HTCondor" Version 8.6.4 Manual

Center for High Throughput Computing, University of Wissar-Madison

June 21, 2017

CONTENTS

[L_Overview 1
[1.1 High-Throughput Computing (HTC) and its Requirements 1
L2 HTCondorSPOWEr o oot e 2
[1.3 Exceptional Featufesot 3
1.4 CurrentLimitafions o o oot e 4

Availability e e e e e e e 5
[1.6 _Contributions and Acknowledgments 5
[1.7 Contactinformation\ 7
(1.8 Privacy NOtOE o v o e e e e 8

[2__Users’ Manual 9
21 Welcometo HTCondor oo e 9
2.2 Introductioh e 9
[2.3 _Matchmakingwith ClassAds e 10

[2.3.1 Inspecting Machine ClassAds with condor_status 10
2.4 RunningaJob:theStepsToTake ot i i it e e 12
[2.4.1 Choosingan HTCoNdorUNIVEISE v v vt vttt e e e i e e e e e e 13
2.5 _SubmittingaJdb e 16
[2.5.1 _Sample submitdescriptionflles 17

CONTENTS

HTCondor Version 8.6.4 Manual

CONTENTS

HTCondor Version 8.6.4 Manual

CONTENTS iv
2113 DiskImagés e 144
[2.11.4 Job Completioninthe vm Univarse ooie oo 145
2115 Failurestolaunkh 145

[2.12 Docker Universe Applications o v vt i e e 147
[2.13 Time SchedulingforJob Execufion. 149
2131 JobDeferfal 149
2132 CronTabScheduling 151
[2.14 Special Environment Considerations oiier e 155
RIAL AFS . . o o 155
RIA2 NEB . . o oo 155
[2.14.3 HTCondor Daemons That Do NotRun aslroot www oo oo ... 156
2144 Jobleases 157
[2.15 Potential Problems e 157
[2.15.1 Renamingofargvi0] 157

| — Manmall 158
B2 Introductioh e 158
[3.1.1 The Different Roles a Machine CanPlayc. 159
[3.1.2 TheHTCondorDaemadns v v v v i e e e e e 159
[3.2__Installation, Start Up, Shut Down, and Reconfiguration 162
[3.2.1 _Obtaining the HTCondor Softwhre i e 162
322 InstallationonUnix e 162
.23 Installation on WINAOWSo 173
[3.2.4 Upgrading — Installing a New Version on an ExistinglPoo 182
[3.2.5 Shutting Down and Restarting an HTCondorPoolo oo oot 183
[3.2.6 Reconfiguringan HTCondor Plool i 184

[3.3 Introductionto Configuratibn 185
[3.3.1 HTCondor Configuration Files oot e 185

HTCondor Version 8.6.4 Manual

CONTENTS

HTCondor Version 8.6.4 Manual

CONTENTS

[3.5.12 condor_starter Configuration File Enfrieso 296
[3.5.13 condor_submit Configuration File Enfries 301
[3.5.14 condor_preen Configuration File Enfries 304
[3.5.15 condor_collector Configuration File Enfries 304
[3.5.16 condor_negotiator Configuration File Enfries 309
[3.5.17 condor_procd Configuration File Madroscocoo oo, 316
[3.5.18 condor_credd Configuration File Ma€rosccocovvvv ... 317
[3.5.19 condor_gridmanager Configuration File Eftries 318
[3.5.20 condor_job_router Configuration File Enfries 321
[3.5.21 condor_lease_manager Configuration File Ehtries 324
[3.5.22 Grid Monitor Configuration File Entrles 325
[3.5.23 Configuration File Entries Relatingto GridUsage 325
[3.5.24 Configuration File Entriesfor DAGMan 326
[3.5.25 Configuration File Entries Relating to Seclirity 335
[3.5.26 Configuration File Entries Relating to Virtual Mamt$ 341
18.5.27 Configuration File Entries Relating to High Availétil 343
[3.5.28 MyProxy Configuration File MACIOS o oot e e e 347
[3.5.29 Configuration File Macros Affecting APIS 347
[3.5.30 Configuration File Entries Relating to condor_sshidfy. 348
[3.5.31 condor_rooster Configuration File Mabros cocoee v v vv o 349
[3.5.32_condor_shared_port Configuration File M8Cros o v oo v oo i e 350
[3.5.33 Configuration File Entries Relating to HJokso v v oo oo 352
[3.5.34 Configuration File Entries Only for Windows Platf@m. 357
[3.5.35 condor_defrag Configuration File Ma€roso ovvv v, 357
[3.5.36 condor_gangliadConfiguration File Macrds 359
[3.6__User Priorities and Negotiatlon 361
B.6.1 RealUSerPrOMLY (RUP) . « « o o o o e e e e e e e 361
[3.6.2FEffective User Priority (EUP) i e e 361

HTCondor Version 8.6.4 Manual

CONTENTS vii

HTCondor Version 8.6.4 Manual

CONTENTS viii

13.9.5 Using TCP to Send Updates to tlendor_collector ovvv .. 461
[3.9.6 Running HTCondor on an IPv6 Network Stack 462
[3.10 The CheckpointSerVer ot it 464
[3.10.1 Preparingto Installa Checkpoint Server oo oo i 464
[3.10.2 Installing the Checkpoint Server Moduleoe oo 464
[3.10.3 Configuring the Pool to Use Multiple Checkpoint Segve 466
[3.10.4 CheckpointServer Domdins oot 467
B.11 DaemonCare 468
[3.11.1 DaemonCore and UniXSignals v v v vttt e e e 469
[3.11.2 DaemonCore and Command-line Argumlents 470

B.12.2 AbsentClassAldso 474
[3.13 The High Availability of Daemohs o i e 475
[3.13.1 High Availability of the Job Quelue 475
[3.13.2_High Availability of the Central Managier v o v v oo e 477
[3.14 Setting Up for Special ENVIroNmMENtS o v vt vt e 483
[B.14.1 Using HTCondorWith AES o o v 483
[3.14.2 Enabling the Transfer of Files Specifiedbya URL 484
[3.14.3 Configuring HTCondor for Multiple Platforins o oo oo oo 486
[3.14.4_FullInstallation of condor_compile oo it 488
[3.14.5 Thecondor kKbdd, 489
[3.14.6 Configuring The HTCondorView Semvero e oo, 491
[3.14.7 Running HTCondor Jobs within a Virtual Machine 493
[3.14.8 HTCondor's Dedicated Scheduling oo v vt i 494
[3.14.9 Configuring HTCondor for Running Backfill Jbbs 498
[3.14.10Per JOb PID NAMESPACES . . .« « v v v v vt e e e e e e e 504
[38.14.11 Group ID-Based Process Tracking 504

HTCondor Version 8.6.4 Manual

CONTENTS ix

[3.14.12 Cgroup-Based Process Tracking o v v vt e e e 505
13.14.13 Limiting Resource Usage with a User Job Wrapper 506
[3.14.14 | imiting Resource Usage Using CQroups o v e v e oo oo e e e 508
B.14.15Concurrency Limlts 509
[B.15 JavaSupportinstallation 512
[3.16 Setting Up the VM and Docker UniVerSes oo vvviieee oo e e 513
B.16.1 TheVMUNIVerse.ot 513
[3.16.2 The DoCKerUNIVERSE o o v ot e e e 516
[3.17 Singularity SUPROIt 518
[3.18 PowerManagemeént 519
[3.18.1 EnteringalowPowerState\t 519
[3.18.2 Returning FromalowPowerSlate 521
[3.18.3 Keeping a ClassAd for a Hibernating Machine 521
[3.18.4 LinuxPlatformDetalls e 521
[3.18.5 Windows Platform Detdils 522

14 Miscellaneous Concepts 523

[41 HTCondors ClassAd Mechanibmt 523
411 ClassAds:Oldand NEW oot e 524
412 OldClassAD SYNBX v vttt 525
l4.1.3 Old ClassAd Evaluation Semantics oo v v 535
l41.4 Old ClassAdsinthe HTCondor System cocoi i .. 538
[4.1.5 _ Extending ClassAds with User-written FUNCioNS v v oo v oo et o 541
l4.2 HTCondor's Checkpoint Mechanism uurereno ... 542
[4.2.1 Standalone Checkpoint Mecharism cuu oo . 543
[4.2.2 CheckpointSafety\t e 544
[4.2.3 CheckpointWarnings - .« v v v oot e e 545
l4.2.4 CheckpointLibraryInterface 545

HTCondor Version 8.6.4 Manual

CONTENTS

4.3 ComputingOnDemand (CAD)\ v vt et e e 546
431 Overviewof HowCODWorks 547
14.3.2 Authorizing Users to Create and Manage COD Claims 547
[4.3.3 Defininga COD Applicatidn o oo e 548
[4.3.4 Managing COD Resource Claimso v i it e 552
[4.3.5 |imitations of COD Supportin HTCondlor 558

B HOOKE .« . oo o e e e e 558
[4.41 JobHooks That FetchWOrk o v i e e 558
442 HooksforaJobRoUter 565
443 DaemonClassAdHOOKS oo v o 567

45 1oggingin HTCONOr o vt e 570
{451 JobandDaemonLlogsot oi it 570
452 DAGMANLOGS v v oot e 572

5 Grid Computingl 574

5.1 Introductioh e 574

[5.2 Connecting HTCondor Pools with Flocking oot 575
[5.2.1 Flocking Configuratidn o v v i e 575
[5.2.2 JobConsideratidns 576

5.3 TheGridUniverse 577

- e 577
[5.3.2 HTCondor-G,the gt2, and gt GHd TVPES« v v v v veeeee e e e e e 580
[5.3.3 Thenordugrid GHATYIE . .+« « o v ooeoe e e e e e 588
[5.3.4 Theunicore GATYIE . . .« o v v v oo e e e e e e e 589
[5.3.5 The batch Grid Type (for PBS, LSF, SGE, and SLURM) 589
536 TheEC2GHATYde . . . o o v oo e e e 591
537 TheGCEGHATYHE . . . o o v oot e e e e 595
.38 ThecreamGrATYDE o o v o v e et e e 597

HTCondor Version 8.6.4 Manual

CONTENTS

Xi

[53.9 TheBOINCGHATYPE . .« o o v v o ot e e e e e e e e e e 598
[5.3.10 Matchmakinginthe GridUnivelse 599
5.4 The HTCondorJob ROUKEr v v vt o e e e e e e 604
[5.41 RoutingMechanidm e 604
[5.4.2 Job Submission with Job Routing Capability 605
[5.43 AnExample Configuratbn 607
[5.4.4 Routing Table Entry ClassAd Attribdtes 608
[5.4.5 Example: constructing the routing table from ReSS 610
l6__Application Programming Interfaces (APISs) 611
6.1 WebServide 611
[6.1.1 Transactiohs 611
[6.1.2 JobSubmissibn 612
613 FileTransfer 613
[6.1.4 ImplementationDetdils e 614
[6.1.5 GetTheseltems COMECt o v v v it 615
[6.1.6 Methods for Transaction Management e, 615
[6.1.7 Methods for Job SUbMISSION 616
[6.1.8 MethodsforFile Transfer 617
[6.1.9 Methods for Job Managemlent 618
[6.1.10 Methods for ClassAd Management v e 621
[6.1.11 Methods for Version Information 622
[6.1.12 CommonData StructureS v v v i e e e e e e e 622
6.2 TheDRMAAAPI o 623
[6.2.1 ImplementationDetdils 623
[6.3 The HTCondor Userand Job Log Readed APlt wu ... 624
[6.3.1 Constants and Enumerated TYPeS o vt i e 625
[6.3.2 Constructorsand Destruclors 625

HTCondor Version 8.6.4 Manual

CONTENTS Xii

[6.3.3 nitializers 627
[6.3.4 PrimaryMetholls e 628
[6.3.5 ACCESSOIS i 629
[6.3.6 Methods for saving and restoring persistent readé st. 629
[6.3.7 Save state to persistentstofage e 629
[6.3.8 Restore state from persistent Starage e e e 630
[6.3.9 APIReferente 630
[6.3.10 Accesstothe persistentstateldata 631
[6.3.11 Future persistence APl 633
B4 _ChitD . . . o o oo e e e 634
[6.5 _The Command Line Interfdce i 634
[6.6 TheHTCondorPerlModlle i, 634
[6.6.1 Subroutines 635
[6.6.2 Examplés e 637
6.7 PythonBindinds 642
[6.7.1 htcondor Modulé 642
[6.7.2 Sample Code using thécondor Python Module 653
[6.7.3 ClassAdModule 654
[6.7.4 Sample Code using titassad Modulé 658
[7__Platform-Specific Information 661
725 TS 661
[7.1.1 linux Address Space Randomization e 662
7.2 MicrosoftwWindowls 662
[7.2.1 Limitationsunder Windows 663
[7.2.2 _Supported Features under Windows o v v v i it e e e e e 663
[7.2.3 Secure Password Stoflageot e 664
[7.2.4 Executing Jobs as the SubmittingUser 664

HTCondor Version 8.6.4 Manual

CONTENTS Xiii

HTCondor Version 8.6.4 Manual

CONTENTS Xiv
(L0 Version History and Release Notes 709
[10.1 Introduction to HTCONdOr VEISIANS . . .« v o v v v v e e e e e et e e e e e 709
[10.11 HTCondor Version Number SCheme oo ii i e 709
[10.1.2 The Stable Release S8res v v vt et e e e 710
[10.1.3 The DevelopmentRelease SEMES v v v v v e e e 710
[10.2 Upgrading from the 8.4 series to the 8.6 series of HT@bNd 710
[10.3 Stable Release Seried8.6 712
[10.4 DevelopmentRelease Serie$ 8.5 oo i 718
[10.5 Stable Release Seried8.4 732
[11 Command Reference Manual (man pages) 748
DOSCO_CIUSIE. .« .« o o e e e e AT
lbosco_findplatforn. 751
DOSCO NS . . . o o e e 5%
BOSCO_SSN ST « « « o o o o e 75
DOSCO_SIAN . « o o o e 754
lbosco_stdp o o 755
DOSCO_UNNSTAI. « « o v o e e e 675
lCondor_advertiSe. . . . o v o v v, 757
lcondor_check_userldgs. 761
lcondor_checkpoiht. 762
lCondor Chith . . . o o e e 657
lCondor Cobl. . . o o o 769
lcondor_compile. 277
lcondor_config VAl 774
lcondor_configufe. 779
lcondor continde, 784
lcondor_convert_histdry 786

HTCondor Version 8.6.4 Manual

CONTENTS XV

CONOr_dagman . .+« v e e &78
lcondor_dagman_metrics_repolter. o oo 794
londor draih . . . o o o Y
lCondor TetChIdg. - .« « v o o o a79
lcondor fINANOBL . . . o v o ot 280
lcondor_gather_infa 804
lcondor_gpu_discovdry. 807
lcondor histofy oo 81
lCondor NOWH. . . o o oo 814
[Condor nStall. . .« o v oo 1B
lcondor_job_router_info 822
[Condor Master. . . . o oo 82
[CONdOr_Off . . . v o e 825
lCondor oh. . . o o 828
lCondor pinb. . . . o o o 831
fcondor_pool job repdrt. 834
[Condor_pOWEE. . . . o o o 38
lCondor_predn. oo 38
lCondor prib. . . . o oo 839
lcondor procH., 4B
lCondor B . . . oo 844
lCondor_gedit oo 58
lcondor gsub 861
lcondor reconfly 86
lcondor release. 86
lcondor_rescheddle. 871
lcondor restalt o 7B
lcondor rmh. 876

HTCondor Version 8.6.4 Manual

CONTENTS XVi

lCondor tmdil . . . o o 78
lcondor router_histoly 881
Condor TOUIEI G . -« . o o e e 883
lcondor router rin 885
lCondor tuh . . . o o 887
lcondor_set_shutdoWn. 890
[condor_ssh_to_job. 892
lCondor sds. . . o oo o 896
lCondor Stals . . . o o oo, 898
[Condor Statls. . . o o o oo 01
lcondor_store_créd. 909
lcondor_submlit . . . o o\ o 191
[condor submit_dag 953
lcondor_suspehd 6
Condor Tl . . . o o 962
lcondor_transfer dalka 964
lcondor_transform_afls. 966
lcondor_update_machinelad 969
lcondor_updates Sthts. 971
lCondor_urlfetch. . . . o o oo o7
londor_userdg. o o @7
[CONAOr_USEIPIIO « « « o v o o e e e e e e ®7
lcondor vacale, 840
lcondor_vacate jdb. 986
lCondor versidn. oo ®8
lcondor walt. 991
lCondor whb. o 994
idd_allol o 998

HTCondor Version 8.6.4 Manual

CONTENTS XVii

[12_Appendix A: ClassAd Attributes 1001

13 A ndix B: n her N Values 1057

LICENSING AND COPYRIGHT

HTCondor is released under the Apache License, Version 2.0.

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

Copyright © 1990-2015 Center for High Throughput Computi@@mputer Sciences Department, University of Wisconsin-
Madison, WI.

Licensed under the Apache License, Version 2.0 (the "Lienyou may not use this file except in compliance with the
License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writindtveare distributed under the License is distributed on a8 '|8"
BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, eitheexpress or implied. See the License for the specific
language governing permissions and limitations under tberise.

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUDN

1. Definitions.

"License" shall mean the terms and conditions for use, deftion, and distribution as defined by Sections 1 through 9 o
this document.

"Licensor" shall mean the copyright owner or entity authed by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity atido¢her entities that control, are controlled by, or are eind
common control with that entity. For the purposes of thismgéin, "control" means (i) the power, direct or indirect,
to cause the direction or management of such entity, whéthaontract or otherwise, or (ii) ownership of fifty percent
(500utstanding shares, or (iii) beneficial ownership ohseiatity.

"You" (or "Your") shall mean an individual or Legal Entity escising permissions granted by this License.

"Source" form shall mean the preferred form for making medifons, including but not limited to software source code,
documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanicahsformation or translation of a Source form, including b
not limited to compiled object code, generated documemmtatind conversions to other media types.

"Work" shall mean the work of authorship, whether in Sounc®bject form, made available under the License, as indicate
by a copyright notice that is included in or attached to thekan example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Sourc®biect form, that is based on (or derived from) the Work and
for which the editorial revisions, annotations, elabanasi, or other modifications represent, as a whole, an otigiogk of

HTCondor Version 8.6.4 Manual

http://www.apache.org/licenses/
http://www.apache.org/licenses/LICENSE-2.0

CONTENTS XViii

authorship. For the purposes of this License, Derivativek#/shall not include works that remain separable from, aetye
link (or bind by name) to the interfaces of, the Work and Deatiixe Works thereof.

"Contribution" shall mean any work of authorship, incluglithe original version of the Work and any modifications or
additions to that Work or Derivative Works thereof, thatrgentionally submitted to Licensor for inclusion in the Wor
by the copyright owner or by an individual or Legal Entity laoitized to submit on behalf of the copyright owner. For the
purposes of this definition, "submitted" means any form et&bnic, verbal, or written communication sent to the hiear

or its representatives, including but not limited to comimation on electronic mailing lists, source code contrateyns,
and issue tracking systems that are managed by, or on béh#ied_icensor for the purpose of discussing and improving
the Work, but excluding communication that is conspicupusrked or otherwise designated in writing by the copyright
owner as "Not a Contribution."

"Contributor” shall mean Licensor and any individual or Begntity on behalf of whom a Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and d@mrdi of this License, each Contributor hereby grants to ou
perpetual, worldwide, non-exclusive, no-charge, roy&iég, irrevocable copyright license to reproduce, prefizerivative
Works of, publicly display, publicly perform, sublicensamd distribute the Work and such Derivative Works in Source o
Object form.

3. Grant of Patent License. Subject to the terms and congitad this License, each Contributor hereby grants to You a
perpetual, worldwide, non-exclusive, no-charge, royéiee, irrevocable (except as stated in this section) pditamse to
make, have made, use, offer to sell, sell, import, and otisertvansfer the Work, where such license applies only teeho
patent claims licensable by such Contributor that are secidg infringed by their Contribution(s) alone or by comation
of their Contribution(s) with the Work to which such Contrtion(s) was submitted. If You institute patent litigatiagainst
any entity (including a cross-claim or counterclaim in agant) alleging that the Work or a Contribution incorporateithin
the Work constitutes direct or contributory patent infengent, then any patent licenses granted to You under thenké&
for that Work shall terminate as of the date such litigat®filed.

4. Redistribution. You may reproduce and distribute copiethe Work or Derivative Works thereof in any medium, with or
without modifications, and in Source or Object form, proddieat You meet the following conditions:

(a) You must give any other recipients of the Work or Derix@tiVorks a copy of this License; and
(b) You must cause any modified files to carry prominent net8tating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Wotkat You distribute, all copyright, patent, trademarlg an
attribution notices from the Source form of the Work, exahgrthose notices that do not pertain to any part of the Deviza
Works; and

(d) If the Work includes a "NOTICE" text file as part of its dibution, then any Derivative Works that You distribute mus
include a readable copy of the attribution notices conthinghin such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least on¢hef following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or wloentation, if provided along with the Derivative Works;
or, within a display generated by the Derivative Works, iflamherever such third-party notices normally appear. The
contents of the NOTICE file are for informational purposel/@nd do not modify the License. You may add Your own
attribution notices within Derivative Works that You dibtite, alongside or as an addendum to the NOTICE text from the
Work, provided that such additional attribution noticesruat be construed as modifying the License.

You may add Your own copyright statement to Your modificatiamd may provide additional or different license terms
and conditions for use, reproduction, or distribution oii¥enodifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of therkMatherwise complies with the conditions stated in thisdnse.

5. Submission of Contributions. Unless You explicitly statherwise, any Contribution intentionally submitted ifzlusion
in the Work by You to the Licensor shall be under the terms amdliitions of this License, without any additional terms or
conditions. Notwithstanding the above, nothing hereirl slipersede or modify the terms of any separate licenseagret
you may have executed with Licensor regarding such CoriioibsL

HTCondor Version 8.6.4 Manual

CONTENTS XixX

6. Trademarks. This License does not grant permission ttheseade names, trademarks, service marks, or productnaime
the Licensor, except as required for reasonable and cusgama in describing the origin of the Work and reproducing th
content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicabl lar agreed to in writing, Licensor provides the Work (and
each Contributor provides its Contributions) on an "AS IXBS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied, including, without litation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible
for determining the appropriateness of using or redistinigtthe Work and assume any risks associated with Your eseerc
of permissions under this License.

8. Limitation of Liability. In no event and under no legal tirg, whether in tort (including negligence), contract, trerwise,
unless required by applicable law (such as deliberate arsblyrnegligent acts) or agreed to in writing, shall any @buator
be liable to You for damages, including any direct, indiragtecial, incidental, or consequential damages of anyacker
arising as a result of this License or out of the use or ingitidi use the Work (including but not limited to damages faslo
of goodwill, work stoppage, computer failure or malfunati@r any and all other commercial damages or losses), even if
such Contributor has been advised of the possibility of slashages.

9. Accepting Warranty or Additional Liability. While redigbuting the Work or Derivative Works thereof, You may clseo
to offer, and charge a fee for, acceptance of support, wgrramdemnity, or other liability obligations and/or righton-
sistent with this License. However, in accepting such atians, You may act only on Your own behalf and on Your sole
responsibility, not on behalf of any other Contributor, amly if You agree to indemnify, defend, and hold each Contab
harmless for any liability incurred by, or claims assertgdiast, such Contributor by reason of your accepting anj suc
warranty or additional liability.

