_CAFILE, 339, 425
AUTH_SSL_CLIENT_CERTFILE, 339, 425
AUTH_SSL_CLIENT_KEYFILE, 339, 425
AUTH_SSL_SERVER_CADIR, 339, 425
AUTH_SSL_SERVER_CAFILE, 339, 425
AUTH_SSL_SERVER_CERTFILE, 339, 425
AUTH_SSL_SERVER_KEYFILE, 339, 425

HTCondor Version 8.6.4 Reference Manual

INDEX 1077

AUTO_INCLUDE_SHARED_PORT_IN_DAEMON_LIST,
247

AfterHours , 392
BACKFILL_SYSTEM, 270, 498
BASE_CGROUP, 317, 506
BATCH_GAHP_CHECK_STATUS_ATTEMPTS,

320
BATCH_GAHP, 320, 590
BENCHMARKS_<JobName>_ARGS, 357
BENCHMARKS_<JobName>_CWD, 357
BENCHMARKS_<JobName>_ENV, 357
BENCHMARKS_<JobName>_EXECUTABLE, 355
BENCHMARKS_<JobName>_JOB_LOAD, 356
BENCHMARKS_<JobName>_KILL, 356
BENCHMARKS_<JobName>_MODE, 355
BENCHMARKS_<JobName>_PERIOD, 355
BENCHMARKS_<JobName>_PREFIX, 355
BENCHMARKS_<JobName>_SLOTS, 355
BENCHMARKS_CONFIG_VAL, 354
BENCHMARKS_JOBLIST, 355
BENCHMARKS_MAX_JOB_LOAD, 356
BIND_ALL_INTERFACES, 246, 456
BIN , 225
BOINC_Arguments , 501, 503
BOINC_Environment , 501
BOINC_Error , 501
BOINC_Executable , 500, 501, 503
BOINC_GAHP, 321
BOINC_InitialDir , 500, 501, 503
BOINC_Output , 501
BOINC_Owner, 500, 501, 504
BOINC_Universe , 501
CCB_ADDRESS, 246, 459, 460
CCB_HEARTBEAT_INTERVAL, 246
CCB_POLLING_INTERVAL, 247
CCB_POLLING_MAX_INTERVAL, 247
CCB_POLLING_TIMESLICE, 247
CCB_READ_BUFFER, 247
CCB_RECONNECT_FILE, 247
CCB_SWEEP_INTERVAL, 247
CCB_WRITE_BUFFER, 247
CERTIFICATE_MAPFILE_ASSUME_HASH_KEYS,

340, 430, 720
CERTIFICATE_MAPFILE, 339, 340, 430
CGROUP_MEMORY_LIMIT_POLICY, 298, 508
CHECKPOINT_PLATFORM, 264

CHIRP_DELAYED_UPDATE_MAX_ATTRS, 300
CHIRP_DELAYED_UPDATE_PREFIX, 300
CHOWN_JOB_SPOOL_FILES, 294, 732
CKPT_PROBE, 231
CKPT_SERVER_CHECK_PARENT_INTERVAL,

255
CKPT_SERVER_CLASSAD_FILE, 255
CKPT_SERVER_CLEAN_INTERVAL, 255
CKPT_SERVER_CLIENT_TIMEOUT_RETRY,

292
CKPT_SERVER_CLIENT_TIMEOUT, 292
CKPT_SERVER_DEBUG, 465
CKPT_SERVER_DIR, 255, 465
CKPT_SERVER_HOST, 255, 458, 466
CKPT_SERVER_INTERVAL, 255
CKPT_SERVER_LOG, 465
CKPT_SERVER_MAX_PROCESSES, 255
CKPT_SERVER_MAX_RESTORE_PROCESSES,

256
CKPT_SERVER_MAX_STORE_PROCESSES, 256
CKPT_SERVER_REMOVE_STALE_CKPT_INTERVAL,

255
CKPT_SERVER_SOCKET_BUFSIZE, 255
CKPT_SERVER_STALE_CKPT_AGE_CUTOFF,

256
CLAIM_PARTITIONABLE_LEFTOVERS, 272
CLAIM_WORKLIFE, 266, 388
CLASSAD_LIFETIME, 304, 474
CLASSAD_LOG_STRICT_PARSING, 230
CLASSAD_USER_LIBS, 232, 542, 655
CLASSAD_USER_MAPDATA_<name>, 235
CLASSAD_USER_MAPFILE_<name>, 235
CLASSAD_USER_PYTHON_LIB, 233
CLASSAD_USER_PYTHON_MODULES, 232, 233
CLIENT_TIMEOUT, 305
CM_IP_ADDR, 230
COLLECTOR_ADDRESS_FILE, 452
COLLECTOR_ALLOW_ONLY_ONE_NEGOTIATOR,

720
COLLECTOR_CLASS_HISTORY_SIZE, 307
COLLECTOR_DAEMON_HISTORY_SIZE, 307,

759, 971, 1056
COLLECTOR_DAEMON_STATS, 307
COLLECTOR_DEBUG, 308
COLLECTOR_FORWARD_FILTERING, 308, 721
COLLECTOR_FORWARD_INTERVAL, 308

HTCondor Version 8.6.4 Reference Manual

INDEX 1078

COLLECTOR_FORWARD_WATCH_LIST, 308
COLLECTOR_HOST, 224, 452, 1038
COLLECTOR_MAX_FILE_DESCRIPTORS, 250
COLLECTOR_NAME, 306
COLLECTOR_PERSISTENT_AD_LOG, 277, 308,

349, 474
COLLECTOR_PORT, 225
COLLECTOR_QUERY_WORKERS, 308
COLLECTOR_REQUIREMENTS, 305
COLLECTOR_SOCKET_BUFSIZE, 306
COLLECTOR_STATS_SWEEP, 307
COLLECTOR_TCP_SOCKET_BUFSIZE, 306
COLLECTOR_UPDATE_INTERVAL, 306
COLLECTOR_USES_SHARED_PORT, 247
COMPRESS_PERIODIC_CKPT, 295
COMPRESS_VACATE_CKPT, 295
CONCURRENCY_LIMIT_DEFAULT_<NAME>,

314
CONCURRENCY_LIMIT_DEFAULT, 314, 509
CONDOR_ADMIN, 164, 228, 834
CONDOR_DEVELOPERS_COLLECTOR, 8, 306
CONDOR_DEVELOPERS, 8, 137, 305, 795
CONDOR_FSYNC, 233
CONDOR_GAHP, 320, 577
CONDOR_HOST, 224
CONDOR_IDS, 165, 228, 445, 560
CONDOR_Q_DASH_BATCH_IS_DEFAULT, 284
CONDOR_Q_ONLY_MY_JOBS, 284, 719, 730
CONDOR_Q_USE_V3_PROTOCOL, 284
CONDOR_SSHD, 74
CONDOR_SSH_KEYGEN, 74
CONDOR_SUPPORT_EMAIL, 228
CONDOR_VIEW_CLASSAD_TYPES, 308
CONDOR_VIEW_HOST, 225, 250, 492, 493
CONSOLE_DEVICES, 171, 266, 487
CONSUMPTION_<Resource>, 275
CONSUMPTION_POLICY, 275
CONTINUE, 263, 388
CORE_FILE_NAME, 246
COUNT_HYPERTHREAD_CPUS, 201, 223, 268
CREAM_GAHP, 321
CREATE_CORE_FILES, 231
CREATE_LOCKS_ON_LOCAL_DISK, 226, 238
CREDD_CACHE_LOCALLY, 317
CREDD_HOST, 317
CREDD_POLLING_TIMEOUT, 317

CURB_MATCHMAKING, 282
C_GAHP_CONTACT_SCHEDD_DELAY, 320
C_GAHP_DEBUG, 240
C_GAHP_LOG, 320, 577
C_GAHP_WORKER_THREAD_LOG, 320
DAEMON_LIST, 247, 256, 455, 465, 487, 824
DAEMON_SHUTDOWN_FAST, 245
DAEMON_SHUTDOWN, 244, 1060
DAEMON_SOCKET_DIR, 350, 351, 571
DAGMAN_ABORT_DUPLICATES, 327
DAGMAN_ABORT_ON_SCARY_SUBMIT, 330
DAGMAN_ALLOW_EVENTS, 332
DAGMAN_ALLOW_LOG_ERROR, 332
DAGMAN_ALWAYS_RUN_POST, 328
DAGMAN_ALWAYS_USE_NODE_LOG, 333, 572
DAGMAN_AUTO_RESCUE, 330
DAGMAN_CONDOR_RM_EXE, 330
DAGMAN_CONDOR_SUBMIT_EXE, 330
DAGMAN_CONFIG_FILE, 326
DAGMAN_COPY_TO_SPOOL, 334
DAGMAN_DEBUG_CACHE_ENABLE, 334
DAGMAN_DEBUG_CACHE_SIZE, 334
DAGMAN_DEBUG, 333
DAGMAN_DEFAULT_NODE_LOG, 331, 333, 572
DAGMAN_DEFAULT_PRIORITY, 328
DAGMAN_GENERATE_SUBDAG_SUBMITS, 329
DAGMAN_HOLD_CLAIM_TIME, 101, 329
DAGMAN_IGNORE_DUPLICATE_JOB_EXECUTION,

333
DAGMAN_INSERT_SUB_FILE, 334
DAGMAN_LOG_ON_NFS_IS_ERROR, 332
DAGMAN_MAX_JOBS_IDLE, 86, 327, 328, 743,

789, 954
DAGMAN_MAX_JOBS_SUBMITTED, 86, 327, 789,

954
DAGMAN_MAX_JOB_HOLDS, 329
DAGMAN_MAX_POST_SCRIPTS, 87, 327, 790,

954
DAGMAN_MAX_PRE_SCRIPTS, 87, 327, 789, 954
DAGMAN_MAX_RESCUE_NUM, 124, 330
DAGMAN_MAX_SUBMITS_PER_INTERVAL, 328
DAGMAN_MAX_SUBMIT_ATTEMPTS, 328
DAGMAN_MUNGE_NODE_NAMES, 101, 329
DAGMAN_OLD_RESCUE, 331
DAGMAN_ON_EXIT_REMOVE, 334
DAGMAN_PEGASUS_REPORT_METRICS, 335

HTCondor Version 8.6.4 Reference Manual

INDEX 1079

DAGMAN_PEGASUS_REPORT_TIMEOUT, 335,
795

DAGMAN_PENDING_REPORT_INTERVAL, 334,
573

DAGMAN_PROHIBIT_MULTI_JOBS, 329
DAGMAN_REMOVE_NODE_JOBS, 329
DAGMAN_RESET_RETRIES_UPON_RESCUE,

125, 330
DAGMAN_RETRY_NODE_FIRST, 328, 331
DAGMAN_RETRY_SUBMIT_FIRST, 331
DAGMAN_STARTUP_CYCLE_DETECT, 120, 326
DAGMAN_STORK_RM_EXE, 330
DAGMAN_STORK_SUBMIT_EXE, 330
DAGMAN_SUBMIT_DELAY, 329
DAGMAN_SUBMIT_DEPTH_FIRST, 328
DAGMAN_SUPPRESS_JOB_LOGS, 329
DAGMAN_SUPPRESS_NOTIFICATION, 330, 791,

953, 958
DAGMAN_USER_LOG_SCAN_INTERVAL, 128,

129, 328
DAGMAN_USE_OLD_DAG_READER, 327
DAGMAN_USE_SHARED_PORT, 327
DAGMAN_USE_STRICT, 125, 326
DAGMAN_VERBOSITY, 333, 573
DAGMAN_WRITE_PARTIAL_RESCUE, 126, 331
DC_DAEMON_LIST, 256
DEAD_COLLECTOR_MAX_AVOIDANCE_TIME,

231
DEBUG_TIME_FORMAT, 239
DEDICATED_EXECUTE_ACCOUNT_REGEXP,

252, 448, 505
DEDICATED_SCHEDULER_DELAY_FACTOR,

291
DEDICATED_SCHEDULER_USE_FIFO, 291
DEDICATED_SCHEDULER_WAIT_FOR_SPOOLER,

291
DEFAULT_DOMAIN_NAME, 230, 458
DEFAULT_IO_BUFFER_BLOCK_SIZE, 303
DEFAULT_IO_BUFFER_SIZE, 303
DEFAULT_JOB_MAX_RETRIES, 302
DEFAULT_MASTER_SHUTDOWN_SCRIPT, 258
DEFAULT_PRIO_FACTOR, 309, 362
DEFAULT_RANK_STANDARD, 303
DEFAULT_RANK_VANILLA, 303
DEFAULT_RANK, 303
DEFAULT_UNIVERSE, 301, 920

DEFRAG_CANCEL_REQUIREMENTS, 358
DEFRAG_DRAINING_MACHINES_PER_HOUR,

358
DEFRAG_INTERVAL, 358, 359
DEFRAG_LOG, 359
DEFRAG_MAX_CONCURRENT_DRAINING, 358
DEFRAG_MAX_WHOLE_MACHINES, 358
DEFRAG_NAME, 357, 1053
DEFRAG_RANK, 358
DEFRAG_REQUIREMENTS, 358
DEFRAG_SCHEDULE, 359
DEFRAG_STATE_FILE, 359
DEFRAG_UPDATE_INTERVAL, 359
DEFRAG_WHOLE_MACHINE_EXPR, 358
DELEGATE_FULL_JOB_GSI_CREDENTIALS,

337
DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME,

296, 337, 932, 1004
DELEGATE_JOB_GSI_CREDENTIALS_REFRESH,

296, 337
DELEGATE_JOB_GSI_CREDENTIALS, 337, 932,

1004
DENY_CLIENT, 335
DETECTED_CORES, 201, 224, 1022
DETECTED_CPUS, 201, 223, 268
DETECTED_MEMORY, 201, 224, 268, 1022
DETECTED_PHYSICAL_CPUS, 201, 223
DISCARD_SESSION_KEYRING_ON_STARTUP,

262
DISCONNECTED_KEYBOARD_IDLE_BOOST,

271, 400
DOCKER_DROP_ALL_CAPABILITIES, 518, 724
DOCKER_IMAGE_CACHE_SIZE, 279, 518
DOCKER_VOLUME_DIR_XXX_MOUNT_IF, 719
DOCKER, 279, 517
DOT_NET_VERSIONS, 276
DYNAMIC_RUN_ACCOUNT_LOCAL_GROUP, 301,

668
D_COMMAND, 438
D_SECURITY, 438
DedicatedScheduler , 269, 495
EC2_GAHP_RATE_LIMIT, 320
EC2_GAHP, 320
EC2_RESOURCE_TIMEOUT, 320, 594
ECRYPTFS_ADD_PASSPHRASE, 338
EMAIL_DOMAIN, 230

HTCondor Version 8.6.4 Reference Manual

INDEX 1080

EMAIL_SIGNATURE, 228
ENABLE_ADDRESS_REWRITING, 249
ENABLE_BACKFILL, 270, 498
ENABLE_CHIRP_DELAYED, 300
ENABLE_CHIRP_IO, 300
ENABLE_CHIRP_UPDATES, 300
ENABLE_CHIRP, 300
ENABLE_CLASSAD_CACHING, 232
ENABLE_DEPRECATION_WARNINGS, 304
ENABLE_GRID_MONITOR, 325
ENABLE_HISTORY_ROTATION, 229, 572
ENABLE_IPV4, 234, 462
ENABLE_IPV6, 235, 462
ENABLE_KERNEL_TUNING, 262
ENABLE_PERSISTENT_CONFIG, 243, 774
ENABLE_RUNTIME_CONFIG, 242
ENABLE_SOAP_SSL, 347
ENABLE_SOAP, 347
ENABLE_SSH_TO_JOB, 348
ENABLE_URL_TRANSFERS, 299
ENABLE_USERLOG_FSYNC, 238
ENABLE_USERLOG_LOCKING, 238
ENABLE_VERSIONED_OPSYS, 264
ENABLE_WEB_SERVER, 347
ENCRYPT_EXECUTE_DIRECTORY_FILENAMES,

338
ENCRYPT_EXECUTE_DIRECTORY, 338, 413
ENFORCE_CPU_AFFINITY, 299
ENVIRONMENT_FOR_Assigned<name>, 273
ENVIRONMENT_VALUE_FOR_UnAssigned<name>,

274
EVENT_LOG_COUNT_EVENTS, 238
EVENT_LOG_FSYNC, 242, 572
EVENT_LOG_JOB_AD_INFORMATION_ATTRS,

59, 242, 572
EVENT_LOG_LOCKING, 242, 572
EVENT_LOG_MAX_ROTATIONS, 242, 571
EVENT_LOG_MAX_SIZE, 241, 571
EVENT_LOG_ROTATION_LOCK, 242, 572
EVENT_LOG_USE_XML, 242, 572
EVENT_LOG, 241, 571
EVICT_BACKFILL , 271, 389, 499
EXECUTE_LOGIN_IS_DEDICATED, 253
EXECUTE, 226, 227, 515, 1022
EXEC_TRANSFER_ATTEMPTS, 296
EXPIRE_INVALIDATED_ADS, 309, 475

FEATURE : TESTINGMODE_POLICY_VALUES,
723

FEATURE : UWCS_DESKTOP_POLICY_VALUES,
723

FILESYSTEM_DOMAIN, 202, 224, 253, 458
FILETRANSFER_PLUGINS, 299, 1023
FILE_LOCK_VIA_MUTEX, 237, 570
FILE_TRANSFER_DISK_LOAD_THROTTLE_LONG_HORIZO

282
FILE_TRANSFER_DISK_LOAD_THROTTLE_SHORT_HORIZ

282
FILE_TRANSFER_DISK_LOAD_THROTTLE_WAIT_BETWEE

282
FILE_TRANSFER_DISK_LOAD_THROTTLE,

282, 1046
FLOCK_COLLECTOR_HOSTS, 288, 575
FLOCK_FROM, 576
FLOCK_INCREMENT, 288
FLOCK_NEGOTIATOR_HOSTS, 288, 575
FLOCK_TO, 575
FS_REMOTE_DIR, 338, 429
FULL_HOSTNAME, 199, 222
FetchWorkDelay , 353, 559, 563
GAHP_ARGS, 319
GAHP_DEBUG_HIDE_SENSITIVE_DATA, 319
GAHP, 319
GANGLIAD_DEFAULT_CLUSTER, 360, 473
GANGLIAD_DEFAULT_IP, 360, 474
GANGLIAD_DEFAULT_MACHINE, 360, 474
GANGLIAD_INTERVAL, 359
GANGLIAD_LOG, 361
GANGLIAD_METRICS_CONFIG_DIR, 361, 472
GANGLIAD_PER_EXECUTE_NODE_METRICS,

360, 472
GANGLIAD_REQUIREMENTS, 360, 472
GANGLIAD_VERBOSITY, 359
GANGLIA_CONFIG, 360
GANGLIA_GMETRIC, 360
GANGLIA_GSTAT_COMMAND, 360, 472
GANGLIA_LIB64_PATH, 360
GANGLIA_LIB_PATH, 360
GANGLIA_LIB , 360
GANGLIA_SEND_DATA_FOR_ALL_HOSTS, 360,

472
GANGLIA_VERBOSITY, 472
GCE_GAHP, 321

HTCondor Version 8.6.4 Reference Manual

INDEX 1081

GLEXEC_HOLD_ON_INITIAL_FAILURE, 326
GLEXEC_JOB, 325
GLEXEC_RETRIES, 326
GLEXEC_RETRY_DELAY, 326
GLEXEC, 326
GLITE_LOCATION, 320, 590
GLOBUS_GATEKEEPER_TIMEOUT, 320
GRACEFULLY_REMOVE_JOBS, 290
GRAM_VERSION_DETECTION, 320, 586
GRIDMANAGER_CHECKPROXY_INTERVAL, 318
GRIDMANAGER_CONNECT_FAILURE_RETRY_COUNT,

319
GRIDMANAGER_CONTACT_SCHEDD_DELAY,

318
GRIDMANAGER_EMPTY_RESOURCE_DELAY,

319
GRIDMANAGER_GAHP_CALL_TIMEOUT, 319
GRIDMANAGER_GAHP_RESPONSE_TIMEOUT,

319
GRIDMANAGER_GLOBUS_COMMIT_TIMEOUT,

320
GRIDMANAGER_JOB_PROBE_INTERVAL, 318
GRIDMANAGER_JOB_PROBE_RATE, 318
GRIDMANAGER_LOG, 318
GRIDMANAGER_MAX_JOBMANAGERS_PER_RESOURCE,

319, 586
GRIDMANAGER_MAX_PENDING_REQUESTS,

319
GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE,

319
GRIDMANAGER_MINIMUM_PROXY_TIME, 318
GRIDMANAGER_PROXY_REFRESH_TIME, 318
GRIDMANAGER_RESOURCE_PROBE_DELAY,

318
GRIDMANAGER_RESOURCE_PROBE_INTERVAL,

318, 594
GRIDMANAGER_SELECTION_EXPR, 291
GRIDMAP, 337, 423, 431
GRID_MONITOR_DISABLE_TIME, 325
GRID_MONITOR_HEARTBEAT_TIMEOUT, 325
GRID_MONITOR_NO_STATUS_TIMEOUT, 325
GRID_MONITOR_RETRY_DURATION, 325
GRID_MONITOR, 325, 588
GROUP_ACCEPT_SURPLUS_<groupname>,

315, 369
GROUP_ACCEPT_SURPLUS, 315, 316, 369

GROUP_AUTOREGROUP_<groupname>, 315
GROUP_AUTOREGROUP, 315, 1017, 1033, 1034
GROUP_DYNAMIC_MACH_CONSTRAINT, 311
GROUP_NAMES, 314
GROUP_PRIO_FACTOR_<groupname>, 315
GROUP_QUOTA_<groupname>, 314
GROUP_QUOTA_DYNAMIC_<groupname>, 314
GROUP_QUOTA_MAX_ALLOCATION_ROUNDS,

315, 1050
GROUP_QUOTA_ROUND_ROBIN_RATE, 315
GROUP_SORT_EXPR, 316, 370
GSI_AUTHZ_CONF, 336
GSI_DAEMON_CERT, 336, 423
GSI_DAEMON_DIRECTORY, 336, 423, 424
GSI_DAEMON_KEY, 336, 423
GSI_DAEMON_NAME, 335
GSI_DAEMON_PROXY, 336, 423
GSI_DAEMON_TRUSTED_CA_DIR, 336, 423, 595
GSI_DELEGATION_CLOCK_SKEW_ALLOWABLE,

337
GSI_DELEGATION_KEYBITS, 337
GSI_SKIP_HOST_CHECK_CERT_REGEX, 336
GSI_SKIP_HOST_CHECK, 335, 336
GSS_ASSIST_GRIDMAP_CACHE_EXPIRATION,

337
GT2_GAHP, 320
HAD_ARGS, 345
HAD_CONNECTION_TIMEOUT, 345
HAD_CONTROLLEE, 345
HAD_DEBUG, 345
HAD_LIST, 345
HAD_LOG, 345
HAD_UPDATE_INTERVAL, 346
HAD_USE_PRIMARY, 345
HAD_USE_REPLICATION, 346, 479
HAD, 345
HA_<SUBSYS>_LOCK_HOLD_TIME, 344
HA_<SUBSYS>_LOCK_URL, 344
HA_<SUBSYS>_POLL_PERIOD, 344
HA_LOCK_HOLD_TIME, 344
HA_LOCK_URL, 343
HA_POLL_PERIOD, 344
HDFS_ALLOW, 677
HDFS_BACKUPNODE_WEB, 677
HDFS_BACKUPNODE, 677
HDFS_DATANODE_ADDRESS, 677