END OF TERMS AND CONDITIONS

HTCondor Version 8.6.4 Manual

CHAPTER

ONE

Overview

1.1 High-Throughput Computing (HTC) and its Requirements

For many research and engineering projects, the qualithefésearch or the product is heavily dependent upon
the quantity of computing cycles available. It is not uncommto find problems that require weeks or months of
computation to solve. Scientists and engineers engageuismsort of work need a computing environment that
delivers large amounts of computational power over a longpdeof time. Such an environment is called a High-
Throughput Computing (HTC) environment. In contrast, HRgrformance Computing (HPC) environments deliver
a tremendous amount of compute power over a short periothef tHPC environments are often measured in terms of
FLoating point Operations Per Second (FLOPS). A growingroaimity is not concerned about operations per second,
but operations per month or per year. Their problems are ofiehntarger scale. They are more interested in how
many jobs they can complete over a long period of time instédew fast an individual job can complete.

The key to HTC is to efficiently harness the use of all avadabkources. Years ago, the engineering and scientific
community relied on a large, centralized mainframe or a mmgeputer to do computational work. A large number of
individuals and groups needed to pool their financial resesito afford such a machine. Users had to wait for their
turn on the mainframe, and they had a limited amount of tifexzated. While this environment was inconvenient for
users, the utilization of the mainframe was high; it was busgrly all the time.

As computers became smaller, faster, and cheaper, useesirmaray from centralized mainframes and purchased
personal desktop workstations and PCs. An individual orlisgraup could afford a computing resource that was
available whenever they wanted it. The personal compusdoiger than the large centralized machine, but it provides
exclusive access. Now, instead of one giant computer forge lmstitution, there may be hundreds or thousands of
personal computers. This is an environment of distributedesship, where individuals throughout an organization
own their own resources. The total computational powerefrititution as a whole may rise dramatically as the result
of such a change, but because of distributed ownershipjithdils have not been able to capitalize on the institutiona
growth of computing power. And, while distributed ownegsta more convenient for the users, the utilization of the

1.2. HTCondor’s Power 2

computing power is lower. Many personal desktop machirtadlsifor very long periods of time while their owners
are busy doing other things (such as being away at lunch, &tings, or at home sleeping).

1.2 HTCondor's Power

HTCondor is a software system that creates a High-Througbpunputing (HTC) environment. It effectively utilizes
the computing power of workstations that communicate ouweetavork. HTCondor can manage a dedicated cluster
of workstations. Its power comes from the ability to effeety harness non-dedicated, preexisting resources under
distributed ownership.

A user submits the job to HTCondor. HTCondor finds an avadlabhchine on the network and begins running
the job on that machine. HTCondor has the capability to délet a machine running a HTCondor job is no longer
available (perhaps because the owner of the machine carkdrbat lunch and started typing on the keyboard). It
can checkpoint the job and move (migrate) the jobs to a diffemachine which would otherwise be idle. HTCondor
continues the job on the new machine from precisely whegdtipff.

In those cases where HTCondor can checkpoint and migrath, 8HjbCondor makes it easy to maximize the
number of machines which can run a job. In this case, there iequirement for machines to share file systems (for
example, with NFS or AFS), so that machines across an emiieegrise can run a job, including machines in different
administrative domains.

HTCondor can be a real time saver when a job must be run mamgdgeds of) different times, perhaps with
hundreds of different data sets. With one command, all ofithelreds of jobs are submitted to HTCondor. Depending
upon the number of machines in the HTCondor pool, dozens em Bundreds of otherwise idle machines can be
running the job at any given moment.

HTCondor does not require an account (login) on machinesavheuns a job. HTCondor can do this because of
its remote system catechnology, which traps library calls for such operatioaseading or writing from disk files.
The calls are transmitted over the network to be performettie@machine where the job was submitted.

HTCondor provides powerful resource management by maigking resource owners with resource consumers.
This is the cornerstone of a successful HTC environmenteGtbmpute cluster resource management systems attach
properties to the job queues themselves, resulting in wsgusion over which queue to use as well as administrative
hassle in constantly adding and editing queue propertisattsfy user demands. HTCondor implemediassAdsa
clean design that simplifies the user’s submission of jobs.

ClassAds work in a fashion similar to the newspaper claskétbrertising want-ads. All machines in the HTCon-
dor pool advertise their resource properties, both staticdynamic, such as available RAM memory, CPU type, CPU
speed, virtual memory size, physical location, and curlesd average, in gesource offerad. A user specifies a
resource requesid when submitting a job. The request defines both the retjaird a desired set of properties of the
resource to run the job. HTCondor acts as a broker by mat@ndganking resource offer ads with resource request
ads, making certain that all requirements in both ads aisfisat During this match-making process, HTCondor also
considers several layers of priority values: the prioflity tiser assigned to the resource request ad, the priority of t
user which submitted the ad, and desire of machines in thetpaacept certain types of ads over others.

HTCondor Version 8.6.4 Manual

1.3. Exceptional Features 3

1.3 Exceptional Features

Checkpoint and Migration. Where programs can be linked with HTCondor libraries, uséidTCondor may be
assured that their jobs will eventually complete, even eaber changing environment that HTCondor utilizes.
As a machine running a job submitted to HTCondor becomesailaée, the job can be check pointed. The
job may continue after migrating to another machine. HTQuisccheckpoint feature periodically checkpoints
a job evenin lieu of migration in order to safeguard the aagiated computation time on a job from being lost
in the event of a system failure, such as the machine beirtgaiua or a crash.

Remote System Calls.Despite running jobs on remote machines, the HTCondor atdnghiverse execution mode
preserves the local execution environment via remote systdls. Users do not have to worry about making
data files available to remote workstations or even obtgimidogin account on remote workstations before
HTCondor executes their programs there. The program behawaer HTCondor as if it were running as the
user that submitted the job on the workstation where it wagrally submitted, no matter on which machine it
really ends up executing on.

No Changes Necessary to User’s Source CodBo special programming is required to use HTCondor. HTCondo
is able to run non-interactive programs. The checkpointraiggtation of programs by HTCondor is transparent
and automatic, as is the use of remote system calls. If thasities are desired, the user only re-links the
program. The code is neither recompiled nor changed.

Pools of Machines can be Hooked TogetheiFlocking is a feature of HTCondor that allows jobs submittéithin a
first pool of HTCondor machines to execute on a second poad miachanism is flexible, following requests
from the job submission, while allowing the second pool, subset of machines within the second pool to set
policies over the conditions under which jobs are executed.

Jobs can be Ordered.The ordering of job execution required by dependencies grjabs in a set is easily handled.
The set of jobs is specified using a directed acyclic grapterevieach job is a node in the graph. Jobs are
submitted to HTCondor following the dependencies givenhgygraph.

HTCondor Enables Grid Computing. As grid computing becomes a reality, HTCondor is alreadyeh&he tech-
nigue of glidein allows jobs submitted to HTCondor to be e#ed on grid machines in various locations world-
wide. As the details of grid computing evolve, so does HTQuisdability, starting with Globus-controlled
resources.

Sensitive to the Desires of Machine OwnersThe owner of a machine has complete priority over the use ®f th
machine. An owner is generally happy to let others computthemrmachine while it is idle, but wants it back
promptly upon returning. The owner does not want to takeigpaction to regain control. HTCondor handles
this automatically.

ClassAds. The ClassAd mechanism in HTCondor provides an extremelybflexexpressive framework for match-
making resource requests with resource offers. Users ally eequest both job requirements and job desires.
For example, a user can require that a job run on a machine84itiibytes of RAM, but state a preference
for 128 Mbytes, if available. A workstation owner can staggreference that the workstation runs jobs from a
specified set of users. The owner can also require that tleene Interactive workstation activity detectable at
certain hours before HTCondor could start a job. Job reqergs/preferences and resource availability con-
straints can be described in terms of powerful expressi@ssiting in HTCondor’s adaptation to nearly any
desired policy.

HTCondor Version 8.6.4 Manual

1.4. Current Limitations 4

1.4 Current Limitations

Limitations on Jobs which can Checkpointed Although HTCondor can schedule and run any type of process, H
Condor does have some limitations on jobs that it can traespiy checkpoint and migrate:

1.

© 00 N O

10.

11.
12.

Multi-process jobs are not allowed. This includes systeatls such asfork() , exec() , and
system()

. Interprocess communication is not allowed. This inctugipes, semaphores, and shared memory.
. Network communication must be brief. A jolaymake network connections using system calls such as

socket() , buta network connection left open for long periods willadetheckpointing and migration.

. Sending or receiving the SIGUSR2 or SIGTSTP signals ishotved. HTCondor reserves these signals

for its own use. Sending or receiving all other sigralallowed.

. Alarms, timers, and sleeping are not allowed. This inetucgystem calls such amlarm() ,

getitimer() , andsleep()

. Multiple kernel-level threads are not allowed. Howeweu/tiple user-level threadse allowed.

. Memory mapped files are not allowed. This includes systaia such asnmap() andmunmap() .

. File locks are allowed, but not retained between checkpoi

. All files must be opened read-only or write-only. A file opdrfor both reading and writing will cause

trouble if a job must be rolled back to an old checkpoint imalger compatibility reasons, a file opened
for both reading and writing will result in a warning but nat error.

A fair amount of disk space must be available on the suimgitmachine for storing a job’s checkpoint
images. A checkpoint image is approximately equal to thei@irmemory consumed by a job while it
runs. If disk space is short, a speadileckpoint servecan be designated for storing all the checkpoint
images for a pool.

On Linux, the job must be statically linkecbndor_compileloes this by default.

Reading to or writing from files larger than 2 GBytes isyoalpported when the submit siden-
dor_shadowvand the standard universe user job application itself atle ®&-bit executables.

Note: these limitationsnly apply to jobs which HTCondor has been asked to transparehdgkpoint. If job
checkpointing is not desired, the limitations above do pgiya

Security Implications. HTCondor does a significant amount of work to prevent seghiazards, but loopholes are
known to exist. HTCondor can be instructed to run user progranly as the UNIX user nobody, a user
login which traditionally has very restricted access. Brdrewith access solely as user nobody, a sufficiently
malicious individual could do such things as fill dqmp (which is world writable) and/or gain read access to
world readable files. Furthermore, where the security oftimes in the pool is a high concern, only machines
where the UNIX user root on that machine can be trusted sHmutimitted into the pool. HTCondor provides
the administrator with extensive security mechanisms forer desired policies.

Jobs Need to be Re-linked to get Checkpointing and Remote Sgsn Calls Although typically no source code
changes are required, HTCondor requires that the jobs leked with the HTCondor libraries to take advan-
tage of checkpointing and remote system calls. This oftenlpdes commercial software binaries from taking
advantage of these services because commercial packagiysmake their object code available. HTCondor's
other services are still available for these commerciakpges.

HTCondor Version 8.6.4 Manual

1.5. Availability 5

1.5 Availability

HTCondor is currently available as a free download from théeret via the World Wide Web at URL
http://htcondor.org/downloads/. Binary distributionstbis HTCondor Version 8.6.4 release are available for the
platforms detailed in Table1.1. A platform is an architeetaperating system combination.

In the table clipped means that HTCondor does not support checkpointing or resyatem calls on the given
platform. This means thatandarduniverse jobs are not supported. Some clipped platformshaile further lim-
itations with respect to supported universes. See selctl@d dn pagé 13 for more details on job universes within
HTCondor and their abilities and limitations.

The HTCondor source code is available for public downloadgside the binary distributions.

| Architecture Operating System |
Intel x86 - RedHat Enterprise Linux 6

- All versions Windows Vista or greater (clipped)
x86_64 - Red Hat Enterprise Linux 6

- Red Hat Enterprise Linux 7

- Debian Linux 7.0 (wheezy)

- Debian Linux 8.0 (jessie)

- Macintosh OS X 10.7 through 10.10 (clipped)
- Ubuntu 12.04; Precise Pangolin (clipped)

- Ubuntu 14.04; Trusty Tahr

Table 1.1: Supported platforms in HTCondor Version 8.6.4

NOTE: Other Linux distributions likely work, but are not testedsopported.

For more platform-specific information about HTCondor'ggart for various operating systems, see Chdgter 7
on pagé 661.

Jobs submitted to the standard universe utitb@dor_compilego relink programs with libraries provided by
HTCondor. Tablé1]2 lists supported compilers by platfoomthis Version 8.6.4 release. Other compilers may work,
but are not supported.

1.6 Contributions and Acknowledgments

The quality of the HTCondor project is enhanced by the cbatidbns of external organizations. We gratefully ac-
knowledge the following contributions.

HTCondor Version 8.6.4 Manual

http://htcondor.org/downloads/

1.6. Contributions and Acknowledgments 6

| Platform Compiler | Notes |

Red Hat Enterprise Linux 6 on x86_64 gcc, g++, and ¢7&s shipped
Red Hat Enterprise Linux 7 on x86_64 gcc, g++, and g7as shipped
Debian Linux 7.0 (wheezy) on x86_64 gcc, g++, gfortiaas shipped
Debian Linux 8.0 (jessie) on x86_64 gcce, g++, gfortiaas shipped
Ubuntu 14.04 on x86_64 gcce, g++, gfortraras shipped

Table 1.2: Supported compilers in HTCondor Version 8.6.4

» The Globus Alliance (http://www.globus.org), for codedaassistance in developing HTCondor-G and the Grid
Security Infrastructure (GSI) for authentication and awitration.

* The GOZAL Project from the Computer Science DepartmentefTechnion Israel Institute of Technology
(http://www.technion.ac.|l/), for their enhancements f6r Condor’s High Availability. Thecondor_haddae-
mon allows one of multiple machines to function as the cénmtamnager for a HTCondor pool. Therefore, if an
acting central manager fails, another can take its place.

» Micron Corporation|(http://www.micron.com/) for the M8hased installer for HTCondor on Windows.

e Paradyn Project | (http://www.paradyn.org/) and the Ursitat Autonoma de Barcelona
(http://lwww.caos.uab.es/) for work on the Tool Daemon &got (TDP).

Our Web Services API acknowledges the use of gSOAP with teginested wording:

« Part of the software embedded in this product is gSOAP saétwPortions created by gSOAP are Copyright
(C) 2001-2004 Robert A. van Engelen, Genivia inc. All RigReserved.

THE SOFTWARE IN THIS PRODUCT WAS IN PART PROVIDED BY GENIVIANC AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARBISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, ORGHTS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR QHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE®SSIBILITY OF
SUCH DAMAGE.

* Some distributions of HTCondor include the Google Coredem library
(http://goog-coredumper.sourceforgenet/). The GoGgleedumper library is released under these terms:

Copyright (c) 2005, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with dheut modification, are permitted provided that the
following conditions are met:

— Redistributions of source code must retain the above cgbyriotice, this list of conditions and the fol-
lowing disclaimer.

HTCondor Version 8.6.4 Manual

http://www.globus.org
http://www.technion.ac.il/
http://www.micron.com/
http://www.paradyn.org/
http://www.caos.uab.es/
http://goog-coredumper.sourceforge.net/

1.7. Contact Information 7

— Redistributions in binary form must reproduce the aboveydgpt notice, this list of conditions and the
following disclaimer in the documentation and/or other enzls provided with the distribution.

— Neither the name of Google Inc. nor the names of its contilsutnay be used to endorse or promote
products derived from this software without specific priaitign permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTBRUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMI'ED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULARPURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUT®S BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR ©®NSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HEMER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-

ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USBF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The HTCondor project wishes to acknowledge the following:

 This material is based upon work supported by the Natioogrfe Foundation under Grant Numbers MCS-
8105904, OCI-0437810, and OCI-0850745. Any opinions, figdj and conclusions or recommendations ex-
pressed in this material are those of the author(s) and doaueissarily reflect the views of the National Science
Foundation.

1.7 Contact Information

The latest software releases, publications/papers rieggAd Condor and other High-Throughput Computing research
can be found at the official web site for HTCondor at httpogémtdor.org/.

In addition, there is an e-mail list &tcondor-world@cs.wisc.edu The HTCondor Team uses this e-mail list to
announce new releases of HTCondor and other major HT Cardted news items. To subscribe or unsubscribe from
the the list, follow the instructions at http://htcondegbnail-lists/. Because many of us receive too much e-nsail a
is, you will be happy to know that the HTCondor World e-mast ljroup is moderated, and only major announcements
of wide interest are distributed.

Our users support each other by belonging to an unmoderaduhgnlist (htcondor-users@cs.wisc.edutar-
geted at solving problems with HTCondor. HTCondor team menmlattempt to monitor traffic to htcondor-users,
responding as they can. Follow the instructiors at httfwétidor.org/mail-lists/.

Finally, you can reach the HTCondor Team directly. The HT@wnTeam is comprised of the developers
and administrators of HTCondor at the University of Wisdordadison. HTCondor questions, comments, pleas
for help, and requests for commercial contract consultatio support are all welcome; send Internet e-mail to
htcondor-admin@cs.wisc.edu. Please include your nanganaation, and telephone number in your message. If
you are having trouble with HTCondor, please help us trahmet by including as much pertinent information as you
can, including snippets of HTCondor log files.

HTCondor Version 8.6.4 Manual

http://htcondor.org/
http://htcondor.org/mail-lists/
http://htcondor.org/mail-lists/
mailto:htcondor-admin@cs.wisc.edu

1.8. Privacy Notice 8

1.8 Privacy Notice

The HTCondor software periodically sends short messagtdsetbl TCondor Project developers at the University of
Wisconsin, reporting totals of machines and jobs in eachingiHTCondor system. An example of such a message
is given below.

The HTCondor Project uses these collected reports to gublimmary figures and tables, such as the total of
HTCondor systems worldwide, or the geographic distributdd HTCondor systems. This information helps the
HTCondor Project to understand the scale and compositibtT@fondor in the real world and improve the software
accordingly.

The HTCondor Project will not use these reports to publidignitify any HTCondor system or user without per-
mission. The HTCondor software does not collect or reportarsonal information about individual users.

We hope that you will contribute to the development of HTGanthrough this reporting feature. How-
ever, you are free to disable it at any time by changing thdigoration variableSCONDOR_DEVELOPERSd
CONDOR_DEVELOPERS_COLLECTHB described in sectign 3.5]15 of this manual.

Example of data reported:

This is an automated email from the HTCondor system
on machine "your.condor.pool.com”. Do not reply.

This Collector has the following IDs:
HTCondor: 6.6.0 Nov 12 2003
HTCondor: INTEL-LINUX-GLIBC22

Machines Owner Claimed Unclaimed Matched Preempting

INTEL/LINUX 810 52 716 37 0 5
INTEL/WINDOWS 120 5 115 0 0 0
SUN4u/SOLARIS28 114 12 92 9 0 1
SUN4x/SOLARIS28 5 1 0 4 0 0
Total 1049 70 923 50 0 6
RunningJobs IdleJobs
920 3868

HTCondor Version 8.6.4 Manual

CHAPTER

TWO

Users’ Manual

2.1 Welcome to HTCondor

HTCondor is developed by the Center for High Throughput Cating at the University of Wisconsin-Madison (UW-
Madison), and was first installed as a production systemet¥v-Madison Computer Sciences department more than
15 years ago. HTCondor pools have since served as a majaesolucomputing cycles to UW faculty and students.
For many, it has revolutionized the role computing playshieit research. An increase of one, and sometimes even
two, orders of magnitude in the computing throughput of &aesh organization can have a profound impact on
research size, complexity, and scope. Over the years, tiegprand now the Center for High Throughput Computing
have established collaborations with scientists from adaihe world, and have provided them with access to many
cycles. One scientist consumed 100 CPU years!

2.2 Introduction

In a nutshell, HTCondor is a specialized batch system foragang compute-intensive jobs. Like most batch systems,
HTCondor provides a queuing mechanism, scheduling patidgrity scheme, and resource classifications. Users
submit their compute jobs to HTCondor, HTCondor puts thes joba queue, runs them, and then informs the user as
to the result.

Batch systems normally operate only with dedicated mashi@ften termed compute servers, these dedicated
machines are typically owned by one organization and destica® the sole purpose of running compute jobs. HT-
Condor can schedule jobs on dedicated machines. But urdidlgibnal batch systems, HTCondor is also designed to
effectively utilize non-dedicated machines to run jobs.d&yng told to only run compute jobs on machines which are
currently not being used (no keyboard activity, low loadrage, etc.), HTCondor can effectively harness otherwise
idle machines throughout a pool of machines. This is impbit@cause often times the amount of compute power

2.3. Matchmaking with ClassAds 10

represented by the aggregate total of all the non-dedicksktop workstations sitting on people’s desks throughout
the organization is far greater than the compute power otl&cdted central resource.

HTCondor has several unique capabilities at its disposathwhre geared toward effectively utilizing non-
dedicated resources that are not owned or managed by al@sareesource. These include transparent process
checkpoint and migration, remote system calls, and ClassARkad sectioh 1.2 for a general discussion of these
features before reading any further.

2.3 Matchmaking with ClassAds

Before you learn about how to submit a job, it is importanttoerstand how HTCondor allocates resources. Under-
standing the unique framework by which HTCondor matchesrstiibd jobs with machines is the key to getting the
most from HTCondor’s scheduling algorithm.

HTCondor simplifies job submission by acting as a matchmak&rassAds. HTCondor’s ClassAds are analogous
to the classified advertising section of the newspapere&edidvertise specifics about what they have to sell, hoping
to attract a buyer. Buyers may advertise specifics about thiegt wish to purchase. Both buyers and sellers list
constraints that need to be satisfied. For instance, a biageamaximum spending limit, and a seller requires a
minimum purchase price. Furthermore, both want to rankestguto their own advantage. Certainly a seller would
rank one offer of $50 dollars higher than a different offef@b. In HTCondor, users submitting jobs can be thought
of as buyers of compute resources and machine owners agessell

All machines in a HTCondor pool advertise their attributesch as available memory, CPU type and speed,
virtual memory size, current load average, along with o#itatic and dynamic properties. This machine ClassAd also
advertises under what conditions it is willing to run a HT@onjob and what type of job it would prefer. These policy
attributes can reflect the individual terms and preferebgeshich all the different owners have graciously allowed
their machine to be part of the HTCondor pool. You may adserthat your machine is only willing to run jobs at
night and when there is no keyboard activity on your machinaddition, you may advertise a preference (rank) for
running jobs submitted by you or one of your co-workers.

Likewise, when submitting a job, you specify a ClassAd wituyrequirements and preferences. The ClassAd
includes the type of machine you wish to use. For instancehgps you are looking for the fastest floating point
performance available. You want HTCondor to rank availahéehines based upon floating point performance. Or,
perhaps you care only that the machine has a minimum of 128d¥IRAM. Or, perhaps you will take any machine
you can get! These job attributes and requirements are édnut into a job ClassAd.

HTCondor plays the role of a matchmaker by continuously irepdll the job ClassAds and all the machine
ClassAds, matching and ranking job ads with machine ads. df@iGr makes certain that all requirements in both
ClassAds are satisfied.

2.3.1 Inspecting Machine ClassAds with condor_status

Once HTCondor is installed, you will get a feel for what a maelClassAd does by trying thebndor_statugom-
mand. Try thecondor_statusommand to get a summary of information from ClassAds aldwutésources available
in your pool. Typecondor_statusind hit enter to see a summary similar to the following:

HTCondor Version 8.6.4 Manual

2.3.1. Inspecting Machine ClassAds with condor_status 11

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

amul.cs.wisc.edu LINUX INTEL Claimed Busy 0.990 1896 0+00: 07:04
slotl@amundsen.cs. LINUX INTEL Owner Idle 0.000 1456 0+00: 21:58
slot2@amundsen.cs. LINUX INTEL Owner Idle 0.110 1456 0+00: 21:59
angus.cs.wisc.edu LINUX INTEL Claimed Busy 0.940 873 0+00: 02:54
anhai.cs.wisc.edu LINUX INTEL Claimed Busy 1.400 1896 0+00 :03:03
apollo.cs.wisc.edu LINUX INTEL Unclaimed Idle 1.000 3032 O +00:00:04
arragon.cs.wisc.ed LINUX INTEL Claimed Busy 0.980 873 0+00 :04:29
bamba.cs.wisc.edu LINUX INTEL Owner Idle 0.040 3032 15+20: 10:19

Thecondor_statusommand has options that summarize machine ads in a vafielyys. For example,

condor_status -availableshows only machines which are willing to run jobs now.
condor_status -runshows only machines which are currently running jobs.

condor_status -longlists the machine ClassAds for all machines in the pool.