HTCondor Version 8.6.4 Reference Manual

INDEX 1082

HDFS_DATANODE_CLASS, 677
HDFS_DATANODE_DIR, 676
HDFS_DATANODE_WEB, 676
HDFS_DENY, 677
HDFS_HOME, 676
HDFS_LOG4J, 677
HDFS_NAMENODE_CLASS, 677
HDFS_NAMENODE_DIR, 676
HDFS_NAMENODE_ROLE, 677
HDFS_NAMENODE_WEB, 676
HDFS_NAMENODE, 676
HDFS_NODETYPE, 677
HDFS_REPLICATION, 677
HDFS_SITE_FILE , 677
HIBERNATE_CHECK_INTERVAL, 276, 519
HIBERNATE, 276, 519
HIBERNATION_OVERRIDE_WOL, 277
HIBERNATION_PLUGIN_ARGS, 277
HIBERNATION_PLUGIN, 277
HIGHPORT, 249, 452
HISTORY_HELPER_MAX_CONCURRENCY, 230
HISTORY_HELPER_MAX_HISTORY, 230
HISTORY_HELPER, 724
HISTORY, 229
HOLD_JOB_IF_CREDENTIAL_EXPIRES, 318
HOSTALLOW. . ., 242, 774
HOSTALLOW_ADMINISTRATOR, 179
HOSTALLOW_NEGOTIATOR_SCHEDD, 576
HOSTALLOW_READ, 179
HOSTALLOW_WRITE, 179, 182
HOSTALLOW, 242
HOSTDENY, 242
HOSTNAME, 199, 222
HOST_ALIAS, 336
IGNORE_DNS_PROTOCOL_PREFERENCE, 235
IGNORE_LEAF_OOM, 236
IGNORE_NFS_LOCK_ERRORS, 254
IGNORE_TARGET_PROTOCOL_PREFERENCE,

235
IMMUTABLE_JOB_ATTRS, 294
INCLUDE, 225
INTERACTIVE_SUBMIT_FILE , 49, 304
INVALID_LOG_FILES , 304, 837
IN_HIGHPORT, 249, 453
IN_LOWPORT, 249, 453
IPV4_ADDRESS, 200

IPV6_ADDRESS, 200, 729
IP_ADDRESS_IS_V6, 200
IP_ADDRESS, 200, 222
IS_OWNER, 264, 379
IS_VALID_CHECKPOINT_PLATFORM, 264
JAVA5_HOOK_PREPARE_JOB, 564
JAVA_CLASSPATH_ARGUMENT, 275
JAVA_CLASSPATH_DEFAULT, 276
JAVA_CLASSPATH_SEPARATOR, 275
JAVA_EXTRA_ARGUMENTS, 276, 513
JAVA, 275, 512
JOB_DEFAULT_NOTIFICATION, 302
JOB_DEFAULT_REQUESTCPUS, 302, 407
JOB_DEFAULT_REQUESTDISK, 302, 407
JOB_DEFAULT_REQUESTMEMORY, 302, 407,

921, 1017
JOB_EXECDIR_PERMISSIONS, 301
JOB_INHERITS_STARTER_ENVIRONMENT,

299
JOB_IS_FINISHED_COUNT, 285
JOB_IS_FINISHED_INTERVAL , 285
JOB_QUEUE_LOG, 237, 571
JOB_RENICE_INCREMENT, 296, 372
JOB_ROUTER_DEFAULTS, 321
JOB_ROUTER_ENTRIES_CMD, 322, 610
JOB_ROUTER_ENTRIES_FILE, 322
JOB_ROUTER_ENTRIES_REFRESH, 322
JOB_ROUTER_ENTRIES, 321, 610
JOB_ROUTER_HOOK_KEYWORD, 353
JOB_ROUTER_LOCK, 322
JOB_ROUTER_MAX_JOBS, 322
JOB_ROUTER_NAME, 322
JOB_ROUTER_POLLING_PERIOD, 322, 566
JOB_ROUTER_RELEASE_ON_HOLD, 323
JOB_ROUTER_SCHEDD1_NAME, 323
JOB_ROUTER_SCHEDD1_POOL, 323
JOB_ROUTER_SCHEDD1_SPOOL, 323
JOB_ROUTER_SCHEDD2_NAME, 323
JOB_ROUTER_SCHEDD2_POOL, 323
JOB_ROUTER_SCHEDD2_SPOOL, 323
JOB_ROUTER_SOURCE_JOB_CONSTRAINT,

322
JOB_SPOOL_PERMISSIONS, 294
JOB_START_COUNT, 284, 1041
JOB_START_DELAY, 284, 1041
JOB_STOP_COUNT, 285

HTCondor Version 8.6.4 Reference Manual

INDEX 1083

JOB_STOP_DELAY, 285
JOB_TRANSFORM_<Name>, 293
JOB_TRANSFORM_<name>, 410
JOB_TRANSFORM_NAMES, 293, 410
KBDD_BUMP_CHECK_AFTER_IDLE_TIME, 267
KBDD_BUMP_CHECK_SIZE, 267
KEEP_POOL_HISTORY, 306, 491
KERBEROS_CLIENT_KEYTAB, 340
KERBEROS_MAP_FILE, 426, 431
KERBEROS_SERVER_KEYTAB, 340
KERBEROS_SERVER_PRINCIPAL, 340, 426
KERBEROS_SERVER_SERVICE, 340
KERBEROS_SERVER_USER, 340
KERNEL_TUNING_LOG, 262
KILLING_TIMEOUT , 265, 386, 389, 941, 1012
KILL , 263–265, 388, 389
LIBEXEC, 225
LIBVIRT_XML_SCRIPT_ARGS, 342
LIBVIRT_XML_SCRIPT , 342
LIB , 225
LINUX_HIBERNATION_METHOD, 278
LINUX_KERNEL_TUNING_SCRIPT, 262
LOCAL_CONFIG_DIR_EXCLUDE_REGEXP, 228
LOCAL_CONFIG_DIR, 187, 209, 227
LOCAL_CONFIG_FILE, 187, 192, 209, 214, 227,

486–488
LOCAL_CREDD, 665
LOCAL_DIR, 165, 167, 225
LOCAL_UNIV_EXECUTE, 280
LOCK_DEBUG_LOG_TO_APPEND, 237
LOCK_FILE_UPDATE_INTERVAL, 245
LOCK, 166, 229
LOGS_USE_TIMESTAMP, 239, 570
LOG_ON_NFS_IS_ERROR, 304
LOG, 226, 231, 267, 471
LOWPORT, 249, 452
LSF_GAHP, 321
LeaseManager.CLASSAD_LOG , 324
LeaseManager.DEBUG_ADS , 324
LeaseManager.DEFAULT_MAX_LEASE_DURATION,

324
LeaseManager.GETADS_INTERVAL , 324
LeaseManager.MAX_LEASE_DURATION, 324
LeaseManager.MAX_TOTAL_LEASE_DURATION,

324
LeaseManager.PRUNE_INTERVAL , 324

LeaseManager.QUERY_ADTYPE, 325
LeaseManager.QUERY_CONSTRAINTS, 325
LeaseManager.UPDATE_INTERVAL , 324
MACHINE_RESOURCE_<name>, 273, 399
MACHINE_RESOURCE_INVENTORY_<name>,

273
MACHINE_RESOURCE_INVENTORY_GPUs,

1035
MACHINE_RESOURCE_NAMES, 272, 399
MAIL_FROM, 229
MAIL, 229, 487
MASTER_<SUBSYS>_CONTROLLER, 344
MASTER_<name>_BACKOFF_CEILING, 259
MASTER_<name>_BACKOFF_CONSTANT, 259
MASTER_<name>_BACKOFF_FACTOR, 259
MASTER_<name>_RECOVER_FACTOR, 259
MASTER_ADDRESS_FILE, 261
MASTER_ATTRS, 261
MASTER_BACKOFF_CEILING, 259
MASTER_BACKOFF_CONSTANT, 259
MASTER_BACKOFF_FACTOR, 259
MASTER_CHECK_INTERVAL, 305
MASTER_CHECK_NEW_EXEC_INTERVAL, 182,

258
MASTER_DEBUG, 261
MASTER_HAD_BACKOFF_CONSTANT, 479
MASTER_HA_LIST, 343, 476
MASTER_INSTANCE_LOCK, 261
MASTER_NAME, 225, 260, 824
MASTER_NEW_BINARY_DELAY, 258
MASTER_NEW_BINARY_RESTART, 258
MASTER_RECOVER_FACTOR, 259
MASTER_SHUTDOWN_<Name>, 258, 259
MASTER_UPDATE_INTERVAL, 258
MATCH_TIMEOUT, 376, 383, 388
MAXJOBRETIREMENTTIME, 262, 266, 313, 388
MAX_<SUBSYS>_<LEVEL>_LOG, 241
MAX_<SUBSYS>_LOG, 236, 570
MAX_ACCEPTS_PER_CYCLE, 246
MAX_ACCOUNTANT_DATABASE_SIZE, 310
MAX_CKPT_SERVER_LOG, 465
MAX_CLAIM_ALIVES_MISSED, 266, 285
MAX_CONCURRENT_DOWNLOADS, 282, 1018
MAX_CONCURRENT_UPLOADS, 282, 1018
MAX_C_GAHP_LOG, 320
MAX_DAGMAN_LOG, 89, 334

HTCondor Version 8.6.4 Reference Manual

INDEX 1084

MAX_DEFAULT_LOG, 236
MAX_DISCARDED_RUN_TIME, 255, 464
MAX_EVENT_LOG, 241
MAX_FILE_DESCRIPTORS, 247, 460
MAX_HAD_LOG, 345
MAX_HISTORY_LOG, 229, 572
MAX_HISTORY_ROTATIONS, 230, 572
MAX_JOBS_PER_OWNER, 281
MAX_JOBS_PER_SUBMISSION, 281
MAX_JOBS_RUNNING, 51, 280, 453, 1041
MAX_JOBS_SUBMITTED, 281
MAX_JOB_MIRROR_UPDATE_LAG, 322
MAX_JOB_QUEUE_LOG_ROTATIONS, 230, 571
MAX_NEXT_JOB_START_DELAY, 284, 927, 1013
MAX_NUM_<SUBSYS>_LOG, 237, 570
MAX_NUM_CPUS, 268
MAX_NUM_SCHEDD_AUDIT_LOG, 293, 571
MAX_NUM_SHADOW_LOG, 742
MAX_NUM_SHARED_PORT_AUDIT_LOG, 352,

571
MAX_PENDING_STARTD_CONTACTS, 281
MAX_PERIODIC_EXPR_INTERVAL, 288, 289
MAX_PROCD_LOG, 316
MAX_REAPS_PER_CYCLE, 246
MAX_REPLICATION_LOG, 346
MAX_RUNNING_SCHEDULER_JOBS_PER_OWNER,

281, 721, 724
MAX_SCHEDD_AUDIT_LOG, 293, 571
MAX_SHADOW_EXCEPTIONS, 281
MAX_SHADOW_STATS_LOG, 296
MAX_SHARED_PORT_AUDIT_LOG, 352, 571
MAX_SLOT_TYPES, 272
MAX_STARTER_STATS_LOG, 301
MAX_TIME_SKIP, 245
MAX_TRACKING_GID, 317, 505
MAX_TRANSFERER_LOG, 346
MAX_TRANSFER_INPUT_MB, 283, 923, 1009,

1013
MAX_TRANSFER_LIFETIME, 346
MAX_TRANSFER_OUTPUT_MB, 283, 923, 1009,

1013
MAX_TRANSFER_QUEUE_AGE, 283
MAX_VM_GAHP_LOG, 341
MEMORY_USAGE_METRIC_VM, 300
MEMORY_USAGE_METRIC, 300
MEMORY, 268

MIN_TRACKING_GID, 317, 505
MODIFY_REQUEST_EXPR_REQUESTCPUS, 274,

407
MODIFY_REQUEST_EXPR_REQUESTDISK, 274,

407
MODIFY_REQUEST_EXPR_REQUESTMEMORY,

274, 407
MOUNT_UNDER_SCRATCH, 270
MUST_MODIFY_REQUEST_EXPRS, 274
MYPROXY_GET_DELEGATION, 347, 587
MachineMaxVacateTime , 263–265, 386, 388
NAMED_CHROOT, 299
NEGOTIATE_ALL_JOBS_IN_CLUSTER, 288,

365
NEGOTIATION_CYCLE_STATS_LENGTH, 309
NEGOTIATOR_ADDRESS_FILE, 451
NEGOTIATOR_ALLOW_QUOTA_OVERSUBSCRIPTION,

316, 368, 370
NEGOTIATOR_CONSIDER_EARLY_PREEMPTION,

266, 285, 313, 389
NEGOTIATOR_CONSIDER_PREEMPTION, 313
NEGOTIATOR_CROSS_SLOT_PRIOS, 722
NEGOTIATOR_CYCLE_DELAY, 309
NEGOTIATOR_DEBUG, 312
NEGOTIATOR_DISCOUNT_SUSPENDED_RESOURCES,

310
NEGOTIATOR_HOST, 225
NEGOTIATOR_IGNORE_USER_PRIORITIES,

602
NEGOTIATOR_INFORM_STARTD, 310
NEGOTIATOR_INTERVAL, 309
NEGOTIATOR_MATCHLIST_CACHING, 313, 602
NEGOTIATOR_MATCH_EXPRS, 312
NEGOTIATOR_MATCH_LOG, 241, 572
NEGOTIATOR_MAX_TIME_PER_CYCLE, 312
NEGOTIATOR_MAX_TIME_PER_PIESPIN, 312
NEGOTIATOR_MAX_TIME_PER_SCHEDD, 312
NEGOTIATOR_MAX_TIME_PER_SUBMITTER,

312, 1050, 1051
NEGOTIATOR_POST_JOB_RANK, 310
NEGOTIATOR_PRE_JOB_RANK, 310
NEGOTIATOR_READ_CONFIG_BEFORE_CYCLE,

313
NEGOTIATOR_RESOURCE_REQUEST_LIST_SIZE,

312
NEGOTIATOR_SLOT_CONSTRAINT, 311

HTCondor Version 8.6.4 Reference Manual

INDEX 1085

NEGOTIATOR_SLOT_POOLSIZE_CONSTRAINT,
311, 1049

NEGOTIATOR_SOCKET_CACHE_SIZE, 310, 453
NEGOTIATOR_TIMEOUT, 309
NEGOTIATOR_TRIM_SHUTDOWN_THRESHOLD,

311
NEGOTIATOR_UPDATE_AFTER_CYCLE, 313
NEGOTIATOR_UPDATE_INTERVAL, 309
NEGOTIATOR_USE_NONBLOCKING_STARTD_CONTACT,

250
NEGOTIATOR_USE_SLOT_WEIGHTS, 316
NEGOTIATOR_USE_WEIGHTED_DEMAND, 316
NETWORK_HOSTNAME, 248
NETWORK_INTERFACE, 248, 457, 458, 462
NETWORK_MAX_PENDING_CONNECTS, 231
NICE_USER_PRIO_FACTOR, 309, 362
NONBLOCKING_COLLECTOR_UPDATE, 250
NORDUGRID_GAHP, 321
NOT_RESPONDING_TIMEOUT, 245
NOT_RESPONDING_WANT_CORE, 245
NO_DNS, 230, 463, 736
NUM_CLAIMS, 275
NUM_CPUS, 267, 274, 397
NUM_SLOTS_TYPE_<N>, 274
NUM_SLOTS, 274, 397
OBITUARY_LOG_LENGTH, 258
OFFLINE_EXPIRE_ADS_AFTER, 278, 521
OFFLINE_LOG, 278, 521
OFFLINE_MACHINE_RESOURCE_<name>, 273
OPENMPI_EXCLUDE_NETWORK_INTERFACES,

74, 279
OPENMPI_INSTALL_PATH, 74, 279
OPEN_VERB_FOR_<EXT>_FILES, 232
OPSYS_AND_VER, 201, 223
OPSYS_VER, 201, 223
OPSYS, 201, 223
OUT_HIGHPORT, 250, 453
OUT_LOWPORT, 250, 453
PASSWD_CACHE_REFRESH, 231
PBS_GAHP, 321
PERIODIC_CHECKPOINT, 263, 543
PERIODIC_EXPR_INTERVAL, 288, 289
PERIODIC_EXPR_TIMESLICE, 288
PERIODIC_MEMORY_SYNC, 295
PERSISTENT_CONFIG_DIR, 243
PER_JOB_HISTORY_DIR, 291, 741

PER_JOB_NAMESPACES, 301
PID , 202, 224
PIPE_BUFFER_MAX, 246
POLLING_INTERVAL, 265, 383
POOL_HISTORY_DIR, 306, 491
POOL_HISTORY_MAX_STORAGE, 306, 491
POOL_HISTORY_SAMPLING_INTERVAL, 307
PPID, 202, 224
PREEMPTION_RANK_STABLE, 311, 363
PREEMPTION_RANK, 311
PREEMPTION_REQUIREMENTS_STABLE, 311,

363
PREEMPTION_REQUIREMENTS, 61, 311, 313,

362, 848
PREEMPT, 262, 388, 562
PREEN_ADMIN, 304, 837
PREEN_ARGS, 257
PREEN_INTERVAL, 258
PREEN, 257
PREFER_IPV4, 235, 462
PREFER_OUTBOUND_IPV4, 235
PRIORITY_HALFLIFE , 61, 309, 361, 364
PRIVATE_NETWORK_INTERFACE, 248, 457
PRIVATE_NETWORK_NAME, 246, 248, 457
PROCD_ADDRESS, 317
PROCD_LOG, 316
PROCD_MAX_SNAPSHOT_INTERVAL, 316
PROPORTIONAL_SWAP_ASSSIGNMENT, 509
PROTECTED_JOB_ATTRS, 294
PUBLISH_OBITUARIES, 258
ParallelSchedulingGroup , 290, 497
QUERY_TIMEOUT, 305
QUEUE_ALL_USERS_TRUSTED, 286
QUEUE_CLEAN_INTERVAL, 286, 571
QUEUE_SUPER_USERS, 286
QUEUE_SUPER_USER_MAY_IMPERSONATE,

287, 323
Q_QUERY_TIMEOUT, 231
RANK_FACTOR, 496
RANK, 263, 389, 496
RELEASE_DIR, 166, 225, 487
REMOTE_GROUP_RESOURCES_IN_USE, 740
REMOTE_PRIO_FACTOR, 309, 362
REMOVE_SIGNIFICANT_ATTRIBUTES, 293
REPLICATION_ARGS, 346
REPLICATION_DEBUG, 346

HTCondor Version 8.6.4 Reference Manual

INDEX 1086

REPLICATION_INTERVAL, 346
REPLICATION_LIST , 345
REPLICATION_LOG, 346
REPLICATION, 346
REQUEST_CLAIM_TIMEOUT, 285
REQUIRE_LOCAL_CONFIG_FILE, 227
RESERVED_DISK, 229, 1022
RESERVED_MEMORY, 268
RESERVED_SWAP, 55, 229
RESERVE_AFS_CACHE, 253
ROOSTER_INTERVAL, 350
ROOSTER_MAX_UNHIBERNATE, 350
ROOSTER_UNHIBERNATE_RANK, 350
ROOSTER_UNHIBERNATE, 350
ROOSTER_WAKEUP_CMD, 350
ROTATE_HISTORY_DAILY, 292, 571
ROTATE_HISTORY_MONTHLY, 292, 571
RUNBENCHMARKS, 268, 382, 388
RUN_FILETRANSFER_PLUGINS_WITH_ROOT,

300
RUN, 226
RemoteSysCpu , 727
RemoteUserCpu , 727
Requirements , 279, 280
SBIN, 225
SCHEDD_ADDRESS_FILE, 287
SCHEDD_ASSUME_NEGOTIATOR_GONE, 289
SCHEDD_ATTRS, 287
SCHEDD_AUDIT_LOG, 293, 571
SCHEDD_BACKUP_SPOOL, 290, 571
SCHEDD_CLUSTER_INCREMENT_VALUE, 291
SCHEDD_CLUSTER_INITIAL_VALUE, 291
SCHEDD_CLUSTER_MAXIMUM_VALUE, 291
SCHEDD_COLLECT_STATS_BY_<Name>, 292
SCHEDD_COLLECT_STATS_FOR_<Name>, 292
SCHEDD_CRON_<JobName>_ARGS, 357
SCHEDD_CRON_<JobName>_CWD, 357
SCHEDD_CRON_<JobName>_ENV, 357
SCHEDD_CRON_<JobName>_EXECUTABLE,

355
SCHEDD_CRON_<JobName>_JOB_LOAD, 356
SCHEDD_CRON_<JobName>_KILL, 356
SCHEDD_CRON_<JobName>_MODE, 355
SCHEDD_CRON_<JobName>_PERIOD, 355
SCHEDD_CRON_<JobName>_PREFIX, 355

SCHEDD_CRON_<JobName>_RECONFIG_RERUN,
356

SCHEDD_CRON_<JobName>_RECONFIG, 356
SCHEDD_CRON_CONFIG_VAL, 354
SCHEDD_CRON_JOBLIST, 355
SCHEDD_CRON_MAX_JOB_LOAD, 356
SCHEDD_CRON_NAME, 354
SCHEDD_DEBUG, 287
SCHEDD_ENABLE_SSH_TO_JOB, 348
SCHEDD_EXECUTE, 287
SCHEDD_EXPIRE_STATS_BY_<Name>, 292
SCHEDD_HOST, 225, 724, 811
SCHEDD_INTERVAL_TIMESLICE, 284
SCHEDD_INTERVAL, 155, 284
SCHEDD_JOB_QUEUE_LOG_FLUSH_DELAY,

292
SCHEDD_LOCK, 287
SCHEDD_MIN_INTERVAL, 284
SCHEDD_NAME, 225, 261, 287, 476
SCHEDD_PREEMPTION_RANK, 290, 497
SCHEDD_PREEMPTION_REQUIREMENTS, 290,

497
SCHEDD_QUERY_WORKERS, 283
SCHEDD_RESTART_REPORT, 294
SCHEDD_ROUND_ATTR_<xxxx>, 290
SCHEDD_SEND_VACATE_VIA_TCP, 291
SCHEDD_USES_STARTD_FOR_LOCAL_UNIVERSE,

280
SCHEDD_USE_SLOT_WEIGHT, 293, 745
SCHED_UNIV_RENICE_INCREMENT, 286
SEC_* _AUTHENTICATION_METHODS, 335
SEC_* _AUTHENTICATION, 335
SEC_* _CRYPTO_METHODS, 335
SEC_* _ENCRYPTION, 335
SEC_* _INTEGRITY , 335
SEC_* _NEGOTIATION, 335
SEC_<access-level>_SESSION_DURATION ,

337
SEC_<access-level>_SESSION_LEASE ,

338
SEC_DEFAULT_AUTHENTICATION_TIMEOUT,

339
SEC_DEFAULT_SESSION_DURATION, 337
SEC_DEFAULT_SESSION_LEASE, 338
SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION,

340, 437

HTCondor Version 8.6.4 Reference Manual

INDEX 1087

SEC_INVALIDATE_SESSIONS_VIA_TCP, 338
SEC_PASSWORD_FILE, 339, 427
SEC_TCP_SESSION_DEADLINE, 339
SEC_TCP_SESSION_TIMEOUT, 339
SENDMAIL, 229
SETTABLE_ATTRS_<PERMISSION-LEVEL>,

243, 444, 774
SETTABLE_ATTRS_ADMINISTRATOR, 444
SETTABLE_ATTRS_CONFIG, 203, 216, 243, 444
SETTABLE_ATTRS_OWNER, 444
SETTABLE_ATTRS_WRITE, 444
SGE_GAHP, 321
SHADOW_CHECKPROXY_INTERVAL, 296, 337
SHADOW_DEBUG, 295
SHADOW_JOB_CLEANUP_RETRY_DELAY, 295
SHADOW_LAZY_QUEUE_UPDATE, 295
SHADOW_LOCK, 295
SHADOW_MAX_JOB_CLEANUP_RETRIES, 295
SHADOW_QUEUE_UPDATE_INTERVAL, 295
SHADOW_RENICE_INCREMENT, 286
SHADOW_RUN_UNKNOWN_USER_JOBS, 296
SHADOW_SIZE_ESTIMATE, 229, 286
SHADOW_STATS_LOG, 240, 296
SHADOW_WORKLIFE, 295
SHADOW, 279
SHARED_PORT_ARGS, 351
SHARED_PORT_AUDIT_LOG, 351, 571
SHARED_PORT_DAEMON_AD_FILE, 350
SHARED_PORT_DEFAULT_ID, 247
SHARED_PORT_MAX_WORKERS, 351
SHARED_PORT_PORT, 350
SHARED_PORT, 247, 455
SHELL, 889
SHUTDOWN_FAST_TIMEOUT, 258
SHUTDOWN_GRACEFUL_TIMEOUT, 243, 266
SIGNIFICANT_ATTRIBUTES , 293, 365
SINGULARITY_BIND_EXPR, 301
SINGULARITY_IMAGE_EXPR, 301
SINGULARITY_JOB, 301
SINGULARITY_TARGET_DIR, 301
SINGULARITY, 301
SKIP_WINDOWS_LOGON_NETWORK, 317
SLOT<N>_CPU_AFFINITY, 299
SLOT<N>_EXECUTE, 227, 398
SLOT<N>_JOB_HOOK_KEYWORD, 352, 562
SLOT<N>_USER, 252, 448