Refer to thecondor_statugommand reference page located on 901 for a complatepdies of thecon-
dor_statuommand.

The following shows a portion of a machine ClassAd for a gnghchine: turunmaa.cs.wisc.edu. Some of the
listed attributes are used by HTCondor for scheduling. Odtieibutes are for information purposes. An important
point is thatany of the attributes in a machine ClassAd can be utilized at jdinsssion time as part of a request or
preference on what machine to use. Additional attributesbeaeasily added. For example, your site administrator
can add a physical location attribute to your machine CldssA

Machine = "turunmaa.cs.wisc.edu”

FileSystemDomain = "cs.wisc.edu"

Name = "turunmaa.cs.wisc.edu"

CondorPlatform = "$CondorPlatform: x86_rhap_5 $"

Cpus = 1

IsValidCheckpointPlatform = (((TARGET.JobUniverse == 1) == false) ||
((MY.CheckpointPlatform =!= undefined) &&

((TARGET.LastCheckpointPlatform =?= MY.CheckpointPlat form) ||

(TARGET.NumCkpts == 0))))

CondorVersion = "$CondorVersion: 7.6.3 Aug 18 2011 BuildID : 361356 $"
Requirements = (START) && (IsValidCheckpointPlatform)

EnteredCurrentActivity = 1316094896

MyAddress = "<128.105.175.125:58026>"

EnteredCurrentState = 1316094896

Memory = 1897

CkptServer = "pitcher.cs.wisc.edu"

OpSys = "LINUX"

State = "Owner"

START = true

Arch = "INTEL"

Mips = 2634

Activity = "Idle"

StartdipAddr = "<128.105.175.125:58026>"

HTCondor Version 8.6.4 Manual

2.4. Running a Job: the Steps To Take 12

TargetType = "Job"

LoadAvg = 0.210000

CheckpointPlatform = "LINUX INTEL 2.6.x normal 0x40000000
Disk = 92309744

VirtualMemory = 2069476

TotalSlots = 1

UidDomain = "cs.wisc.edu"

MyType = "Machine"

2.4 Running a Job: the Steps To Take

The road to using HTCondor effectively is a short one. Thédsaere quickly and easily learned.

Here are all the steps needed to run a job using HTCondor.

Code Preparation. A job run under HTCondor must be able to run as a backgrounthijab. HTCondor runs
the program unattended and in the background. A progranrihatin the background will not be able to do
interactive input and output. HTCondor can redirect comsoitput §tdout andstderr) and keyboard input
(stdin) to and from files for the program. Create any needed filesabiatain the proper keystrokes needed
for program input. Make certain the program will run corhgatith the files.

The HTCondor Universe. HTCondor has several runtime environments (callethiwersé¢ from which to choose.
Of the universes, two are likely choices when learning tonsitila job to HTCondor: the standard universe
and the vanilla universe. The standard universe allows ajobing under HTCondor to handle system calls by
returning them to the machine where the job was submitted stdandard universe also provides the mechanisms
necessary to take a checkpoint and migrate a partially cstegbjob, should the machine on which the job is
executing become unavailable. To use the standard unjviérisenecessary to relink the program with the
HTCondor library using theondor_compileommand. The manual page favndor_compil®n pagé 772 has
details.

The vanilla universe provides a way to run jobs that cannatbeked. There is no way to take a checkpoint
or migrate a job executed under the vanilla universe. Fogscto input and output files, jobs must either use a
shared file system, or use HTCondor's File Transfer mechanis

Choose a universe under which to run the HTCondor progradedink the program if necessary.

Submit description file. Controlling the details of a job submission is a submit digsicm file. The file contains
information about the job such as what executable to rurfjldgeto use in place oftdin andstdout , and
the platform type required to run the program. The numbemaés$ to run a program may be included; it is
simple to run the same program multiple times with multipdéedsets.

Write a submit description file to go with the job, using theples provided in sectién 2.5 for guidance.

Submit the Job. Submit the program to HTCondor with tikendor_submitommand.

Once submitted, HTCondor does the rest toward running thheNtonitor the job’s progress with theondor_q
andcondor_statusommands. You may modify the order in which HTCondor will giour jobs withcondor_pria If
desired, HTCondor can even inform you in a log file every timenjob is checkpointed and/or migrated to a different
machine.

HTCondor Version 8.6.4 Manual

2.4.1. Choosing an HTCondor Universe 13

When your program completes, HTCondor will tell you (by edmi&preferred) the exit status of your program
and various statistics about its performances, includmg used and 1/O performed. If you are using a log file for
the job (which is recommended) the exit status will be reedrnd the log file. You can remove a job from the queue
prematurely withcondor_rm

2.4.1 Choosing an HTCondor Universe

A universein HTCondor defines an execution environment. HTCondor ivar8.6.4 supports several different
universes for user jobs:

« standard

* vanilla

* grid

* java

scheduler

* |ocal

parallel
e vm

» docker

Theuniverse under which a job runs is specified in the submit descriptien ff a universe is not specified, the
default is vanilla, unless your HTCondor administrator tla@nged the default. However, we strongly encourage you
to specify the universe, since the default can be changedbyTCondor administrator, and the default that ships
with HTCondor has changed.

The standard universe provides migration and reliablitg,has some restrictions on the programs that can be run.
The vanilla universe provides fewer services, but has vemyrestrictions. The grid universe allows users to submit
jobs using HTCondor’s interface. These jobs are submitbedxecution on grid resources. The java universe
allows users to run jobs written for the Java Virtual Mach{#&M). The scheduler universe allows users to submit
lightweight jobs to be spawned by the program known as a daemdhe submit host itself. The parallel universe
is for programs that require multiple machines for one joke Sectio 219 for more about the Parallel universe. The
vm universe allows users to run jobs where the job is no loage#mple executable, but a disk image, facilitating the
execution of a virtual machine. The docker universe runs ekBocontainer as an HTCondor job.

Standard Universe

In the standard universe, HTCondor provigegckpointingandremote system call§ hese features make a job more
reliable and allow it uniform access to resources from argnehin the pool. To prepare a program as a standard

HTCondor Version 8.6.4 Manual

2.4.1. Choosing an HTCondor Universe 14

universe job, it must be relinked witondor_compileMost programs can be prepared as a standard universe job, bu
there are a few restrictions.

HTCondor checkpoints a job at regular intervalscifeckpoint imagés essentially a snapshot of the current state
of a job. If a job must be migrated from one machine to anotH&Condor makes a checkpoint image, copies the
image to the new machine, and restarts the job continuingpthsfom where it left off. If a machine should crash or
fail while it is running a job, HTCondor can restart the jobanew machine using the most recent checkpoint image.
In this way, jobs can run for months or years even in the faceoésional computer failures.

Remote system calls make a job perceive that it is executingsohome machine, even though the job may
execute on many different machines over its lifetime. Wh@bauns on a remote machine, a second process, called
a condor_shadowuns on the machine where the job was submitted. = When thetjelnpts a system call, the
condor_shadowerforms the system call instead and sends the results teithgte machine. For example, if a job
attempts to open afile that is stored on the submitting magkivecondor_shadowill find the file, and send the data
to the machine where the job is running.

To convert your program into a standard universe job, yoummsescondor_compilgo relink it with the HTCondor
libraries. Putcondor_compilén front of your usual link command. You do not need to modifg program’s source
code, but you do need access to the unlinked object files. Amnaial program that is packaged as a single executable
file cannot be converted into a standard universe job.

For example, if you would have linked the job by executing:
% cc main.o tools.0o -0 program

Then, relink the job for HTCondor with:
% condor_compile cc main.o tools.0o -0 program

There are a few restrictions on standard universe jobs:

1. Multi-process jobs are not allowed. This includes systaits such asork() ,exec() , andsystem()
2. Interprocess communication is not allowed. This inctuglpes, semaphores, and shared memory.

3. Network communication must be brief. A jobay make network connections using system calls such as
socket() , but a network connection left open for long periods willaletheckpointing and migration.

4. Sending or receiving the SIGUSR2 or SIGTSTP signals ishoved. HTCondor reserves these signals for its
own use. Sending or receiving all other signalallowed.

5. Alarms, timers, and sleeping are not allowed. This inetuslystem calls such atarm() , getitimer() ,
andsleep()

6. Multiple kernel-level threads are not allowed. Howeweultiple user-level threadsre allowed.

7. Memory mapped files are not allowed. This includes systaia such asmmap() andmunmap() .

HTCondor Version 8.6.4 Manual

2.4.1. Choosing an HTCondor Universe 15

8. File locks are allowed, but not retained between checkpoi

9. Allfiles must be opened read-only or write-only. A file opdrior both reading and writing will cause trouble if
a job must be rolled back to an old checkpoint image. For cdiipty reasons, a file opened for both reading
and writing will result in a warning but not an error.

10. A fair amount of disk space must be available on the suimmitnachine for storing a job’s checkpoint images.
A checkpointimage is approximately equal to the virtual meyrconsumed by a job while it runs. If disk space
is short, a specialheckpoint servecan be designated for storing all the checkpoint images .

11. On Linux, the job must be statically linkecbhndor_compileloes this by default.

12. Reading to or writing from files larger than 2 GBytes isyosiipported when the submit sidendor_shadow
and the standard universe user job application itself atle ®b-bit executables.

Vanilla Universe

The vanilla universe in HTCondor is intended for programscivitannot be successfully re-linked. Shell scripts are
another case where the vanilla universe is useful. Unfaitilp, jobs run under the vanilla universe cannot checkpoin
or use remote system calls. This has unfortunate conseesiémica job that is partially completed when the remote
machine running a job must be returned to its owner. HTCohdseronly two choices. It can suspend the job, hoping
to complete it at a later time, or it can give up and restarjabdrom the beginningn another machine in the pool.

Since HTCondor’s remote system call features cannot bewgbkdhe vanilla universe, access to the job’s input
and output files becomes a concern. One option is for HTCotwlogly on a shared file system, such as NFS or
AFS. Alternatively, HTCondor has a mechanism for trangfigrfiles on behalf of the user. In this case, HTCondor
will transfer any files needed by a job to the execution sita,the job, and transfer the output back to the submitting
machine.

Under Unix, HTCondor presumes a shared file system for gjoiis. However, if a shared file system is unavail-
able, a user can enable the HTCondor File Transfer mecha@snwindows platforms, the default is to use the File
Transfer mechanism. For details on running a job with a shflleesystem, see sectién 2.5.8 on page 31. For details
on using the HTCondor File Transfer mechanism, see sdcif an page 32.

Grid Universe

The Grid universe in HTCondor is intended to provide the dé&ad HTCondor interface to users who wish to start
jobs intended for remote management systems. Sdctibn agd5717 has details on using the Grid universe. The
manual page focondor_submibn pagé 9111 has detailed descriptions of the grid-relatebaes.

Java Universe

A program submitted to the Java universe may run on any samaehine with a JVM regardless of its location, owner,
or JVM version. HTCondor will take care of all the details s finding the JVM binary and setting the classpath.

HTCondor Version 8.6.4 Manual

2.5. Submitting a Job 16

Scheduler Universe

The scheduler universe allows users to submit lightweigihs jto be run immediately, alongside tt@ndor_schedd
daemon on the submit host itself. Scheduler universe jabsairmatched with a remote machine, and will never be
preempted. The job’s requirements expression is evalaaaithst theeondor_schedd ClassAd.

Originally intended for meta-schedulers sucltasdor_dagmajthe scheduler universe can also be used to man-
age jobs of any sort that must run on the submit host.

However, unlike the local universe, the scheduler univeses not use aondor_starterdaemon to manage the
job, and thus offers limited features and policy supporte Tdtal universe is a better choice for most jobs which must
run on the submit host, as it offers a richer set of job managefeatures, and is more consistent with other universes
such as the vanilla universe. The scheduler universe magtioed in the future, in favor of the newer local universe.

Local Universe

The local universe allows an HTCondor job to be submittedexatuted with different assumptions for the execution

conditions of the job. The job does not wait to be matched withachine. It instead executes right away, on the

machine where the job is submitted. The job will never be pigted. The job’s requirements expression is evaluated
against theeondor_schedd ClassAd.

Parallel Universe

The parallel universe allows parallel programs, such as jul#, to be run within the opportunistic HTCondor envi-
ronment. Please see section 2.9 for more details.

VM Universe

HTCondor facilitates the execution of VMware and Xen vitiochines with the vm universe.

Please see sectibn 2111 for details.

Docker Universe

The docker universe runs a docker container on an executefiagob. Please see secfion 2.12 for details.

2.5 Submitting a Job

A job is submitted for execution to HTCondor using tendor_submitommand.condor_submitakes as an argu-
ment the name of a file called a submit description file. Thes dibntains commands and keywords to direct the

HTCondor Version 8.6.4 Manual

2.5.1. Sample submit description files 17

gueuing of jobs. In the submit description file, HTCondor fimderything it needs to know about the job. Items such
as the name of the executable to run, the initial workingaday, and command-line arguments to the program all
go into the submit description fileondor_submitreates a job ClassAd based upon the information, and HT@ond
works toward running the job.

The contents of a submit description file have been designsaMe time for HTCondor users. It is easy to submit
multiple runs of a program to HTCondor with a single subm#aétion file. To run the same program many times
on different input data sets, arrange the data files acagigdgo that each run reads its own input, and each run writes
its own output. Each individual run may have its own initiadnking directory, files mapped fatdin , stdout
stderr , command-line arguments, and shell environment; thesalbspecified in the submit description file. A
program that directly opens its own files will read the file marto use either frorstdin - or from the command line.

A program that opens a static file, given by file name, everg twill need to use a separate subdirectory for the output
of each run.

Thecondor_submitmanual page is on page 911 and contains a complete and fatijgtésn of how to useson-
dor_submit It also includes descriptiohs 914 of all of the many comnsathdt may be placed into a submit description
file. In addition, the index lists entries for each commandarrithe heading of Submit Commands.

Note that job ClassAd attributes can be set directly in a sufile using the+<attribute > = <value> syntax
(see[94B for details.)

2.5.1 Sample submit description files

In addition to the examples of submit description files gitene, there are more in tleendor_submitmanual page
(see[D1N).

Example 1

Example 1 is one of the simplest submit description files iptess It queues up the programyexefor execution
somewhere in the pool. Use of the vanilla universe is implasdthat is the default when not specified in the submit
description file.

An executable is compiled to run on a specific platform. Sitiie submit description file does not specify a
platform, HTCondor will use its default, which is to run thebjon a machine which has the same architecture and
operating system as the machine whesador_submiis run to submit the job.

Standard input for this job will come from the fileputfile , as specified by themput command, and standard
output for this job will go to the fileutputfile , as specified by theutput command. HTCondor expects to find
inputfile in the current working directory when this job is submittadd the system will take care of getting the
input file to where it needs to be when the job is executed, disaswdoringing back the output results (to the current
working directory) after job execution.

A log file, myexe.log , will also be produced that contains events the job had dutilifetime inside of HT-
Condor. When the job finishes, its exit conditions will beatbin the log file. This file’s contents are an excellent way
to figure out what happened to submitted jobs.

HTCondor Version 8.6.4 Manual

2.5.1. Sample submit description files 18

HHEHHH
#
Example 1
Simple HTCondor submit description file
#
HHEHHH
Executable = myexe
Log = myexe.log
Input = inputfile
Output = outputfile
Queue

Example 2

Example 2 queues up one copy of the progifam(which had been created lmpndor_compilefor execution by
HTCondor. Noinput, output, or error commands are given in the submit description files&tin , stdout , and

stderr will all refer to/dev/null . The program may produce output by explicitly opening a fild @riting to it.
HHHHHEHH
#
Example 2
Standard universe submit description file
#
HHHHHHH
Executable = foo
Universe = standard
Log = foo.log
Queue
Example 3

Example 3 queues two copies of the prognaathematica The first copy will run in directoryun_1 , and the
second will run in directoryun_2 due to theinitialdir command. For each copgtdin ~ will be test.data
stdout will be loop.out , andstderr will be loop.error . Each run will read input and write output files
within its own directory. Placing data files in separate clivees is a convenient way to organize data when a large
group of HTCondor jobs is to run. The example file shows progsabmission ofnathematicas a vanilla universe
job. The vanilla universe is most often the right choice affarse when the source and/or object code is not available.

Therequest_memorycommand is included to ensure that thathematicgobs match with and then execute on
pool machines that provide at least 1 GByte of memory.

BHARHHHHHHHHHHAR R

HTCondor Version 8.6.4 Manual

2.5.1. Sample submit description files 19

#

Example 3: demonstrate use of multiple
directories for data organization.
#

HHEHHH
executable = mathematica
universe = vanilla

input = test.data
output = loop.out

error = loop.error

log = loop.log

request_ memory = 1 GB

initialdir = run_1
queue
initialdir = run_2
queue

Example 4

The submit description file for Example 4 queues 150 runsad@mfoowhich has been compiled and linked for
Linux running on a 32-hit Intel processor. This job requiFEBCondor to run the program on machines which have
greater than 32 MiB of physical memory, and tlamk command expresses a preference to run each instance of the
program on machines with more than 64 MiB. It also advises bfidor that this standard universe job will use up to
28000 KiB of memory when running. Each of the 150 runs of thegpam is given its own process number, starting
with process number 0. So, filedin , stdout , andstderr will refertoin.0 , out.0 , anderr.0 for the first
run of the programin.1 ,out.1 ,anderr.1 forthe second run of the program, and so forth. A log file cimig

entries about when and where HTCondor runs, checkpoindsiagrates processes for all the 150 queued programs
will be written into the single fildoo.log

BHARHHHHHHHHHHAR R
#

Example 4: Show off some fancy features including
the use of pre-defined macros.

#

HHAHHH AR

Executable = foo

Universe = standard

requirements = OpSys == "LINUX" && Arch =="INTEL"
rank = Memory >= 64

image_size = 28000

request_memory = 32

HTCondor Version 8.6.4 Manual

2.5.2. Using the Power and Flexibility of the Queue Command 20

error = err.$(Process)
input = in.$(Process)
output = out.$(Process)
log = foo.log
queue 150

2.5.2 Using the Power and Flexibility of the Queue Command
A wide variety of job submissions can be specified with extf@rimation to thequeue submit command. This
flexibility eliminates the need for a job wrapper or Perl ptfor many submissions.

The form of thequeuecommand defines variables and expands values, identifyseg af jobs. Square brackets
identify an optional item.

queue[<int expr>]

queue[<int expr>] [<varname> in [slicq <list of items>

queue[<int expr>] [<varname>] matching [files | dirg] [slicg] <list of items with file globbing>
queue[<int expr>] [<list of varnames> from [slicg] <file name> | <list of items>

All optional items have defaults:

 If <int expr> is not specified, it defaults to the value 1.
* If <varname> or<list of varnames> is not specified, it defaults to the single variable callEEM.

« If slice is not specified, it defaults to all elements within the lihis is the Python slicg:] , with a step
value of 1.

If neitherfiles nordirs is specified in a specification using tliem key word, then both files and directories
are considered when globbing.

The list of items uses syntax in one of two forms. One form ismma and/or space separated list; the items are
placed on the same line as theeuecommand. The second form separates items by placing eadkitison its own
line, and delimits the list with parentheses. The openimgmihesis goes on the same line asdheuecommand.
The closing parenthesis goes on its own line. dlaeuecommand specified with the key woliem will always use
the second form of this syntax. Example 3 below uses thisngkfoym of syntax.

The optionaklice specifies a subset of the list of items using the Python syfiotaxslice. Negative step values
are not permitted.

Here are a set of examples.

Example 1

HTCondor Version 8.6.4 Manual

2.5.2. Using the Power and Flexibility of the Queue Command 21

transfer_input_files = $(filename)
arguments = -infile $(filename)
gueue filename matching files * dat

The use of file globbing expands the list of items to be all fitethe current directory that end idat . Only files,
and not directories are considered due to the specificafiditees . One job is queued for each file in the list of
items. For this example, assume that the three fili¢gl.dat , middle.dat , andending.dat form the
list of items after expansion; macfilename is assigned the value of one of these file names for each jalegue
That macro value is then substituted into #trgumentsandtransfer_input_files commands. Thgueuecommand
expands to

transfer_input_files = initial.dat
arguments = -infile initial.dat
queue
transfer_input_files = middle.dat
arguments = -infile middle.dat
queue
transfer_input_files = ending.dat
arguments = -infile ending.dat
queue

Example 2

queue 1 input in A, B, C

Variableinput is set to each of the 3 items in the list, and one job is queueddoh. For this example thpieue
command expands to

input = A
gqueue
input = B
queue
input = C
queue

Example 3

qgueue input,arguments from (
filel, -a -b 26
file2, -c -d 92

)

HTCondor Version 8.6.4 Manual

2.5.3. Variables in the Submit Description File 22

Using thefrom form of the options, each of the two variables specified isgia value from the list of items. For this
example thejueuecommand expands to

input = filel
arguments = -a -b 26
queue

input = file2
arguments = -c -d 92
queue

2.5.3 Variables in the Submit Description File

There are automatic variables for use within the submitrifgtsen file.

$(C uster) or$(C usterld) Each set of queued jobs from a specific user, submitted fromgessubmit
host, sharing an executable have the same val@iéQitister) or $(Clusterld) . The first cluster of jobs
are assigned to cluster 0, and the value is incremented bfoomach new cluster of jobss(Cluster) or
$(Clusterld) will have the same value as the job ClassAd attriliitesterld

$(Process) or $(Procl d) Withina cluster of jobs, each takes on its own unig(ferocess) or $(Procld)
value. The first job has value @(Process) or $(Procld) will have the same value as the job ClassAd
attributeProcld .

$(I1ten) The default name of the variable when vearname> is provided in equeuecommand.

$(1tem ndex) Represents anindex within a list of items. When no slice &Bigd, the first(ltemindex) is
0. When a slice is specifie@i(ltemindex) is the index of the item within the original list.

$(St ep) Forthe<int expr> specified$(Step) counts, starting at 0.

$(Row) When a list of items is specified by placing each item on its bain the submit description fil&(Row)
identifies which line the item is on. The first item (first linktbe list) is$(Row) 0. The second item (second
line of the list) is$(Row) 1. When a list of items are specified with all items on the same $(Row) is the
same a$(ltemindex)

Here is an example of gueuecommand for which the values of these automatic variabkegdantified.
Example 1
This example queues six jobs.
queue 3 in (A, B)

» $(Process) takes on the six values0, 1, 2, 3, 4, and 5.

HTCondor Version 8.6.4 Manual

2.5.4. Including Submit Commands Defined Elsewhere 23

» Because there is no specification for taearname> within this queuecommand, variabl&(ltem) is de-
fined. It has the valué for the first three jobs queued, and it has the v&der the second three jobs queued.

» $(Step) takes on the three values 0, 1, and 2 for the three jobs$gitam)=A , and it takes on the same
three values 0, 1, and 2 for the three jobs vithem)=B

* $(ltemindex) is O for all three jobs witl$(Item)=A , and itis 1 for all three jobs witl(ltem)=B

* $(Row) has the same value &ftemindex) for this example.

2.5.4 Including Submit Commands Defined Elsewhere
Externally defined submit commands can be incorporatedirtsubmit description file using the syntax
include : <what-to-include>

The <what-to-include> specification may specify a single file, where the contenth@file will be incor-
porated into the submit description file at the point withie file where thénclude is. Or,<what-to-include>
may cause a program to be executed, where the output of tigegonas incorporated into the submit description
file. The specification ofwhat-to-include> has the bar charactdr) following the name of the program to be
executed.

Theinclude key word is case insensitive. There ai@requirements for white space characters surrounding the
colon character.

Included submit commands may contain further nestetiide specifications, which are also parsed, evaluated,
and incorporated. Levels of nesting on included files arédit) such that infinite nesting is discovered and thwarted,
while still permitting nesting.

Consider the example

include : list-infiles.sh |

In this example, the bar character at the end of the line sahsescriptist-infiles.sh to be invoked, and the
output of the script is parsed and incorporated into the sdescription file. If this bash script contains

echo "transfer_input_files = “Is -m infiles/ * . dat™

then the output of this script has specified the set of inpes fib transfer to the execute host. For example, if directory
infiles contains the three file&.dat , B.dat , andC.dat , then the submit command

transfer_input_files = infiles/A.dat, infiles/B.dat, in files/C.dat

is incorporated into the submit description file.

HTCondor Version 8.6.4 Manual

2.5.5. Using Conditionals in the Submit Description File 24

2.5.5 Using Conditionals in the Submit Description File
Conditionalif /else semantics are available in a limited form. The syntax:

if <simple condition>
<statement>

<statement>
else
<statement>

<statement>
endif

An else key word and statements are not required, such that simplsemantics are implemented. The
<simple condition> does not permit compound conditions. It optionally corddime exclamation point char-
acter () to represent the not operation, followed by

» thedefined keyword followed by the name of a variable. If the variablelefined, the statement(s) are
incorporated into the expanded input. If the variablaasdefined, the statement(s) are not incorporated into
the expanded input. As an example,

if defined MY_UNDEFINED_VARIABLE

X =12
else

X =-1
endif

results inX = -1, whenMY_UNDEFINED_VARIABLES notyet defined.

» theversion keyword, representing the version number of of the daemdoadrcurrently reading this con-
ditional. This keyword is followed by an HTCondor versiommioer. That version number can be of the form
X.y.z orx.y . The version of the daemon or tool is compared to the specifiesion number. The comparison
operators are

— == for equality. Current version 8.2.3 is equal to 8.2.

— >=to see if the current version number is greater than or equaCtrrent version 8.2.3 is greater than
8.2.2, and current version 8.2.3 is greater than or equaPlto 8

— <=to see if the current version number is less than or equaluae@t version 8.2.0 is less than 8.2.2, and
current version 8.2.3 is less than or equal to 8.2.

As an example,

if version >= 8.1.6
DO_X = True

HTCondor Version 8.6.4 Manual

2.5.5. Using Conditionals in the Submit Description File 25

else
DO_Y = True
endif

results in definingO_XasTrue if the current version of the daemon or tool reading thisatetent is 8.1.6
or a more recent version.

e True oryes orthe value 1. The statement(s) are incorporated.
« False orno orthe value 0 The statement(s) au@t incorporated.

* $(<variable>) may be used where the immediately evaluated value is a sinopllean value. A value that
evaluates to the empty string is consideFadse , otherwise a value that does not evaluate to a simple boolean
value is a syntax error.

The syntax

if <simple condition>
<statement>

<statement>
elif <simple condition>
<statement>

<statement>
endif

is the same as syntax

if <simple condition>
<statement>

<statement>
else
if <simple condition>
<statement>

<statement>

endif
endif

Here is an example use of a conditional in the submit desonigile. A portion of thesample.sub submit
description file uses the if/else syntax to define commarediguments in one of two ways:

if defined X

HTCondor Version 8.6.4 Manual

2.5.6. Function Macros in the Submit Description File 26

arguments = -n $(X)
else

arguments = -n 1 -debug
endif

Submit variableX is defined on theondor_submitommand line with
condor_submit X=3 sample.sub

This command line incorporates the submit commxné 3 into the submission before parsing the submit descrip-
tion file. For this submission, the command line argumenth®@submitted job become

-n 3
If the job were instead submitted with the command line
condor_submit sample.sub
then the command line arguments of the submitted job become

-n 1 -debug

2.5.6 Function Macros in the Submit Description File
A set of predefined functions increase flexibility. Both sitoskescription files and configuration files are read using
the same parser, so these functions may be used in both silgsuiiption files and configuration files.

Case is significant in the function’s name, so use the saree t&tse as given in these definitions.

$CHA CE(i ndex, |istname) or $CHO CE(i ndex, iteml, itenk, ...) Anitem within the listis re-
turned. The listis represented by a parameter name, orsthitelins are the parameters. Tihdex parameter
determines which item. The first item in the list is at indexfGhe index is out of bounds for the list contents,
an error occurs.

$ENV(envi ronment - vari abl e- nane[: def aul t - val ue]) Evaluates to the value of environment variable

environment-variable-name . If there is no environment variable with that name, Evaeab UN-
DEFINED unless the optionatiefault-value is used; in which case it evaluates to default-value. For
example,

A = $ENV(HOME)

bindsA to the value of theHOMEnvironment variable.

HTCondor Version 8.6.4 Manual

2.5.6. Function Macros in the Submit Description File 27

$F[f pduwnxbga] (fil enane) One or more of the lower case letters may be combined to foerfithction
name and thus, its functionality. Each letter operates efildname in its own way.

» f convertrelative path to full path by prefixing the currentiing directory to it. This option works only
in condor_submifiles.

p refers to the entire directory portion fiename , with a trailing slash or backslash character. Whether
a slash or backslash is used depends on the platform of themead he slash will be recognized on Linux
platforms; either a slash or backslash will be recognizetMimdows platforms, and the parser will use
the same character specified.

« d refers to the last portion of the directory within the pathspecified. It will have a trailing slash or
backslash, as appropriate to the platform of the machine slash will be recognized on Linux platforms;
either a slash or backslash will be recognized on Windowsagstas, and the parser will use the same
character specified unless u or w is used. if b is used thegalash or backslash will be omitted.

u convert path separators to Unix style slash characters

w convert path separators to Windows style backslash cleasact

n refers to the file name at the end of any path, but without aeynfilme extension. As an example, the
return value fron$Fn(/tmp/simulate.exe) will be simulate (without the.exe extension).

» x refers to a file name extension, with the associated peripdAs an example, the return value from
$Fn(/tmp/simulate.exe) will be .exe .

* b when combined with the d option, causes the trailing sladfackslash to be omitted. When combined
with the x option, causes the leading periodl {0 be omitted.

g causes the return value to be enclosed within quotes. Dalbée marks are used unless a is also
specified.

« a When combined with the g option, causes the return value emblsed within single quotes.
$DI RNAVE(fi | enane) is the same a$Fp(fi | enane)
$BASENAME(fi | enane) is the same assFnx(fi | enane)

$INT(itemto-convert) or$I NT(itemto-convert, format-specifier) Expands, evaluates,

and returns a string version @ém-to-convert . Theformat-specifier has the same syntax as a
C language or Perl format specifier. If format-specifier is specified,"%d" is used as the format
specifier.

$RANDOM _CHO CE(choi cel, choice2, choice3, ...) Arandom choice of one of the parameters in the
list of parameters is made. For example, if one of the inte@eB (inclusive) should be randomly chosen:

$RANDOM_CHOICE(0,1,2,3,4,5,6,7,8)
$RANDOM | NTEGER(m n, max [, step]) A random integer within the rangmin and max, inclusive, is
selected. The optionatep parameter controls the stride within the range, and it defao the value 1. For

example, to randomly chose an even integer in the rangefcRiive):

$RANDOM_INTEGER(0, 8, 2)

HTCondor Version 8.6.4 Manual

2.5.6. Function Macros in the Submit Description File 28

$REAL(itemto-convert) or SREAL(itemto-convert, format-specifier) Expands,evaluates,

and returns a string version t&m-to-convert for a floating point type. Théormat-specifier is
a C language or Perl format specifier. If fomat-specifier is specified,'%16G" is used as a format
specifier.

$SUBSTR(nane, start-index) or $SUBSTR(nane, start-index, |ength) Expandsiameand re-
turns a substring of it. The first character of the string isndex 0. The first character of the substring is at
indexstart-index . If the optionallength is not specified, then the substring includes characters thget
end of the string. A negative value sfart-index works back from the end of the string. A negative value
of length eliminates use of characters from the end of the string. Hersome examples that all assume

Name = abcdef

* $SUBSTR(Name, 2) iscdef .

« $SUBSTR(Name, 0, -2) isabcd.
¢ $SUBSTR(Name, 1, 3) isbcd.

« $SUBSTR(Name, -1) isf.

* $SUBSTR(Name, 4, -3) is the empty string, as there are no characters in the sntysti this re-
quest.

Here are example uses of the function macros in a submitigéearfile. Note that these are not complete submit
description files, but only the portions that promote un@arding of use cases of the function macros.

Example 1

Generate a range of numerical values for a set of jobs, wradtees other than those given ByProcess) are
desired.

Mylndex = $(Process) + 1
initial_dir = run-$INT(MyIndex, %04d)

Assuming that there are three jobs queued, sucl$rabcess) becomesO0, 1, and Ryitial_dir will evaluate
to the directoriesun-0001 , run-0002 , andrun-0003

Example 2

This variation on Example 1 generates a file name extensiactvidha 3-digit integer value.

Values = $(Process) * 10
Extension = $INT(Values, %03d)
input = X.$(Extension)

HTCondor Version 8.6.4 Manual

2.5.7. About Requirements and Rank 29

Assuming that there are four jobs queued, such$fRtocess) becomesO, 1, 2, and Bxtension will evaluate
to 000, 010, 020, and 030, leading to files definedriput of X.000 , X.010 , X.020 , andX.030 .

Example 3

This example uses both the file globbing of theeuecommand and a macro function to specify a job input file that
is within a subdirectory on the submit host, but will be plda®o a single, flat directory on the execute host.

arguments = $Fnx(FILE)

transfer_input_files = $(FILE)

queue FILE MATCHING (
samplerun/ =*.dat

)

Assume that two files that end idat , A.dat andB.dat , are within the directorngamplerun . MacroFILE
expands tsamplerun/A.dat andsamplerun/B.dat for the two jobs queued. The input files transferred are
samplerun/A.dat andsamplerun/B.dat on the submit host. ThéFnx() function macro expands to the
complete file name with any leading directory specificatimipped, such that the command line argument for one of
the jobs will beA.dat and the command line argument for the other job wilBhdat .

2.5.7 About Requirements and Rank

Therequirements andrank commands in the submit description file are powerful andlflexi Using them
effectively requires care, and this section presents ttetasls.

Bothrequirements andrank need to be specified as valid HTCondor ClassAd expressions\rer, default
values are set by theondor_submiprogram if these are not defined in the submit description fleom thecon-
dor_submitmanual page and the above examples, you see that writingAtlasxpressions is intuitive, especially
if you are familiar with the programming language C. There some pretty nifty expressions you can write with
ClassAds. A complete description of ClassAds and theiresgions can be found in sectlonl4.1 on dagé 523.

All of the commands in the submit description file are caserisgtive,exceptfor the ClassAd attribute string
values. ClassAd attribute names are case insensitive las$&d string values aiase preserving

Note that the comparison operatoss ¢, <=, >=, and==) compare strings case insensitively. The special com-
parison operators?= and=!= compare strings case sensitively.

A requirements or rank command in the submit description file may utilize attrilsutieat appear in a machine
or a job ClassAd. Within the submit description file (for a)dhe prefixMY. (on a ClassAd attribute name) causes a
reference to the job ClassAd attribute, and the preflRGET. causes a reference to a potential machine or matched
machine ClassAd attribute.

Thecondor_statusommand displays statistics about machines within the. gdw-| option displays the machine
ClassAd attributes for all machines in the HTCondor poole Jdb ClassAds, if there are jobs in the queue, can be
seen with theondor_q -lcommand. This shows all the defined attributes for currdrg jo the queue.

HTCondor Version 8.6.4 Manual

2.5.7. About Requirements and Rank 30

A list of defined ClassAd attributes for job ClassAds is giwethe unnumbered Appendix on pdge 11002. A list
of defined ClassAd attributes for machine ClassAds is gimehé unnumbered Appendix on page 11020.

Rank Expression Examples

When considering the match between a job and a machine, sarded to choose a match from among all machines
that satisfy the job’s requirements and are available togee, after accounting for the user’s priority and the maeki
rank of the job. The rank expressions, simple or complexndefinumerical value that expresses preferences.

The job’sRank expression evaluates to one of three values. It can be UNBDEDB| ERROR, or a floating point
value. IfRank evaluates to a floating point value, the best match will beotine with the largest, positive value. If
no Rank is given in the submit description file, then HTCondor subgtis a default value of 0.0 when considering
machines to match. If the jobRank of a given machine evaluates to UNDEFINED or ERROR, this saahge of
0.0 is used. Therefore, the machine is still considered foatch, but has no ranking above any other.

A boolean expression evaluates to the numerical value df frige, and 0.0 if false.
The followingRank expressions provide examples to follow.

For a job that desires the machine with the most available omgm
Rank = memory
For a job that prefers to run on a friend’s machine on Satwday Sundays:

Rank = ((clockday == 0) || (clockday == 6))
&& (machine == "friend.cs.wisc.edu")

For a job that prefers to run on one of three specific machines:

Rank = (machine == "friendl.cs.wisc.edu") ||
(machine == "friend2.cs.wisc.edu") ||
(machine == "friend3.cs.wisc.edu")

For a job that wants the machine with the best floating poirfopemance (on Linpack benchmarks):

Rank = kflops

This particular example highlights a difficulty witRank expression evaluation as currently defined. While all ma-
chines have floating point processing ability, not all maekiwill have the&flops attribute defined. For machines
where this attribute is not defineRank will evaluate to the value UNDEFINED, and HTCondor will useefault
rank of the machine of 0.0. THeank attribute will only rank machines where the attribute is dedi. Therefore, the
machine with the highest floating point performance may eahie one given the highest rank.

HTCondor Version 8.6.4 Manual

2.5.8. Submitting Jobs Using a Shared File System 31

So, it is wise when writing &ank expression to check if the expression’s evaluation wiltlléa the expected
resulting ranking of machines. This can be accomplishedgutiie condor_statugommand with theconstraint
argument. This allows the user to see a list of machines thatfnstraint. To see which machines in the pool have
kflops defined, use

condor_status -constraint kflops
Alternatively, to see a list of machines whésfops is not defined, use
condor_status -constraint "kflops=?=undefined"

For a job that prefers specific machines in a specific order:

Rank = ((machine == "friendl.cs.wisc.edu") *3) +
((machine == "friend2.cs.wisc.edu") *2) +
(machine == "friend3.cs.wisc.edu")
If the machine being ranked feendl.cs.wisc.edu , then the expression
(machine == "friendl.cs.wisc.edu")

is true, and gives the value 1.0. The expressions

(machine == "friend2.cs.wisc.edu")
and

(machine == "friend3.cs.wisc.edu")
are false, and give the value 0.0. ThereforBank evaluates to the value 3.0. In this way,
machine friend1.cs.wisc.edu is ranked higher than machin&iend2.cs.wisc.edu , machine
friend2.cs.wisc.edu is ranked higher than machirfieend3.cs.wisc.edu , and all three of these ma-

chines are ranked higher than others.

2.5.8 Submitting Jobs Using a Shared File System

If vanilla, java, or parallel universe jobs are submittedhwut using the File Transfer mechanism, HTCondor must
use a shared file system to access input and output files.slodbg, the jonustbe able to access the data files from
any machine on which it could potentially run.

As an example, suppose a job is submitted from blackbimdiss.edu, and the job requires a particu-
lar data file called/u/p/s/psilord/data.txt . If the job were to run on cardinal.cs.wisc.edu, the file
/u/p/s/psilord/data.txt must be available through either NFS or AFS for the job to romectly.

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HT©oadrile Transfer Mechanism 32

HTCondor allows users to ensure their jobs have access torititg shared files by using the
FileSystemDomain andUidDomain machine ClassAd attributes. These attributes specifylwmachines have
access to the same shared file systems. All machines thatttheusame shared directories in the same locations are
considered to belong to the same file system domain. Simiktimachines that share the same user information (in
particular, the same UID, which is important for file systdiks NFS) are considered part of the same UID domain.

The default configuration for HTCondor places each machiits bwn UID domain and file system domain, using
the full host name of the machine as the name of the domainsf &pooldoeshave access to a shared file system,
the pool administratomustcorrectly configure HTCondor such that all the machines rntingrthe same files have
the samd-ileSystemDomain configuration. Similarly, all machines that share commagr irformation must be
configured to have the sarhkdDomain configuration.

When a job relies on a shared file system, HTCondor usesthérements expression to ensure that the job
runs on a machine in the corrddtdDomain andFileSystemDomain . In this case, the defauktquirements
expression specifies that the job must run on a machine wétlsdimelidDomain andFileSystemDomain as
the machine from which the job is submitted. This defaultlimast always correct. However, in a pool spanning
multiple UidDomain s and/orFileSystemDomain s, the user may need to specify a differegfquirements
expression to have the job run on the correct machines.

For example, imagine a pool made up of both desktop workstatand a dedicated compute cluster. Most of
the pool, including the compute cluster, has access to @&dHde system, but some of the desktop machines do
not. In this case, the administrators would probably defired-tleSystemDomain to becs.wisc.edu for all
the machines that mounted the shared files, and to the fullfamse for each machine that did not. An example is
jimi.cs.wisc.edu

In this example, a user wants to submit vanilla universe fotxs her own desktop machine (jimi.cs.wisc.edu)
which does not mount the shared file system (and is therefate own file system domain, in its own world). But,
she wants the jobs to be able to run on more than just her owhineain particular, the compute cluster), so she puts
the program and input files onto the shared file system. Whersshmits the jobs, she needs to tell HTCondor to
send them to machines that have access to that shared date specifies a differemequirements expression
than the default:

Requirements = TARGET.UidDomain == "cs.wisc.edu" && \
TARGET.FileSystemDomain == "cs.wisc.edu"

WARNING: If there is no shared file system, or the HTCondor pool administrator dassconfigure the
FileSystemDomain setting correctly (the default is that each machine in a p®dh its own file system and
UID domain), a user submits a job that cannot use remoteraysdis (for example, a vanilla universe job), and the
user does not enable HTCondor’s File Transfer mechanisjpthwill only run on the machine from which it was
submitted.

2.5.9 Submitting Jobs Without a Shared File System: HTCondos File Transfer Mecha-
nism

HTCondor works well without a shared file system. The HTCarfide transfer mechanism permits the user to select
which files are transferred and under which circumstanc@€dtdor can transfer any files needed by a job from the

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HT©oadrile Transfer Mechanism 33

machine where the job was submitted into a remote scratebtdity on the machine where the job is to be executed.
HTCondor executes the job and transfers output back to theitting machine. The user specifies which files and

directories to transfer, and at what point the output filesusth be copied back to the submitting machine. This

specification is done within the job’s submit descriptioa.fil

Specifying If and When to Transfer Files

To enable the file transfer mechanism, place two commantigijob’s submit description fileshould_transfer_files
andwhen_to_transfer_output By default, they will be:

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

Setting theshould_transfer_filescommand explicitly enables or disables the file transferlmaatsm. The com-
mand takes on one of three possible values:

1. YES HTCondor transfers both the executable and the file defiyeithdinput command from the machine
where the job is submitted to the remote machine where this jlmbe executed. The file defined by théput
command as well as any files created by the execution of tharelransferred back to the machine where
the job was submitted. When they are transferred and thetdigelocation of the files is determined by the
commandvhen_to_transfer_output

2. IF_NEEDED HTCondor transfers files if the job is matched with and to beceted on a ma-
chine in a differentFileSystemDomain than the one the submit machine belongs to, the same
as if should_transfer _files = YES . If the job is matched with a machine in the local
FileSystemDomain , HTCondor will not transfer files and relies on the sharedsfjistem.

3. NQ HTCondor’s file transfer mechanism is disabled.

The when_to_transfer_output command tells HTCondor when output files are to be trandel@ck to the
submit machine. The command takes on one of two possiblesalu

1. ON_EXIT: HTCondor transfers the file defined by thetput command, as well as any other files in the remote
scratch directory created by the job, back to the submit inaatnly when the job exits on its own.

2. ON_EXIT_OR_EVICT. HTCondor behaves the same as described for the @NieEXIT when the job exits
on its own. However, if, and each time the job is evicted fromachinefiles are transferred back at eviction
time The files that are transferred back at eviction time mayuitkelintermediate files that are not part of the
final output of the job. Whetransfer_output_filesis specified, its list governs which are transferred back at
eviction time. Before the job starts running again, all & fies that were stored when the job was last evicted
are copied to the job’s new remote scratch directory.

The purpose of saving files at eviction time is to allow thet@besume from where it left off. This is similar to
using the checkpoint feature of the standard universeuistispecifyingON_EXIT_OR_EVICTis not enough

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HT©oadrile Transfer Mechanism 34

to make a job capable of producing or utilizing checkpoiftse job must be designed to save and restore its
state using the files that are saved at eviction time.

The files that are transferred back at eviction time are moesdtin the location where the job’s final output will
be written when the job exits. HTCondor manages these filematically, so usually the only reason for a
user to worry about them is to make sure that there is enouatedp store them. The files are stored on the
submit machine in a temporary directory within the diregtdefined by the configuration varial##OOLThe
directory is named using thelusterld andProcld job ClassAd attributes. The directory name takes the
form:

<X mod 10000>/<Y mod 10000>/cluster<X>.proc<Y>.subprocO

where<X> is the value ofClusterld , and<Y> is the value ofProcld . As an example, if job 735.0 is
evicted, it will produce the directory

$(SPOOL)/735/0/cluster735.proc0.subprocO

The default values for these two submit commands make senssea together. If onlghould_transfer_files
is set, and set to the vali¢Q then no output files will be transferred, and the valuevbén_to_transfer_output
is irrelevant. If onlywhen_to_transfer_outputis set, and set to the val@@N_EXIT_OR_EVICT, then the default
value for an unspecifieshould_transfer_fileswill be YES

Note that the combination of

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT_OR_EVICT

would produce undefined file access semantics. Therefasezdmbination is prohibited byondor_submit

Specifying What Files to Transfer

If the file transfer mechanism is enabled, HTCondor will sf@n the following files before the job is run on a remote
machine.

1. the executable, as defined with #e=cutablecommand

2. the input, as defined with theput command

3. any jar files, for thgava universe, as defined with thiar_files command
If the job requires other input files, the submit descripfitmshould utilize theransfer_input_files command. This
comma-separated list specifies any other files or directtiieg HTCondor is to transfer to the remote scratch dirgctor

to set up the execution environment for the job before itis these files are placed in the same directory as the job’s
executable. For example:

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HT©oadrile Transfer Mechanism 35

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = filel,file2

This example explicitly enables the file transfer mechanasnu it transfers the executable, the file specified by the
input command, any jar files specified by tjae_files command, and filelel andfile2

If the file transfer mechanism is enabled, HTCondor will sf@n the following files from the execute machine
back to the submit machine after the job exits.

1. the output file, as defined with tlogitput command
2. the error file, as defined with tleeror command

3. any files created by the job in the remote scratch diregtbiy only occurs for jobs other thagrid universe,
and for HTCondor-Qyrid universe jobs; directories created by the job within theatnscratch directory are
ignored for this automatic detection of files to be transfdrr

A path given foroutput anderror commands represents a path on the submit machine. If nogspiecified, the
directory specified witlinitialdir is used, and if that is not specified, the directory from whiahjob was submitted
is used. At the time the job is submitted, zero-length filesaeated on the submit machine, at the given path for the
files defined by theutput anderror commands. This permits job submission failure, if these fil@nnot be written
by HTCondor.

To restrict the output files or permit entire directory contents to badfarred, specify the exact list withans-
fer_output_files. Delimit the list of file names, directory names, or pathshwvabmmas. When this list is defined,
and any of the files or directories do not exist as the job gki®Condor considers this an error, and places the job
on hold. Settingransfer_output_filesto the empty string"() means no files are to be transferred. When this list is
defined, automatic detection of output files created by thagalisabled. Paths specified in this list refer to locations
on the execute machine. The naming and placement of filesieaalaties relies on the terlvase nameBy example,
the patha/b/c has the base nan® It is the file name or directory name with all directoriesdiegy up to that
name stripped off. On the submit machine, the transferred & directories are named using only the base name.
Therefore, each output file or directory must have a differame, even if they originate from different paths.