SLOTS_CONNECTED_TO_CONSOLE, 271, 400,
1021

SLOTS_CONNECTED_TO_KEYBOARD, 271, 400,
1024

SLOT_TYPE_<N>_PARTITIONABLE, 272, 405
SLOT_TYPE_<N>, 272, 397, 399
SLOT_TYPE_<n>_STARTD_ATTRS, 745
SLOT_WEIGHT, 275, 408, 719
SLOW_CKPT_SPEED, 295
SMTP_SERVER, 229
SOAP_LEAVE_IN_QUEUE, 347, 613
SOAP_SSL_CA_DIR, 348, 595
SOAP_SSL_CA_FILE, 348, 595
SOAP_SSL_DH_FILE, 348
SOAP_SSL_SERVER_KEYFILE_PASSWORD,

347
SOAP_SSL_SERVER_KEYFILE, 347
SOAP_SSL_SKIP_HOST_CHECK, 348
SOCKET_LISTEN_BACKLOG, 246
SOFT_UID_DOMAIN, 252, 446
SPOOL, 226
SSH_TO_JOB_<SSH-CLIENT>_CMD, 348
SSH_TO_JOB_SSHD_ARGS, 349
SSH_TO_JOB_SSHD_CONFIG_TEMPLATE, 349
SSH_TO_JOB_SSHD, 349
SSH_TO_JOB_SSH_KEYGEN_ARGS, 349
SSH_TO_JOB_SSH_KEYGEN, 349
STARTD_ADDRESS_FILE, 267
STARTD_AD_REEVAL_EXPR, 313
STARTD_ATTRS, 267, 403, 445, 497, 745
STARTD_AVAIL_CONFIDENCE, 278
STARTD_CLAIM_ID_FILE , 267
STARTD_COMPUTE_AVAIL_STATS, 278
STARTD_CRON_<JobName>_ARGS, 357
STARTD_CRON_<JobName>_CWD, 357
STARTD_CRON_<JobName>_ENV, 357
STARTD_CRON_<JobName>_EXECUTABLE,

355
STARTD_CRON_<JobName>_JOB_LOAD, 356
STARTD_CRON_<JobName>_KILL, 356
STARTD_CRON_<JobName>_MODE, 355
STARTD_CRON_<JobName>_PERIOD, 355
STARTD_CRON_<JobName>_PREFIX, 355
STARTD_CRON_<JobName>_RECONFIG_RERUN,

356
STARTD_CRON_<JobName>_RECONFIG, 356

HTCondor Version 8.6.4 Reference Manual

INDEX 1088

STARTD_CRON_<JobName>_SLOTS, 355
STARTD_CRON_AUTOPUBLISH, 354
STARTD_CRON_CONFIG_VAL, 354
STARTD_CRON_JOBLIST, 355
STARTD_CRON_MAX_JOB_LOAD, 356
STARTD_CRON_NAME, 354
STARTD_DEBUG, 267
STARTD_EXPRS, 745
STARTD_HAS_BAD_UTMP, 266
STARTD_HISTORY, 265, 745
STARTD_JOB_ATTRS, 267, 745
STARTD_JOB_EXPRS, 311
STARTD_JOB_HOOK_KEYWORD, 352, 562
STARTD_MAX_AVAIL_PERIOD_SAMPLES, 278
STARTD_NAME, 268
STARTD_NOCLAIM_SHUTDOWN, 269
STARTD_PARTITIONABLE_SLOT_ATTRS, 264
STARTD_PUBLISH_DOTNET, 276
STARTD_PUBLISH_WINREG, 269
STARTD_RESOURCE_PREFIX, 271
STARTD_SENDS_ALIVES, 285
STARTD_SHOULD_WRITE_CLAIM_ID_FILE,

267
STARTD_SLOT_ATTRS, 271
STARTD_VM_ATTRS, 271
STARTD_VM_EXPRS, 271
STARTER_ALLOW_RUNAS_OWNER, 252, 448, 504
STARTER_CHOOSES_CKPT_SERVER, 255, 466
STARTER_DEBUG, 297
STARTER_INITIAL_UPDATE_INTERVAL, 561
STARTER_JOB_ENVIRONMENT, 298
STARTER_JOB_HOOK_KEYWORD, 563
STARTER_LOCAL_LOGGING, 297
STARTER_LOCAL, 279
STARTER_LOG_NAME_APPEND, 297
STARTER_RLIMIT_AS, 300
STARTER_STATS_LOG, 240, 301
STARTER_UPDATE_INTERVAL_TIMESLICE,

297
STARTER_UPDATE_INTERVAL, 297, 561
STARTER_UPLOAD_TIMEOUT, 299
STARTER, 265
START_BACKFILL, 271, 382, 389, 498
START_DAEMONS, 258
START_LOCAL_UNIVERSE, 279, 1045
START_MASTER, 258

START_SCHEDULER_UNIVERSE, 280, 1045
START, 262, 271, 371, 388, 496
STATE_FILE , 346
STATISTICS_TO_PUBLISH_LIST , 234
STATISTICS_TO_PUBLISH, 233, 359, 1046–

1049
STATISTICS_WINDOW_QUANTUM_<collection> ,

234
STATISTICS_WINDOW_QUANTUM, 234
STATISTICS_WINDOW_SECONDS_<collection> ,

234
STATISTICS_WINDOW_SECONDS, 234, 1044
STRICT_CLASSAD_EVALUATION, 232, 525
SUBMIT_ATTRS, 303, 449, 507, 738, 745
SUBMIT_EXPRS, 507
SUBMIT_MAX_PROCS_IN_CLUSTER, 304
SUBMIT_PUBLISH_WINDOWS_OSVERSIONINFO,

723
SUBMIT_REQUIREMENT_<Name>_REASON,

294, 412
SUBMIT_REQUIREMENT_<Name>, 294, 411
SUBMIT_REQUIREMENT_NAMES, 294, 411
SUBMIT_SEND_RESCHEDULE, 303
SUBMIT_SKIP_FILECHECKS, 303
SUBSYSTEM, 200, 222
SUSPEND, 262, 388
SYSAPI_GET_LOADAVG, 231
SYSTEM_IMMUTABLE_JOB_ATTRS, 294
SYSTEM_JOB_MACHINE_ATTRS_HISTORY_LENGTH,

287
SYSTEM_JOB_MACHINE_ATTRS, 287, 941, 1003
SYSTEM_PERIODIC_HOLD_REASON, 289
SYSTEM_PERIODIC_HOLD_SUBCODE, 289
SYSTEM_PERIODIC_HOLD, 289, 1009
SYSTEM_PERIODIC_RELEASE, 289
SYSTEM_PERIODIC_REMOVE, 289
SYSTEM_PROTECTED_JOB_ATTRS, 294
SYSTEM_VALID_SPOOL_FILES, 304, 837
SlotWeight , 267, 316
TCP_FORWARDING_HOST, 248, 249
TCP_KEEPALIVE_INTERVAL, 234
TCP_UPDATE_COLLECTORS, 250, 461
TEMP_DIR, 226
TILDE , 200, 222
TMP_DIR, 226
TOOL_DEBUG, 241

HTCondor Version 8.6.4 Reference Manual

INDEX 1089

TOUCH_LOG_INTERVAL, 238, 570
TRANSFERER_DEBUG, 346
TRANSFERER_LOG, 346
TRANSFERER, 346
TRANSFER_IO_REPORT_INTERVAL, 283
TRANSFER_IO_REPORT_TIMESPANS, 282, 283,

1046–1049
TRANSFER_QUEUE_USER_EXPR, 282, 1046–

1049
TRUNC_<SUBSYS>_<LEVEL>_LOG_ON_OPEN,

241
TRUNC_<SUBSYS>_LOG_ON_OPEN, 237, 241,

570
TRUST_UID_DOMAIN, 252
UDP_LOOPBACK_FRAGMENT_SIZE, 250, 251
UDP_NETWORK_FRAGMENT_SIZE, 250, 251
UID_DOMAIN, 202, 224, 251, 445, 446, 458, 918
UNAME_ARCH, 201, 223
UNAME_OPSYS, 201, 223
UNHIBERNATE, 277, 349, 521
UNICORE_GAHP, 321
UPDATE_COLLECTOR_WITH_TCP, 250, 461
UPDATE_INTERVAL, 265, 354, 381, 474
UPDATE_OFFSET, 265
UPDATE_VIEW_COLLECTOR_WITH_TCP, 250,

461
USERLOG_FILE_CACHE_CLEAR_INTERVAL,

238
USERLOG_FILE_CACHE_MAX, 238
USERNAME, 202, 224
USER_CONFIG_FILE, 186, 208, 228
USER_JOB_WRAPPER, 297, 506
USE_AFS, 254
USE_CKPT_SERVER, 255, 466
USE_CLONE_TO_CREATE_PROCESSES, 245
USE_GID_PROCESS_TRACKING, 317, 505
USE_NFS, 253
USE_PID_NAMESPACES, 301
USE_PROCD, 316, 505
USE_PROCESS_GROUPS, 261
USE_PSS, 300
USE_RESOURCE_REQUEST_COUNTS, 312
USE_SHARED_PORT, 247, 350
USE_VISIBLE_DESKTOP, 298, 668
VALID_COD_USERS, 547
VALID_SPOOL_FILES, 304, 344, 476, 837

VMP_HOST_MACHINE, 343, 494
VMP_VM_LIST, 343, 494
VMWARE_BRIDGE_NETWORKING_TYPE, 342
VMWARE_LOCAL_SETTINGS_FILE, 343
VMWARE_NAT_NETWORKING_TYPE, 342
VMWARE_NETWORKING_TYPE, 342
VMWARE_PERL, 342
VMWARE_SCRIPT, 342
VM_GAHP_LOG, 341
VM_GAHP_REQ_TIMEOUT, 341
VM_GAHP_SERVER, 341
VM_MAX_NUMBER, 341, 1033
VM_MEMORY, 341, 1033
VM_NETWORKING_BRIDGE_INTERFACE, 342
VM_NETWORKING_DEFAULT_TYPE, 342
VM_NETWORKING_TYPE, 342
VM_NETWORKING, 341
VM_RECHECK_INTERVAL, 341
VM_SOFT_SUSPEND, 341
VM_STATUS_INTERVAL, 341
VM_TYPE, 341, 514, 1033
VM_UNIV_NOBODY_USER, 341
WALL_CLOCK_CKPT_INTERVAL, 286
WANT_HOLD_REASON, 263
WANT_HOLD_SUBCODE, 263
WANT_HOLD, 262, 1009
WANT_SUSPEND, 264, 388
WANT_UDP_COMMAND_SOCKET, 232, 310
WANT_VACATE, 264, 265, 389
WARN_ON_UNUSED_SUBMIT_FILE_MACROS,

303, 912
WEB_ROOT_DIR, 347
WEIGHTED_JOBS_RUNNING, 740
WINDOWED_STAT_WIDTH, 284
WINDOWS_FIREWALL_FAILURE_RETRY, 261
WINDOWS_RMDIR_OPTIONS, 357
WINDOWS_RMDIR, 357
WeightedJobsRunning , 741
WorkHours , 392
XEN_BOOTLOADER, 343
include command , 192
ALLOW_ADMINISTRATOR, 434
ALLOW_ADVERTISE_MASTER, 434
ALLOW_ADVERTISE_SCHEDD, 434
ALLOW_ADVERTISE_STARTD, 434
ALLOW_CLIENT, 434

HTCondor Version 8.6.4 Reference Manual

INDEX 1090

ALLOW_CONFIG, 434
ALLOW_DAEMON, 434
ALLOW_NEGOTIATOR, 434
ALLOW_OWNER, 434
ALLOW_READ, 434
ALLOW_SOAP, 434
ALLOW_WRITE, 434
COLLECTOR_ADDRESS_FILE, 243
COLLECTOR_ARGS, 257
COLLECTOR_SUPER_ADDRESS_FILE, 243
DENY_ADMINISTRATOR, 434
DENY_ADVERTISE_MASTER, 434
DENY_ADVERTISE_SCHEDD, 434
DENY_ADVERTISE_STARTD, 434
DENY_CLIENT, 434
DENY_CONFIG, 434
DENY_DAEMON, 434
DENY_NEGOTIATOR, 434
DENY_OWNER, 434
DENY_READ, 434
DENY_SOAP, 434
DENY_WRITE, 434
IS_VALID_CHECKPOINT_PLATFORM, 372
NEGOTIATOR_ADDRESS_FILE, 243
NEGOTIATOR_ARGS, 257
RANK, 373
SCHEDD_ARGS, 257
SCHEDD_SUPER_ADDRESS_FILE, 243
SEC_ADMINISTRATOR_AUTHENTICATION_METHODS,

421
SEC_ADMINISTRATOR_AUTHENTICATION,

420
SEC_ADMINISTRATOR_CRYPTO_METHODS,

432
SEC_ADMINISTRATOR_ENCRYPTION, 431
SEC_ADMINISTRATOR_INTEGRITY, 433
SEC_ADVERTISE_MASTER_AUTHENTICATION_METHODS,

421
SEC_ADVERTISE_MASTER_AUTHENTICATION,

420
SEC_ADVERTISE_MASTER_CRYPTO_METHODS,

432
SEC_ADVERTISE_MASTER_ENCRYPTION, 431
SEC_ADVERTISE_MASTER_INTEGRITY, 433
SEC_ADVERTISE_SCHEDD_AUTHENTICATION_METHODS,

421

SEC_ADVERTISE_SCHEDD_AUTHENTICATION,
420

SEC_ADVERTISE_SCHEDD_CRYPTO_METHODS,
432

SEC_ADVERTISE_SCHEDD_ENCRYPTION, 431
SEC_ADVERTISE_SCHEDD_INTEGRITY, 433
SEC_ADVERTISE_STARTD_AUTHENTICATION_METHODS,

421
SEC_ADVERTISE_STARTD_AUTHENTICATION,

420
SEC_ADVERTISE_STARTD_CRYPTO_METHODS,

432
SEC_ADVERTISE_STARTD_ENCRYPTION, 431
SEC_ADVERTISE_STARTD_INTEGRITY, 433
SEC_CLIENT_AUTHENTICATION_METHODS,

420
SEC_CLIENT_AUTHENTICATION, 420
SEC_CLIENT_CRYPTO_METHODS, 432
SEC_CLIENT_ENCRYPTION, 431
SEC_CLIENT_INTEGRITY, 433
SEC_CONFIG_AUTHENTICATION_METHODS,

421
SEC_CONFIG_AUTHENTICATION, 420
SEC_CONFIG_CRYPTO_METHODS, 432
SEC_CONFIG_ENCRYPTION, 431
SEC_CONFIG_INTEGRITY, 433
SEC_DAEMON_AUTHENTICATION_METHODS,

421
SEC_DAEMON_AUTHENTICATION, 420
SEC_DAEMON_CRYPTO_METHODS, 432
SEC_DAEMON_ENCRYPTION, 431
SEC_DAEMON_INTEGRITY, 433
SEC_DEFAULT_AUTHENTICATION_METHODS,

420, 421
SEC_DEFAULT_AUTHENTICATION, 420
SEC_DEFAULT_CRYPTO_METHODS, 432
SEC_DEFAULT_ENCRYPTION, 431
SEC_DEFAULT_INTEGRITY, 433
SEC_NEGOTIATOR_AUTHENTICATION_METHODS,

421
SEC_NEGOTIATOR_AUTHENTICATION, 420
SEC_NEGOTIATOR_CRYPTO_METHODS, 432
SEC_NEGOTIATOR_INTEGRITY, 433
SEC_OWNER_AUTHENTICATION_METHODS,

421
SEC_OWNER_AUTHENTICATION, 420

HTCondor Version 8.6.4 Reference Manual

INDEX 1091

SEC_OWNER_CRYPTO_METHODS, 432
SEC_OWNER_ENCRYPTION, 431
SEC_OWNER_INTEGRITY, 433
SEC_READ_AUTHENTICATION_METHODS, 421
SEC_READ_AUTHENTICATION, 420
SEC_READ_CRYPTO_METHODS, 432
SEC_READ_ENCRYPTION, 431
SEC_READ_INTEGRITY, 433
SEC_WRITE_AUTHENTICATION_METHODS,

421
SEC_WRITE_AUTHENTICATION, 420
SEC_WRITE_CRYPTO_METHODS, 432
SEC_WRITE_ENCRYPTION, 431
SEC_WRITE_INTEGRITY, 433
SHARED_PORT_MAX_FILE_DESCRIPTORS,

247
STARTD_ARGS, 257
STARTD_ATTRS, 244
STARTD_EXPRS, 244

configuration of source code contrib
Quill configuration variables, 681

configuration: introduction, 185
configuration: macros, 207
configuration: templates, 202
CONSOLE_DEVICESmacro, 171, 266, 487
consumption policy, 408
CONSUMPTION_<Resource>macro, 275
CONSUMPTION_POLICYmacro, 275
CONTINUEmacro, 263, 388
contrib module

HTCondorView client, 704
CORE_FILE_NAMEmacro, 246
COUNT_HYPERTHREAD_CPUSmacro, 201, 223, 268
CpusProvisioned

job ClassAd attribute, 1020
cream, 597
CREAM_GAHPmacro, 321
CREATE_CORE_FILESmacro, 231
CREATE_LOCKS_ON_LOCAL_DISKmacro, 226, 238
CREDD_CACHE_LOCALLYmacro, 317
CREDD_HOSTmacro, 317
CREDD_POLLING_TIMEOUTmacro, 317
Crondor, 151
CronTab job scheduling, 151
crontab program, 706
CumulativeRemoteSysCpu

job ClassAd attribute, 1016
CumulativeRemoteUserCpu

job ClassAd attribute, 1016
CumulativeSlotTime

job ClassAd attribute, 1003
CumulativeSuspensionTime

job ClassAd attribute, 1003
CumulativeTransferTime

job ClassAd attribute, 1003
CURB_MATCHMAKINGmacro, 282
current working directory, 449
CurrentHosts

job ClassAd attribute, 1003
cwd

of jobs, 449

D_COMMANDmacro, 438
D_SECURITYmacro, 438
daemon

condor_ckpt_server, 161, 464
condor_collector, 160
condor_credd, 161, 317, 664
condor_defrag, 161, 409
condor_gangliad, 359, 471
condor_gridmanager, 161
condor_had, 161, 477
condor_hdfs, 162
condor_job_router, 161, 604
condor_kbdd, 161, 489
condor_lease_manager, 161
condor_master, 159, 824
condor_negotiator, 160
condor_procd, 161
condor_replication, 161, 478
condor_rooster, 161, 521
condor_schedd, 160
condor_shadow, 160
condor_shared_port, 161, 454
condor_startd, 160, 370, 371
condor_starter, 160
condor_transferer, 161, 478
descriptions, 159
running as root, 156

Daemon ClassAd Hooks, 567
DAEMON_LISTmacro, 247, 256, 455, 465, 487, 824
DAEMON_SHUTDOWNmacro, 244, 1060

HTCondor Version 8.6.4 Reference Manual

INDEX 1092

DAEMON_SHUTDOWN_FASTmacro, 245
DAEMON_SOCKET_DIRmacro, 350, 351, 571
daemoncore, 468–471

command line arguments, 470
Unix signals, 469

DAG input file
ABORT-DAG-ON command, 91
ALL_NODES option, 122
CATEGORY command, 98
command order, 84
Composing workflows, 103
CONFIG command, 99
CONNECT command, 117
DATA command, 79
DOT command, 127
FINAL command, 119
INCLUDE command, 101
JOB command, 78
JOBSTATE_LOG command, 130
MAXJOBS command, 98
NODE_STATUS_FILE command, 128
PARENT . . .CHILD command, 79
PIN_IN command, 117
PIN_OUT command, 117
PRE_SKIP command, 84
PRIORITY command, 96
RETRY command, 90
SCRIPT command, 80
SET_JOB_ATTR command, 100
SPLICE command, 107
SUBDAG command, 104
VARS command, 92

DAG_InRecovery
job ClassAd attribute, 1019

DAG_NodesDone
job ClassAd attribute, 1019

DAG_NodesFailed
job ClassAd attribute, 1019

DAG_NodesPostrun
job ClassAd attribute, 1019

DAG_NodesPrerun
job ClassAd attribute, 1019

DAG_NodesQueued
job ClassAd attribute, 1019

DAG_NodesReady
job ClassAd attribute, 1019

DAG_NodesTotal
job ClassAd attribute, 1020

DAG_NodesUnready
job ClassAd attribute, 1020

DAG_Status
job ClassAd attribute, 1020

DAGMan, 76–140
aborting a DAG, 91
accounting groups, 140
command order, 84
Composing workflows, 103
configuration specific to a DAG, 99
connecting DAG splices, 117
DAG INCLUDE command, 101
DAG input file, 77
DAG monitoring, 88
DAG recovery, 126
DAG removal, 88
DAG status in a job ClassAd, 134
DAG submission, 85
$DAG_STATUSvalue, 82
DAGs within DAGs, 104
describing dependencies, 79
difference between Rescue DAG and DAG recovery,

126
example submit description file, 85
$FAILED_COUNTvalue, 83
file paths in DAGs, 87
FINAL node, 119
$JOB value, 82
$JOBID value, 82
jobstate.log file, 130
large numbers of jobs, 134
machine-readable event history, 130
$MAX_RETRIESvalue, 82
node job submit description file, 84
node priorities, 96
node status file, 128
optimization of submit time, 100
POST script, 80
PRE and POST scripts, 80
PRE script, 80
$PRE_SCRIPT_RETURNvalue, 82
rescue DAG, 123
$RETRYvalue, 82
retrying failed nodes, 90

HTCondor Version 8.6.4 Reference Manual

INDEX 1093

$RETURNvalue, 82
setting ClassAd attributes in a DAG, 100
single submission of multiple, independent DAGs,

101
skipping node execution, 84
splicing DAGs, 107
suspending a running DAG, 89
terminology, 76
throttling, 86
throttling nodes by category, 98
VARS (macro for submit description file), 92
VARS (use of special characters), 94
visualizing DAGs, 127
workflow metrics, 137

DAGMan configuration: debug output, 333
DAGMan configuration: general, 326
DAGMan configuration: HTCondor attributes, 334
DAGMan configuration: log files, 331
DAGMan configuration: metrics, 335
DAGMan configuration: priority, node semantics, 328
DAGMan configuration: rescue/retry, 330
DAGMan configuration: submission/removal, 328
DAGMan configuration: throttling, 327
DAGMAN_ABORT_DUPLICATESmacro, 327
DAGMAN_ABORT_ON_SCARY_SUBMITmacro, 330
DAGMAN_ALLOW_EVENTSmacro, 332
DAGMAN_ALLOW_LOG_ERRORmacro, 332
DAGMAN_ALWAYS_RUN_POSTmacro, 328
DAGMAN_ALWAYS_USE_NODE_LOGmacro, 333, 572
DAGMAN_AUTO_RESCUEmacro, 330
DAGMAN_CONDOR_RM_EXEmacro, 330
DAGMAN_CONDOR_SUBMIT_EXEmacro, 330
DAGMAN_CONFIG_FILEmacro, 326
DAGMAN_COPY_TO_SPOOLmacro, 334
DAGMAN_DEBUGmacro, 333
DAGMAN_DEBUG_CACHE_ENABLEmacro, 334
DAGMAN_DEBUG_CACHE_SIZEmacro, 334
DAGMAN_DEFAULT_NODE_LOGmacro, 331, 333, 572
DAGMAN_DEFAULT_PRIORITYmacro, 328
DAGMAN_GENERATE_SUBDAG_SUBMITSmacro, 329
DAGMAN_HOLD_CLAIM_TIMEmacro, 101, 329
DAGMAN_IGNORE_DUPLICATE_JOB_EXECUTION

macro, 333
DAGMAN_INSERT_SUB_FILEmacro, 334
DAGMAN_LOG_ON_NFS_IS_ERRORmacro, 332
DAGMAN_MAX_JOB_HOLDSmacro, 329

DAGMAN_MAX_JOBS_IDLEmacro, 86, 327, 328, 743,
789, 954

DAGMAN_MAX_JOBS_SUBMITTEDmacro, 86, 327,
789, 954

DAGMAN_MAX_POST_SCRIPTSmacro, 87, 327, 790,
954

DAGMAN_MAX_PRE_SCRIPTSmacro, 87, 327, 789,
954

DAGMAN_MAX_RESCUE_NUMmacro, 124, 330
DAGMAN_MAX_SUBMIT_ATTEMPTSmacro, 328
DAGMAN_MAX_SUBMITS_PER_INTERVALmacro,

328
DAGMAN_MUNGE_NODE_NAMESmacro, 101, 329
DAGMAN_OLD_RESCUEmacro, 331
DAGMAN_ON_EXIT_REMOVEmacro, 334
DAGMAN_PEGASUS_REPORT_METRICSmacro, 335
DAGMAN_PEGASUS_REPORT_TIMEOUTmacro, 335,

795
DAGMAN_PENDING_REPORT_INTERVALmacro, 334,

573
DAGMAN_PROHIBIT_MULTI_JOBSmacro, 329
DAGMAN_REMOVE_NODE_JOBSmacro, 329
DAGMAN_RESET_RETRIES_UPON_RESCUEmacro,

125, 330
DAGMAN_RETRY_NODE_FIRSTmacro, 328, 331
DAGMAN_RETRY_SUBMIT_FIRSTmacro, 331
DAGMAN_STARTUP_CYCLE_DETECTmacro, 120, 326
DAGMAN_STORK_RM_EXEmacro, 330
DAGMAN_STORK_SUBMIT_EXEmacro, 330
DAGMAN_SUBMIT_DELAYmacro, 329
DAGMAN_SUBMIT_DEPTH_FIRSTmacro, 328
DAGMAN_SUPPRESS_JOB_LOGSmacro, 329
DAGMAN_SUPPRESS_NOTIFICATIONmacro, 330,

791, 953, 958
DAGMAN_USE_OLD_DAG_READERmacro, 327
DAGMAN_USE_SHARED_PORTmacro, 327
DAGMAN_USE_STRICTmacro, 125, 326
DAGMAN_USER_LOG_SCAN_INTERVALmacro, 128,

129, 328
DAGMAN_VERBOSITYmacro, 333, 573
DAGMAN_WRITE_PARTIAL_RESCUEmacro, 126, 331
DAGManJobId

job ClassAd attribute, 1003
DAGManNodesLog

job ClassAd attribute, 1004
DAGManNodesMask

HTCondor Version 8.6.4 Reference Manual

INDEX 1094

job ClassAd attribute, 1004
DAGParentNodeNames

job ClassAd attribute, 85, 1003
DC_DAEMON_LISTmacro, 256
DEAD_COLLECTOR_MAX_AVOIDANCE_TIMEmacro,

231
Debian installation with Debian packages, 168
DEBUG_TIME_FORMATmacro, 239
dedicated scheduling, 494
DEDICATED_EXECUTE_ACCOUNT_REGEXPmacro,

252, 448, 505
DEDICATED_SCHEDULER_DELAY_FACTORmacro,

291
DEDICATED_SCHEDULER_USE_FIFOmacro, 291
DEDICATED_SCHEDULER_WAIT_FOR_SPOOLER

macro, 291
DedicatedScheduler macro, 269, 495
DEFAULT_DOMAIN_NAMEmacro, 230, 458
DEFAULT_IO_BUFFER_BLOCK_SIZEmacro, 303
DEFAULT_IO_BUFFER_SIZEmacro, 303
DEFAULT_JOB_MAX_RETRIESmacro, 302
DEFAULT_MASTER_SHUTDOWN_SCRIPTmacro, 258
DEFAULT_PRIO_FACTORmacro, 309, 362
DEFAULT_RANKmacro, 303
DEFAULT_RANK_STANDARDmacro, 303
DEFAULT_RANK_VANILLAmacro, 303
DEFAULT_UNIVERSEmacro, 301, 920
deferral time

of a job, 149
DEFRAG_CANCEL_REQUIREMENTSmacro, 358
DEFRAG_DRAINING_MACHINES_PER_HOURmacro,

358
DEFRAG_INTERVALmacro, 358, 359
DEFRAG_LOGmacro, 359
DEFRAG_MAX_CONCURRENT_DRAININGmacro, 358
DEFRAG_MAX_WHOLE_MACHINESmacro, 358
DEFRAG_NAMEmacro, 357, 1053
DEFRAG_RANKmacro, 358
DEFRAG_REQUIREMENTSmacro, 358
DEFRAG_SCHEDULEmacro, 359
DEFRAG_STATE_FILEmacro, 359
DEFRAG_UPDATE_INTERVALmacro, 359
DEFRAG_WHOLE_MACHINE_EXPRmacro, 358
DELEGATE_FULL_JOB_GSI_CREDENTIALSmacro,

337

DELEGATE_JOB_GSI_CREDENTIALSmacro, 337,
932, 1004

DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME
macro, 296, 337, 932, 1004

DELEGATE_JOB_GSI_CREDENTIALS_REFRESH
macro, 296, 337

DelegateJobGSICredentialsLifetime
job ClassAd attribute, 1004

DENY_ADMINISTRATORmacro, 434
DENY_ADVERTISE_MASTERmacro, 434
DENY_ADVERTISE_SCHEDDmacro, 434
DENY_ADVERTISE_STARTDmacro, 434
DENY_CLIENTmacro, 335
DENY_CLIENTmacro, 434
DENY_CONFIGmacro, 434
DENY_DAEMONmacro, 434
DENY_NEGOTIATORmacro, 434
DENY_OWNERmacro, 434
DENY_READmacro, 434
DENY_SOAPmacro, 434
DENY_WRITEmacro, 434
DETECTED_CORESmacro, 201, 224, 1022
DETECTED_CPUSmacro, 201, 223, 268
DETECTED_MEMORYmacro, 201, 224, 268, 1022
DETECTED_PHYSICAL_CPUSmacro, 201, 223
directed acyclic graph (DAG), 76
Directed Acyclic Graph Manager (DAGMan), 76
DISCARD_SESSION_KEYRING_ON_STARTUP

macro, 262
DISCONNECTED_KEYBOARD_IDLE_BOOSTmacro,

271, 400
disk space requirement

execute directory, 165
log directory, 165
spool directory, 165
all versions, 167
HTCondor files, 166

DiskProvisioned
job ClassAd attribute, 1020

DiskUsage
job ClassAd attribute, 1004

distributed ownership
of machines, 1, 2

Distributed Resource Management Application API (DR-
MAA), 623

dividing resources in multi-core machines, 396

HTCondor Version 8.6.4 Reference Manual

INDEX 1095

DOCKERmacro, 279, 517
docker universe, 16, 147–148

set up, 516
DOCKER_DROP_ALL_CAPABILITIES macro, 518,

724
DOCKER_IMAGE_CACHE_SIZEmacro, 279, 518
DOCKER_VOLUME_DIR_XXX_MOUNT_IFmacro, 719
DOT_NET_VERSIONSmacro, 276
download, 162
drained state, 375, 387
DRMAA (Distributed Resource Management Application

API), 623
dynamiccondor_startdprovisioning, 404
dynamic slots, 404
DYNAMIC_RUN_ACCOUNT_LOCAL_GROUPmacro,

301, 668

EC2 GAHP Statistics
NumDistinctRequests, 595
NumExpiredSignatures, 595
NumRequests, 595
NumRequestsExceedingLimit, 595

EC2 grid jobs, 591
EC2_GAHPmacro, 320
EC2_GAHP_RATE_LIMITmacro, 320
EC2_RESOURCE_TIMEOUTmacro, 320, 594
EC2AccessKeyId

job ClassAd attribute, 1005
EC2AmiID

job ClassAd attribute, 1005
EC2BlockDeviceMapping

job ClassAd attribute, 1005
EC2ElasticIp

job ClassAd attribute, 1005
EC2IamProfileArn

job ClassAd attribute, 1005
EC2IamProfileName

job ClassAd attribute, 1005
EC2InstanceName

job ClassAd attribute, 1005
EC2InstanceType

job ClassAd attribute, 1005
EC2KeyPair

job ClassAd attribute, 1005
EC2KeyPairFile

job ClassAd attribute, 1006

EC2ParameterNames
job ClassAd attribute, 1005

EC2RemoteVirtualMachineName
job ClassAd attribute, 1006

EC2SecretAccessKey
job ClassAd attribute, 1006

EC2SecurityGroups
job ClassAd attribute, 1006

EC2SecurityIDs
job ClassAd attribute, 1006

EC2SpotPrice
job ClassAd attribute, 1005

EC2SpotRequestID
job ClassAd attribute, 1005

EC2StatusReasonCode
job ClassAd attribute, 1006

EC2TagNames
job ClassAd attribute, 1006

EC2UserData
job ClassAd attribute, 1006

EC2UserDataFile
job ClassAd attribute, 1006

ECRYPTFS_ADD_PASSPHRASEmacro, 338
effective user priority (EUP), 361
email notification

in DAGs, 953
submit command, 918

EMAIL_DOMAINmacro, 230
EMAIL_SIGNATUREmacro, 228
EmailAttributes

job ClassAd attribute, 1006
ENABLE_ADDRESS_REWRITINGmacro, 249
ENABLE_BACKFILLmacro, 270, 498
ENABLE_CHIRPmacro, 300
ENABLE_CHIRP_DELAYEDmacro, 300
ENABLE_CHIRP_IOmacro, 300
ENABLE_CHIRP_UPDATESmacro, 300
ENABLE_CLASSAD_CACHINGmacro, 232
ENABLE_DEPRECATION_WARNINGSmacro, 304
ENABLE_GRID_MONITORmacro, 325
ENABLE_HISTORY_ROTATIONmacro, 229, 572
ENABLE_IPV4 macro, 234, 462
ENABLE_IPV6 macro, 235, 462
ENABLE_KERNEL_TUNINGmacro, 262
ENABLE_PERSISTENT_CONFIGmacro, 243, 774
ENABLE_RUNTIME_CONFIGmacro, 242

HTCondor Version 8.6.4 Reference Manual

INDEX 1096

ENABLE_SOAPmacro, 347
ENABLE_SOAP_SSLmacro, 347
ENABLE_SSH_TO_JOBmacro, 348
ENABLE_URL_TRANSFERSmacro, 299
ENABLE_USERLOG_FSYNCmacro, 238
ENABLE_USERLOG_LOCKINGmacro, 238
ENABLE_VERSIONED_OPSYSmacro, 264
ENABLE_WEB_SERVERmacro, 347
ENCRYPT_EXECUTE_DIRECTORYmacro, 338, 413
ENCRYPT_EXECUTE_DIRECTORY_FILENAMES

macro, 338
EncryptExecuteDirectory

job ClassAd attribute, 1006
ENFORCE_CPU_AFFINITYmacro, 299
EnteredCurrentStatus

job ClassAd attribute, 1006
Env

job ClassAd attribute, 1006
Environment

job ClassAd attribute, 1007
environment variables, 42

_CONDOR_JOB_AD, 43, 507
_CONDOR_JOB_IWD, 43
_CONDOR_MACHINE_AD, 43, 507
_CONDOR_SCRATCH_DIR, 43
_CONDOR_SLOT, 43
_CONDOR_WRAPPER_ERROR_FILE, 43, 507
CONDOR_ID, 43
CONDOR_IDS, 43, 165, 228, 229
CONDOR_VM, 43
copying current environment, 917
in submit description file, 947
setting, for a job, 916
X509_USER_PROXY, 43

ENVIRONMENT_FOR_Assigned<name>macro, 273
ENVIRONMENT_VALUE_FOR_UnAssigned<name>

macro, 274
Error and warning configuration syntax, 194
Event Log Reader API, 624
EVENT_LOGmacro, 241, 571
EVENT_LOG_COUNT_EVENTSmacro, 238
EVENT_LOG_FSYNCmacro, 242, 572
EVENT_LOG_JOB_AD_INFORMATION_ATTRS

macro, 59, 242, 572
EVENT_LOG_LOCKINGmacro, 242, 572
EVENT_LOG_MAX_ROTATIONSmacro, 242, 571

EVENT_LOG_MAX_SIZEmacro, 241, 571
EVENT_LOG_ROTATION_LOCKmacro, 242, 572
EVENT_LOG_USE_XMLmacro, 242, 572
EVICT_BACKFILL macro, 271, 389, 499
EXEC_TRANSFER_ATTEMPTSmacro, 296
ExecutableSize

job ClassAd attribute, 1007
execute machine, 159
EXECUTEmacro, 226, 227, 515, 1022
EXECUTE_LOGIN_IS_DEDICATEDmacro, 253
execution environment, 42
exit codes

of condor_shadow, 1057
ExitBySignal

job ClassAd attribute, 1007
ExitCode

job ClassAd attribute, 1007
ExitSignal

job ClassAd attribute, 1007
ExitStatus

job ClassAd attribute, 1007
EXPIRE_INVALIDATED_ADSmacro, 309, 475

FAQ, 674
FEATURE : TESTINGMODE_POLICY_VALUES

macro, 723
FEATURE : UWCS_DESKTOP_POLICY_VALUES

macro, 723
FetchWorkDelay macro, 353, 559, 563
file

locking, 4, 14
memory-mapped, 4, 14
read only, 4, 15
submit description, 16
write only, 4, 15

file system
AFS, 155, 483
NFS, 155

file transfer mechanism, 32
input file specified by URL, 40, 484
input file(s) encryption, 922
output file(s) encryption, 922, 923
output file(s) specified by URL, 40, 484, 923
submit command should_transfer_files, 923

FILE_LOCK_VIA_MUTEXmacro, 237, 570

HTCondor Version 8.6.4 Reference Manual

INDEX 1097

FILE_TRANSFER_DISK_LOAD_THROTTLEmacro,
282, 1046

FILE_TRANSFER_DISK_LOAD_THROTTLE_LONG_HORIZON
macro, 282

FILE_TRANSFER_DISK_LOAD_THROTTLE_SHORT_HORIZON
macro, 282

FILE_TRANSFER_DISK_LOAD_THROTTLE_WAIT_BETWEEN_INCREMENTS
macro, 282

FILESYSTEM_DOMAINmacro, 202, 224, 253, 458
FILETRANSFER_PLUGINSmacro, 299, 1023
FLOCK_COLLECTOR_HOSTSmacro, 288, 575
FLOCK_FROMmacro, 576
FLOCK_INCREMENTmacro, 288
FLOCK_NEGOTIATOR_HOSTSmacro, 288, 575
FLOCK_TOmacro, 575
FlockedJobs

submitter ClassAd attribute, 1051
flocking, 575
Frequently Asked Questions, 674
FS_REMOTE_DIRmacro, 338, 429
FULL_HOSTNAMEmacro, 199, 222

GAHP (Grid ASCII Helper Protocol), 577
GAHPmacro, 319
GAHP_ARGSmacro, 319
GAHP_DEBUG_HIDE_SENSITIVE_DATAmacro, 319
Ganglia monitoring, 471
GANGLIA_CONFIGmacro, 360
GANGLIA_GMETRICmacro, 360
GANGLIA_GSTAT_COMMANDmacro, 360, 472
GANGLIA_LIB macro, 360
GANGLIA_LIB64_PATH macro, 360
GANGLIA_LIB_PATHmacro, 360
GANGLIA_SEND_DATA_FOR_ALL_HOSTS macro,

360, 472
GANGLIA_VERBOSITYmacro, 472
GANGLIAD_DEFAULT_CLUSTERmacro, 360, 473
GANGLIAD_DEFAULT_IPmacro, 360, 474
GANGLIAD_DEFAULT_MACHINEmacro, 360, 474
GANGLIAD_INTERVALmacro, 359
GANGLIAD_LOGmacro, 361
GANGLIAD_METRICS_CONFIG_DIRmacro, 361, 472
GANGLIAD_PER_EXECUTE_NODE_METRICSmacro,

360, 472
GANGLIAD_REQUIREMENTSmacro, 360, 472
GANGLIAD_VERBOSITYmacro, 359

GASS (Global Access to Secondary Storage), 581
GCE grid jobs, 595
GCE_GAHPmacro, 321
GceAuthFile

job ClassAd attribute, 1007
GceImage

job ClassAd attribute, 1007
GceJsonFile

job ClassAd attribute, 1007
GceMachineType

job ClassAd attribute, 1007
GceMetadata

job ClassAd attribute, 1007
GceMetadataFile

job ClassAd attribute, 1007
GcePreemptible

job ClassAd attribute, 1007
gidd_alloc command, 998
GLEXECmacro, 326
GLEXEC_HOLD_ON_INITIAL_FAILUREmacro, 326
GLEXEC_JOBmacro, 325
GLEXEC_RETRIESmacro, 326
GLEXEC_RETRY_DELAYmacro, 326
glidein, 575
GLITE_LOCATIONmacro, 320, 590
GlobalJobId

job ClassAd attribute, 1007
GLOBUS_GATEKEEPER_TIMEOUTmacro, 320
Google Compute Engine, 595
GPUs

configuration, 403
requesting GPUs for a job, 48, 921

GRACEFULLY_REMOVE_JOBSmacro, 290
GRAM (Grid Resource Allocation and Management),

580
GRAM_VERSION_DETECTIONmacro, 320, 586
green computing, 519–522
grid computing

glidein, 575
Grid Monitor, 588
HTCondor-C, 577
matchmaking, 599
submitting jobs to BOINC, 598
submitting jobs to cream, 597
submitting jobs to GCE, 595
submitting jobs to gt2, 581

HTCondor Version 8.6.4 Reference Manual

INDEX 1098

submitting jobs to gt5, 585
submitting jobs to NorduGrid, 588
submitting jobs to PBS, 590
submitting jobs to Platform LSF, 590
submitting jobs to SGE, 590
submitting jobs to Unicore, 589
submitting jobs using the EC2 Query API, 591

Grid Monitor, 588
grid type

boinc, 598
ec2, 591

authentication methods, 591
gce, 595

GRID_MONITORmacro, 325, 588
GRID_MONITOR_DISABLE_TIMEmacro, 325
GRID_MONITOR_HEARTBEAT_TIMEOUTmacro, 325
GRID_MONITOR_NO_STATUS_TIMEOUTmacro, 325
GRID_MONITOR_RETRY_DURATIONmacro, 325
GridJobStatus

job ClassAd attribute, 1007
GRIDMANAGER_CHECKPROXY_INTERVALmacro,

318
GRIDMANAGER_CONNECT_FAILURE_RETRY_COUNT

macro, 319
GRIDMANAGER_CONTACT_SCHEDD_DELAYmacro,

318
GRIDMANAGER_EMPTY_RESOURCE_DELAYmacro,

319
GRIDMANAGER_GAHP_CALL_TIMEOUTmacro, 319
GRIDMANAGER_GAHP_RESPONSE_TIMEOUTmacro,

319
GRIDMANAGER_GLOBUS_COMMIT_TIMEOUTmacro,

320
GRIDMANAGER_JOB_PROBE_INTERVALmacro, 318
GRIDMANAGER_JOB_PROBE_RATEmacro, 318
GRIDMANAGER_LOGmacro, 318
GRIDMANAGER_MAX_JOBMANAGERS_PER_RESOURCE

macro, 319, 586
GRIDMANAGER_MAX_PENDING_REQUESTSmacro,

319
GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE

macro, 319
GRIDMANAGER_MINIMUM_PROXY_TIMEmacro, 318
GRIDMANAGER_PROXY_REFRESH_TIMEmacro, 318
GRIDMANAGER_RESOURCE_PROBE_DELAYmacro,

318

GRIDMANAGER_RESOURCE_PROBE_INTERVAL
macro, 318, 594

GRIDMANAGER_SELECTION_EXPRmacro, 291
GRIDMAPmacro, 337, 423, 431
GridResource

job ClassAd attribute, 1008
group accounting

<none> group, 367
GROUP_ACCEPT_SURPLUSmacro, 315, 316, 369
GROUP_ACCEPT_SURPLUS_<groupname>macro,

315, 369
GROUP_AUTOREGROUPmacro, 315, 1017, 1033, 1034
GROUP_AUTOREGROUP_<groupname>macro, 315
GROUP_DYNAMIC_MACH_CONSTRAINTmacro, 311
GROUP_NAMESmacro, 314
GROUP_PRIO_FACTOR_<groupname>macro, 315
GROUP_QUOTA_<groupname>macro, 314
GROUP_QUOTA_DYNAMIC_<groupname> macro,

314
GROUP_QUOTA_MAX_ALLOCATION_ROUNDSmacro,

315, 1050
GROUP_QUOTA_ROUND_ROBIN_RATEmacro, 315
GROUP_SORT_EXPRmacro, 316, 370
groups

accounting, 366
quotas, 367

GSI (Grid Security Infrastructure), 580
GSI_AUTHZ_CONFmacro, 336
GSI_DAEMON_CERTmacro, 336, 423
GSI_DAEMON_DIRECTORYmacro, 336, 423, 424
GSI_DAEMON_KEYmacro, 336, 423
GSI_DAEMON_NAMEmacro, 335
GSI_DAEMON_PROXYmacro, 336, 423
GSI_DAEMON_TRUSTED_CA_DIRmacro, 336, 423,

595
GSI_DELEGATION_CLOCK_SKEW_ALLOWABLE

macro, 337
GSI_DELEGATION_KEYBITSmacro, 337
GSI_SKIP_HOST_CHECKmacro, 335, 336
GSI_SKIP_HOST_CHECK_CERT_REGEXmacro, 336
GSS_ASSIST_GRIDMAP_CACHE_EXPIRATION

macro, 337
GT2_GAHPmacro, 320

HA_<SUBSYS>_LOCK_HOLD_TIMEmacro, 344
HA_<SUBSYS>_LOCK_URLmacro, 344

HTCondor Version 8.6.4 Reference Manual

INDEX 1099

HA_<SUBSYS>_POLL_PERIODmacro, 344
HA_LOCK_HOLD_TIMEmacro, 344
HA_LOCK_URLmacro, 343
HA_POLL_PERIODmacro, 344
HADmacro, 345
HAD_ARGSmacro, 345
HAD_CONNECTION_TIMEOUTmacro, 345
HAD_CONTROLLEEmacro, 345
HAD_DEBUGmacro, 345
HAD_LIST macro, 345
HAD_LOGmacro, 345
HAD_UPDATE_INTERVALmacro, 346
HAD_USE_PRIMARYmacro, 345
HAD_USE_REPLICATIONmacro, 346, 479
Hadoop Distributed File System (HDFS)

integrated with HTCondor, 675
Hawkeye

see Daemon ClassAd Hooks, 567
HDFS_ALLOWmacro, 677
HDFS_BACKUPNODEmacro, 677
HDFS_BACKUPNODE_WEBmacro, 677
HDFS_DATANODE_ADDRESSmacro, 677
HDFS_DATANODE_CLASSmacro, 677
HDFS_DATANODE_DIRmacro, 676
HDFS_DATANODE_WEBmacro, 676
HDFS_DENYmacro, 677
HDFS_HOMEmacro, 676
HDFS_LOG4Jmacro, 677
HDFS_NAMENODEmacro, 676
HDFS_NAMENODE_CLASSmacro, 677
HDFS_NAMENODE_DIRmacro, 676
HDFS_NAMENODE_ROLEmacro, 677
HDFS_NAMENODE_WEBmacro, 676
HDFS_NODETYPEmacro, 677
HDFS_REPLICATIONmacro, 677
HDFS_SITE_FILE macro, 677
HeldJobs

submitter ClassAd attribute, 1051
heterogeneous pool

submitting a job to, 43
HIBERNATEmacro, 276, 519
HIBERNATE_CHECK_INTERVALmacro, 276, 519
HIBERNATION_OVERRIDE_WOLmacro, 277
HIBERNATION_PLUGINmacro, 277
HIBERNATION_PLUGIN_ARGSmacro, 277
hierarchical group quotas, 367