For grid universe jobs other than than HTCondor-C grid jobs, filesedrbansferred (other than standard output
and standard error) must be specified ugiagsfer_output_filesin the submit description file, because automatic
detection of new files created by the job does not take place.

Here are examples to promote understanding of what files iaactaries are transferred, and how they are named
after transfer. Assume that the job produces the followtngcsure within the remote scratch directory:

ol

02

dl (directory)
03
o4

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HT©oadrile Transfer Mechanism 36

If the submit description file sets
transfer_output_files = 01,02,d1

then transferred back to the submit machine will be

ol

02

dl (directory)
03
o4

Note that the directorgll and all its contents are specified, and therefore transfelirthe directorydl is not created
by the job before exit, then the job is placed on hold. If thedtiorydl is created by the job before exit, but is empty,
this is not an error.

If, instead, the submit description file sets
transfer_output_files = 01,02,d1/03
then transferred back to the submit machine will be

ol
02
03

Note that only the base name is used in the naming and plat¢efite file specified withd1/03 .

File Paths for File Transfer

The file transfer mechanism specifies file names and/or pathsth the file system of the submit machine and on the
file system of the execute machine. Care must be taken to kidghwnachine, submit or execute, is utilizing the file
name and/or path.

Files in thetransfer_input_files command are specified as they are accessed on the subminmathe job, as
it executes, accesses files as they are found on the execcitinma

There are three ways to specify files and pathsrimsfer_input_files:

1. Relative to the current working directory as the job ismiited, if the submit commaniditialdir is not speci-
fied.

2. Relative to the initial directory, if the submit commaindialdir is specified.

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HT©oadrile Transfer Mechanism 37

3. Absolute.

Before executing the program, HTCondor copies the exetajtab input file as specified by the submit command
input, along with any input files specified byansfer_input_files. All these files are placed into a remote scratch
directory on the execute machine, in which the program rdreerefore, the executing program must access input
files relative to its working directory. Because all files atigectories listed for transfer are placed into a singlé, fla
directory, inputs must be uniquely named to avoid collisidren transferred. A collision causes the last file in the list
to overwrite the earlier one.

Both relative and absolute paths may be usettansfer_output_files. Relative paths are relative to the job’s
remote scratch directory on the execute machine. When #sediild directories are copied back to the submit machine,
they are placed in the job’s initial working directory as tiese name of the original path. An alternate name or path
may be specified by usintgansfer_output_remaps

A job may create files outside the remote scratch directotyithin the file system of the execute machine, in
a directory such a&mp , if this directory is guaranteed to exist and be accessiblallopossible execute machines.
However, HTCondor will not automatically transfer suchdileack after execution completes, nor will it clean up
these files.

Here are several examples to illustrate the use of file tean$he program executable is calley programand
it uses three command-line arguments as it executes: twd filp names and an output file name. The program
executable and the submit description file for this job acated in directoryscratch/test

Here is the directory tree as it exists on the submit macliinell the examples:

/scratch/test (directory)
my_program.condor (the submit description file)
my_program (the executable)
files (directory)
logs2 (directory)
inl (file)
in2 (file)
logs (directory)

Example 1 This first example explicitly transfers input files. Thespuhfiles to be transferred are specified relative
to the directory where the job is submitted. An output filecsfied in thearguments command,outl , is
created when the job is executed. It will be transferred liatckthe directoryscratch/test

file name: my_program.condor

HTCondor submit description file for my_program
Executable = my_program

Universe = vanilla

Error logs/err.$(cluster)

Output logs/out.$(cluster)

Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/in1,files/in2

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HT©oadrile Transfer Mechanism

Arguments = inl in2 outl
Queue

The log file is written on the submit machine, and is not inedlwith the file transfer mechanism.

Example 2 This second example is identical to Example 1, except thatlate paths to the input files are specified,
instead of relative paths to the input files.

file name: my_program.condor
HTCondor submit description file for my_program

Executable = my_program
Universe = vanilla

Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

transfer_input_files = /scratch/test/files/inl,/scrat ch/test/files/in2
Arguments = inl in2 outl
Queue

Example 3 This third example illustrates the use of the submit commiaitidildir , and its effect on the paths used
for the various files. The expected location of the execet&bhot affected by thaitialdir command. All
other files (specified binput, output, error, transfer_input_files, as well as files modified or created by the
job and automatically transferred back) are located raddt the specifiedhitialdir . Therefore, the output file,

outl , will be placed in thdiles directory. Note that thibgs2 directory exists to make this example work
correctly.

file name: my_program.condor
HTCondor submit description file for my_program

Executable = my_program
Universe = vanilla

Error = logs2/err.$(cluster)
Output = logs2/out.$(cluster)
Log = logs2/log.$(cluster)
initialdir = files

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = in1,in2

Arguments = inl in2 outl
Queue

Example 4 — lllustrates an Error This example illustrates a job that will fail. The files s using thetrans-
fer_input_files command work correctly (see Example 1). However, relatathto files in thearguments
command cause the executing program to fail. The file systethe@submission side may utilize relative paths
to files, however those files are placed into the single, #ahate scratch directory on the execute machine.

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HT©oadrile Transfer Mechanism

39

file name: my_program.condor
HTCondor submit description file for my_program

Executable = my_program
Universe = vanilla

Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/in1,files/in2

Arguments = files/inl files/in2 files/outl
Queue

This example fails with the following error:

err: files/outl: No such file or directory.

Example 5 — lllustrates an Error As with Example 4, this example illustrates a job that will.farhe executing

program’s use of absolute paths cannot work.

file name: my_program.condor
HTCondor submit description file for my_program

Executable = my_program
Universe = vanilla
Error =

logs/err.$(cluster)
Output logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /scratch/test/files/inl, /scrat ch/test/files/in2

Arguments = /scratch/test/files/inl /scratch/test/file

s/in2 /scratch/test/files/outl
Queue

The job fails with the following error:

err: /scratch/test/files/outl: No such file or directory.

Example 6 This example illustrates a case where the executing progreates an output file in a directory other than

within the remote scratch directory that the program exexufithin. The file creation may or may not cause an
error, depending on the existence and permissions of teetdiies on the remote file system.

The output file /tmp/outl is transferred back to the job's initial

working directorys a
/scratch/test/outl

file name: my_program.condor
HTCondor submit description file for my_program

Executable = my_program
Universe = vanilla

Error = logs/err.$(cluster)
Output = logs/out.$(cluster)

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HT©oadrile Transfer Mechanism 40

Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/in1,files/in2
transfer_output_files = /tmp/outl

Arguments = inl in2 /tmp/outl
Queue

Behavior for Error Cases

This section describes HTCondor’s behavior for some eases in dealing with the transfer of files.

Disk Full on Execute Machine When transferring any files from the submit machine to theaterscratch directory,
if the disk is full on the execute machine, then the job is @las hold.

Error Creating Zero-Length Files on Submit Machine As a job is submitted, HTCondor creates zero-length files
as placeholders on the submit machine for the files definexitput anderror . If these files cannot be created,
then job submission fails.

This job submission failure avoids having the job run to ctatipn, only to be unable to transfer the job’s output
due to permission errors.

Error When Transferring Files from Execute Machine to Submit Machine When a job exits, or potentially when
a job is evicted from an execute machine, one or more files mdyalnsferred from the execute machine back
to the machine on which the job was submitted.

During transfer, if any of the following three similar typeerrors occur, the job is put on hold as the error
occurs.
1. If the file cannot be opened on the submit machine, for el@bgrause the system is out of inodes.
2. If the file cannot be written on the submit machine, for egbmtbecause the permissions do not permit it.
3. If the write of the file on the submit machine fails, for exgmbecause the system is out of disk space.

File Transfer Using a URL

Instead of file transfer that goes only between the submihimaand the execute machine, HTCondor has the ability
to transfer files from a location specified by a URL for a jobgut file, or from the execute machine to a location spec-
ified by a URL for a job’s output file(s). This capability reges administrative set up, as described in se€fion 3.14.2.

The transfer of an input file is restricted to vanilla and vnivarse jobs only. HTCondor’s file transfer mech-
anism must be enabled. Therefore, the submit descriptierfdil the job will define botlshould_transfer_files
andwhen_to_transfer_output In addition, the URL for any files specified with a URL are givia thetrans-
fer_input_files command. An example portion of the submit description filedgob that has a single file specified
with a URL:

HTCondor Version 8.6.4 Manual

2.5.9. Submitting Jobs Without a Shared File System: HT©oadrile Transfer Mechanism 41

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = http://www.full.url/path/to/fi lename

The destination file is given by the file name within the URL.

For the transfer of the entire contents of the output sandiwbich are all files that the job creates or modifies,
HTCondor’s file transfer mechanism must be enabled. In t@mspde portion of the submit description file, the first
two commands explicitly enable file transfer, and the adulggut destinationcommand provides both the protocol
to be used and the destination of the transfer.

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
output_destination = urltype://path/to/destination/di rectory

Note that with this feature, no files are transferred backhto dubmit machine. This does not interfere with the
streaming of output.

If only a subset of the output sandbox should be transfettedsubset is specified by further adding a submit
command of the form:

transfer_output_files = filel, file2

Requirements and Rank for File Transfer

Therequirements expression for a job must depend on gi®uld_transfer_files command. The job
must specify the correct logic to ensure that the job is nmetokith a resource that meets the file transfer needs.
If no requirements expression is in the submit description file, or if the expi@s specified does not refer to
the attributes listed belowondor_submitdds an appropriate clause to tegquirements expression for the job.
condor_submiappends these clauses with a logical ANIZ, to ensure that the proper conditions are met. Here are
the default clauses corresponding to the different valfisbiould_transfer_files

1. should_transfer_files = YES results in the addition of the claugdasFileTransfer) . If the
job is always going to transfer files, it is required to matdthva machine that has the capability to transfer
files.
2. should_transfer_files = NO results in the addition (TARGET.FileSystemDomain == MY.FileSystemDom

In addition, HTCondor automatically adds thdeSystemDomain attribute to the job ClassAd, with what-
ever string is defined for theondor_scheddo which the job is submitted. If the job is not using the file
transfer mechanism, HTCondor assumes it will need a shdeesl/item, and therefore, a machine in the same
FileSystemDomain as the submit machine.

3. should_transfer_files = IF_NEEDED results in the addition of

(HasFileTransfer || (TARGET.FileSystemDomain == MY.File SystemDomain))

If HTCondor will optionally transfer files, it must requirkdt the machine isither capable of transferring files
or in the same file system domain.

HTCondor Version 8.6.4 Manual

2.5.10. Environment Variables 42

To ensure that the job is matched to a machine with enoughdiiglaspace to hold all the transferred files, HT-
Condor automatically adds tiiziskUsage job attribute. This attribute includes the total size of jiigs executable
and all input files to be transferred. HTCondor then adds ditiadal clause to th&®equirements expression that
states that the remote machine must have at least enoudgibdwalisk space to hold all these files:

&& (Disk >= DiskUsage)

If should_transfer_files = IF_NEEDED and the job prefers to run on a machine in the local file system
domain over transferring files, but is still willing to alladve job to run remotely and transfer files, Rank expression
works well. Use:

rank = (TARGET.FileSystemDomain == MY.FileSystemDomain)

The Rank expression is a floating point value, so if other items aresw@red in ranking the possible machines
this job may run on, add the items:

Rank = kflops + (TARGET.FileSystemDomain == MY.FileSystem Domain)

The value okflops can vary widely among machines, so tRiank expression will likely not do as it intends.
To place emphasis on the job running in the same file systenahgivut still consider floating point speed among the
machines in the file system domain, weight the part of theesgion that is matching the file system domains. For
example:

Rank = kflops + (10000 * (TARGET.FileSystemDomain == MY.FileSystemDomain))

2.5.10 Environment Variables

The environment under which a job executes often contafosiration that is potentially useful to the job. HTCondor
allows a user to both set and reference environment vagdbie job or job cluster.

Within a submit description file, the user may define envirentariables for the job’s environment by using
the environment command. See within theondor_submimanual page at sectiénl11 for more details about this
command.

The submitter’s entire environment can be copied into the(tassAd for the job at job submission. Thetenv
command within the submit description file does this, as rilesd at section 1.

If the environment is set with thenvironment commandand getenvis also set to true, values specified with
environment override values in the submitter’s environment, regasitédghe order of thenvironment andgetenv
commands.

Commands within the submit description file may referenesgttivironment variables of the submitter as a job is
submitted. Submit description file commands &NV (EnvironmentVariableName) to reference the value
of an environment variable.

HTCondor Version 8.6.4 Manual

2.5.11. Heterogeneous Submit: Execution on Differing Atesftures 43

HTCondor sets several additional environment variableg&zh executing job that may be useful for the job to
reference.

_CONDOR_SCRATCH_DIgives the directory where the job may place temporary daa.fil'his directory
is unique for every job that is run, and its contents are ddlely HTCondor when the job stops running on a
machine, no matter how the job completes.

_CONDOR_SLOTives the name of the slot (for SMP machines), on which thagabn. On machines with
only a single slot, the value of this variable will hejust like theSlotID attribute in the machine’s ClassAd.
This setting is available in all universes. See sedfionIBf@: more details about SMP machines and their
configuration.

CONDOR_VMquivalent to CONDOR_SLOdescribed above, except that it is only available in thedsziesh
universe._NOTE As of HTCondor version 6.9.3, this environment variabladslonger used. It will only be
defined if theALLOW_VM_CRUFDbnfiguration variable is set fbrue .

X509_USER_PROXYjives the full path to the X.509 user proxy file if one is asatem with the job. Typically,
a user will specifyx509userproxyin the submit description file. This setting is currentlyitaale in the local,
java, and vanilla universes.

_CONDOR_JOB_AB the path to afile in the job’s scratch directory which carmgdhe job ad for the currently
running job. The job ad is current as of the start of the jolbjbnot updated during the running of the job. The
job may read attributes and their values out of this file asrisr but any changes will not be acted on in any way
by HTCondor. The format is the same as the output ofciredor_g- command. This environment variable
may be particularly useful ina USER_JOB_WRAPPER.

_CONDOR_MACHINE_AB the path to a file in the job’s scratch directory which camahe machine ad for
the slot the currently running job is using. The machine adirsent as of the start of the job, but is not updated
during the running of the job. The format is the same as thpuwiwf thecondor_statusl command.

_CONDOR_JOB_IWIx the path to the initial working directory the job was borithy

_CONDOR_WRAPPER_ERROR_FILE is only set when the administrator has installed a
USER_JOB_WRAPPER. If this file exists, HTCondor assumesttigajob wrapper has failed and copies the
contents of the file to the StarterLog for the administradadebug the problem.

CONDOR_IDSoverrides the value of configuration variald®NDOR_IDS~hen set in the environment.

CONDOR_IDis set for scheduler universe jobs to be the same a€listerld attribute.

2.5.11 Heterogeneous Submit: Execution on Differing Archectures

If executables are available for the different platformsnafchines in the HTCondor pool, HTCondor can be allowed
the choice of a larger number of machines when allocatingehma for a job. Modifications to the submit description
file allow this choice of platforms.

A simplified example is a cross submission. An executabledable for one platform, but the submission is done
from a different platform. Given the correct executablerdquirements command in the submit description file

HTCondor Version 8.6.4 Manual

2.5.11. Heterogeneous Submit: Execution on Differing Atesftures 44

specifies the target architecture. For example, an exdeutampiled for a 32-bit Intel processor running Windows
Vista, submitted from an Intel architecture running Linuawd add theequirement

requirements = Arch == "INTEL" && OpSys == "WINDOWS"
Without thisrequirement , condor_submitvill assume that the program is to be executed on a machiretsgt

same platform as the machine where the job is submitted.

Cross submission works for all universes excagtteduler andlocal . See sectioh 5.3.1L0 for how matchmak-
ing works in thegrid universe. The burden is on the user to both obtain and sptagfgorrect executable for the
target architecture. To list the architecture and opegatirstems of the machines in a pool, mondor_status

Vanilla Universe Example for Execution on Differing Archit ectures

A more complex example of a heterogeneous submission oetigs a job may be executed on many different
architectures to gain full use of a diverse architecture @perating system pool. If the executables are available
for the different architectures, then a modification to thbrseit description file will allow HTCondor to choose an
executable after an available machine is chosen.

A special-purpose Machine Ad substitution macro can be ursstting attributes in the submit description file.
The macro has the form

$$(MachineAdAttribute)

The $$() informs HTCondor to substitute the requedtathineAdAttribute from the machine where the job
will be executed.

An example of the heterogeneous job submission has exdestamilable for two platforms: RHEL 3 on both
32-bit and 64-bit Intel processors. This example ysmgayto render images using a popular free rendering engine.

The substitution macro chooses a specific executable gblatfarm for running the job is chosen. These executa-
bles must therefore be named based on the machine attrthatetescribe a platform. The executables named

povray.LINUX.INTEL
povray.LINUX.X86_64

will work correctly for the macro
povray.$$(0pSys).$$(Arch)

The executables or links to executables with this name aweeplinto the initial working directory so that they
may be found by HTCondor. A submit description file that qusetheee jobs for this example:

BHARHHHHHHHHHHAR AR

HTCondor Version 8.6.4 Manual

2.5.11. Heterogeneous Submit: Execution on Differing Atesftures 45

#

Example of heterogeneous submission

#

HHHH AR

universe = vanilla

Executable = povray.$$(OpSys).$$(Arch)

Log = povray.log

Output = povray.out.$(Process)

Error = povray.err.$(Process)

Requirements = (Arch == "INTEL" && OpSys == "LINUX") || \
(Arch == "X86_64" && OpSys =="LINUX")

Arguments = +W1024 +H768 +limagel.pov

Queue

Arguments = +W1024 +H768 +limage2.pov

Queue

Arguments = +W1024 +H768 +limage3.pov

Queue

These jobs are submitted to the vanilla universe to assateotite a job is started on a specific platform, it will
finish running on that platform. Switching platforms in thédiile of job execution cannot work correctly.

There are two common errors made with the substitution macide first is the use of a non-existent
MachineAdAttribute . If the specifiedVlachineAdAttribute does not exist in the machine’s ClassAd, then
HTCondor will place the job in the held state until the problis resolved.

The second common error occurs due to an incomplete job sétarxample, the submit description file given
above specifies three available executables. If one ismgissiTCondor reports back that an executable is missing
when it happens to match the job with a resource that reqthieesiissing binary.

Standard Universe Example for Execution on Differing Architectures

Jobs submitted to the standard universe may produce chie¢&p@\ checkpoint can then be used to start up and
continue execution of a partially completed job. For a jpélsticompleted job, the checkpoint and the job are specific
to a platform. If migrated to a different machine, correat@xtion requires that the platform must remain the same.

In previous versions of HTCondor, the author of the hetemeges submission file would need to write extra pol-
icy expressions in theequirements expression to force HTCondor to choose the same type ofophativhen
continuing a checkpointed job. However, since it is neede¢tlé common case, this additional policy is now automat-
ically added to theequirements expression. The additional expression is added providediser does not use
CkptArch in therequirements expression. HTCondor will remain backward compatible farse users who
have explicitly specifie€CkptRequirements —implying use ofCkptArch , in theirrequirements expression.

HTCondor Version 8.6.4 Manual

2.5.11. Heterogeneous Submit: Execution on Differing Atesftures 46

The expression added when the attrib@tetArch is not specified will default to

Added by HTCondor
CkptRequirements = ((CkptArch == Arch) || (CkptArch =?= UND EFINED)) && \
((CkptOpSys == OpSys) || (CkptOpSys =?= UNDEFINED))

Requirements = (<user specified policy>) && $(CkptRequire ments)

The behavior of th&€kptRequirements expressions and its addition tequirements is as follows. The
CkptRequirements expression guarantees correct operation in the two pess#isles for a job. In the first case,
the job has not produced a checkpoint. The ClassAd attsititptArch andCkptOpSys will be undefined, and
therefore the meta operatord=) evaluates to true. In the second case, the job has produckdckpoint. The
Machine ClassAd is restricted to require further executialy on a machine of the same platform. The attributes
CkptArch andCkptOpSys will be defined, ensuring that the platform chosen for furtkeecution will be the
same as the one used just before the checkpoint.

Note that this restriction of platforms also applies to folahs where the executables are binary compatible.

The complete submit description file for this example:

HHAH TR R R

#

Example of heterogeneous submission

#

HHHH TR R R

universe = standard

Executable = povray.$$(OpSys).$$(Arch)

Log = povray.log

Output = povray.out.$(Process)

Error = povray.err.$(Process)

HTCondor automatically adds the correct expressions to in sure that the
checkpointed jobs will restart on the correct platform typ es.
Requirements = ((Arch == "INTEL" && OpSys == "LINUX") || \

(Arch == "X86_64" && OpSys == "LINUX"))

Arguments = +W1024 +H768 +limagel.pov
Queue
Arguments = +W1024 +H768 +limage2.pov
Queue
Arguments = +W1024 +H768 +limage3.pov
Queue

HTCondor Version 8.6.4 Manual

2.5.11. Heterogeneous Submit: Execution on Differing Atesftures 47

Vanilla Universe Example for Execution on Differing Operating Systems

The addition of several related OpSys attributes assisteliection of specific operating systems and versions in
heterogeneous pools.

HHAHHH AR

#

Example of submission targeting RedHat platforms in a hete rogeneous Linux pool
#

HHAHHH AR

universe = vanilla

Executable = /bin/date

Log = distro.log

Output = distro.out

Error = distro.err

Requirements = (OpSysName == "RedHat")

Queue

HHH T

#

Example of submission targeting RedHat 6 platforms in a het erogeneous Linux pool
#

HHAHHH AR

universe = vanilla

Executable = /bin/date

Log = distro.log

Output = distro.out

Error = distro.err

Requirements = (OpSysName == "RedHat" && OpSysMajorVersio n == 6)
Queue

Here is a more compact way to specify a RedHat 6 platform.

HHEAHH R R R

#

Example of submission targeting RedHat 6 platforms in a het erogeneous Linux pool
#

HHEHHH I

HTCondor Version 8.6.4 Manual

2.5.12. Jobs That Require GPUs 48

universe = vanilla
Executable = /bin/date
Log = distro.log
Output = distro.out
Error = distro.err

Requirements = (OpSysAndVer == "RedHat6")

Queue

2.5.12 Jobs That Require GPUs

A job that needs GPUs to run identifies the number of GPUs mkiedbe submit description file by adding the submit
command

request GPUs = <n>

where<n> is replaced by the integer quantity of GPUs required for ¢ie For example, a job that needs 1 GPU uses

request GPUs = 1

Because there are different capabilities among GPUs, theajght need to further qualify which GPU of available
ones is required. Do this by specifying or adding a clausentexastingRequirements submit command. As an
example, assume that the job needs a speed and capacity @A GBU that meets or exceeds the value 1.2. In the

submit description file, place

request GPUs = 1
requirements = (CUDACapability >= 1.2) && $(requirements: True)

Access to GPU resources by an HTCondor job needs speciafjacatiion of the machines that offer GPUs. Details
of how to set up the configuration are in secfion 3.7.1.

2.5.13 Interactive Jobs

An interactive jobis a Condor job that is provisioned and scheduled like angrotanilla universe Condor job onto
an execute machine within the pool. The result of a runnitgrattive job is a shell prompt issued on the execute
machine where the job runs. The user that submitted theairtiee job may then use the shell as desired, perhaps
to interactively run an instance of what is to become a Cojolmr This might aid in checking that the set up and
execution environment are correct, or it might provide infation on the RAM or disk space needed. This job (shell)
continues until the user logs out or any other policy implatagon causes the job to stop running. A useful feature
of the interactive job is that the users and jobs are accduotevithin Condor’s scheduling and priority system.