High Availability, 475
of central manager, 477
of job queue, 475
of job queue, with remote job submission, 476
sample configuration, 479

High-Performance Computing (HPC), 1
High-Throughput Computing (HTC), 1
HIGHPORTmacro, 249, 452
HISTORYmacro, 229
HISTORY_HELPERmacro, 724
HISTORY_HELPER_MAX_CONCURRENCYmacro, 230
HISTORY_HELPER_MAX_HISTORYmacro, 230
HOLD_JOB_IF_CREDENTIAL_EXPIRESmacro, 318
HoldKillSig

job ClassAd attribute, 1008
HoldReason

job ClassAd attribute, 1008
HoldReasonCode

job ClassAd attribute, 1008
HoldReasonSubCode

job ClassAd attribute, 1010
Hooks, 558–570

Daemon ClassAd Hooks, 567
job hooks that fetch work, 558
Job Router hooks, 565

host certificate, 422
HOST_ALIASmacro, 336
HOSTALLOWmacro, 242
HOSTALLOW. . . macro, 242, 774
HOSTALLOW_ADMINISTRATORmacro, 179
HOSTALLOW_NEGOTIATOR_SCHEDDmacro, 576
HOSTALLOW_READmacro, 179
HOSTALLOW_WRITEmacro, 179, 182
HOSTDENYmacro, 242
HOSTNAMEmacro, 199, 222
HPC (High-Performance Computing), 1
HTC (High-Throughput Computing), 1
HTCondor

acknowledgments, 7
configuration-intro, 185
configuration-macros, 207
configuration-templates, 202
contact information, 7
contributions, 5
default policy, 389
FAQ, 674

HTCondor Version 8.6.4 Reference Manual

INDEX 1100

flocking, 575
Frequently Asked Questions, 674
limitations, under UNIX, 4
mailing lists, 7
overview, 1–3
platforms available, 5
pool, 158
resource allocation, 10
resource management, 2
shared functionality in daemons, 468
universe, 13
Unix administrator, 164
user manual, 9–157

HTCondor commands
condor_advertise, 757
condor_check_userlogs, 761
condor_checkpoint, 762
condor_chirp, 765
condor_cod, 769
condor_compile, 62, 772

list of supported compilers, 5
condor_config_val, 774
condor_configure, 779, 817
condor_continue, 784
condor_dagman, 788
condor_dagman_metrics_reporter, 794
condor_drain, 797
condor_fetchlog, 799
condor_findhost, 802
condor_gather_info, 804
condor_gpu_discovery, 807
condor_history, 810
condor_hold, 52, 814
condor_install, 779, 817
condor_job_router_info, 822
condor_master, 824
condor_off, 825
condor_on, 828
condor_ping, 831
condor_pool_job_report, 834
condor_power, 835
condor_preen, 837
condor_prio, 53, 60, 839
condor_procd, 841
condor_q, 12, 50, 53, 844
condor_qedit, 859

condor_qsub, 861
condor_reconfig, 866
condor_release, 52, 869
condor_reschedule, 871
condor_restart, 873
condor_rm, 13, 52, 876
condor_rmdir, 879
condor_router_rm, 885
condor_run, 887
condor_set_shutdown, 890
condor_sos, 896
condor_ssh_to_job, 892
condor_stats, 898
condor_status, 10, 12, 29, 50, 51, 901
condor_store_cred, 909
condor_submit, 12, 16, 911
condor_submit_dag, 953
condor_suspend, 960
condor_tail, 962
condor_transfer_data, 964
condor_transform_ads, 966
condor_update_machine_ad, 969
condor_updates_stats, 971
condor_urlfetch, 974
condor_userlog, 976
condor_userprio, 61, 979
condor_vacate, 984
condor_vacate_job, 986
condor_version, 989
condor_wait, 991
condor_who, 994
gidd_alloc, 998
procd_ctl, 999

HTCondor daemon
command line arguments, 470
condor_ckpt_server, 161, 464
condor_collector, 160
condor_credd, 161, 317, 664
condor_defrag, 161, 409
condor_gridmanager, 161
condor_had, 161, 477
condor_hdfs, 162
condor_job_router, 161, 604
condor_kbdd, 161, 489
condor_lease_manager, 161
condor_master, 159, 824

HTCondor Version 8.6.4 Reference Manual

INDEX 1101

condor_negotiator, 160
condor_procd, 161
condor_replication, 161, 478
condor_rooster, 161, 521
condor_schedd, 160
condor_shadow, 14, 156
condor_shadow, 160
condor_shared_port, 161, 454
condor_startd, 160, 371
condor_starter, 160
condor_transferer, 161, 478
descriptions, 159

HTCondor daemon, source code contrib
condor_dbmsd, 677
condor_quill, 677

HTCondor GAHP, 577
HTCondor-C, 577–580

configuration, 577
job submission, 578

HTCondor-G, 580–588
GASS, 581
GRAM, 580
GSI, 580
job submission, 581
limitations, 588
proxy, 581
X.509 certificate, 581

HTCondorView
Client, 704
Client installation, 705
configuration, 491
Server, 491
use ofcrontabprogram, 706

IdleJobs
submitter ClassAd attribute, 1051

IF/ELSE configuration syntax, 195, 217
IF/ELSE submit commands syntax, 24
IGNORE_DNS_PROTOCOL_PREFERENCEmacro, 235
IGNORE_LEAF_OOMmacro, 236
IGNORE_NFS_LOCK_ERRORSmacro, 254
IGNORE_TARGET_PROTOCOL_PREFERENCEmacro,

235
ImageSize

job ClassAd attribute, 1010
IMMUTABLE_JOB_ATTRSmacro, 294

IN_HIGHPORTmacro, 249, 453
IN_LOWPORTmacro, 249, 453
include command macro, 192
INCLUDE configuration syntax, 193, 214
INCLUDEmacro, 225
installation

checkpoint server, 464
download, 162
for the docker universe, 516
for the vm universe, 513
HTCondorView Client, 705
installing a new version on an existing pool, 182
Java, 512
running as root, 164
Singularity, 518
using Debian packages, 168
using Red Hat RPMs, 167
Windows, 173–181
with condor_configure, 169

interactive jobs, 48
INTERACTIVE_SUBMIT_FILE macro, 49, 304
INVALID_LOG_FILES macro, 304, 837
IP_ADDRESSmacro, 200, 222
IP_ADDRESS_IS_V6 macro, 200
IPv4 port specification, 450
IPV4_ADDRESSmacro, 200
IPv6, 462–463
IPV6_ADDRESSmacro, 200, 729
IS_OWNERmacro, 264, 379
IS_VALID_CHECKPOINT_PLATFORMmacro, 264
IS_VALID_CHECKPOINT_PLATFORMmacro, 372
IwdFlushNFSCache

job ClassAd attribute, 1010

Java, 13, 62, 512
job example, 63
multiple class files, 64
using JAR files, 64
using packages, 66

JAVA macro, 275, 512
Java Virtual Machine, 13, 62, 512
JAVA5_HOOK_PREPARE_JOBmacro, 564
JAVA_CLASSPATH_ARGUMENTmacro, 275
JAVA_CLASSPATH_DEFAULTmacro, 276
JAVA_CLASSPATH_SEPARATORmacro, 275
JAVA_EXTRA_ARGUMENTSmacro, 276, 513

HTCondor Version 8.6.4 Reference Manual

INDEX 1102

job
analysis, 53
batch ready, 12
completion, 59
dependencies within, 76
event log file, 56
heterogeneous submit, 43
interactive, 48
job ID

defined for a DAGMan node job, 82
multiple data sets, 2
not running, 53
not running, on hold, 56
preparation, 12
priority, 53, 60
state, 51, 52, 1011
submission using a shared file system, 31
submission without a shared file system, 32
submitting, 16
universe, 1011
who the job runs as, 447

job deferral time, 149
job execution

at a specific time, 149
Job hooks, 558

Fetch Hooks
Job exit, 561
Update job info, 561
Evict a claim, 560
Fetch work, 559
Prepare job, 560
Reply to fetched work, 560

FetchWorkDelay, 563
Hooks invoked by HTCondor, 559
Java example, 564
Job Router Hooks

Job Cleanup, 567
Job Finalize, 566
Translate Job, 566
Update Job Info, 566

keywords, 562
job ID

cluster identifier, 945, 1003
defined for a DAGMan node job, 82
process identifier, 1015
use incondor_wait, 992

job lease, 157
Job Log Reader API, 624
Job monitor, 707
Job Router, 352, 565, 604
Job Router commands

condor_router_history, 881
condor_router_q, 883

Job Router Routing Table ClassAd attribute
Copy_<ATTR>, 609
Delete_<ATTR>, 609
EditJobInPlace, 609
Eval_Set_<ATTR>, 609
FailureRateThreshold, 608
GridResource, 608
JobFailureTest, 608
JobShouldBeSandboxed, 609
MaxIdleJobs, 608
MaxJobs, 608
Name, 608
OverrideRoutingEntry, 609
Requirements, 608
Set_<ATTR>, 609
SharedX509UserProxy, 609
TargetUniverse, 609
UseSharedX509UserProxy, 609

job scheduling
periodic, 151

job transforms, 410
JOB_DEFAULT_NOTIFICATIONmacro, 302
JOB_DEFAULT_REQUESTCPUSmacro, 302, 407
JOB_DEFAULT_REQUESTDISKmacro, 302, 407
JOB_DEFAULT_REQUESTMEMORYmacro, 302, 407,

921, 1017
JOB_EXECDIR_PERMISSIONSmacro, 301
JOB_INHERITS_STARTER_ENVIRONMENTmacro,

299
JOB_IS_FINISHED_COUNTmacro, 285
JOB_IS_FINISHED_INTERVAL macro, 285
job_max_vacate_time, 942
JOB_QUEUE_LOGmacro, 237, 571
JOB_RENICE_INCREMENTmacro, 296, 372
JOB_ROUTER_DEFAULTSmacro, 321
JOB_ROUTER_ENTRIESmacro, 321, 610
JOB_ROUTER_ENTRIES_CMDmacro, 322, 610
JOB_ROUTER_ENTRIES_FILEmacro, 322
JOB_ROUTER_ENTRIES_REFRESHmacro, 322

HTCondor Version 8.6.4 Reference Manual

INDEX 1103

JOB_ROUTER_HOOK_KEYWORDmacro, 353
JOB_ROUTER_LOCKmacro, 322
JOB_ROUTER_MAX_JOBSmacro, 322
JOB_ROUTER_NAMEmacro, 322
JOB_ROUTER_POLLING_PERIODmacro, 322, 566
JOB_ROUTER_RELEASE_ON_HOLDmacro, 323
JOB_ROUTER_SCHEDD1_NAMEmacro, 323
JOB_ROUTER_SCHEDD1_POOLmacro, 323
JOB_ROUTER_SCHEDD1_SPOOLmacro, 323
JOB_ROUTER_SCHEDD2_NAMEmacro, 323
JOB_ROUTER_SCHEDD2_POOLmacro, 323
JOB_ROUTER_SCHEDD2_SPOOLmacro, 323
JOB_ROUTER_SOURCE_JOB_CONSTRAINTmacro,

322
JOB_SPOOL_PERMISSIONSmacro, 294
JOB_START_COUNTmacro, 284, 1041
JOB_START_DELAYmacro, 284, 1041
JOB_STOP_COUNTmacro, 285
JOB_STOP_DELAYmacro, 285
JOB_TRANSFORM_<Name>macro, 293
JOB_TRANSFORM_<name>macro, 410
JOB_TRANSFORM_NAMESmacro, 293, 410
JobAdInformationAttrs

job ClassAd attribute, 1010
JobCurrentStartDate

job ClassAd attribute, 1010
JobCurrentStartExecutingDate

job ClassAd attribute, 1010
JobCurrentStartTransferOutputDate

job ClassAd attribute, 1010
JobDescription

job ClassAd attribute, 1010
JobLeaseDuration

job ClassAd attribute, 157, 1010
JobMaxVacateTime

job ClassAd attribute, 1010
JobNotification

job ClassAd attribute, 1010
JobPrio

job ClassAd attribute, 1010
JobRunCount

job ClassAd attribute, 1011
JobStartDate

job ClassAd attribute, 1011
JobStatus

job ClassAd attribute, 1011

JobUniverse
job ClassAd attribute, 1011

JVM, 13, 62, 512

KBDD_BUMP_CHECK_AFTER_IDLE_TIME macro,
267

KBDD_BUMP_CHECK_SIZEmacro, 267
KEEP_POOL_HISTORYmacro, 306, 491
KeepClaimIdle

job ClassAd attribute, 1012
Kerberos authentication, 426
KERBEROS_CLIENT_KEYTABmacro, 340
KERBEROS_MAP_FILEmacro, 426, 431
KERBEROS_SERVER_KEYTABmacro, 340
KERBEROS_SERVER_PRINCIPALmacro, 340, 426
KERBEROS_SERVER_SERVICEmacro, 340
KERBEROS_SERVER_USERmacro, 340
KERNEL_TUNING_LOGmacro, 262
KILL macro, 263–265, 388, 389
KILLING_TIMEOUT macro, 265, 386, 389, 941, 1012
KillSig

job ClassAd attribute, 1012
KillSigTimeout

job ClassAd attribute, 1012

LastCheckpointPlatform
job ClassAd attribute, 1012

LastCkptServer
job ClassAd attribute, 1012

LastCkptTime
job ClassAd attribute, 1012

LastMatchTime
job ClassAd attribute, 1012

LastRejMatchReason
job ClassAd attribute, 1012

LastRejMatchTime
job ClassAd attribute, 1012

LastRemotePool
job ClassAd attribute, 1012

LastSuspensionTime
job ClassAd attribute, 1012

LastVacateTime
job ClassAd attribute, 1012

LeaseManager.CLASSAD_LOG macro, 324
LeaseManager.DEBUG_ADS macro, 324
LeaseManager.DEFAULT_MAX_LEASE_DURATION

macro, 324

HTCondor Version 8.6.4 Reference Manual

INDEX 1104

LeaseManager.GETADS_INTERVAL macro, 324
LeaseManager.MAX_LEASE_DURATION macro,

324
LeaseManager.MAX_TOTAL_LEASE_DURATION

macro, 324
LeaseManager.PRUNE_INTERVAL macro, 324
LeaseManager.QUERY_ADTYPEmacro, 325
LeaseManager.QUERY_CONSTRAINTSmacro, 325
LeaseManager.UPDATE_INTERVAL macro, 324
LeaveJobInQueue

job ClassAd attribute, 1012
LIB macro, 225
LIBEXEC macro, 225
LIBVIRT_XML_SCRIPT macro, 342
LIBVIRT_XML_SCRIPT_ARGSmacro, 342
limits

on resource usage, 506
on resource usage with cgroup, 508

linking
dynamic, 4, 15
static, 4, 15

Linux kernel
per job PID namespaces, 504

LINUX_HIBERNATION_METHODmacro, 278
LINUX_KERNEL_TUNING_SCRIPTmacro, 262
local universe, 16
LOCAL_CONFIG_DIRmacro, 187, 209, 227
LOCAL_CONFIG_DIR_EXCLUDE_REGEXP macro,

228
LOCAL_CONFIG_FILEmacro, 187, 192, 209, 214, 227,

486–488
LOCAL_CREDDmacro, 665
LOCAL_DIRmacro, 165, 167, 225
LOCAL_UNIV_EXECUTEmacro, 280
LocalJobsIdle

submitter ClassAd attribute, 1052
LocalJobsRunning

submitter ClassAd attribute, 1052
LocalSysCpu

job ClassAd attribute, 1012
LocalUserCpu

job ClassAd attribute, 1012
LOCKmacro, 166, 229
LOCK_DEBUG_LOG_TO_APPENDmacro, 237
LOCK_FILE_UPDATE_INTERVALmacro, 245
log files

event codes for jobs, 1057
job event codes and descriptions, 56

LOGmacro, 226, 231, 267, 471
LOG_ON_NFS_IS_ERRORmacro, 304
logging, 570–573
LOGS_USE_TIMESTAMPmacro, 239, 570
LOWPORTmacro, 249, 452
LSF, 590
LSF_GAHPmacro, 321

machine
central manager, 159
checkpoint server, 159
execute, 159
owner, 158
submit, 159

machine activity, 378
Backfill, 379
Benchmarking, 378
Busy, 378
Drained, 379
Idle, 378
Killing, 379
Retiring, 378
Suspended, 378
transitions, 379–389
transitions summary, 388
Unclaimed, 378
Vacating, 379

machine ClassAd, 11
machine state, 374

Backfill, 375, 386
Claimed, 375, 383
claimed, the claim lease, 377
Drained, 375, 387
Matched, 374, 383
Owner, 374, 379
Preempting, 375, 385
transitions, 379–389
transitions summary, 388
Unclaimed, 374, 382

machine state and activities figure, 379
MACHINE_RESOURCE_<name>macro, 273, 399
MACHINE_RESOURCE_INVENTORY_<name>macro,

273

HTCondor Version 8.6.4 Reference Manual

INDEX 1105

MACHINE_RESOURCE_INVENTORY_GPUsmacro,
1035

MACHINE_RESOURCE_NAMESmacro, 272, 399
MachineAttr<X><N>

job ClassAd attribute, 1012
MachineMaxVacateTime macro, 263–265, 386, 388
macro

in configuration file, 187, 209
in submit description file, 945
subsystem names, 200, 222

MAIL macro, 229, 487
MAIL_FROMmacro, 229
mailing lists, 7
MASTER_<name>_BACKOFF_CEILINGmacro, 259
MASTER_<name>_BACKOFF_CONSTANTmacro, 259
MASTER_<name>_BACKOFF_FACTORmacro, 259
MASTER_<name>_RECOVER_FACTORmacro, 259
MASTER_<SUBSYS>_CONTROLLERmacro, 344
MASTER_ADDRESS_FILEmacro, 261
MASTER_ATTRSmacro, 261
MASTER_BACKOFF_CEILINGmacro, 259
MASTER_BACKOFF_CONSTANTmacro, 259
MASTER_BACKOFF_FACTORmacro, 259
MASTER_CHECK_INTERVALmacro, 305
MASTER_CHECK_NEW_EXEC_INTERVALmacro, 182,

258
MASTER_DEBUGmacro, 261
MASTER_HA_LISTmacro, 343, 476
MASTER_HAD_BACKOFF_CONSTANTmacro, 479
MASTER_INSTANCE_LOCKmacro, 261
MASTER_NAMEmacro, 225, 260, 824
MASTER_NEW_BINARY_DELAYmacro, 258
MASTER_NEW_BINARY_RESTARTmacro, 258
MASTER_RECOVER_FACTORmacro, 259
MASTER_SHUTDOWN_<Name>macro, 258, 259
MASTER_UPDATE_INTERVALmacro, 258
MATCH_TIMEOUTmacro, 376, 383, 388
matched state, 374, 383
matchmaking, 2

negotiation algorithm, 364
on the Grid, 599
priority, 362

MAX_<SUBSYS>_<LEVEL>_LOGmacro, 241
MAX_<SUBSYS>_LOGmacro, 236, 570
MAX_ACCEPTS_PER_CYCLEmacro, 246
MAX_ACCOUNTANT_DATABASE_SIZEmacro, 310

MAX_C_GAHP_LOGmacro, 320
MAX_CKPT_SERVER_LOGmacro, 465
MAX_CLAIM_ALIVES_MISSEDmacro, 266, 285
MAX_CONCURRENT_DOWNLOADSmacro, 282, 1018
MAX_CONCURRENT_UPLOADSmacro, 282, 1018
MAX_DAGMAN_LOGmacro, 89, 334
MAX_DEFAULT_LOGmacro, 236
MAX_DISCARDED_RUN_TIMEmacro, 255, 464
MAX_EVENT_LOGmacro, 241
MAX_FILE_DESCRIPTORSmacro, 247, 460
MAX_HAD_LOGmacro, 345
MAX_HISTORY_LOGmacro, 229, 572
MAX_HISTORY_ROTATIONSmacro, 230, 572
MAX_JOB_MIRROR_UPDATE_LAGmacro, 322
MAX_JOB_QUEUE_LOG_ROTATIONSmacro, 230, 571
max_job_retirement_time, 942
MAX_JOBS_PER_OWNERmacro, 281
MAX_JOBS_PER_SUBMISSIONmacro, 281
MAX_JOBS_RUNNINGmacro, 51, 280, 453, 1041
MAX_JOBS_SUBMITTEDmacro, 281
MAX_NEXT_JOB_START_DELAYmacro, 284, 927,

1013
MAX_NUM_<SUBSYS>_LOGmacro, 237, 570
MAX_NUM_CPUSmacro, 268
MAX_NUM_SCHEDD_AUDIT_LOGmacro, 293, 571
MAX_NUM_SHADOW_LOGmacro, 742
MAX_NUM_SHARED_PORT_AUDIT_LOGmacro, 352,

571
MAX_PENDING_STARTD_CONTACTSmacro, 281
MAX_PERIODIC_EXPR_INTERVALmacro, 288, 289
MAX_PROCD_LOGmacro, 316
MAX_REAPS_PER_CYCLEmacro, 246
MAX_REPLICATION_LOGmacro, 346
MAX_RUNNING_SCHEDULER_JOBS_PER_OWNER

macro, 281, 721, 724
MAX_SCHEDD_AUDIT_LOGmacro, 293, 571
MAX_SHADOW_EXCEPTIONSmacro, 281
MAX_SHADOW_STATS_LOGmacro, 296
MAX_SHARED_PORT_AUDIT_LOGmacro, 352, 571
MAX_SLOT_TYPESmacro, 272
MAX_STARTER_STATS_LOGmacro, 301
MAX_TIME_SKIPmacro, 245
MAX_TRACKING_GIDmacro, 317, 505
MAX_TRANSFER_INPUT_MBmacro, 283, 923, 1009,

1013
MAX_TRANSFER_LIFETIMEmacro, 346

HTCondor Version 8.6.4 Reference Manual

INDEX 1106

MAX_TRANSFER_OUTPUT_MBmacro, 283, 923, 1009,
1013

MAX_TRANSFER_QUEUE_AGEmacro, 283
MAX_TRANSFERER_LOGmacro, 346
MAX_VM_GAHP_LOGmacro, 341
MaxHosts

job ClassAd attribute, 1013
MaxJobRetirementTime

job ClassAd attribute, 1013
MAXJOBRETIREMENTTIMEmacro, 262, 266, 313, 388
MaxTransferInputMB

job ClassAd attribute, 1013
MaxTransferOutputMB

job ClassAd attribute, 1013
MEMORYmacro, 268
MEMORY_USAGE_METRICmacro, 300
MEMORY_USAGE_METRIC_VMmacro, 300
MemoryProvisioned

job ClassAd attribute, 1020
MemoryUsage

job ClassAd attribute, 1013
migration, 2, 3
MIN_TRACKING_GIDmacro, 317, 505
MinHosts

job ClassAd attribute, 1013
MODIFY_REQUEST_EXPR_REQUESTCPUSmacro,

274, 407
MODIFY_REQUEST_EXPR_REQUESTDISKmacro,

274, 407
MODIFY_REQUEST_EXPR_REQUESTMEMORYmacro,

274, 407
Monitoring

with Ganglia, 471
monitoring pools, 471
MOUNT_UNDER_SCRATCHmacro, 270
MPI application, 69, 73

under the dedicated scheduler, 494
multi-core machines

configuration, 396–410
multiple network interfaces, 455
MUST_MODIFY_REQUEST_EXPRSmacro, 274
MY., ClassAd scope resolution prefix, 535
MyAddress

submitter ClassAd attribute, 1052
MYPROXY_GET_DELEGATIONmacro, 347, 587

Name
submitter ClassAd attribute, 1052

NAMED_CHROOTmacro, 299
namespaces

per job PID namespaces, 504
NEGOTIATE_ALL_JOBS_IN_CLUSTERmacro, 288,

365
negotiation, 364

by group, 367
priority, 362

NEGOTIATION_CYCLE_STATS_LENGTHmacro, 309
NEGOTIATOR_ADDRESS_FILEmacro, 451
NEGOTIATOR_ADDRESS_FILEmacro, 243
NEGOTIATOR_ALLOW_QUOTA_OVERSUBSCRIPTION

macro, 316, 368, 370
NEGOTIATOR_CONSIDER_EARLY_PREEMPTION

macro, 266, 285, 313, 389
NEGOTIATOR_CONSIDER_PREEMPTIONmacro, 313
NEGOTIATOR_CROSS_SLOT_PRIOSmacro, 722
NEGOTIATOR_CYCLE_DELAYmacro, 309
NEGOTIATOR_DEBUGmacro, 312
NEGOTIATOR_DISCOUNT_SUSPENDED_RESOURCES

macro, 310
NEGOTIATOR_HOSTmacro, 225
NEGOTIATOR_IGNORE_USER_PRIORITIESmacro,

602
NEGOTIATOR_INFORM_STARTDmacro, 310
NEGOTIATOR_INTERVALmacro, 309
NEGOTIATOR_MATCH_EXPRSmacro, 312
NEGOTIATOR_MATCH_LOGmacro, 241, 572
NEGOTIATOR_MATCHLIST_CACHINGmacro, 313,