HTCondor Version 8.6.4 Manual

2.5.13. Interactive Jobs 49

Neither the submit nor the execute host for interactive jolg be on Windows platforms.

The current working directory of the shell will be the inlti@orking directory of the running job. The shell type
will be the default for the user that submits the job. At thelsprompt, X11 forwarding is enabled.

Each interactive job will have a job ClassAd attribute of
InteractiveJob = True

Submission of an interactive job specifies the optioteractive on thecondor_submitommand line.
A submit description file may be specified for this interagfsb. Within this submit description file, a specification
of these 5 commands will be either ignored or altered:
. executable
. transfer_executable

1
2
3. arguments
4. universe The interactive job is a vanilla universe job.
5

. queue <n> In this case the value &> is ignored; exactly one interactive job is queued.

The submit description file may specify anything else neddethe interactive job, such as files to transfer.

If no submit description file is specified for the job, a default imeaitilized as identified by the value of the
configuration variablédNTERACTIVE_SUBMIT_FILE.

Here are examples of situations where interactive jobs neayf benefit.

< An application that cannot be batch processed might bes@amanteractive job. Where input or output cannot
be captured in a file and the executable may not be modifiedhtiactive nature of the job may still be run on
a pool machine, and within the purview of Condor.

« Apool machine with specialized hardware that requiresraxttive handling can be scheduled with an interactive
job that utilizes the hardware.

» The debugging and set up of complex jobs or environments Inesefit from an interactive session. This
interactive session provides the opportunity to run ssrgstapplications, and as errors are identified, they can
be corrected on the spot.

» Development may have an interactive nature, and proceed quickly when done on a pool machine. It may
also be that the development platforms required residem@bndor’s purview as execute hosts.

HTCondor Version 8.6.4 Manual

2.6. Managing a Job 50

2.6 Managing a Job

This section provides a brief summary of what can be done @iz®are submitted. The basic mechanisms for
monitoring a job are introduced, but the commands are déscligriefly. You are encouraged to look at the man pages
of the commands referred to (located in Chajptér 11 beginmingagé 748) for more information.

When jobs are submitted, HTCondor will attempt to find researto run the jobs. A list of all those with jobs

submitted may be obtained througbndor_statusvith the-submittersoption. An example of this would yield output
similar to:

% condor_status -submitters

Name Machine Running IdleJobs HeldJobs
ballard@cs.wisc.edu bluebird.c 0 11 0
nice-user.condor@cs. cardinal.c 6 504 0
wright@cs.wisc.edu finch.cs.w 1 1 0
jbasney@cs.wisc.edu perdita.cs 0 0 5
RunningJobs IdleJobs HeldJobs
ballard@cs.wisc.edu 0 11 0
jbasney@cs.wisc.edu 0 0 5
nice-user.condor@cs. 6 504 0
wright@cs.wisc.edu 1 1 0
Total 7 516 5

2.6.1 Checking on the progress of jobs

At any time, you can check on the status of your jobs withatvedor_gcommand. This command displays the status
of all queued jobs. An example of the output fraomdor_gis

% condor_g

-- Submitter: submit.chtc.wisc.edu : <128.104.55.9:3277 2> : submit.chtc.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

711197.0 aragorn 1/15 19:18 0+04:29:33 H 0 0.0 script.sh

894381.0 frodo 3/16 09:06 82+17:0851 R O 439.5 elk elk.in

894386.0 frodo 3/16 09:06 82+20:21:28 R 0 219.7 elk elk.in

894388.0 frodo 3/16 09:06 81+17:22:10 R 0 439.5 elk elk.in

1086870.0 gollum 4/27 09:07 0+00:10:24 1 0 7.3 condor_dagma n
1086874.0 gollum 4/27 09:08 0+00:00:01 H O 0.0 RunDC.bat

1297254.0 legolas 5/31 18:05 14+17:40:01 R 0 7.3 condor_dag man
1297255.0 legolas 5/31 18:05 14+17:39:55 R 0 7.3 condor_dag man
1297256.0 legolas 5/31 18:05 14+17:39:55 R 0 7.3 condor_dag man
1297259.0 legolas 5/31 18:05 14+17:39:55 R 0 7.3 condor_dag man
1297261.0 legolas 5/31 18:05 14+17:39:55 R 0 7.3 condor_dag man
1302278.0 legolas 6/4 12:22 1+00:05:37 | 0 390.6 mdrun_1.sh

1304740.0 legolas 6/5 00:14 1+00:03:43 | 0 390.6 mdrun_1.sh

1304967.0 legolas 6/5 05:08 0+00:00:00 I O 0.0 mdrun_1.sh

HTCondor Version 8.6.4 Manual

2.6.1. Checking on the progress of jobs 51

14 jobs; 4 idle, 8 running, 2 held

This output contains many columns of information about thewgd jobs. Th&T column (for status) shows the
status of current jobs in the queue:

R: The job is currently running.
| : The job isidle. It is not running right now, because it is tivgj for a machine to become available.

H: The job is the hold state. In the hold state, the job will netdzheduled to run until it is released. See the
condor_holdmanual page located on pdge B14 anddtvedor_releasenanual page located on pdge B69.

TheRUN_TIMEtime reported for a job is the time that has been committedeqadb.

Another useful method of tracking the progress of jobs isulgh the job event log. The specification dbg in
the submit description file causes the progress of the jole todged in a file. Follow the events by viewing the job
event log file. Various events such as execution commendgtegckpoint, eviction and termination are logged in
the file. Also logged is the time at which the event occurred.

When a job begins to run, HTCondor starts uppador_shadowrocess on the submit machine. The shadow pro-
cess is the mechanism by which the remotely executing jolbaceess the environment from which it was submitted,
such as input and output files.

It is normal for a machine which has submitted hundreds of jobhave hundreds @ondor_shadowprocesses
running on the machine. Since the text segments of all thesmpses is the same, the load on the submit machine
is usually not significant. If there is degraded performatio@t the number of jobs that can run simultaneously by
reducing theMAX _JOBS_RUNNINGonfiguration variable.

~ You can also find all the machines that are running your jobtbh thecondor_statusommand. For example, to
find all the machines that are running jobs submittedbt®ach@cs.wisc.edu , type:

% condor_status -constraint 'RemoteUser == "breach@cs.wi sc.edu™

Name Arch OpSys State Activity LoadAv Mem ActvtyTime
alfred.cs. INTEL LINUX Claimed Busy 0.980 64 0+07:10:02

biron.cs.w INTEL LINUX Claimed Busy 1.000 128 0+01:10:00
cambridge. INTEL LINUX Claimed Busy 0.988 64 0+00:15:00
falcons.cs INTEL LINUX Claimed Busy 0.996 32 0+02:05:03
happy.cs.w INTEL LINUX Claimed Busy 0.988 128 0+03:05:00
istat03.st INTEL LINUX Claimed Busy 0.883 64 0+06:45:01

istat04.st INTEL LINUX Claimed Busy 0.988 64 0+00:10:00

istat09.st INTEL LINUX Claimed Busy 0.301 64 0+03:45:00

To find all the machines that are running any job at all, type:

% condor_status -run

Name Arch OpSys LoadAv RemoteUser ClientMachine

HTCondor Version 8.6.4 Manual

2.6.2. Removing a job from the queue

52

adriana.cs INTEL LINUX 0.980 hepcon@cs.wisc.edu chevre.c s.wisc.
alfred.cs. INTEL LINUX 0.980 breach@cs.wisc.edu neufchat el.cs.w
amul.cs.wi X86_64 LINUX 1.000 nice-user.condor@cs. chevr e.cs.wisc.
anfrom.cs. X86_64 LINUX 1.023 ashoks@jules.ncsa.ui jules .ncsa.uiuc
anthrax.cs INTEL LINUX 0.285 hepcon@cs.wisc.edu chevre.c s.wisc.
astro.cs.w INTEL LINUX 1.000 nice-user.condor@cs. chevre .Cs.wisc.
aura.cs.wi X86_64 WINDOWS 0.996 nice-user.condor@cs. che vre.cs.wisc.
balder.cs. INTEL WINDOWS 1.000 nice-user.condor@cs. chev re.cs.wisc.
bamba.cs.w INTEL LINUX 1.574 dmarino@cs.wisc.edu riola.c s.wisc.e
LINUX 1.000 nice-user.condor@cs. chevre .CS.wisc.

bardolph.c INTEL

2.6.2 Removing a job from the queue

A job can be removed from the queue at any time b{usjng:dmior_rmcommand. If the job that is being removed
is currently running, the job is killed without a checkpgiahd its queue entry is removed. The following example
shows the queue of jobs before and after a job is removed.

% condor_g

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> . froth.cs.wisc.edu

ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
125.0 jbasney 4/10 15:35 0+00:00:00 | -10 1.2 hello.remote
132.0 raman 4/11 16:57 0+00:00:00 R 0 1.4 hello

2 jobs; 1 idle, 1 running, 0 held

% condor_rm 132.0
Job 132.0 removed.

% condor_g
<128.105.73.44:33847> . froth.cs.wisc.edu

SUBMITTED CPU_USAGE ST PRI SIZE CMD
4/10 15:35 0+00:00:00 I -10 1.2 hello.remote

-- Submitter: froth.cs.wisc.edu :
ID OWNER
125.0 jbasney

1 jobs; 1 idle, O running, 0 held

2.6.3 Placing a job on hold

A job in the queue may be placed on hold by running the comneandor_hold A job in the hold state remains in
the hold state until later released for execution by the camghoondor_release

Use of thecondor_holdcommand causes a hard kill signal to be sent to a currenthjimgrjob (one in the running
state). For a standard universe job, this means that no pbattks generated before the job stops running and enters
the hold state. When released, this standard universe jofinces its execution using the most recent checkpoint
available.

Jobs in universes other than the standard universe thatianéng when placed on hold will start over from the
beginning when released.

HTCondor Version 8.6.4 Manual

2.6.4. Changing the priority of jobs 53

The manual page farondor_holcon pagé 814 and the manual pagedondor_releasen pagé 869 contain usage
details.

2.6.4 Changing the priority of jobs

In addition to the priorities assigned to each user, HTCoatko provides each user with the capability of assigning
priorities to each submitted job. These job priorities al to each queue and can be any integer value, with higher
values meaning better priority.

The default priority of a job is 0, but can be changed usingtirelor_priocommand. For example, to change the
priority of a job to -15,

% condor_g raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> . froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:.00 I O 0.3 hello

1 jobs; 1 idle, O running, O held
% condor_prio -p -15 126.0

% condor_g raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> . froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:00 I -15 0.3 hello

1 jobs; 1 idle, O running, O held

It is important to note that thegeb priorities are completely different from theser priorities assigned by HT-
Condor. Job priorities do not impact user priorities. They @anly a mechanism for the user to identify the relative
importance of jobs among all the jobs submitted by the ustrabspecific queue.

2.6.5 Why is the job not running?

Users occasionally find that their jobs do not run. There aaypossible reasons why a specific job is not running.
The following prose attempts to identify some of the potrgisues behind why a job is not running.

At the most basic level, the user knows the status of a job mgusndor_qgto see that the job is not running. By
far, the most common reason (to the novice HTCondor job stiérpivhy the job is not running is that HTCondor
has not yet been through its periodic negotiation cycle,hiictvqueued jobs are assigned to machines within the pool
and begin their execution. This periodic event occurs bpulebnce every 5 minutes, implying that the user ought to
wait a few minutes before searching for reasons why the jobisunning.

Further inquiries are dependent on whether the job has memext all, or has run for at least a little bit.

For jobs that have never run, many problems can be diagnosedibg the-analyze option of thecondor_q
command. Here is an example; runntandor_ds analyzer provided the following information:

HTCondor Version 8.6.4 Manual

2.6.5. Why is the job not running?

54

$ condor_q -analyze 27497829

-- Submitter: submit-1.chtc.wisc.edu : <128.104.100.43: 9618?sock=5557_e660_3> : submit-1.chtc.wisc.edu
User priority for einstein@submit.chtc.wisc.edu is not av ailable, attempting to analyze without it.

27497829.000: Run analysis summary. Of 5257 machines,

5257 are rejected by your job's requirements
0 reject your job because of their own requirements
0 match and are already running your jobs
0 match but are serving other users
0 are available to run your job
No successful match recorded.
Last failed match: Tue Jun 18 14:36:25 2013

Reason for last match failure: no match found

WARNING: Be advised:

No resources matched request's constraints

The Requirements expression for your job is:

(OpSys == "OSX") && (TARGET.Arch == "X86_64") &&
(TARGET.Disk >= RequestDisk) && (TARGET.Memory >= Request Memory) &&
((TARGET.HasFileTransfer) || (TARGET.FileSystemDomain == MY.FileSystemDomain))
Suggestions:
Condition Machines Matched Suggestion
1 (target.OpSys == "OSX") 0 MODIFY TO "LINUX"
2 (TARGET.Arch == "X86_64") 5190
3 (TARGET.Disk >= 1) 5257
4 (TARGET.Memory >= ifthenelse(MemoryUsage isnt undefine d,MemoryUsage,1))
5257
5 ((TARGET.HasFileTransfer) || (TARGET.FileSystemDomai n == "submit-1.chtc.wisc.edu"))
5257

any of the machines in the pool. Recall that unless inforntedravise in theRequirementsexpression in the submit
description file, the platform requested for an execute rim&chill be the same as the platform whe@ndor_submit

This example also shows that the job does not run becausédttfierm requested, Mac OS X, is not available on

is run to submit the job. And, while Mac OS X is a Unix-type ogtérg system, it is not the same as Linux, and thus
will not match with machines running Linux.

The first issue is identifying whether the job is in this catgg Thecondor_gcommand is not enough; it only tells
the current state of the job. The needed information willrbéhelog file or theerror file, as defined in the submit

While the analyzer can diagnose most common problems, #rersome situations that it cannot reliably detect
due to the instantaneous and local nature of the informdtioses to detect the problem. Thus, it may be that the
analyzer reports that resources are available to servieeetuest, but the job still has not run. In most of these
situations, the delay is transient, and the job will rundaling the next negotiation cycle.

A second class of problems represents jobs that do or didauat least a short while, but are no longer running.

description file for the job. If these files are not definedpttiere is little hope of determining if the job ran at all. For
a job that ran, even for the briefest amount of time,lttefile will contain an event of type 1, which will contain the
stringJob executing on host

HTCondor Version 8.6.4 Manual

2.6.5. Why is the job not running? 55

A job may run for a short time, before failing due to a file pessmon problem. The log file used by teen-
dor_shadowdaemon will contain more information if this is the probleftis log file is associated with the machine
on which the job was submitted. The location and name of dgjsile may be discovered on the submitting machine,
using the command

% condor_config_val SHADOW_LOG

Memory and swap space problems may be identified by lookitigedbg file used by theondor_scheddaemon.
The location and name of this log file may be discovered ondbenitting machine, using the command

% condor_config_val SCHEDD_LOG

A swap space problem will show in the log with the followingseage:

2/3 17:46:53 Swap space estimate reached! No more jobs can be run!
12/3 17:46:53 Solution: get more swap space, or set RESERVED _SWAP =0
12/3 17:46:53 0 jobs matched, 1 jobs idle

As an explanation, HTCondor computes the total swap spat¢keosubmit machine. It then tries to limit the total
number of jobs it will spawn based on an estimate of the sizhefondor_shadowlaemon’s memory footprint and
a configurable amount of swap space that should be reserVeslisTdone to avoid the situation within a very large
pool in which all the jobs are submitted from a single hoste Tilnge number ofondor_shadovprocesses would
overwhelm the submit machine, and it would run out of swapeeand thrash.

Things can go wrong if a machine has a lot of physical memodylithe or no swap space. HTCondor does not
consider the physical memory size, so the situation occhesevHTCondor thinks it has no swap space to work with,
and it will not run the submitted jobs.

To see how much swap space HTCondor thinks a given machine$athe output of aondor_statusommand
of the following form:

% condor_status -schedd [hostname] -long | grep VirtualMem ory

If the value listed is 0, then this is what is confusing HTCond here are two ways to fix the problem:

1. Configure the machine with some real swap space.

2. Disable this check within HTCondor. Define the amount skreed swap space for the submit machine to 0.
SetRESERVED_SWA® 0 in the configuration file:

RESERVED_SWAP = 0

and then send eondor_restarto the submit machine.

HTCondor Version 8.6.4 Manual

2.6.6. Job in the Hold State 56

2.6.6 Jobin the Hold State

A variety of errors and unusual conditions may cause a joketplaced into the Hold state. The job will stay in this
state and in the job queue until conditions are correcteccandor_releasés invoked.

A table listing the reasons why a job may be held is at seEffhnAlstring identifying the reason that a particular
job is in the Hold state may be displayed by invokoandor_q For the example job ID 16.0, use:

condor_q -hold 16.0

This command prints information about the job, including jibb ClassAd attributeloldReason .

2.6.7 Inthe Job Event Log File

In a job event log file are a listing of events in chronologimaler that occurred during the life of one or more jobs.
The formatting of the events is always the same, so that ttegyba machine readable. Four fields are always present,
and they will most often be followed by other fields that giuetifier information that is specific to the type of event.

The first field in an event is the numeric value assigned asuaetaype in a 3-digit format. The second field
identifies the job which generated the event. Within paresdl are the job ClassAd attributesadfisterld value,
Procld value, and the node number for parallel universe jobs or ef getros (for jobs run under all other universes),
separated by periods. The third field is the date and timeeoétient logging. The fourth field is a string that briefly
describes the event. Fields that follow the fourth field diugher information for the specific event type.

These are all of the events that can show up in a job log file:

Event Number: 000

Event Name: Job submitted

Event Description: This event occurs when a user submits a job. It is the firsttey@n will see for a job, and it
should only occur once.

Event Number: 001
Event Name: Job executing
Event Description: This shows up when a job is running. It might occur more thaceon

Event Number: 002
Event Name: Error in executable
Event Description: The job could not be run because the executable was bad.

Event Number: 003

Event Name: Job was checkpointed

Event Description: The job’s complete state was written to a checkpoint file.sThight happen without the job
being removed from a machine, because the checkpointingaygmen periodically.

Event Number: 004
Event Name: Job evicted from machine

HTCondor Version 8.6.4 Manual

2.6.7.Inthe Job Event Log File 57

Event Description: A job was removed from a machine before it finished, usualtyafpolicy reason. Perhaps an
interactive user has claimed the computer, or perhaps enjathis higher priority.

Event Number: 005
Event Name: Job terminated
Event Description: The job has completed.

Event Number: 006

Event Name: Image size of job updated

Event Description: An informational event, to update the amount of memory thatjbb is using while running. It
does not reflect the state of the job.

Event Number: 007

Event Name: Shadow exception

Event Description: Thecondor_shadowa program on the submit computer that watches over the jdiparforms
some services for the job, failed for some catastrophicorea$he job will leave the machine and go back into the
queue.

Event Number: 008
Event Name: Generic log event
Event Description: Not used.

Event Number: 009
Event Name: Job aborted
Event Description: The user canceled the job.

Event Number: 010

Event Name: Job was suspended

Event Description: The job is still on the computer, but it is no longer executimbis is usually for a policy reason,
such as an interactive user using the computer.

Event Number: 011
Event Name: Job was unsuspended
Event Description: The job has resumed execution, after being suspendedrearlie

Event Number: 012

Event Name: Job was held

Event Description: The job has transitioned to the hold state. This might hajifitee user applies theondor_hold
command to the job.

Event Number: 013
Event Name: Job was released
Event Description: The job was in the hold state and is to be re-run.

Event Number: 014
Event Name: Parallel node executed
Event Description: A parallel universe program is running on a node.

Event Number: 015

HTCondor Version 8.6.4 Manual

2.6.7.Inthe Job Event Log File 58

Event Name: Parallel node terminated
Event Description: A parallel universe program has completed on a node.

Event Number: 016

Event Name: POST script terminated

Event Description: A node in a DAGMan work flow has a script that should be run adtgyb. The script is run on
the submit host. This event signals that the post script bagpteted.

Event Number: 017
Event Name: Job submitted to Globus
Event Description: A grid job has been delegated to Globus (version 2, 3, or 4is @&rent is no longer used.

Event Number: 018
Event Name: Globus submit failed
Event Description: The attempt to delegate a job to Globus failed.

Event Number: 019

Event Name: Globus resource up

Event Description: The Globus resource that a job wants to run on was unavajlaliés now available. This event
is no longer used.

Event Number: 020

Event Name: Detected Down Globus Resource

Event Description: The Globus resource that a job wants to run on has becomeilatdga This event is no longer
used.

Event Number: 021
Event Name: Remote error
Event Description: Thecondor_starte{which monitors the job on the execution machine) has failed

Event Number: 022

Event Name: Remote system call socket lost

Event Description: Thecondor_shadowandcondor_startef(which communicate while the job runs) have lost con-
tact.

Event Number: 023

Event Name: Remote system call socket reestablished

Event Description: Thecondor_shadowandcondor_starte(which communicate while the job runs) have been able
to resume contact before the job lease expired.

Event Number: 024

Event Name: Remote system call reconnect failure

Event Description: Thecondor_shadowndcondor_startefwhich communicate while the job runs) were unable to
resume contact before the job lease expired.

Event Number: 025
Event Name: Grid Resource Back Up
Event Description: A grid resource that was previously unavailable is now aidd.

HTCondor Version 8.6.4 Manual

2.6.8. Job Completion 59

Event Number: 026
Event Name: Detected Down Grid Resource
Event Description: The grid resource that a job is to run on is unavailable.

Event Number: 027
Event Name: Job submitted to grid resource
Event Description: A job has been submitted, and is under the auspices of theagadirce.

Event Number: 028

Event Name: Job ad information event triggered.

Event Description: Extra job ClassAd attributes are noted. This event is writte a supplement to other events when
the configuration parameteVENT_LOG_JOB_AD_INFORMATION_ATTRet.

Event Number: 029
Event Name: The job’s remote status is unknown
Event Description: No updates of the job’s remote status have been receivedfioiriutes.

Event Number: 030
Event Name: The job’s remote status is known again
Event Description: An update has been received for a job whose remote statusresdeys logged as unknown.

Event Number: 031
Event Name: Job stage in
Event Description: A grid universe job is doing the stage in of input files.

Event Number: 032
Event Name: Job stage out
Event Description: A grid universe job is doing the stage out of output files.

Event Number: 033

Event Name: Job ClassAd attribute update

Event Description: A Job ClassAd attribute is changed due to action byctvedor _scheddaemon. This includes
changes bygondor_pria

Event Number: 034

Event Name: Pre Skip event

Event Description: For DAGMan, this event is logged if a PRE SCRIPT exits with de¢ined PRE_SKIP value in
the DAG input file. This makes it possible for DAGMan to do reery in a workflow that has such an event, as it
would otherwise not have any event for the DAGMan node to tite script belongs, and in recovery, DAGMan'’s
internal tables would become corrupted.

2.6.8 Job Completion

When an HTCondor job completes, either through normal meaty abnormal termination by signal, HTCondor
will remove it from the job queue. That is, the job will no leergappear in the output @bndor_q and the job will be
inserted into the job history file. Examine the job historg fi¥ith thecondor_historycommand. If there is a log file
specified in the submit description file for the job, then thie gxit status will be recorded there as well.