602
NEGOTIATOR_MAX_TIME_PER_CYCLEmacro, 312
NEGOTIATOR_MAX_TIME_PER_PIESPIN macro,

312
NEGOTIATOR_MAX_TIME_PER_SCHEDDmacro, 312
NEGOTIATOR_MAX_TIME_PER_SUBMITTERmacro,

312, 1050, 1051
NEGOTIATOR_POST_JOB_RANKmacro, 310
NEGOTIATOR_PRE_JOB_RANKmacro, 310
NEGOTIATOR_READ_CONFIG_BEFORE_CYCLE

macro, 313
NEGOTIATOR_RESOURCE_REQUEST_LIST_SIZE

macro, 312
NEGOTIATOR_SLOT_CONSTRAINTmacro, 311

HTCondor Version 8.6.4 Reference Manual

INDEX 1107

NEGOTIATOR_SLOT_POOLSIZE_CONSTRAINT
macro, 311, 1049

NEGOTIATOR_SOCKET_CACHE_SIZEmacro, 310,
453

NEGOTIATOR_TIMEOUTmacro, 309
NEGOTIATOR_TRIM_SHUTDOWN_THRESHOLD

macro, 311
NEGOTIATOR_UPDATE_AFTER_CYCLEmacro, 313
NEGOTIATOR_UPDATE_INTERVALmacro, 309
NEGOTIATOR_USE_NONBLOCKING_STARTD_CONTACT

macro, 250
NEGOTIATOR_USE_SLOT_WEIGHTSmacro, 316
NEGOTIATOR_USE_WEIGHTED_DEMANDmacro, 316
network, 4, 14, 450
network interfaces

multiple, 455
NETWORK_HOSTNAMEmacro, 248
NETWORK_INTERFACEmacro, 248, 457, 458, 462
NETWORK_MAX_PENDING_CONNECTSmacro, 231
NextJobStartDelay

job ClassAd attribute, 1013
NFS

cache flush on submit machine, 156
interaction with, 155

nice job, 61
NICE_USER_PRIO_FACTORmacro, 309, 362
NiceUser

job ClassAd attribute, 1013
NICs, 455
NO_DNSmacro, 230, 463, 736
NONBLOCKING_COLLECTOR_UPDATEmacro, 250
Nonessential

job ClassAd attribute, 1013
NorduGrid, 588
NORDUGRID_GAHPmacro, 321
NOT_RESPONDING_TIMEOUTmacro, 245
NOT_RESPONDING_WANT_COREmacro, 245
notification

e-mail in DAGs, 953
e-mail related to a job, 918

NTDomain
job ClassAd attribute, 1013

NUM_CLAIMSmacro, 275
NUM_CPUSmacro, 267, 274, 397
NUM_SLOTSmacro, 274, 397
NUM_SLOTS_TYPE_<N>macro, 274

NumCkpts
job ClassAd attribute, 1013

NumDistinctRequests
EC2 GAHP Statistics, 595

NumExpiredSignatures
EC2 GAHP Statistics, 595

NumGlobusSubmits
job ClassAd attribute, 1014

NumJobCompletions
job ClassAd attribute, 1014

NumJobMatches
job ClassAd attribute, 1014

NumJobReconnects
job ClassAd attribute, 1014

NumJobStarts
job ClassAd attribute, 1014

NumPids
job ClassAd attribute, 1014

NumRequests
EC2 GAHP Statistics, 595

NumRequestsExceedingLimit
EC2 GAHP Statistics, 595

NumRestarts
job ClassAd attribute, 1014

NumShadowExceptions
job ClassAd attribute, 1014

NumShadowStarts
job ClassAd attribute, 1014

NumSystemHolds
job ClassAd attribute, 1014

OBITUARY_LOG_LENGTHmacro, 258
offline ClassAd, 1034
offline machine, 519
OFFLINE_EXPIRE_ADS_AFTERmacro, 278, 521
OFFLINE_LOGmacro, 278, 521
OFFLINE_MACHINE_RESOURCE_<name> macro,

273
OPEN_VERB_FOR_<EXT>_FILESmacro, 232
OPENMPI_EXCLUDE_NETWORK_INTERFACES

macro, 74, 279
OPENMPI_INSTALL_PATHmacro, 74, 279
OPSYSmacro, 201, 223
OPSYS_AND_VERmacro, 201, 223
OPSYS_VERmacro, 201, 223
OtherJobRemoveRequirements

HTCondor Version 8.6.4 Reference Manual

INDEX 1108

job ClassAd attribute, 1014
OUT_HIGHPORTmacro, 250, 453
OUT_LOWPORTmacro, 250, 453
OutputDestination

job ClassAd attribute, 1014
overview, 1–3
Owner

job ClassAd attribute, 1015
owner

of directories, 165
owner state, 374, 379

parallel scheduling groups, 497
parallel universe, 16, 69–74

running MPI applications, 73
ParallelSchedulingGroup macro, 290, 497
ParallelShutdownPolicy

job ClassAd attribute, 1015
partitionable slot preemption, 406
partitionable slots, 404

negotiator-side resource consumption policy, 408
PASSWD_CACHE_REFRESHmacro, 231
PBS (Portable Batch System), 590
PBS_GAHPmacro, 321
PER_JOB_HISTORY_DIRmacro, 291, 741
PER_JOB_NAMESPACESmacro, 301
PERIODIC_CHECKPOINTmacro, 263, 543
PERIODIC_EXPR_INTERVALmacro, 288, 289
PERIODIC_EXPR_TIMESLICEmacro, 288
PERIODIC_MEMORY_SYNCmacro, 295
Perl module, 634

examples, 637
PERSISTENT_CONFIG_DIRmacro, 243
PID macro, 202, 224
PID namespaces

per job, 504
pie slice, 365
pie spin, 365
PIPE_BUFFER_MAXmacro, 246
platform-specific information

address space randomization, 662
Linux, 661
Macintosh OS X, 673
Windows, 662–673

starting and stopping a job, 668
platforms supported, 5

policy
at UW-Madison, 391
default with HTCondor, 389
desktop/non-desktop, 392
disabling preemption, 394
enabling preemption, 394
suspending jobs instead of evicting them, 394
test job, 391
time of day, 391
utilizing interactive jobs, 396

POLLING_INTERVALmacro, 265, 383
pool management

absent ClassAds, 474
installing a new version on an existing pool, 182
monitoring, 471
reconfiguration, 184
restarting HTCondor, 183
shutting down HTCondor, 183

pool monitoring, 471
pool of machines, 158
POOL_HISTORY_DIRmacro, 306, 491
POOL_HISTORY_MAX_STORAGEmacro, 306, 491
POOL_HISTORY_SAMPLING_INTERVALmacro, 307
port usage, 450

conflicts, 454
firewalls, 452
IPv4 port specification, 450
multiple collectors, 454
nonstandard ports for central managers, 451

PostJobPrio1
job ClassAd attribute, 1015

PostJobPrio2
job ClassAd attribute, 1015

power management, 519–522
entering a low power state, 519
leaving a low power state, 521
Linux platform details, 521
Windows platform troubleshooting, 522

PPID macro, 202, 224
PREEMPTmacro, 262, 388, 562
preempting state, 375, 385
preemption

desktop/non-desktop, 392
disabling and enabling, 394
priority, 61, 362
vacate, 62

HTCondor Version 8.6.4 Reference Manual

INDEX 1109

PREEMPTION_RANKmacro, 311
PREEMPTION_RANK_STABLEmacro, 311, 363
PREEMPTION_REQUIREMENTSmacro, 61, 311, 313,

362, 848
PREEMPTION_REQUIREMENTS_STABLEmacro, 311,

363
PREENmacro, 257
PREEN_ADMINmacro, 304, 837
PREEN_ARGSmacro, 257
PREEN_INTERVALmacro, 258
PREFER_IPV4macro, 235, 462
PREFER_OUTBOUND_IPV4macro, 235
PreJobPrio1

job ClassAd attribute, 1015
PreJobPrio2

job ClassAd attribute, 1015
PreserveRelativeExecutable

job ClassAd attribute, 1015
priority

by group, 366
in machine allocation, 361
nice job, 61
of a job, 53, 60
of a user, 61

PRIORITY_HALFLIFE macro, 61, 309, 361, 364
PRIVATE_NETWORK_INTERFACEmacro, 248, 457
PRIVATE_NETWORK_NAMEmacro, 246, 248, 457
PROCD_ADDRESSmacro, 317
procd_ctl command, 999
PROCD_LOGmacro, 316
PROCD_MAX_SNAPSHOT_INTERVALmacro, 316
process

definition for a submitted job, 1015
ProcId

job ClassAd attribute, 1015
PROPORTIONAL_SWAP_ASSSIGNMENTmacro, 509
ProportionalSetSizeKb

job ClassAd attribute, 1015
PROTECTED_JOB_ATTRSmacro, 294
proxy, 581

renewal withMyProxy, 586
pslot preemption, 406
PUBLISH_OBITUARIESmacro, 258
Python bindings, 642

Q_QUERY_TIMEOUTmacro, 231

QDate
job ClassAd attribute, 1016

QUERY_TIMEOUTmacro, 305
QUEUE_ALL_USERS_TRUSTEDmacro, 286
QUEUE_CLEAN_INTERVALmacro, 286, 571
QUEUE_SUPER_USER_MAY_IMPERSONATEmacro,

287, 323
QUEUE_SUPER_USERSmacro, 286
Quill contrib, 677–704
Quill source code contrib configuration macro

DATABASE_PURGE_INTERVAL, 682
DATABASE_REINDEX_INTERVAL, 683
DBMSD_ARGS, 683
DBMSD_LOG, 684
DBMSD_NOT_RESPONDING_TIMEOUT, 684
DBMSD, 683
QUILL_ADDRESS_FILE, 683
QUILL_ARGS, 681
QUILL_DBSIZE_LIMIT , 683
QUILL_DB_IP_ADDR, 680, 682
QUILL_DB_NAME, 682
QUILL_DB_QUERY_PASSWORD, 683
QUILL_DB_TYPE, 682
QUILL_DB_USER, 682
QUILL_ENABLED, 681
QUILL_IS_REMOTELY_QUERYABLE, 683
QUILL_JOB_HISTORY_DURATION, 682
QUILL_LOG, 681
QUILL_MAINTAIN_DB_CONN, 682
QUILL_MANAGE_VACUUM, 683
QUILL_NAME, 682
QUILL_NOT_RESPONDING_TIMEOUT, 682
QUILL_POLLING_PERIOD, 682
QUILL_RESOURCE_HISTORY_DURATION, 683
QUILL_RUN_HISTORY_DURATION, 683
QUILL_SHOULD_REINDEX, 683
QUILL_USE_SQL_LOG, 682
QUILL , 681

quotas
hierarchical quotas for a group, 367

RANDOM_CHOICE() macro
use in submit description file, 947

rank attribute, 29
examples, 30, 539

RANKexpression, 373

HTCondor Version 8.6.4 Reference Manual

INDEX 1110

RANKmacro, 263, 389, 496
RANK_FACTORmacro, 496
ReadUserLog class, 624
real user priority (RUP), 361
RecentBlockReadKbytes

job ClassAd attribute, 1016
RecentBlockReads

job ClassAd attribute, 1016
RecentBlockWriteKbytes

job ClassAd attribute, 1016
RecentBlockWrites

job ClassAd attribute, 1016
RELEASE_DIRmacro, 166, 225, 487
ReleaseReason

job ClassAd attribute, 1016
remote system call, 2, 3, 14

condor_shadow, 14, 51, 156
REMOTE_GROUP_RESOURCES_IN_USEmacro, 740
REMOTE_PRIO_FACTORmacro, 309, 362
RemoteIwd

job ClassAd attribute, 1016
RemotePool

job ClassAd attribute, 1016
RemoteSysCpu

job ClassAd attribute, 1016
RemoteSysCpu macro, 727
RemoteUserCpu

job ClassAd attribute, 1016
RemoteUserCpu macro, 727
RemoteWallClockTime

job ClassAd attribute, 1016
REMOVE_SIGNIFICANT_ATTRIBUTESmacro, 293
RemoveKillSig

job ClassAd attribute, 1016
REPLICATION macro, 346
REPLICATION_ARGSmacro, 346
REPLICATION_DEBUGmacro, 346
REPLICATION_INTERVALmacro, 346
REPLICATION_LIST macro, 345
REPLICATION_LOGmacro, 346
REQUEST_CLAIM_TIMEOUTmacro, 285
RequestCpus

job ClassAd attribute, 1016
RequestDisk

job ClassAd attribute, 1017
RequestedChroot

job ClassAd attribute, 1017
RequestMemory

job ClassAd attribute, 1017
REQUIRE_LOCAL_CONFIG_FILEmacro, 227
requirements attribute, 29, 539
Requirements macro, 279, 280
RESERVE_AFS_CACHEmacro, 253
RESERVED_DISKmacro, 229, 1022
RESERVED_MEMORYmacro, 268
RESERVED_SWAPmacro, 55, 229
ResidentSetSize

job ClassAd attribute, 1017
resource

management, 2
offer, 2
owner, 158
request, 2

resource limits, 506
resource limits with cgroups, 508
ROOSTER_INTERVALmacro, 350
ROOSTER_MAX_UNHIBERNATEmacro, 350
ROOSTER_UNHIBERNATEmacro, 350
ROOSTER_UNHIBERNATE_RANKmacro, 350
ROOSTER_WAKEUP_CMDmacro, 350
ROTATE_HISTORY_DAILYmacro, 292, 571
ROTATE_HISTORY_MONTHLYmacro, 292, 571
RPM installation on Red Hat, 167
RUNmacro, 226
RUN_FILETRANSFER_PLUGINS_WITH_ROOT

macro, 300
RunAsOwner, 447
RUNBENCHMARKSmacro, 268, 382, 388
running a job

on a different architecture, 43
running as root, 156
running multiple programs, 19
RunningJobs

submitter ClassAd attribute, 1052

SBIN macro, 225
scalability

using the Grid Monitor, 588
SCHED_UNIV_RENICE_INCREMENTmacro, 286
Schedd Cron functionality

see Daemon ClassAd Hooks, 567
SCHEDD_ADDRESS_FILEmacro, 287

HTCondor Version 8.6.4 Reference Manual

INDEX 1111

SCHEDD_ASSUME_NEGOTIATOR_GONEmacro, 289
SCHEDD_ATTRSmacro, 287
SCHEDD_AUDIT_LOGmacro, 293, 571
SCHEDD_BACKUP_SPOOLmacro, 290, 571
SCHEDD_CLUSTER_INCREMENT_VALUEmacro, 291
SCHEDD_CLUSTER_INITIAL_VALUEmacro, 291
SCHEDD_CLUSTER_MAXIMUM_VALUEmacro, 291
SCHEDD_COLLECT_STATS_BY_<Name>macro, 292
SCHEDD_COLLECT_STATS_FOR_<Name>macro,

292
SCHEDD_CRON_<JobName>_ARGSmacro, 357
SCHEDD_CRON_<JobName>_CWDmacro, 357
SCHEDD_CRON_<JobName>_ENVmacro, 357
SCHEDD_CRON_<JobName>_EXECUTABLEmacro,

355
SCHEDD_CRON_<JobName>_JOB_LOADmacro, 356
SCHEDD_CRON_<JobName>_KILLmacro, 356
SCHEDD_CRON_<JobName>_MODEmacro, 355
SCHEDD_CRON_<JobName>_PERIODmacro, 355
SCHEDD_CRON_<JobName>_PREFIXmacro, 355
SCHEDD_CRON_<JobName>_RECONFIGmacro, 356
SCHEDD_CRON_<JobName>_RECONFIG_RERUN

macro, 356
SCHEDD_CRON_CONFIG_VALmacro, 354
SCHEDD_CRON_JOBLISTmacro, 355
SCHEDD_CRON_MAX_JOB_LOADmacro, 356
SCHEDD_CRON_NAMEmacro, 354
SCHEDD_DEBUGmacro, 287
SCHEDD_ENABLE_SSH_TO_JOBmacro, 348
SCHEDD_EXECUTEmacro, 287
SCHEDD_EXPIRE_STATS_BY_<Name>macro, 292
SCHEDD_HOSTmacro, 225, 724, 811
SCHEDD_INTERVALmacro, 155, 284
SCHEDD_INTERVAL_TIMESLICEmacro, 284
SCHEDD_JOB_QUEUE_LOG_FLUSH_DELAYmacro,

292
SCHEDD_LOCKmacro, 287
SCHEDD_MIN_INTERVALmacro, 284
SCHEDD_NAMEmacro, 225, 261, 287, 476
SCHEDD_PREEMPTION_RANKmacro, 290, 497
SCHEDD_PREEMPTION_REQUIREMENTSmacro, 290,

497
SCHEDD_QUERY_WORKERSmacro, 283
SCHEDD_RESTART_REPORTmacro, 294
SCHEDD_ROUND_ATTR_<xxxx>macro, 290
SCHEDD_SEND_VACATE_VIA_TCPmacro, 291

SCHEDD_SUPER_ADDRESS_FILEmacro, 243
SCHEDD_USE_SLOT_WEIGHTmacro, 293, 745
SCHEDD_USES_STARTD_FOR_LOCAL_UNIVERSE

macro, 280
ScheddIpAddr

submitter ClassAd attribute, 1052
ScheddName

submitter ClassAd attribute, 1052
scheduler universe, 16
SchedulerJobsIdle

submitter ClassAd attribute, 1052
SchedulerJobsRunning

submitter ClassAd attribute, 1052
scheduling

dedicated, 69
pie slice, 365
pie spin, 365

scheduling jobs
to execute at a specific time, 149
to execute periodically, 151

SDK
Chirp, 67

SEC_* _AUTHENTICATIONmacro, 335
SEC_* _AUTHENTICATION_METHODSmacro, 335
SEC_* _CRYPTO_METHODSmacro, 335
SEC_* _ENCRYPTIONmacro, 335
SEC_* _INTEGRITY macro, 335
SEC_* _NEGOTIATIONmacro, 335
SEC_<access-level>_SESSION_DURATION

macro, 337
SEC_<access-level>_SESSION_LEASE macro,

338
SEC_ADMINISTRATOR_AUTHENTICATIONmacro,

420
SEC_ADMINISTRATOR_AUTHENTICATION_METHODS

macro, 421
SEC_ADMINISTRATOR_CRYPTO_METHODSmacro,

432
SEC_ADMINISTRATOR_ENCRYPTIONmacro, 431
SEC_ADMINISTRATOR_INTEGRITYmacro, 433
SEC_ADVERTISE_MASTER_AUTHENTICATION

macro, 420
SEC_ADVERTISE_MASTER_AUTHENTICATION_METHODS

macro, 421
SEC_ADVERTISE_MASTER_CRYPTO_METHODS

macro, 432

HTCondor Version 8.6.4 Reference Manual

INDEX 1112

SEC_ADVERTISE_MASTER_ENCRYPTIONmacro,
431

SEC_ADVERTISE_MASTER_INTEGRITYmacro, 433
SEC_ADVERTISE_SCHEDD_AUTHENTICATION

macro, 420
SEC_ADVERTISE_SCHEDD_AUTHENTICATION_METHODS

macro, 421
SEC_ADVERTISE_SCHEDD_CRYPTO_METHODS

macro, 432
SEC_ADVERTISE_SCHEDD_ENCRYPTIONmacro,

431
SEC_ADVERTISE_SCHEDD_INTEGRITYmacro, 433
SEC_ADVERTISE_STARTD_AUTHENTICATION

macro, 420
SEC_ADVERTISE_STARTD_AUTHENTICATION_METHODS

macro, 421
SEC_ADVERTISE_STARTD_CRYPTO_METHODS

macro, 432
SEC_ADVERTISE_STARTD_ENCRYPTION macro,

431
SEC_ADVERTISE_STARTD_INTEGRITYmacro, 433
SEC_CLIENT_AUTHENTICATIONmacro, 420
SEC_CLIENT_AUTHENTICATION_METHODSmacro,

420
SEC_CLIENT_CRYPTO_METHODSmacro, 432
SEC_CLIENT_ENCRYPTIONmacro, 431
SEC_CLIENT_INTEGRITY macro, 433
SEC_CONFIG_AUTHENTICATIONmacro, 420
SEC_CONFIG_AUTHENTICATION_METHODSmacro,

421
SEC_CONFIG_CRYPTO_METHODSmacro, 432
SEC_CONFIG_ENCRYPTIONmacro, 431
SEC_CONFIG_INTEGRITYmacro, 433
SEC_DAEMON_AUTHENTICATIONmacro, 420
SEC_DAEMON_AUTHENTICATION_METHODSmacro,

421
SEC_DAEMON_CRYPTO_METHODSmacro, 432
SEC_DAEMON_ENCRYPTIONmacro, 431
SEC_DAEMON_INTEGRITYmacro, 433
SEC_DEFAULT_AUTHENTICATIONmacro, 420
SEC_DEFAULT_AUTHENTICATION_METHODS

macro, 420, 421
SEC_DEFAULT_AUTHENTICATION_TIMEOUT

macro, 339
SEC_DEFAULT_CRYPTO_METHODSmacro, 432
SEC_DEFAULT_ENCRYPTIONmacro, 431

SEC_DEFAULT_INTEGRITYmacro, 433
SEC_DEFAULT_SESSION_DURATIONmacro, 337
SEC_DEFAULT_SESSION_LEASEmacro, 338
SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION

macro, 340, 437
SEC_INVALIDATE_SESSIONS_VIA_TCP macro,

338
SEC_NEGOTIATOR_AUTHENTICATIONmacro, 420
SEC_NEGOTIATOR_AUTHENTICATION_METHODS

macro, 421
SEC_NEGOTIATOR_CRYPTO_METHODSmacro, 432
SEC_NEGOTIATOR_ENCRYPTIONmacro, 431
SEC_NEGOTIATOR_INTEGRITYmacro, 433
SEC_OWNER_AUTHENTICATIONmacro, 420
SEC_OWNER_AUTHENTICATION_METHODSmacro,

421
SEC_OWNER_CRYPTO_METHODSmacro, 432
SEC_OWNER_ENCRYPTIONmacro, 431
SEC_OWNER_INTEGRITYmacro, 433
SEC_PASSWORD_FILEmacro, 339, 427
SEC_READ_AUTHENTICATIONmacro, 420
SEC_READ_AUTHENTICATION_METHODSmacro,

421
SEC_READ_CRYPTO_METHODSmacro, 432
SEC_READ_ENCRYPTIONmacro, 431
SEC_READ_INTEGRITYmacro, 433
SEC_TCP_SESSION_DEADLINEmacro, 339
SEC_TCP_SESSION_TIMEOUTmacro, 339
SEC_WRITE_AUTHENTICATIONmacro, 420
SEC_WRITE_AUTHENTICATION_METHODSmacro,

421
SEC_WRITE_CRYPTO_METHODSmacro, 432
SEC_WRITE_ENCRYPTIONmacro, 431
SEC_WRITE_INTEGRITYmacro, 433
security

access levels, 414
authentication, 420
authorization, 433
based on user authorization, 433
changing the configuration, 443
configuration examples, 441
encryption, 431
host-based, 439
in HTCondor, 412–450
integrity, 432
running jobs as user nobody, 447

HTCondor Version 8.6.4 Reference Manual

INDEX 1113

sample configuration using pool password, 428
sample configuration using pool password for startd

advertisement, 428
sessions, 438
unified map file, 430

SENDMAILmacro, 229
sessions, 438
SETTABLE_ATTRS_<PERMISSION-LEVEL>macro,

243, 444, 774
SETTABLE_ATTRS_ADMINISTRATORmacro, 444
SETTABLE_ATTRS_CONFIGmacro, 203, 216, 243,

444
SETTABLE_ATTRS_OWNERmacro, 444
SETTABLE_ATTRS_WRITEmacro, 444
SGE (Sun Grid Engine), 590
SGE_GAHPmacro, 321
shadow, 14
SHADOWmacro, 279
SHADOW_CHECKPROXY_INTERVALmacro, 296, 337
SHADOW_DEBUGmacro, 295
SHADOW_JOB_CLEANUP_RETRY_DELAYmacro, 295
SHADOW_LAZY_QUEUE_UPDATEmacro, 295
SHADOW_LOCKmacro, 295
SHADOW_MAX_JOB_CLEANUP_RETRIESmacro, 295
SHADOW_QUEUE_UPDATE_INTERVALmacro, 295
SHADOW_RENICE_INCREMENTmacro, 286
SHADOW_RUN_UNKNOWN_USER_JOBSmacro, 296
SHADOW_SIZE_ESTIMATEmacro, 229, 286
SHADOW_STATS_LOGmacro, 240, 296
SHADOW_WORKLIFEmacro, 295
shared file system

submission of jobs, 31
submission of jobs without one, 32

SHARED_PORTmacro, 247, 455
SHARED_PORT_ARGSmacro, 351
SHARED_PORT_AUDIT_LOGmacro, 351, 571
SHARED_PORT_DAEMON_AD_FILEmacro, 350
SHARED_PORT_DEFAULT_IDmacro, 247
SHARED_PORT_MAX_WORKERSmacro, 351
SHARED_PORT_PORTmacro, 350
SHELLmacro, 889
SHUTDOWN_FAST_TIMEOUTmacro, 258
SHUTDOWN_GRACEFUL_TIMEOUTmacro, 243, 266
signal, 4, 14

SIGTSTP, 4, 14
SIGUSR2, 4, 14

SIGNIFICANT_ATTRIBUTES macro, 293, 365
Simple Object Access Protocol(SOAP), 611
Singularity, 518
SINGULARITY macro, 301
SINGULARITY_BIND_EXPRmacro, 301
SINGULARITY_IMAGE_EXPRmacro, 301
SINGULARITY_JOBmacro, 301
SINGULARITY_TARGET_DIRmacro, 301
SKIP_WINDOWS_LOGON_NETWORKmacro, 317
SLOT<N>_CPU_AFFINITYmacro, 299
SLOT<N>_EXECUTEmacro, 227, 398
SLOT<N>_JOB_HOOK_KEYWORDmacro, 352, 562
SLOT<N>_USERmacro, 252, 448
SLOT_TYPE_<N>macro, 272, 397, 399
SLOT_TYPE_<N>_PARTITIONABLEmacro, 272, 405
SLOT_TYPE_<n>_STARTD_ATTRSmacro, 745
SLOT_WEIGHTmacro, 275, 408, 719
slots

dynamiccondor_startdprovisioning, 404
subdividing slots, 404

SLOTS_CONNECTED_TO_CONSOLEmacro, 271, 400,
1021

SLOTS_CONNECTED_TO_KEYBOARDmacro, 271,
400, 1024

SlotWeight macro, 267, 316
SLOW_CKPT_SPEEDmacro, 295
SMP machines

configuration, 396–410
SMTP_SERVERmacro, 229
SOAP

Web Service API, 611
SOAP_LEAVE_IN_QUEUEmacro, 347, 613
SOAP_SSL_CA_DIRmacro, 348, 595
SOAP_SSL_CA_FILEmacro, 348, 595
SOAP_SSL_DH_FILEmacro, 348
SOAP_SSL_SERVER_KEYFILEmacro, 347
SOAP_SSL_SERVER_KEYFILE_PASSWORDmacro,

347
SOAP_SSL_SKIP_HOST_CHECKmacro, 348
SOCKET_LISTEN_BACKLOGmacro, 246
SOFT_UID_DOMAINmacro, 252, 446
Software Developer’s Kit

Chirp, 67
SPOOLmacro, 226
SSH_TO_JOB_<SSH-CLIENT>_CMDmacro, 348
SSH_TO_JOB_SSH_KEYGENmacro, 349

HTCondor Version 8.6.4 Reference Manual

INDEX 1114

SSH_TO_JOB_SSH_KEYGEN_ARGSmacro, 349
SSH_TO_JOB_SSHDmacro, 349
SSH_TO_JOB_SSHD_ARGSmacro, 349
SSH_TO_JOB_SSHD_CONFIG_TEMPLATEmacro,

349
StackSize

job ClassAd attribute, 1017
StageOutFinish

job ClassAd attribute, 1017
StageOutStart

job ClassAd attribute, 1017
STARTmacro, 262, 271, 371, 388, 496
START_BACKFILLmacro, 271, 382, 389, 498
START_DAEMONSmacro, 258
START_LOCAL_UNIVERSEmacro, 279, 1045
START_MASTERmacro, 258
START_SCHEDULER_UNIVERSEmacro, 280, 1045
startd

configuration, 370
Startd Cron functionality

see Daemon ClassAd Hooks, 567
STARTD_AD_REEVAL_EXPRmacro, 313
STARTD_ADDRESS_FILEmacro, 267
STARTD_ATTRSmacro, 267, 403, 445, 497, 745
STARTD_AVAIL_CONFIDENCEmacro, 278
STARTD_CLAIM_ID_FILE macro, 267
STARTD_COMPUTE_AVAIL_STATSmacro, 278
STARTD_CRON_<JobName>_ARGSmacro, 357
STARTD_CRON_<JobName>_CWDmacro, 357
STARTD_CRON_<JobName>_ENVmacro, 357
STARTD_CRON_<JobName>_EXECUTABLEmacro,

355
STARTD_CRON_<JobName>_JOB_LOADmacro, 356
STARTD_CRON_<JobName>_KILLmacro, 356
STARTD_CRON_<JobName>_MODEmacro, 355
STARTD_CRON_<JobName>_PERIODmacro, 355
STARTD_CRON_<JobName>_PREFIXmacro, 355
STARTD_CRON_<JobName>_RECONFIGmacro, 356
STARTD_CRON_<JobName>_RECONFIG_RERUN

macro, 356
STARTD_CRON_<JobName>_SLOTSmacro, 355
STARTD_CRON_AUTOPUBLISHmacro, 354
STARTD_CRON_CONFIG_VALmacro, 354
STARTD_CRON_JOBLISTmacro, 355
STARTD_CRON_MAX_JOB_LOADmacro, 356
STARTD_CRON_NAMEmacro, 354

STARTD_DEBUGmacro, 267
STARTD_EXPRSmacro, 745
STARTD_HAS_BAD_UTMPmacro, 266
STARTD_HISTORYmacro, 265, 745
STARTD_JOB_ATTRSmacro, 267, 745
STARTD_JOB_EXPRSmacro, 311
STARTD_JOB_HOOK_KEYWORDmacro, 352, 562
STARTD_MAX_AVAIL_PERIOD_SAMPLES macro,

278
STARTD_NAMEmacro, 268
STARTD_NOCLAIM_SHUTDOWNmacro, 269
STARTD_PARTITIONABLE_SLOT_ATTRS macro,

264
STARTD_PUBLISH_DOTNETmacro, 276
STARTD_PUBLISH_WINREGmacro, 269
STARTD_RESOURCE_PREFIXmacro, 271
STARTD_SENDS_ALIVESmacro, 285
STARTD_SHOULD_WRITE_CLAIM_ID_FILEmacro,

267
STARTD_SLOT_ATTRSmacro, 271
STARTD_VM_ATTRSmacro, 271
STARTD_VM_EXPRSmacro, 271
STARTERmacro, 265
Starter pre and post scripts, 943
STARTER_ALLOW_RUNAS_OWNERmacro, 252, 448,

504
STARTER_CHOOSES_CKPT_SERVERmacro, 255, 466
STARTER_DEBUGmacro, 297
STARTER_INITIAL_UPDATE_INTERVAL macro,

561
STARTER_JOB_ENVIRONMENTmacro, 298
STARTER_JOB_HOOK_KEYWORDmacro, 563
STARTER_LOCALmacro, 279
STARTER_LOCAL_LOGGINGmacro, 297
STARTER_LOG_NAME_APPENDmacro, 297
STARTER_RLIMIT_ASmacro, 300
STARTER_STATS_LOGmacro, 240, 301
STARTER_UPDATE_INTERVALmacro, 297, 561
STARTER_UPDATE_INTERVAL_TIMESLICEmacro,

297
STARTER_UPLOAD_TIMEOUTmacro, 299
starting HTCondor

Unix platforms, 171
Windows platforms, 181

state
of a machine, 374

HTCondor Version 8.6.4 Reference Manual

INDEX 1115

transitions, 379–389
transitions summary, 388

state and activities figure, 379
STATE_FILE macro, 346
STATISTICS_TO_PUBLISH macro, 233, 359, 1046–

1049
STATISTICS_TO_PUBLISH_LIST macro, 234
STATISTICS_WINDOW_QUANTUMmacro, 234
STATISTICS_WINDOW_QUANTUM_<collection>

macro, 234
STATISTICS_WINDOW_SECONDSmacro, 234, 1044
STATISTICS_WINDOW_SECONDS_<collection>

macro, 234
status

of DAG nodes, 128
of queued jobs, 51

StreamErr
job ClassAd attribute, 1017

StreamOut
job ClassAd attribute, 1017

STRICT_CLASSAD_EVALUATIONmacro, 232, 525
submit commands, 914

+PostArgs, 944
+PostArguments, 944
+PostCmd, 944
+PostEnv, 944
+PostEnvironment, 944
+PreArgs, 944
+PreArguments, 944
+PreCmd, 943
+PreEnv, 944
+PreEnvironment, 944
$ENV macro, 947
$RANDOM_CHOICE() macro, 947
accounting_group, 140, 368, 724, 938, 1002
accounting_group_user, 140, 368, 724, 938
allow_startup_script, 929
append_files, 929
arguments, 37, 38, 49, 65, 69, 74, 85, 350, 914, 918,

920
batch_queue, 931
boinc_authenticator_file, 598, 932, 1002
buffer_block_size, 929
buffer_files, 929
buffer_size, 929
compress_files, 930

concurrency_limits, 510, 938
concurrency_limits_expr, 510, 939
copy_to_spool, 939
coresize, 939
cream_attributes, 598, 932
cron_day_of_month, 151, 939
cron_day_of_week, 151, 939
cron_hour, 151, 939
cron_minute, 151, 939
cron_month, 151, 939
cron_prep_time, 153, 939
cron_window, 153, 939
dagman_log, 939
deferral_prep_time, 150, 151, 153, 939, 940
deferral_time, 149, 150, 940
deferral_window, 149, 150, 153, 939, 940
delegate_job_GSI_credentials_lifetime, 337, 932
description, 940, 1010
docker_image, 148, 517, 938
dont_encrypt_input_files, 922
dont_encrypt_output_files, 922
ec2_access_key_id, 591, 932, 1005
ec2_ami_id, 591, 932, 1005
ec2_availability_zone, 932
ec2_block_device_mapping, 592, 932, 1005
ec2_ebs_volumes, 932
ec2_elastic_ip, 932, 1005
ec2_iam_profile_arn, 592, 932, 1005
ec2_iam_profile_name, 592, 932, 1005
ec2_instance_type, 592, 932, 1005
ec2_keypair, 932, 933, 1005
ec2_keypair_file, 592, 893, 932, 933, 1006
ec2_parameter_<name>, 933
ec2_parameter_names, 593, 933, 1005
ec2_secret_access_key, 591, 933, 1006
ec2_security_groups, 592, 933, 1006
ec2_security_ids, 592, 933, 1006
ec2_spot_price, 593, 933, 1005
ec2_tag_<name>, 933
ec2_tag_names, 933, 1006
ec2_user_data, 592, 933, 1006
ec2_user_data_file, 592, 933, 1006
ec2_vpc_id, 592
ec2_vpc_ip, 933
ec2_vpc_subnet, 592, 933
email_attributes, 940

HTCondor Version 8.6.4 Reference Manual

INDEX 1116

encrypt_execute_directory, 338, 922, 1006
encrypt_input_files, 922
encrypt_output_files, 923
environment, 42, 69, 864, 916, 917
error, 18, 38, 40, 54, 140, 862, 917, 920, 924, 936
executable, 34, 49, 63, 64, 69, 74, 141, 148, 232,

582, 591, 596, 598, 913, 917, 924, 929
fetch_files, 930
file_remaps, 930
gce_auth_file, 596, 933, 1007
gce_image, 596, 933, 1007
gce_json_file, 597, 934, 1007
gce_machine_type, 596, 934, 1007
gce_metadata, 596, 934, 1007
gce_metadata_file, 596, 934, 1007
gce_preemptible, 722, 934, 1007
getenv, 42, 917
globus_rematch, 934
globus_resubmit, 934
globus_rsl, 579, 585, 934
globus_xml, 579
grid_resource, 575, 578, 579, 581, 582, 588, 589,

591, 596–599, 601, 920, 934, 1008
hold, 926
hold_kill_sig, 936
IF/ELSE syntax, 24
image_size, 940
included, 938
initialdir, 18, 35, 36, 38, 137, 156, 449, 668, 862,

920, 940, 941
input, 17, 18, 33, 34, 37, 38, 140, 303, 582, 863, 912,

917, 918, 920, 924, 936
jar_files, 34, 64, 65, 936
java_vm_args, 513, 937
job_ad_information_attrs, 941
job_lease_duration, 157, 941
job_machine_attrs, 287, 941
job_machine_attrs_history_length, 287, 941
job_max_vacate_time, 941, 942
JobBatchName, 941
keep_claim_idle, 101, 926
keystore_alias, 589, 935
keystore_file, 589, 935
keystore_passphrase_file, 589, 935
kill_sig, 936, 937, 941
kill_sig_timeout, 941

leave_in_queue, 927
load_profile, 666, 667, 941, 943
local_files, 931
Log, 550, 624
log, 54, 71, 303, 570, 912, 918, 924, 940
log_xml, 918
machine_count, 69, 70, 937
match_list_length, 942
max_job_retirement_time, 942
max_retries, 926
max_transfer_input_mb, 923
max_transfer_output_mb, 923
MyProxyCredentialName, 935
MyProxyHost, 935
MyProxyNewProxyLifetime, 935
MyProxyPassword, 935
MyProxyRefreshThreshold, 935, 936
MyProxyServerDN, 936
next_job_start_delay, 927
nice_user, 362, 942
noop_job, 943
noop_job_exit_code, 943
noop_job_exit_signal, 943
nordugrid_rsl, 589, 936
notification, 59, 60, 918, 955, 1010
notify_user, 918
on_exit_hold, 927
on_exit_hold_reason, 927
on_exit_hold_subcode, 927
on_exit_remove, 151, 154, 927, 928
output, 17, 18, 33, 38, 40, 140, 303, 605, 864, 912,

918–920, 924, 936
output_destination, 41, 484–486, 923
periodic_hold, 928
periodic_hold_reason, 928
periodic_hold_subcode, 928
periodic_release, 262, 289, 928
periodic_remove, 262, 929
priority, 98, 864, 919
queue, 20, 29, 49, 69, 72, 334, 911, 919, 920, 948
rank, 19, 29, 30, 42, 600, 920
remote_initialdir, 943
remove_kill_sig, 937
rendezvousdir, 943
request_<name>, 399, 921
request_cpus, 75, 302, 920

HTCondor Version 8.6.4 Reference Manual

INDEX 1117

request_disk, 302, 921
request_GPUs, 921
request_memory, 18, 302, 712, 921, 1013
Requirements, 48, 54, 72, 672
requirements, 29, 41, 71, 565, 599, 913, 921, 922
retry_until, 926
run_as_owner, 664, 666, 909, 942, 943
should_transfer_files, 33, 40, 74, 923, 924
signal-number, 936, 937, 941
skip_filechecks, 924
stack_size, 943
stream_error, 924
stream_input, 924
stream_output, 924
submit_event_notes, 943
success_exit_code, 926
transfer_error, 936
transfer_executable, 49, 924
transfer_input, 936
transfer_input_files, 34, 36–38, 40, 65, 74, 76, 143,

303, 484, 485, 676, 912, 922–924, 936, 938,
944

transfer_output, 936
transfer_output_files, 33, 35, 37, 303, 484, 598, 605,

669, 912, 922–925, 936
transfer_output_remaps, 37, 925
universe, 13, 49, 137, 574, 578, 913, 920, 1045
use_x509userproxy, 936
vm_checkpoint, 263, 937
vm_disk, 141–143, 937
vm_macaddr, 142, 937
vm_memory, 141, 142, 921, 937
vm_networking, 142, 937
vm_networking_type, 141, 142, 937
vm_no_output_vm, 937
vm_type, 938
vmware_dir, 142, 515, 938
vmware_should_transfer_files, 142, 938
vmware_should_transfer_files = true, 515
vmware_snapshot_disk, 143, 514, 938
want_graceful_removal, 290, 941
want_remote_io, 931
WantNameTag, 933
when_to_transfer_output, 33, 40, 669, 925
x509userproxy, 43, 585, 589, 597, 936, 1019
xen_initrd, 938

xen_kernel, 143, 938
xen_kernel_params, 938
xen_root, 143, 938

submit description file, 16
automatic variables, 22
contents of, 17
examples, 17–20
function macros, 26
grid universe, 581
including commands from elsewhere, 23

submit host
policy configuration, 410

submit machine, 159
submit requirements, 411
SUBMIT_ATTRSmacro, 303, 449, 507, 738, 745
SUBMIT_EXPRSmacro, 507
SUBMIT_MAX_PROCS_IN_CLUSTERmacro, 304
SUBMIT_PUBLISH_WINDOWS_OSVERSIONINFO

macro, 723
SUBMIT_REQUIREMENT_<Name>macro, 294, 411
SUBMIT_REQUIREMENT_<Name>_REASONmacro,

294, 412
SUBMIT_REQUIREMENT_NAMESmacro, 294, 411
SUBMIT_SEND_RESCHEDULEmacro, 303
SUBMIT_SKIP_FILECHECKSmacro, 303
SubmitterAutoregroup

job ClassAd attribute, 1017
SubmitterGlobalJobId

job ClassAd attribute, 1017
SubmitterGroup

job ClassAd attribute, 1017
SubmitterNegotiatingGroup

job ClassAd attribute, 1017
SubmitterTag

submitter ClassAd attribute, 1052
substitution macro

in submit description file, 946
<SUBSYS>macro, 256
<SUBSYS>_ADDRESS_FILEmacro, 243
<SUBSYS>_ADMIN_EMAILmacro, 228
<SUBSYS>_ARGSmacro, 257
<SUBSYS>_ATTRSmacro, 244
<SUBSYS>_DAEMON_AD_FILEmacro, 244
<SUBSYS>_DEBUGmacro, 239
<SUBSYS>_DEBUGmacro levels

D_ACCOUNTANT, 240

HTCondor Version 8.6.4 Reference Manual

INDEX 1118

D_ALL, 239
D_CATEGORY, 240
D_CKPT, 240
D_COMMAND, 239
D_DAEMONCORE, 239
D_FDS, 240
D_FULLDEBUG, 239
D_HOSTNAME, 240
D_JOB, 239
D_KEYBOARD, 239
D_LOAD, 239
D_MACHINE, 239
D_MATCH, 240
D_NETWORK, 240
D_PID, 240
D_PRIV, 239
D_PROCFAMILY, 240
D_PROTOCOL, 240
D_SECURITY, 240
D_STATS, 240
D_SUB_SECOND, 241
D_SYSCALLS, 240
D_TIMESTAMP, 241

<SUBSYS>_ENABLE_SOAP_SSLmacro, 347
<SUBSYS>_EXPRSmacro, 244
<SUBSYS>_<LEVEL>_LOGmacro, 241
<SUBSYS>_LOCKmacro, 237
<SUBSYS>_LOGmacro, 236
<SUBSYS>_LOG_KEEP_OPENmacro, 237
<SUBSYS>_MAX_FILE_DESCRIPTORS, 247
<SUBSYS>_SOAP_SSL_PORTmacro, 347
<SUBSYS>_SUPER_ADDRESS_FILEmacro, 243
<SUBSYS>_TIMEOUT_MULTIPLIERmacro, 250
<SUBSYS>_USERIDmacro, 257
SUBSYSTEMmacro, 200, 222
subsystem names, 200, 222
supported platforms, 5
SUSPENDmacro, 262, 388
SYSAPI_GET_LOADAVGmacro, 231
SYSTEM_IMMUTABLE_JOB_ATTRSmacro, 294
SYSTEM_JOB_MACHINE_ATTRSmacro, 287, 941,

1003
SYSTEM_JOB_MACHINE_ATTRS_HISTORY_LENGTH

macro, 287
SYSTEM_PERIODIC_HOLDmacro, 289, 1009
SYSTEM_PERIODIC_HOLD_REASONmacro, 289

SYSTEM_PERIODIC_HOLD_SUBCODEmacro, 289
SYSTEM_PERIODIC_RELEASEmacro, 289
SYSTEM_PERIODIC_REMOVEmacro, 289
SYSTEM_PROTECTED_JOB_ATTRSmacro, 294
SYSTEM_VALID_SPOOL_FILESmacro, 304, 837

TARGET., ClassAd scope resolution prefix, 535
TCP, 461

sending updates, 461
TCP_FORWARDING_HOSTmacro, 248, 249
TCP_KEEPALIVE_INTERVALmacro, 234
TCP_UPDATE_COLLECTORSmacro, 250, 461
TEMP_DIRmacro, 226
thread

kernel-level, 4, 14
user-level, 4, 14

TILDE macro, 200, 222
TMP_DIRmacro, 226
TOOL_DEBUGmacro, 241
TotalSuspensions

job ClassAd attribute, 1017
TOUCH_LOG_INTERVALmacro, 238, 570
TRANSFER_IO_REPORT_INTERVALmacro, 283
TRANSFER_IO_REPORT_TIMESPANSmacro, 282,

283, 1046–1049
TRANSFER_QUEUE_USER_EXPRmacro, 282, 1046–

1049
TRANSFERERmacro, 346
TRANSFERER_DEBUGmacro, 346
TRANSFERER_LOGmacro, 346
TransferErr

job ClassAd attribute, 1017
TransferExecutable

job ClassAd attribute, 1018
TransferIn

job ClassAd attribute, 1018
TransferInputSizeMB

job ClassAd attribute, 1018
TransferOut

job ClassAd attribute, 1018
TransferQueued

job ClassAd attribute, 1018
transferring files, 32
TransferringInput

job ClassAd attribute, 1018
TransferringOutput

HTCondor Version 8.6.4 Reference Manual

INDEX 1119

job ClassAd attribute, 1018
TRUNC_<SUBSYS>_<LEVEL>_LOG_ON_OPEN

macro, 241
TRUNC_<SUBSYS>_LOG_ON_OPENmacro, 237, 241,

570
TRUST_UID_DOMAINmacro, 252

UDP, 461
lost datagrams, 461

UDP_LOOPBACK_FRAGMENT_SIZEmacro, 250, 251
UDP_NETWORK_FRAGMENT_SIZEmacro, 250, 251
UID

effective, 445
potential risk running jobs as user nobody, 447
real, 445

UID_DOMAINmacro, 202, 224, 251, 445, 446, 458, 918
UIDs in HTCondor, 445–450
UNAME_ARCHmacro, 201, 223
UNAME_OPSYSmacro, 201, 223
unauthenticated, 431, 437
unclaimed state, 374, 382
UNHIBERNATEmacro, 277, 349, 521
Unicore, 589
UNICORE_GAHPmacro, 321
universe, 13

docker, 16, 147, 516
Grid, 13, 15
grid, 578
grid, grid type gt2, 581
grid, grid type gt5, 585
Java, 15
java, 13
job ClassAd attribute definitions

grid = 9, 1011
java = 11, 1011
linda = 3 (no longer used), 1011
local = 12, 1011
mpi = 8, 1011
parallel = 10, 1011
pipe = 2 (no longer used), 1011
pvm = 4 (no longer used), 1011
pvmd = 6 (no longer used), 1011
scheduler = 7, 1011
standard = 1, 1011
vanilla = 5, docker = 5, 1011
vm = 13, 1011

local, 16
parallel, 13, 16
scheduler, 16
set up for the docker universe, 516
set up for the vm universe, 513
standard, 13
vanilla, 13, 15
vm, 13, 16, 140