HTCondor Version 8.6.4 Manual

2.7. Priorities and Preemption 60

By default, HTCondor does not send an email message whewheojnpletes. Modify this behavior with the
notification command in the submit description file. The message willidelthe exit status of the job, which is the
argument that the job passed to the exit system call whemiptated, or it will be notification that the job was killed
by a signal. Notification will also include the following $istics (as appropriate) about the job:

Submitted at: when the job was submitted wittondor_submit
Completed at: when the job completed

Real Time: the elapsed time between when the job was submitted and whemipleted, given in a form of
<days> <hours>:<minutes>:<seconds>

Virtual Image Size: memory size of the job, computed when the job checkpoints
Statistics about just the last time the job ran:

Run Time: total time the job was running, given in the fordays> <hours>:<minutes>:<seconds>

Remote User Time: total CPU time the job spent executing in user mode on remodehines; this does
not count time spent on run attempts that were evicted witteowcheckpoint. Given in the form
<days> <hours>:<minutes>:<seconds>

Remote System Time:total CPU time the job spent executing in system mode (the tpent at system calls);
this does not count time spent on run attempts that wereegigithout a checkpoint. Given in the form
<days> <hours>:<minutes>:<seconds>

The Run Time accumulated by all run attempts are summarizétd the time given in the form
<days> <hours>:<minutes>:<seconds>

And, statistics about the bytes sent and received by thedasif the job and summed over all attempts at running
the job are given.

2.7 Priorities and Preemption

HTCondor has two independent priority contrgtsb priorities anduserpriorities.

2.7.1 Job Priority

Job priorities allow a user to assign a priority level to eattheir own submitted HTCondor jobs, in order to control
the order of job execution. This handles the situation inclvla user has more jobs queued, waiting to be executed,
than there are machines available. Setting a job prioraptifies the ordering in which that user’s jobs are executed;
a higher job priority job is matched and executed before atquviority job. A job priority can be any integer, and
larger values are of higher priority. So, 0 is a higher jolopty than -3, and 6 is a higher job priority than 5.

HTCondor Version 8.6.4 Manual

2.7.2. User priority 61

For the simple case, each job can be given a distinct prioFity an already queued job, its priority may be set
with the condor_priocommand; see the example in secfion 2.6.4, orcthredor_priomanual pagé 839 for details.
This sets the value of job ClassAd attributbPrio

A fine-grained categorization of jobs and their ordering/ailable for experts by using the job ClassAd attributes:
PreJobPriol , PreJobPrio2 ,JobPrio , PostJobPriol , orPostJobPrio2

2.7.2 User priority

Machines are allocated to users based upon a user’s priérltwer numerical value for user priority means higher
priority, so a user with priority 5 will get more resourceatha user with priority 50. User priorities in HTCondor
can be examined with theondor_userpricommand (see page 979). HTCondor administrators can sethamdje
individual user priorities with the same utility.

HTCondor continuously calculates the share of availablemmes that each user should be allocated. This share
is inversely related to the ratio between user priorities.dxample, a user with a priority of 10 will get twice as many
machines as a user with a priority of 20. The priority of eauthividual user changes according to the number of
resources the individual is using. Each user starts outtivétbest possible priority: 0.5. If the number of machines a
user currently has is greater than the user priority, the pserity will worsen by numerically increasing over time.

If the number of machines is less then the priority, the jitgiavill improve by numerically decreasing over time. The
long-term result is fair-share access across all usersspéed at which HTCondor adjusts the priorities is contdolle
with the configuration variabl@RIORITY_HALFLIFE , an exponential half-life value. The default is one day. If
a user that has user priority of 100 and is utilizing 100 maetiremoves all his/her jobs, one day later that user’s
priority will be 50, and two days later the priority will be 25

HTCondor enforces that each user gets his/her fair shareaohimes according to user priority both when allo-
cating machines which become available and by priority ppig@n of currently allocated machines. For instance,
if a low priority user is utilizing all available machinesdsuddenly a higher priority user submits jobs, HTCondor
will immediately take a checkpoint and vacate jobs beloggmthe lower priority user. This will free up machines
that HTCondor will then give over to the higher priority usifCondor will not starve the lower priority user; it will
preempt only enough jobs so that the higher priority usetiisshare can be realized (based upon the ratio between
user priorities). To prevent thrashing of the system dueritarify preemption, the HTCondor site administrator can
define aPREEMPTION_REQUIREMEN@&®pression in HTCondor’s configuration. The default exgimesthat ships
with HTCondor is configured to only preempt lower priorityppothat have run for at least one hour. So in the previous
example, in the worse case it could take up to a maximum of oneumtil the higher priority user receives a fair share
of machines. For a general discussion of limiting preenmpfibease see secti@? of the Administrator's manual.

User priorities are keyed orusername>@<domain> , for examplgohndoe@cs.wisc.edu . The domain
name to use, if any, is configured by the HTCondor site aditnaty. Thus, user priority and therefore resource
allocation is not impacted by which machine the user subfrat® or even if the user submits jobs from multiple
machines.

An extra feature is the ability to submit a job asiae job (see pagé€?). Nice jobs artificially boost the user
priority by ten million just for the nice job. This effectilyemeans that nice jobs will only run on machines that no
other HTCondor job (that is, non-niced job) wants. In a simfashion, an HTCondor administrator could set the user
priority of any specific HTCondor user very high. If done, éxample, with a guest account, the guest could only use

HTCondor Version 8.6.4 Manual

2.7.3. Details About How HTCondor Jobs Vacate Machines 62

cycles not wanted by other users of the system.

2.7.3 Details About How HTCondor Jobs Vacate Machines

When HTCondor needs a job to vacate a machine for whatevewme# sends the job an asynchronous signal specified
in theKillSig attribute of the job’s ClassAd. The value of this attribuém de specified by the user at submit time
by placing thekill_sig option in the HTCondor submit description file.

If a program wanted to do some special work when requiredtatesa machine, the program may set up a signal
handler to use a trappable signal as an indication to cleainen submitting this job, this clean up signal is specified
to be used witkkill_sig. Note that the clean up work needs to be quick. If the job téd@$ong to go away, HTCondor
follows up with a SIGKILL signal which immediately termirest the process.

Ajobthatis linked usingondor_compil@nd is subsequently submitted into the standard univeideheckpoint
and exit upon receipt of a SIGTSTP signal. Thus, SIGTSTPdasldfault value foKillSig ~ when submitting to the
standard universe. The user’s code may still checkpoielf itd any time by calling one of the following functions
exported by the HTCondor libraries:

ckpt()() Performs a checkpoint and then returns.
ckpt_and_exit()() Checkpoints and exits; HTCondor will then restart the pssagain later, potentially on a

different machine.

For jobs submitted into the vanilla universe, the defaultedor KillSig is SIGTERM, the usual method to
nicely terminate a Unix program.

2.8 Java Applications

HTCondor allows users to access a wide variety of machirsshlited around the world. The Java Virtual Machine

(JVM) provides a uniform platform on any machine, regarsllethe machine’s architecture or operating system.
The HTCondor Java universe brings together these two festiar create a distributed, homogeneous computing
environment.

Compiled Java programs can be submitted to HTCondor, ancdHd@@ can execute the programs on any machine
in the pool that will run the Java Virtual Machine.

The condor_statugommand can be used to see a list of machines in the pool fahwii Condor can use the
Java Virtual Machine.

% condor_status -java

Name JavaVendor Ver State Activity LoadAv Mem ActvtyTime
adelie0l.cs.wisc.e Sun Micros 1.6.0_ Claimed Busy 0.090 87 3 0+00:02:46
adelie02.cs.wisc.e Sun Micros 1.6.0_ Owner Idle 0.210 873 O +03:19:32

HTCondor Version 8.6.4 Manual

2.8.1. A Simple Example Java Application 63

slotl0@bio.cs.wisc Sun Micros 1.6.0_ Unclaimed Idle 0.000 118 7+03:13:28
slot2@bio.cs.wisc. Sun Micros 1.6.0_ Unclaimed Idle 0.000 118 7+03:13:28

If there is no output from theondor_statugsommand, then HTCondor does not know the location detailkef
Java Virtual Machine on machines in the pool, or no machires Hava correctly installed. In this case, contact your
system administrator or see section 8.15 for more infownaiin getting HTCondor to work together with Java.

2.8.1 A Simple Example Java Application
Here is a complete, if simple, example. Start with a simpla jaogramHello.java

public class Hello {
public static void main(String [] args) {
System.out.printin("Hello, world\n");
}

Build this program using your Java compiler. On most platferthis is accomplished with the command

javac Hello.java

Submission to HTCondor requires a submit description filsubmitting where files are accessible using a shared
file system, this simple submit description file works:

HHEHHH

#

Example 1

Execute a single Java class
#

HHEHHH
universe = java
executable = Hello.class
arguments = Hello
output = Hello.output
error = Hello.error
queue

The Java universe must be explicitly selected.

The main class of the program is given in #aeecutablestatement. This is a file name which contains the entry
point of the program. The name of the main class (not a file famest be specified as the first argument to the
program.

HTCondor Version 8.6.4 Manual

2.8.2. Less Simple Java Specifications 64

If submitting the job where a shared file systemd@t accessible, the submit description file becomes:

BHARHHHHHHHHHHAR R

#

Example 2
Execute a single Java class,
not on a shared file system

#

HHAHHH AR
universe = java
executable = Hello.class
arguments = Hello
output = Hello.output
error = Hello.error

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
queue

For more information about using HTCondor’s file transferctraisms, see sectibn 215.9.

To submit the job, where the submit description file is nafdetlo.cmd , execute

condor_submit Hello.cmd

To monitor the job, the commandsndor_gandcondor_rmare used as with all jobs.

2.8.2 Less Simple Java Specifications

Specifying more than 1 class file.For programs that consist of more than ockass file, identify the files in the

submit description file:

executable = Stooges.class
transfer_input_files = Larry.class,Curly.class,Moe.cl ass

The executablecommand does not change. It still identifies the class file ¢batains the program’s entry
point.

JAR files. If the program consists of a large number of class files, it gasier to collect them all together into a

single Java Archive (JAR) file. A JAR can be created with:

% jar cvf Library.jar Larry.class Curly.class Moe.class St ooges.class

HTCondor must then be told where to find the JAR as well as tahsdAR. The JAR file that contains the
entry point is specified with thexecutablecommand. All JAR files are specified with tfe_files command.
For this example that collected all the class files into alsidgR file, the submit description file contains:

HTCondor Version 8.6.4 Manual

2.8.2. Less Simple Java Specifications 65

executable = Library.jar
jar_files = Library.jar

Note that the JVM must know whether it is receiving JAR fileslass files. Therefore, HTCondor must also be
informed, in order to pass the information on to the JVM. Tikathy there is a difference in submit description
file commands for the two ways of specifying filesafisfer_input_files andjar_files).

If there are multiple JAR files, thexecutablecommand specifies the JAR file that contains the progranm’g ent
point. This file is also listed with thar_files command:

executable = sortmerge.jar
jar_files = sortmerge.jar,statemap.jar

Using a third-party JAR file. As HTCondor requires that all JAR files (third-party or nog)dvailable, specification
of a third-party JAR file is no different than other JAR filekthie sortmer%e example above also relies on version
2.1 from http://jakarta.apache.org/commons/lang/, &aredJAR file has been placed in the same directory with
the other JAR files, then the submit description file contains

executable = sortmerge.jar
jar_files = sortmerge.jar,statemap.jar,commons-lang-2 L.jar

An executable JAR file. When the JAR file is an executable, specify the program’sygmint in thearguments
command:

executable = anexecutable.jar
jar_files = anexecutable.jar
arguments = some.main.ClassFile

Discovering the main class within a JAR file. As of Java version 1.4, Java virtual machines havgar option,
which takes a single JAR file as an argument. With this optibbe,Java virtual machine discovers the main
class to run from the contents of the Manifest file, which isdied within the JAR file. HTCondor'gava
universe does not support this discovery, so before subgithe job, the name of the main class must be
identified.

For a Java application which is run on the command line with
java -jar OnelJarFile.jar

the equivalent version after discovery might look like
java -classpath OneJarFile.jar TheMainClass

The specified value fofheMainClass can be discovered by unjarring the JAR file, and looking fa th
MainClass definition in the Manifest file. Use that definitiorthe HTCondor submit description file. Partial
contents of that file Java universe submit file will appear as

universe = java
executable = OneJarFile.jar

jar_files = OneJarFile.jar

Arguments = TheMainClass More-Arguments
gueue

HTCondor Version 8.6.4 Manual

2.8.3. Chirp I/O 66

Packages.An example of a Java class that is declared in a non-defachige is
package hpc;

public class CondorDriver

{
}

The JVM needs to know the location of this package. It is phssea command-line argument, implying the
use of the naming convention and directory structure.

Therefore, the submit description file for this example wilhtain

/I class definition here

arguments = hpc.CondorDriver

JVM-version specific features. If the program uses Java features found only in certain J\{ls) the Java applica-
tion submitted to HTCondor must only run on those machindisimthe pool that run the needed JVM. Inform
HTCondor by adding aequirements statement to the submit description file. For example, taireq
version 3.2, add to the submit description file:

requirements = (JavaVersion=="3.2")

Benchmark speeds.Each machine with Java capability in an HTCondor pool wikexte a benchmark to deter-
mine its speed. The benchmark is taken when HTCondor isestart the machine, and it uses the SciMark2
(http://math.nist.gov/scimark2) benchmark. The restithe benchmark is held as an attribute within the ma-
chine ClassAd. The attribute is callddvaMFlops . Jobs that are run under the Java universe (as all other
HTCondor jobs) may prefer or require a machine of a specigedoy settingank or requirements in
the submit description file. As an example, to execute onlgnachines of a minimum speed:

requirements = (JavaMFlops>4.5)
JVM options. Options to the JVM itself are specified in the submit desiipfile:
java_vm_args = -DMyProperty=Value -verbose:gc -Xmx1024m

These options are those which go after the java command dbotebthe user’s main class. Do not use this to
set the classpath, as HTCondor handles that itself. Sedttage options is useful for setting system properties,
system assertions and debugging certain kinds of problems.

2.8.3 Chirp I/O

If a job has more sophisticated I/O requirements that cabaabet by HTCondor’s file transfer mechanism, then the
Chirp facility may provide a solution. Chirp has two advayga over simple, whole-file transfers. First, it permits
the input files to be decided upon at run-time rather than #utime, and second, it permits partial-file 1/0 with

HTCondor Version 8.6.4 Manual

http://math.nist.gov/scimark2

2.8.3. Chirp 1/0

67

results than can be seen as the program executes. Howeedirckanges to the program are required in order to take
advantage of Chirp. Depending on the style of the programeither Chirp 1/0 streams or UNIX-like I/O functions.

Chirp I/O streams are the easiest way to get started. Mdu#fptogram to use the obje@sirplnputStream

andChirpOutputStream instead ofFilelnputStream

andFileOutputStream . These classes are com-

pletely documented in the HTCondor Software Developertd 8DK). Here is a simple code example:

import java.io. *;
import edu.wisc.cs.condor.chirp. *

public class TestChirp {

public static void main(String args[]) {

try {

BufferedReader in = new BufferedReader(

new InputStreamReader(

new ChirplnputStream(“input")));

PrintWriter out = new PrintWriter(
new OutputStreamWriter(

new ChirpOutputStream("output™)));

while(true) {
String line = in.readLine();
if(line==null) break;
out.printin(line);

out.close();

} catch(IOException e) {
System.out.printin(e);

}

To perform UNIX-like I/O with Chirp, create &hirpClient

object. This object supports familiar operations

such aspen, read , write , andclose . Exhaustive detail of the methods may be found in the HTCofSdK,

but here is a brief example:

import java.io. *;
import edu.wisc.cs.condor.chirp. *

public class TestChirp {

public static void main(String args[]) {

HTCondor Version 8.6.4 Manual

2.8.3. Chirp I/O 68

try {
ChirpClient client = new ChirpClient();

String message = "Hello, world\n";
byte [] buffer = message.getBytes();

/I Note that we should check that actual==length.
/I However, skip it for clarity.

int fd = client.open("output”,"wct",0777);
int actual = client.write(fd,buffer,0,buffer.length);
client.close(fd);

client.rename("output”,"output.new");
client.unlink("output.new");

} catch(IOException e) {
System.out.printin(e);

}

Regardless of which I/O style, the Chirp library must be #pt and included with the job. The Chirp JAR
(Chirp.jar) is found in thelib directory of the HTCondor installation. Copy it into your g directory in
order to compile the program after modification to use Chi@p |

% condor_config_val LIB
{usr/local/condor/lib
% cp /usr/local/condor/lib/Chirp.jar .

Rebuild the program with the Chirp JAR file in the class path.
% javac -classpath Chirp.jar:. TestChirp.java

The Chirp JAR file must be specified in the submit descriptilen Flere is an example submit description file that
works for both of the given test programs:

universe = java

executable = TestChirp.class
arguments = TestChirp
jar_files = Chirp.jar
+WantlOProxy = True
queue

HTCondor Version 8.6.4 Manual

2.9. Parallel Applications (Including MPI Applications) 69

2.9 Parallel Applications (Including MPI Applications)

HTCondor’s parallel universe supports jobs that span pieltmachines, where the multiple processes within a job
must be running concurrently on these multiple machine$igps communicating with each other. The parallel uni-
verse provides machine scheduling, but does not enforceiaydar programming paradigm for the underlying appli-
cations. Thus, parallel universe jobs may run under vafidldsimplementations as well as under other programming
environments.

The parallel universe supersedes the mpi universe. The miy@ngse eventually will be removed from HTCondor.

2.9.1 How Parallel Jobs Run

Parallel universe jobs are submitted from the machine nmttie dedicated scheduler. The dedicated scheduler
matches and claims a fixed number of machines (slots) forahadlpl universe job, and when a sufficient number of
machines are claimed, the parallel job is started on eaghethsl|ot.

Each invocation otondor_submitissigns a singl€lusterld for what is considered the single parallel job
submitted. Themachine_countsubmit command identifies how many machines (slots) are tallbeated. Each
instance of thejueuesubmit command acquires and claims the number of slotsfgaeby machine_count Each
of these slots shares a common job ClassAd and will have theBeocld job ClassAd attribute value.

Once the correct number of machines are claimed ettexutableis started at more or less the same time on
all machines. If desired, a monotonically increasing ietegplue that starts at 0 may be provided to each of these
machines. The macrd(Node) is similar to the MPIrank construct. This macro may be used within the submit
description file in either thargumentsor environment command. Thus, as the executable runs, it may discover its
own$(Node) value.

Node 0 has special meaning and consequences for the pghll@he completion of a parallel job is implied and
taken to be when the Node O executable exits. All other ndustsare part of the parallel job and that have not yet
exited on their own are killed. This default behavior may lterad by placing the line

+ParallelShutdownPolicy = "WAIT_FOR_ALL"

in the submit description file. It causes HTCondor to waifl@aviery node in the parallel job has completed to consider
the job finished.

2.9.2 Parallel Jobs and the Dedicated Scheduler

To run parallel universe jobs, HTCondor must be configurexh shat machines running parallel jobs dexdicated
Note that dedicated has a very specific meaning in HTCondbitevdedicated machines can run serial jobs, they
prefer to run parallel jobs, and dedicated machines neesmppt a parallel job once it starts running.

A machine becomes a dedicated machine when an administ@tfigures it to accept parallel jobs from one
specific dedicated scheduler. Note the difference betweeallpl and serial jobs. While any scheduler in a pool

HTCondor Version 8.6.4 Manual

2.9.3. Submission Examples 70

can send serial jobs to any machine, only the designatectatedi scheduler may send parallel universe jobs to a
dedicated machine. Dedicated machines must be specialfigooed. See sectidn 3.T#.8 for a description of the
necessary configuration, as well as examples. Usuallygiesitedicated scheduler is configured for a pool which can
run parallel universe jobs, and thiendor_scheddaemon becomes the single machine from which parallel tsave
jobs are submitted.

The following command line will list the execute machinegtie local pool which have been configured to use a
dedicated scheduler, also printing the name of that desticatheduler. In order to run parallel jobs, this name will be
defined to be the strintbedicatedScheduler@" , prepended to the name of the scheduler host.

condor_status -const 'lisUndefined(DedicatedScheduler)\
-format "%s\t" Machine -format "%s\n" DedicatedScheduler

executel.example.com DedicatedScheduler@submit.examp le.com
execute2.example.com DedicatedScheduler@submit.examp le.com

If this command emits no lines of output, then then pool isawatectly configured to run parallel jobs. Make sure
that the name of the scheduler is correct. The string afte@kign should match the name of thendor_schedd
daemon, as returned by the command

condor_status -schedd

2.9.3 Submission Examples

Simplest Example
Here is a submit description file for a parallel universe jraraple that is as simple as possible:

R
submit description file for a parallel universe job
HHHH B
universe = parallel

executable = /bin/sleep

arguments = 30

machine_count = 8

log = log

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

queue

This job specifies theniverse asparallel, letting HTCondor know that dedicated resources are redquiiThe
machine_countcommand identifies that eight machines are required fojjabis

HTCondor Version 8.6.4 Manual

2.9.3. Submission Examples 71

Because noequirementsare specified, the dedicated scheduler claims eight mahiitie the same architecture
and operating system as the submit machine. When all theineschre ready, it invokes ttibin/sleepcommand,
with a command line argument of 30 on each of the eight mashirgre or less simultaneously. Job events are written
to the log specified in thivg command.

The file transfer mechanism is enabled for this parallel gigh that if any of the eight claimed execute ma-
chines does not share a file system with the submit machin€odor will correctly transfer the executable. This
/bin/sleepexample implies that the submit machine is running a Unixafieg system, and the default assumption
for submission from a Unix machine would be that there is aeghfile system.

Example with Operating System Requirements

Assume that the pool contains Linux machines installed witther a RedHat or an Ubuntu operating system. If
the job should run only on RedHat platforms, the requiresierpression may specify this:

R R R T
submit description file for a parallel program
targeting RedHat machines
R R R T
universe = parallel

executable = /bin/sleep

arguments = 30

machine_count = 8

log = log

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

requirements = (OpSysName == "RedHat")

queue

The machine selection may be further narrowed, insteadyusgOpSysAndVer attribute.

BHBHHH R R R R R R R
submit description file for a parallel program
targeting RedHat 6 machines
B
universe = parallel

executable = /bin/sleep

arguments = 30

machine_count = 8

log = log

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

requirements = (OpSysAndVer == "RedHat6")

queue

Using the$(Node) Macro

R R
submit description file for a parallel program

HTCondor Version 8.6.4 Manual

2.9.3. Submission Examples 72

showing the $(Node) macro
HHHHHH R
universe = parallel

executable = /bin/cat

log = logfile

input = infile.$(Node)

output = outfile.$(Node)

error = errfile.$(Node)
machine_count = 4
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
queue

The$(Node) macro is expanded to values of 0-3 as the job instances aut @hoe started. This assigns unique
names to the input and output files to be transferred or aeddesm the shared file system. THENode) value is
fixed for the entire length of the job.

Differing Requirements for the Machines

Sometimes one machine’s part in a parallel job will have gbeed needs. These can be handled wiReguire-
mentssubmit command that also specifies the number of needed neschi

TR

Example submit description file

with 4 total machines and differing requirements
R R
universe = parallel

executable = special.exe

machine_count = 1

requirements = (machine == "machinel@example.com")
queue

machine_count = 3

requirements = (machine =!= "machinel@example.com")

queue

The dedicated scheduler acquires and claims four machiAésour share the same value @lusterld
as this value is associated with this single parallel jobe €Ristence of a secorglieue command causes a total
of two Procld values to be assigned for this parallel job. TPeocld values are assigned based on ordering
within the submit description file. Value 0 will be assigned the single executable that must be executed on ma-
chinel@example.com, and the value 1 will be assigned foottier three that must be executed elsewhere.

Requesting multiple cores per slot

If the parallel program has a structure that benefits fromingnon multiple cores within the same slot, multi-core
slots may be specified.

T T R T R R T

HTCondor Version 8.6.4 Manual

2.9.3. Submission Examples 73

submit description file for a parallel program
that needs 8-core slots
B
universe = parallel

executable = foo.sh

log = logfile

input = infile.$(Node)

output = outfile.$(Node)

error = errfile.$(Node)

machine_count = 2

request_cpus = 8

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

queue

This parallel job causes the scheduler to match and clainmtachines, where each of the machines (slots) has
eight cores. The parallel job is assigned a sir@liesterld and a singlé’rocld , meaning that there is a single
job ClassAd for this job.