Unix
alarm, 4, 14
exec, 4, 14
flock, 4, 14
fork, 4, 14
large files, 4, 15
lockf, 4, 14
mmap, 4, 14
pipe, 4, 14
semaphore, 4, 14
shared memory, 4, 14
sleep, 4, 14
socket, 4, 14
system, 4, 14
timer, 4, 14

Unix administrator, 164
Unix directory

execute , 165
lock , 165
log , 165
spool , 165

Unix installation
download, 162

Unix user
condor, 164
root, 164

unmapped, 431
UPDATE_COLLECTOR_WITH_TCPmacro, 250, 461
UPDATE_INTERVALmacro, 265, 354, 381, 474
UPDATE_OFFSETmacro, 265
UPDATE_VIEW_COLLECTOR_WITH_TCPmacro, 250,

461
upgrading

items to be aware of, 710
URL file transfer, 40, 484
USE configuration syntax, 202, 215
USE_AFSmacro, 254
USE_CKPT_SERVERmacro, 255, 466

HTCondor Version 8.6.4 Reference Manual

INDEX 1120

USE_CLONE_TO_CREATE_PROCESSESmacro, 245
USE_GID_PROCESS_TRACKINGmacro, 317, 505
USE_NFSmacro, 253
USE_PID_NAMESPACESmacro, 301
USE_PROCDmacro, 316, 505
USE_PROCESS_GROUPSmacro, 261
USE_PSSmacro, 300
USE_RESOURCE_REQUEST_COUNTSmacro, 312
USE_SHARED_PORTmacro, 247, 350
USE_VISIBLE_DESKTOPmacro, 298, 668
user

priority, 61
User Log Reader API, 624
user manual, 9–157
user nobody

potential security risk with jobs, 447
user priority, 361

effective (EUP), 361
real (RUP), 361

USER_CONFIG_FILEmacro, 186, 208, 228
USER_JOB_WRAPPERmacro, 297, 506
UserLog

job ClassAd attribute, 1018
USERLOG_FILE_CACHE_CLEAR_INTERVALmacro,

238
USERLOG_FILE_CACHE_MAXmacro, 238
USERNAMEmacro, 202, 224

vacate, 62
VALID_COD_USERSmacro, 547
VALID_SPOOL_FILES macro, 304, 344, 476, 837
viewing

log files, 707
virtual machine

configuration, 493
running HTCondor jobs under, 493

virtual machine universe, 140–147
virtual machines, 513
vm universe, 16, 140

checkpoints, 144
ftl, 145
submit commands specific to VMware, 142
submit commands specific to Xen, 143

VM_GAHP_LOGmacro, 341
VM_GAHP_REQ_TIMEOUTmacro, 341
VM_GAHP_SERVERmacro, 341

VM_MAX_NUMBERmacro, 341, 1033
VM_MEMORYmacro, 341, 1033
VM_NETWORKINGmacro, 341
VM_NETWORKING_BRIDGE_INTERFACEmacro, 342
VM_NETWORKING_DEFAULT_TYPEmacro, 342
VM_NETWORKING_TYPEmacro, 342
VM_RECHECK_INTERVALmacro, 341
VM_SOFT_SUSPENDmacro, 341
VM_STATUS_INTERVALmacro, 341
VM_TYPEmacro, 341, 514, 1033
VM_UNIV_NOBODY_USERmacro, 341
VMP_HOST_MACHINEmacro, 343, 494
VMP_VM_LISTmacro, 343, 494
VMWARE_BRIDGE_NETWORKING_TYPEmacro, 342
VMWARE_LOCAL_SETTINGS_FILEmacro, 343
VMWARE_NAT_NETWORKING_TYPEmacro, 342
VMWARE_NETWORKING_TYPEmacro, 342
VMWARE_PERLmacro, 342
VMWARE_SCRIPTmacro, 342

WALL_CLOCK_CKPT_INTERVALmacro, 286
WANT_HOLDmacro, 262, 1009
WANT_HOLD_REASONmacro, 263
WANT_HOLD_SUBCODEmacro, 263
WANT_SUSPENDmacro, 264, 388
WANT_UDP_COMMAND_SOCKETmacro, 232, 310
WANT_VACATEmacro, 264, 265, 389
WARN_ON_UNUSED_SUBMIT_FILE_MACROSmacro,

303, 912
Web Service API, 611

condor_schedddaemon command port, 614
file transfer, 613
job submission, 612
transactions, 611

WEB_ROOT_DIRmacro, 347
WEIGHTED_JOBS_RUNNINGmacro, 740
WeightedIdleJobs

submitter ClassAd attribute, 1052
WeightedJobsRunning macro, 741
WeightedRunningJobs

submitter ClassAd attribute, 1052
WINDOWED_STAT_WIDTHmacro, 284
Windows

HTCondor daemon names, 181
installation, 173–181

initial file size, 173

HTCondor Version 8.6.4 Reference Manual

INDEX 1121

location of files, 177
preparation, 174
required disk space, 174
unattended install, 177

loading account profile, 666
manual install, 180
release notes, 663
starting the HTCondor service, 181

WINDOWS_FIREWALL_FAILURE_RETRYmacro, 261
WINDOWS_RMDIRmacro, 357
WINDOWS_RMDIR_OPTIONSmacro, 357
WorkHours macro, 392

X509_USER_PROXY environment variable, 43
X509UserProxy

job ClassAd attribute, 1018
X509UserProxyEmail

job ClassAd attribute, 1019
X509UserProxyExpiration

job ClassAd attribute, 1019
X509UserProxyFirstFQAN

job ClassAd attribute, 1019
X509UserProxyFQAN

job ClassAd attribute, 1019
X509UserProxySubject

job ClassAd attribute, 1019
X509UserProxyVOName

job ClassAd attribute, 1019
XEN_BOOTLOADERmacro, 343

HTCondor Version 8.6.4 Reference Manual

	1 Overview
	1.1 High-Throughput Computing (HTC) and its Requirements
	1.2 HTCondor's Power
	1.3 Exceptional Features
	1.4 Current Limitations
	1.5 Availability
	1.6 Contributions and Acknowledgments
	1.7 Contact Information
	1.8 Privacy Notice

	2 Users' Manual
	2.1 Welcome to HTCondor
	2.2 Introduction
	2.3 Matchmaking with ClassAds
	2.3.1 Inspecting Machine ClassAds with condor_status

	2.4 Running a Job: the Steps To Take
	2.4.1 Choosing an HTCondor Universe

	2.5 Submitting a Job
	2.5.1 Sample submit description files
	2.5.2 Using the Power and Flexibility of the Queue Command
	2.5.3 Variables in the Submit Description File
	2.5.4 Including Submit Commands Defined Elsewhere
	2.5.5 Using Conditionals in the Submit Description File
	2.5.6 Function Macros in the Submit Description File
	2.5.7 About Requirements and Rank
	2.5.8 Submitting Jobs Using a Shared File System
	2.5.9 Submitting Jobs Without a Shared File System: HTCondor's File Transfer Mechanism
	2.5.10 Environment Variables
	2.5.11 Heterogeneous Submit: Execution on Differing Architectures
	2.5.12 Jobs That Require GPUs
	2.5.13 Interactive Jobs

	2.6 Managing a Job
	2.6.1 Checking on the progress of jobs
	2.6.2 Removing a job from the queue
	2.6.3 Placing a job on hold
	2.6.4 Changing the priority of jobs
	2.6.5 Why is the job not running?
	2.6.6 Job in the Hold State
	2.6.7 In the Job Event Log File
	2.6.8 Job Completion

	2.7 Priorities and Preemption
	2.7.1 Job Priority
	2.7.2 User priority
	2.7.3 Details About How HTCondor Jobs Vacate Machines

	2.8 Java Applications
	2.8.1 A Simple Example Java Application
	2.8.2 Less Simple Java Specifications
	2.8.3 Chirp I/O

	2.9 Parallel Applications (Including MPI Applications)
	2.9.1 How Parallel Jobs Run
	2.9.2 Parallel Jobs and the Dedicated Scheduler
	2.9.3 Submission Examples
	2.9.4 MPI Applications Within HTCondor's Vanilla Universe

	2.10 DAGMan Applications
	2.10.1 DAGMan Terminology
	2.10.2 The DAG Input File: Basic Commands
	2.10.3 Command Order
	2.10.4 Node Job Submit File Contents
	2.10.5 DAG Submission
	2.10.6 File Paths in DAGs
	2.10.7 DAG Monitoring and DAG Removal
	2.10.8 Suspending a Running DAG
	2.10.9 Advanced Features of DAGMan
	2.10.10 The Rescue DAG
	2.10.11 DAG Recovery
	2.10.12 Visualizing DAGs with dot
	2.10.13 Capturing the Status of Nodes in a File
	2.10.14 A Machine-Readable Event History, the jobstate.log File
	2.10.15 Status Information for the DAG in a ClassAd
	2.10.16 Utilizing the Power of DAGMan for Large Numbers of Jobs
	2.10.17 Workflow Metrics
	2.10.18 DAGMan and Accounting Groups

	2.11 Virtual Machine Applications
	2.11.1 The Submit Description File
	2.11.2 Checkpoints
	2.11.3 Disk Images
	2.11.4 Job Completion in the vm Universe
	2.11.5 Failures to Launch

	2.12 Docker Universe Applications
	2.13 Time Scheduling for Job Execution
	2.13.1 Job Deferral
	2.13.2 CronTab Scheduling

	2.14 Special Environment Considerations
	2.14.1 AFS
	2.14.2 NFS
	2.14.3 HTCondor Daemons That Do Not Run as root
	2.14.4 Job Leases

	2.15 Potential Problems
	2.15.1 Renaming of argv[0]

	3 Administrators' Manual
	3.1 Introduction
	3.1.1 The Different Roles a Machine Can Play
	3.1.2 The HTCondor Daemons

	3.2 Installation, Start Up, Shut Down, and Reconfiguration
	3.2.1 Obtaining the HTCondor Software
	3.2.2 Installation on Unix
	3.2.3 Installation on Windows
	3.2.4 Upgrading – Installing a New Version on an Existing Pool
	3.2.5 Shutting Down and Restarting an HTCondor Pool
	3.2.6 Reconfiguring an HTCondor Pool

	3.3 Introduction to Configuration
	3.3.1 HTCondor Configuration Files
	3.3.2 Ordered Evaluation to Set the Configuration
	3.3.3 Configuration File Macros
	3.3.4 Comments and Line Continuations
	3.3.5 Multi-Line Values
	3.3.6 Executing a Program to Produce Configuration Macros
	3.3.7 Including Configuration from Elsewhere
	3.3.8 Reporting Errors and Warnings
	3.3.9 Conditionals in Configuration
	3.3.10 Function Macros in Configuration
	3.3.11 Macros That Will Require a Restart When Changed
	3.3.12 Pre-Defined Macros

	3.4 Configuration Templates
	3.4.1 Configuration Templates: Using Predefined Sets of Configuration
	3.4.2 Available Configuration Templates
	3.4.3 Configuration Template Transition Syntax
	3.4.4 Configuration Template Examples

	3.5 Configuration Macros
	3.5.1 Introduction to Configuration Files
	3.5.2 HTCondor-wide Configuration File Entries
	3.5.3 Daemon Logging Configuration File Entries
	3.5.4 DaemonCore Configuration File Entries
	3.5.5 Network-Related Configuration File Entries
	3.5.6 Shared File System Configuration File Macros
	3.5.7 Checkpoint Server Configuration File Macros
	3.5.8 condor_master Configuration File Macros
	3.5.9 condor_startd Configuration File Macros
	3.5.10 condor_schedd Configuration File Entries
	3.5.11 condor_shadow Configuration File Entries
	3.5.12 condor_starter Configuration File Entries
	3.5.13 condor_submit Configuration File Entries
	3.5.14 condor_preen Configuration File Entries
	3.5.15 condor_collector Configuration File Entries
	3.5.16 condor_negotiator Configuration File Entries
	3.5.17 condor_procd Configuration File Macros
	3.5.18 condor_credd Configuration File Macros
	3.5.19 condor_gridmanager Configuration File Entries
	3.5.20 condor_job_router Configuration File Entries
	3.5.21 condor_lease_manager Configuration File Entries
	3.5.22 Grid Monitor Configuration File Entries
	3.5.23 Configuration File Entries Relating to Grid Usage
	3.5.24 Configuration File Entries for DAGMan
	3.5.25 Configuration File Entries Relating to Security
	3.5.26 Configuration File Entries Relating to Virtual Machines
	3.5.27 Configuration File Entries Relating to High Availability
	3.5.28 MyProxy Configuration File Macros
	3.5.29 Configuration File Macros Affecting APIs
	3.5.30 Configuration File Entries Relating to condor_ssh_to_job
	3.5.31 condor_rooster Configuration File Macros
	3.5.32 condor_shared_port Configuration File Macros
	3.5.33 Configuration File Entries Relating to Hooks
	3.5.34 Configuration File Entries Only for Windows Platforms
	3.5.35 condor_defrag Configuration File Macros
	3.5.36 condor_gangliad Configuration File Macros

	3.6 User Priorities and Negotiation
	3.6.1 Real User Priority (RUP)
	3.6.2 Effective User Priority (EUP)
	3.6.3 Priorities in Negotiation and Preemption
	3.6.4 Priority Calculation
	3.6.5 Negotiation
	3.6.6 The Layperson's Description of the Pie Spin and Pie Slice
	3.6.7 Group Accounting
	3.6.8 Accounting Groups with Hierarchical Group Quotas

	3.7 Policy Configuration for Execute Hosts and for Submit Hosts
	3.7.1 condor_startd Policy Configuration
	3.7.2 condor_schedd Policy Configuration

	3.8 Security
	3.8.1 HTCondor's Security Model
	3.8.2 Security Negotiation
	3.8.3 Authentication
	3.8.4 The Unified Map File for Authentication
	3.8.5 Encryption
	3.8.6 Integrity
	3.8.7 Authorization
	3.8.8 Security Sessions
	3.8.9 Host-Based Security in HTCondor
	3.8.10 Examples of Security Configuration
	3.8.11 Changing the Security Configuration
	3.8.12 Using HTCondor w/ Firewalls, Private Networks, and NATs
	3.8.13 User Accounts in HTCondor on Unix Platforms

	3.9 Networking (includes sections on Port Usage and CCB)
	3.9.1 Port Usage in HTCondor
	3.9.2 Reducing Port Usage with the condor_shared_port Daemon
	3.9.3 Configuring HTCondor for Machines With Multiple Network Interfaces
	3.9.4 HTCondor Connection Brokering (CCB)
	3.9.5 Using TCP to Send Updates to the condor_collector
	3.9.6 Running HTCondor on an IPv6 Network Stack

	3.10 The Checkpoint Server
	3.10.1 Preparing to Install a Checkpoint Server
	3.10.2 Installing the Checkpoint Server Module
	3.10.3 Configuring the Pool to Use Multiple Checkpoint Servers
	3.10.4 Checkpoint Server Domains

	3.11 DaemonCore
	3.11.1 DaemonCore and Unix signals
	3.11.2 DaemonCore and Command-line Arguments

	3.12 Monitoring
	3.12.1 Ganglia
	3.12.2 Absent ClassAds

	3.13 The High Availability of Daemons
	3.13.1 High Availability of the Job Queue
	3.13.2 High Availability of the Central Manager

	3.14 Setting Up for Special Environments
	3.14.1 Using HTCondor with AFS
	3.14.2 Enabling the Transfer of Files Specified by a URL
	3.14.3 Configuring HTCondor for Multiple Platforms
	3.14.4 Full Installation of condor_compile
	3.14.5 The condor_kbdd
	3.14.6 Configuring The HTCondorView Server
	3.14.7 Running HTCondor Jobs within a Virtual Machine
	3.14.8 HTCondor's Dedicated Scheduling
	3.14.9 Configuring HTCondor for Running Backfill Jobs
	3.14.10 Per Job PID Namespaces
	3.14.11 Group ID-Based Process Tracking
	3.14.12 Cgroup-Based Process Tracking
	3.14.13 Limiting Resource Usage with a User Job Wrapper
	3.14.14 Limiting Resource Usage Using Cgroups
	3.14.15 Concurrency Limits

	3.15 Java Support Installation
	3.16 Setting Up the VM and Docker Universes
	3.16.1 The VM Universe
	3.16.2 The Docker Universe

	3.17 Singularity Support
	3.18 Power Management
	3.18.1 Entering a Low Power State
	3.18.2 Returning From a Low Power State
	3.18.3 Keeping a ClassAd for a Hibernating Machine
	3.18.4 Linux Platform Details
	3.18.5 Windows Platform Details

	4 Miscellaneous Concepts
	4.1 HTCondor's ClassAd Mechanism
	4.1.1 ClassAds: Old and New
	4.1.2 Old ClassAd Syntax
	4.1.3 Old ClassAd Evaluation Semantics
	4.1.4 Old ClassAds in the HTCondor System
	4.1.5 Extending ClassAds with User-written Functions

	4.2 HTCondor's Checkpoint Mechanism
	4.2.1 Standalone Checkpoint Mechanism
	4.2.2 Checkpoint Safety
	4.2.3 Checkpoint Warnings
	4.2.4 Checkpoint Library Interface

	4.3 Computing On Demand (COD)
	4.3.1 Overview of How COD Works
	4.3.2 Authorizing Users to Create and Manage COD Claims
	4.3.3 Defining a COD Application
	4.3.4 Managing COD Resource Claims
	4.3.5 Limitations of COD Support in HTCondor

	4.4 Hooks
	4.4.1 Job Hooks That Fetch Work
	4.4.2 Hooks for a Job Router
	4.4.3 Daemon ClassAd Hooks

	4.5 Logging in HTCondor
	4.5.1 Job and Daemon Logs
	4.5.2 DAGMan Logs

	5 Grid Computing
	5.1 Introduction
	5.2 Connecting HTCondor Pools with Flocking
	5.2.1 Flocking Configuration
	5.2.2 Job Considerations

	5.3 The Grid Universe
	5.3.1 HTCondor-C, The condor Grid Type
	5.3.2 HTCondor-G, the gt2, and gt5 Grid Types
	5.3.3 The nordugrid Grid Type
	5.3.4 The unicore Grid Type
	5.3.5 The batch Grid Type (for PBS, LSF, SGE, and SLURM)
	5.3.6 The EC2 Grid Type
	5.3.7 The GCE Grid Type
	5.3.8 The cream Grid Type
	5.3.9 The BOINC Grid Type
	5.3.10 Matchmaking in the Grid Universe

	5.4 The HTCondor Job Router
	5.4.1 Routing Mechanism
	5.4.2 Job Submission with Job Routing Capability
	5.4.3 An Example Configuration
	5.4.4 Routing Table Entry ClassAd Attributes
	5.4.5 Example: constructing the routing table from ReSS

	6 Application Programming Interfaces (APIs)
	6.1 Web Service
	6.1.1 Transactions
	6.1.2 Job Submission
	6.1.3 File Transfer
	6.1.4 Implementation Details
	6.1.5 Get These Items Correct
	6.1.6 Methods for Transaction Management
	6.1.7 Methods for Job Submission
	6.1.8 Methods for File Transfer
	6.1.9 Methods for Job Management
	6.1.10 Methods for ClassAd Management
	6.1.11 Methods for Version Information
	6.1.12 Common Data Structures

	6.2 The DRMAA API
	6.2.1 Implementation Details

	6.3 The HTCondor User and Job Log Reader API
	6.3.1 Constants and Enumerated Types
	6.3.2 Constructors and Destructors
	6.3.3 Initializers
	6.3.4 Primary Methods
	6.3.5 Accessors
	6.3.6 Methods for saving and restoring persistent reader state
	6.3.7 Save state to persistent storage
	6.3.8 Restore state from persistent storage
	6.3.9 API Reference
	6.3.10 Access to the persistent state data
	6.3.11 Future persistence API

	6.4 Chirp
	6.5 The Command Line Interface
	6.6 The HTCondor Perl Module
	6.6.1 Subroutines
	6.6.2 Examples

	6.7 Python Bindings
	6.7.1 htcondor Module
	6.7.2 Sample Code using the htcondor Python Module
	6.7.3 ClassAd Module
	6.7.4 Sample Code using the classad Module

	7 Platform-Specific Information
	7.1 Linux
	7.1.1 Linux Address Space Randomization

	7.2 Microsoft Windows
	7.2.1 Limitations under Windows
	7.2.2 Supported Features under Windows
	7.2.3 Secure Password Storage
	7.2.4 Executing Jobs as the Submitting User
	7.2.5 The condor_credd Daemon
	7.2.6 Executing Jobs with the User's Profile Loaded
	7.2.7 Using Windows Scripts as Job Executables
	7.2.8 How HTCondor for Windows Starts and Stops a Job
	7.2.9 Security Considerations in HTCondor for Windows
	7.2.10 Network files and HTCondor
	7.2.11 Interoperability between HTCondor for Unix and HTCondor for Windows
	7.2.12 Some differences between HTCondor for Unix -vs- HTCondor for Windows

	7.3 Macintosh OS X

	8 Frequently Asked Questions (FAQ)
	9 Contrib and Source Modules
	9.1 Introduction
	9.2 Using HTCondor with the Hadoop File System
	9.2.1 condor_hdfs Configuration File Entries

	9.3 Quill
	9.3.1 Installation and Configuration
	9.3.2 Four Usage Examples
	9.3.3 Quill and Security
	9.3.4 Quill and Its RDBMS Schema

	9.4 The HTCondorView Client Contrib Module
	9.4.1 Step-by-Step Installation of the HTCondorView Client

	9.5 Job Monitor/Log Viewer
	9.5.1 Transition States
	9.5.2 Events
	9.5.3 Selecting Jobs
	9.5.4 Zooming
	9.5.5 Keyboard and Mouse Shortcuts

	10 Version History and Release Notes
	10.1 Introduction to HTCondor Versions
	10.1.1 HTCondor Version Number Scheme
	10.1.2 The Stable Release Series
	10.1.3 The Development Release Series

	10.2 Upgrading from the 8.4 series to the 8.6 series of HTCondor
	10.3 Stable Release Series 8.6
	10.4 Development Release Series 8.5
	10.5 Stable Release Series 8.4

	11 Command Reference Manual (man pages)
	bosco_cluster
	bosco_findplatform
	bosco_install
	bosco_ssh_start
	bosco_start
	bosco_stop
	bosco_uninstall
	condor_advertise
	condor_check_userlogs
	condor_checkpoint
	condor_chirp
	condor_cod
	condor_compile
	condor_config_val
	condor_configure
	condor_continue
	condor_convert_history
	condor_dagman
	condor_dagman_metrics_reporter
	condor_drain
	condor_fetchlog
	condor_findhost
	condor_gather_info
	condor_gpu_discovery
	condor_history
	condor_hold
	condor_install
	condor_job_router_info
	condor_master
	condor_off
	condor_on
	condor_ping
	condor_pool_job_report
	condor_power
	condor_preen
	condor_prio
	condor_procd
	condor_q
	condor_qedit
	condor_qsub
	condor_reconfig
	condor_release
	condor_reschedule
	condor_restart
	condor_rm
	condor_rmdir
	condor_router_history
	condor_router_q
	condor_router_rm
	condor_run
	condor_set_shutdown
	condor_ssh_to_job
	condor_sos
	condor_stats
	condor_status
	condor_store_cred
	condor_submit
	condor_submit_dag
	condor_suspend
	condor_tail
	condor_transfer_data
	condor_transform_ads
	condor_update_machine_ad
	condor_updates_stats
	condor_urlfetch
	condor_userlog
	condor_userprio
	condor_vacate
	condor_vacate_job
	condor_version
	condor_wait
	condor_who
	gidd_alloc
	procd_ctl

	12 Appendix A: ClassAd Attributes
	13 Appendix B: Codes and Other Needed Values