The executablepo.sh |, is started at the same time on a single core within each afstbenachines (slots). It
is presumed that the executable will take care of invokiragesses that are to run on the other seven CPUs (cores)
associated with the slot.

Potentially fewer machines are impacted with this spediibaas compared with the request that contains

machine_count = 16
request_cpus = 1

The interaction of the eight cores within the single slot rhayadvantageous with respect to communication delay or
memory access. But, 8-core slots must be available wittdmptol.

MPI Applications

MPI applications use a single executable, invoked on onearermachines (slots), executing in parallel. The
various implementations of MPI such as Open MPI and MPICHlIiregurther framework. HTCondor supports this
necessary framework through a user-modified script. Thigémentation-dependent script becomes the HTCondor
executable. The script sets up the framework, and thendkies'the MPI application’s executable.

The scripts are located in tH{RELEASE_DIR)/etc/examples directory. The script for the Open MPI
implementation ipenmpiscript . The scripts for MPICH implementations arglscript andmp2script
An MPICH3 script is not available at this time. These scrigly on runningsshfor communication between the
nodes of the MPI application. Tleshdaemon on Unix platforms restricts connections to the amgatshells listed in
the/etc/shells file.

Here is a sample submit description file for an MPICH MPI agadion:
R

Example submit description file
for MPICH 1 MPI

HTCondor Version 8.6.4 Manual

2.9.3. Submission Examples 74

works with MPICH 1.2.4, 1.2.5 and 1.2.6
R R
universe = parallel

executable = mplscript

arguments = my_mpich_linked_executable argl arg2
machine_count = 4

should_transfer_files = yes

when_to_transfer_output = on_exit
transfer_input_files = my_mpich_linked_executable
queue

The executableis themplscript script that will have been modified for this MPI applicatiohhis script is
invoked on each slot or core. The script, in turn, is expetteidvoke the MPI application’s executable. To know
the MPI application’s executable, it is the first in the ligtayguments And, since HTCondor must transfer this
executable to the machine where it will run, it is listed wiitle transfer_input_files command, and the file transfer
mechanism is enabled with tisbould_transfer_filescommand.

Here is the equivalent sample submit description file, buafoOpen MPI application:

B

Example submit description file

for Open MPI
B
universe = parallel

executable = openmpiscript

arguments = my_openmpi_linked_executable argl arg2
machine_count = 4

should_transfer_files = yes

when_to_transfer_output = on_exit
transfer_input_files = my_openmpi_linked_executable
queue

Most MPI implementations require two system-wide prersiies. The first prerequisite is the ability to run a
command on a remote machine without being prompted for aymadssshis commonly used. The second prerequi-
site is an ASCII file containing the list of machines that mélae ssh These common prerequisites are implemented
in a further script calledshd.sh . sshd.sh generates ssh keys to enable password-less remote exemutictarts
ansshddaemon. Use of theshd.stscript requires the definition of two HTCondor configurati@amiables. Configu-
ration variableCONDOR _SSH®an absolute path to an implementatiorssifid sshd.shhas been tested withpenssh
version 3.9, but should work with more recent versions. @uméition variabl€ONDOR_SSH_KEYGR®dInts to the
correspondingsh-keygeexecutable.

mpZlscriptand mp2scriptrequire thePATHto the MPICH installation to be set. The variaBl#PDIR may be
modified in the scripts to indicate its proper value. Thigdiory contains the MPICIrpirunexecutable.

openmpiscriptalso requires thePATH to the Open MPI installation. Either the variabMPDIR can
be set manually in the script, or the administrator can defWiieDIR using the configuration variable
OPENMPI_INSTALL_PATHWhen using Open MPI on a multi-machine HTCondor cluster,atiministrator may
also want to consider tweaking tiiPENMPI_EXCLUDE_NETWORK_INTERFACESfiguration variable as well
as seMOUNT_UNDER_SCRATEHmMp .

HTCondor Version 8.6.4 Manual

2.9.4. MPI Applications Within HTCondor’s Vanilla Univess 75

2.9.4 MPI Applications Within HTCondor’s Vanilla Universe

The vanilla universe may be preferred over the parallelensi for certain parallel applications such as MPI ones.
These applications are ones in which the allocated corebtodse within a single slot. Theequest_cpuscommand
causes a claimed slot to have the required number of CPUsg)cor

There are two ways to ensure that the MPI job can run on any imadat it lands on:

1. Statically build an MPI library and statically compilestMPI code.

2. Use CDE to create a directory tree that contains all ofithraries needed to execute the MPI code.

For Linux machines, our experience recommends using CDitjilting static MPI libraries can be difficult. CDE
can be found at http://www.pgbovine.net/cde.html.

Here is a submit description file example assuming that MRidtalled on all machines on which the MPI job
may run, or that the code was built using static librariesasthtic version ofpirun is available.

HHH AR AR AR AR AR HitHHHHH
submit description file for

#t static build of MPI under the vanilla universe

HHH AR AR AR R R R HitHHHHH
universe = vanilla

executable = /path/to/mpirun

request_cpus = 2

arguments = -np 2 my_mpi_linked_executable argl arg2 arg3
should_transfer_files = yes

when_to_transfer_output = on_exit

transfer_input_files = my_mpi_linked_executable

queue

If CDE is to be used, then CDE needs to be run first to createithetdry tree. On the host machine which has
the original program, the command

prompt-> cde mpirun -n 2 my_mpi_linked_executable

creates a directory tree that will contain all librariesae@for the program. By creating a tarball of this directory,
the user can package up the executable itself, any files dded¢he executable, and all necessary libraries. The
following example assumes that the user has created altadtied cde_my_mpi_linked_executable.tar
which contains the directory tree created by CDE.

BB R R R R R R R R T
submit description file for

#t MPI under the vanilla universe; CDE used

BB R R R R R R R R i
universe = vanilla

executable = cde_script.sh

request_cpus = 2

HTCondor Version 8.6.4 Manual

http://www.pgbovine.net/cde.html

2.10. DAGMan Applications 76

should_transfer_files = yes
when_to_transfer_output = on_exit

transfer_input_files = cde_my_mpi_linked_executable.t ar
transfer_output_files = cde-package/cde-root/path/to/ original/directory
queue

The executable is now a specialized shell script tailoratigjob. In this examplezde_script.sktontains:

#l/bin/sh

Untar the CDE package

tar xpf cde_my_mpi_linked_executable.tar

cd to the subdirectory where | need to run

cd cde-package/cde-root/path/to/original/directory

Run my command

Jmpirun.cde -n 2 ./my_mpi_linked_executable

Since HTCondor will transfer the contents of this director y
back upon job completion.

We do not want the .cde command and the executable transferr ed back.
To prevent the transfer, remove both files.

rm -f mpirun.cde

rm -f my_mpi_linked_executable

Any additional input files that will be needed for the exetlgahat are not already in the tarball should be included
in the list intransfer_input_files command. The corresponding script should then also be egdamove those files
into the directory where the executable will be run.

2.10 DAGMan Applications

A directed acyclic graph (DAG) can be used to represent afssiroputations where the input, output, or execution
of one or more computations is dependent on one or more odingpwtations. The computations are nodes (vertices)
in the graph, and the edges (arcs) identify the dependendtigdondor finds machines for the execution of programs,
but it does not schedule programs based on dependenciesDifdaed Acyclic Graph Manager (DAGMan) is a
meta-scheduler for the execution of programs (computslioBAGMan submits the programs to HTCondor in an
order represented by a DAG and processes the resuld@.input filedescribes the DAG.

DAGMan is itself executed as a scheduler universe job withiiCondor. It submits the HTCondor jobs within
nodes in such a way as to enforce the DAG's dependencies. D#GHs0 handles recovery and reporting on the
HTCondor jobs.

2.10.1 DAGMan Terminology

A node within a DAG may encompass more than a single progrdmited to run under HTCondor. Figure P.1
illustrates the elements of a node.

More than one HTCondor job may belong to a single node. All did@br jobs within a node must be within a
single cluster, as given by the job ClassAd attribQtesterld

HTCondor Version 8.6.4 Manual

2.10.2. The DAG Input File: Basic Commands 77

[optional]
PRE script

l

HTCondor job(s)
(with a single
cluster number)

or Stork job

|

[optional]

POST script

Figure 2.1: One Node within a DAG

DAGMan enforces the dependencies within a DAG using the®werorded in a separate file that is specified by
the default configuration. If the exact same DAG were to bendiidsd more than once, such that these DAGs were
running at the same time, expected them to fail in unpredietand unexpected ways. They would all be using the
same single file to enforce dependencies.

As DAGMan schedules and submits jobs within nodes to HT Caridese jobs are defined to succeed or fail based
on their return values. This success or failure is propagatevell-defined ways to the level of a node within a DAG.
Further progression of computation (towards completimgRAG) is based upon the success or failure of nodes.

The failure of a single job within a cluster of multiple johsithin a single node) causes the entire cluster of jobs
to fail. Any other jobs within the failed cluster of jobs aramediately removed. Each node within a DAG may be
further constrained to succeed or fail based upon the realues of a PRE script and/or a POST script.

2.10.2 The DAG Input File: Basic Commands
The input file used by DAGMan is called a DAG input file. It sgexd the nodes of the DAG as well as the dependen-
cies that order the DAG. All items are optional, except that¢ must be at least od®Bitem.

Comments may be placed in the DAG input file. The pound cher#é} as the first character on a line identifies
the line as a comment. Comments do not span lines.

A simple diamond-shaped DAG, as shown in Fiduré 2.2 is ptesess a starting point for examples. This DAG
contains 4 nodes.

HTCondor Version 8.6.4 Manual

2.10.2. The DAG Input File: Basic Commands 78

Figure 2.2: Diamond DAG

A very simple DAG input file for this diamond-shaped DAG is

File name: diamond.dag
#

JOB A A.condor

JOB B B.condor

JOB C C.condor

JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D

A set of basic commands appearing in a DAG input file is desdriielow.

JOB

TheJOBcommand specifies an HTCondor job. The syntax used for g@8tommand is
JOB JobName SubmitDescriptionFileNafigiR directory] [NOOP] [DONE]

A JOB entry maps alobNameo an HTCondor submit description file. TBebNameuniquely identifies nodes
within the DAG input file and in output messages. Each nodeeyajiven byJobNamewithin the DAG must be
unigue. TheJOBentry must appear within the DAG input file before other itehet reference the node.

The keywordsJOB, DIR, NOOP, andDONE are not case sensitive. TherefoB)NE, Dong anddoneare all
equivalent. The values defined fiwbNamendSubmitDescriptionFileNamare case sensitive, as file names in a file
system are case sensitive. TlddbNamesan be any string that contains no white space, except fattimgsPARENT
andCHILD (in upper, lower, or mixed case).

Note thatDIR, NOOP, andDONE, if used, must appear in the order shown above.

The optionalDIR keyword specifies a working directory for this node, from gfthe HTCondor job will be
submitted, and from whichBRREand/orPOSTscript will be run. If a relative directory is specified, itrslative to the
current working directory as the DAG is submitted. Note th&AG containingDIR specifications cannot be run in
conjunction with theusedagdircrommand-line argument wondor_submit_dagA "full" rescue DAG generated by
a DAG run with the-usedagdirargument will contain DIR specifications, so such a rescu&Ddust be rurwithout
the-usedagdirargument. (Note that "full" rescue DAGs are no longer thedkf)

The optionaNOOPkeyword identifies that the HTCondor job within the node istode submitted to HTCondor.
This optimization is useful in cases such as debugging a EOPAG structure, where some of the individual jobs

HTCondor Version 8.6.4 Manual

2.10.2. The DAG Input File: Basic Commands 79

are long-running. For this debugging of structure, soms pte marked aSOOPs, and the DAG is initially run to
verify that the control flow through the DAG is correct. TR®OPkeywords are then removed before submitting the
DAG. Any PRE and POST scripts for jobs specified WDOP areexecuted; to avoid running the PRE and POST
scripts, comment them out. The job that is not submitted t&€biidor is given a return value that indicates success,
such that the node may also succeed. Return values of any RIRE@ST scripts may still cause the node to fail.
Even though the job specified wilOOPis not submitted, its submit description file must exist; lihng file for the

job is used, because DAGMan generates dummy submissioranthation events for the job.

The optionaDONE keyword identifies a node as being already completed. Thigisly used by Rescue DAGs
generated by DAGMan itself, in the event of a failure to coetplhe workflow. Nodes with theONE keyword are
not executed when the Rescue DAG is run, allowing the workftopick up from the previous endpoint. Users should
generally not use thBONE keyword. TheNOOPkeyword is more flexible in avoiding the execution of a jobhirt
a node. Note that, for any node marke@NE in a DAG, all of its parents must also be marke@NE;, otherwise, a
fatal error will result. ThddONEkeyword applies to the entire node. A node marked WI@®NE will not have a PRE
or POST script run, and the HTCondor job will not be submitted

DATA

As of version 8.3.5¢ondor_dagmamno longer supports DATA nodes.

PARENT ...CHILD

ThePARENT CHILDcommand specifies the dependencies within the DAG. Nodgsaaeats and/or children within
the DAG. A parent node must be completed successfully befioyeof its children may be started. A child node may
only be started once all its parents have successfully ostexbl

The syntax used for each dependency (PARENT/CHILD) comnsnd
PARENT ParentJobName . CHILD ChildJobName..

The PARENTkeyword is followed by one or morearentJobName TheCHILD keyword is followed by one or
moreChildJobNams. Each child job depends on every parent job within the lisingle line in the input file can
specify the dependencies from one or more parents to one @ chddren. The diamond-shaped DAG example may
specify the dependencies with

PARENT A CHILD B C
PARENT B C CHILD D

An alternative specification for the diamond-shaped DAG mspgcify some or all of the dependencies on separate
lines:

PARENT A CHILD B C
PARENT B CHILD D
PARENT C CHILD D

HTCondor Version 8.6.4 Manual

2.10.2. The DAG Input File: Basic Commands 80

As a further example, the line
PARENT pl p2 CHILD c1 c2
produces four dependencies:

1. pltocl
2. pltoc2
3. p2tocl
4. p2toc2

SCRIPT

The optionalSCRIPTcommand specifies processing that is done either before witbin a node is submitted or
after a job within a node completes its execution. Procgssdone before a job is submitted is calle@RE script.
Processing done after a job completes its execution isccalROSTscript. Note that the executable specified does
not necessarily have to be a shell script (Unix) or batchWeflows); but it should be relatively light weight because
it will be run directly on the submit machine, not submittescteea HTCondor job.

The syntax used for eadPREor POSTcommand is
SCRIPT [DEFER status tim¢ PRE JobNam@LL NODES ExecutableNamgargumentp
SCRIPT [DEFER status tim¢POST JobNamALL_NODES ExecutableNamgargumentp

TheSCRIPTcommand uses tHeREor POSTkeyword, which specifies the relative timing of when thestds to
be run. TheJobNamedentifies the node to which the script is attached. EkecutableNamspecifies the executable
(e.g., shell script or batch file) to be executed, and may ootain spaces. The optioraigumentsare command line
arguments to the script, and spaces delimit the argumerdth BxecutableNamand optionalrgumentsare case
sensitive.

Scripts are executed on the submit machine; the submit maéhinot necessarily the same machine upon which
the node’s job is run. Further, a single cluster of HTCondbsjmay be spread across several machines.

The optionaDEFERfeature causes a retry of only the script, if the executiothefscript exits with the exit code
given bystatus The retry occurs after at leastne seconds, rather than being considered failed. While waftin
the retry, the script does not count againshaxpreor maxpostimit. The ordering of theDEFER feature within
the SCRIPTspecification is fixed. It must come directly after tBERIPTkeyword; this is done to avoid backward
compatibility issues for any DAG with 3obNamef DEFER.

A PRE script is commonly used to place files in a staging are¢htojobs to use. A POST script is commonly
used to clean up or remove files once jobs are finished runAimgxample uses PRE and POST scripts to stage files
that are stored on tape. The PRE script reads compressetfilepurom the tape drive, uncompresses them, and
places the resulting files in the current directory. The Hii@ar jobs can then use these files, producing output files.

HTCondor Version 8.6.4 Manual

2.10.2. The DAG Input File: Basic Commands 81

The POST script compresses the output files, writes thermrodbettape, and then removes both the staged files and
the output files.

If the PRE script fails, then the HTCondor job associatechwuiite node is not submitted, and (as of version
8.5.4) the POST script is not run either (by default). Howegifethe job is submitted, and there is a POST script,
the POST script is always run once the job finishes. (The hehathen the PRE script fails may may be changed
to run the POST script by setting configuration variaDBGMAN_ALWAYS_RUN_PQ@&True or by passing the
-AlwaysRunPostargument tacondor_submit_dag

Progress towards completion of the DAG is based upon theessaaf the nodes within the DAG. The success
of a node is based upon the success of the job(s), PRE saipR@ST script. A job, PRE script, or POST script
with an exit value not equal to 0 is considered fail@the exit value of whatever component of the node was run
last determines the success or failure of the nodelable[Z.1 lists the definition of node success and failureafor
variations of script and job success and failure, WD&GMAN_ALWAYS RUN_PGsSSet toFalse . In this table,

a dash{) represents the case where a script does not exist for the BAEpresents success, dndepresents failure.

Table[2.2 lists the definition of node success and failurgy émi the cases where the PRE script fails, when
DAGMAN_ALWAYS_RUN_PG@sS3et toTrue .

PRE| JOB POST | Node
- S - S
- F - F
- S S S
- S F F
- F S S
- F F F
S S - S
S F - F
S S S S
S S F F
S F S S
S F F F
F not run - F
F notrun | notrun F

Table 2.1: Node success or failure definition WBAGMAN_ALWAYS RUN_POST = False (the default)

PRE| JOB | POST| Node
F not run - F
F not run S S
F not run F F

Table 2.2: Nodesuccess oFailure definition with DAGMAN_ALWAYS RUN_POST = True

HTCondor Version 8.6.4 Manual

2.10.2. The DAG Input File: Basic Commands 82

Special script argument macros

The five macro$JOB, $SRETRY $SMAX_RETRIES$DAG_STATUSNd$FAILED_COUNTcan be used within
the DAG input file as arguments passed to a PRE or POST scripe tAree macro$JOBID, $RETURN and
$PRE_SCRIPT_RETURNan be used as arguments to POST scripts. The use of theablearis limited to be-
ing used as an individual command liaggumento the script, surrounded by spaces, in order to cause tlstituion
of the variable’s value.

The special macros are as follows:

» $JOB evaluates to the (case sensitive) string defineddbiName

» $RETRYevaluates to an integer value set to O the first time a nodejsand is incremented each time the node
is retried. See sectidn 2.10.9 for the description of howatsse nodes to be retried.

* $MAX_RETRIESevaluates to an integer value set to the maximum number gésefor the node. See
section[2.10]9 for the description of how to cause nodes toetréed. If no retries are set for the node,
$MAX_RETRIESWill be set to 0.

» $JOBID (for POST scripts only) evaluates to a representation oHh€ondor job ID of the node job. It is the
value of the job ClassAd attribut@lusterld , followed by a period, and then followed by the value of the jo
ClassAd attributé’rocld . An example of a job ID might be 1234.0. For nodes with muttijplbs in the same
cluster, theProcld value is the one of the last job within the cluster.

* $RETURNfor POST scripts only) variable evaluates to the returnealf the HTCondor job, if there is a single
job within a cluster. With multiple jobs within the same diers there are two cases to consider. In the first case,
all jobs within the cluster are successful; the valu$SBETURNwill be 0, indicating success. In the second
case, one or more jobs from the cluster fail. Whamdor_dagmarsees the first terminated event for a job
that failed, it assigns that job’s return value as the vafuBRETURNand it attempts to remove all remaining
jobs within the cluster. Therefore, if multiple jobs in thieister fail with different exit codes, a race condition
determines which exit code gets assignefiRETURN

A job that dies due to a signal is reported witBRETURN/alue representing the additive inverse of the signal
number. For example, SIGKILL (signal 9) is reported as -9.0A jwhose batch system submission fails is
reported as -1001. A job that is externally removed from thteh system queue (by something other than
condor_dagmayis reported as -1002.

* $PRE_SCRIPT_RETURNfor POST scripts only) variable evaluates to the returmealf the PRE script of
a node, if there is one. If there is no PRE script, this valuéhbwei -1. If the node job was skipped because of
failure of the PRE script, the value 8RETURNill be -1004 and the value fFPRE_SCRIPT_RETURMill
be the exit value of the PRE script; the POST script can usetéhsee if the PRE script exited with an error
condition, and assign success or failure to the node, a®ppate.

« $DAG_STATUSs the status of the DAG. Note that this macro’s value and difimis unrelated to the attribute
namedDagStatus as defined for use in a node status file. This macro’s valueisdime as the job ClassAd
attributeDAG_Status that is defined within theondor_dagmaijpb’s ClassAd. This macro may have the
following values:

— 0: OK

HTCondor Version 8.6.4 Manual

2.10.2. The DAG Input File: Basic Commands 83

— 1: error; an error condition different than those listedeher

— 2: one or more nodes in the DAG have failed

— 3: the DAG has been aborted by an ABORT-DAG-ON specification
— 4: removed; the DAG has been removeddoyndor_rm

— 5: cycle; a cycle was found in the DAG

— 6: halted; the DAG has been halted (see secfion 2.10.8)

* $FAILED_COUNTIs defined by the number of nodes that have failed in the DAG.

Examples that use PRE or POST scripts

Examples use the diamond-shaped DAG. A first example use&a&ipt to expand a compressed file needed as
input to each of the HTCondor jobs of nodes B and C. The DAGHififmi

File name: diamond.dag

#

JOB A A.condor

JOB B B.condor

JOB C C.condor

JOB D D.condor

SCRIPT PRE B pre.csh $JOB .gz
SCRIPT PRE C pre.csh $JOB .gz
PARENT A CHILD B C

PARENT B C CHILD D

The scriptpre.csh uses its command line arguments to form the file name of thepoessed file. The script
contains

#1/bin/csh
gunzip $argv[l]$argv([2]

Therefore, the PRE script invokes
gunzip B.gz

for node B, which uncompresses filegz , placing the result in filé.

A second example uses tBRETURNnacro. The DAG input file contains the POST script specificati
SCRIPT POST A stage-out job_status $RETURN
If the HTCondor job of node A exits with the value -1, the POS$Ti is invoked as

stage-out job_status -1

HTCondor Version 8.6.4 Manual

2.10.3. Command Order 84

The slightly different example POST script specificatiothia DAG input file
SCRIPT POST A stage-out job_status=$RETURN

invokes the POST script with
stage-out job_status=$RETURN

This example shows that when there is no space between 8ign and the variabl8RETURN there is no
substitution of the macro’s value.

PRE_SKIP

The behavior of DAGMan with respect to node success or faitan be changed with the addition oPRE_SKIP
command. APRE_SKIHine within the DAG input file uses the syntax:

PRE_SKIP JobNam{ALL_NODES non-zero-exit-code

The PRE script of a node identified BpbNamethat exits with the value given byon-zero-exit-codskips the
remainder of the node entirely. Neither the job associatiéfutive node nor the POST script will be executed, and the
node will be marked as successful.

2.10.3 Command Order

As of version 8.5.6, commands referencingpbName carome before the JOB command defining thattName
For example, the command sequence
SCRIPT PRE NodeA foo.pl

VARS NodeA state="Wisconsin"
JOB NodeA bar.sub

is now legal (it would have beenillegal in 8.5.5 and all pos versions).

2.10.4 Node Job Submit File Contents

Each node in a DAG may use a unique submit description file. WAlkwitation is that each HTCondor submit
description file must submit jobs described by a single elustmber; DAGMan cannot deal with a submit description
file producing multiple job clusters.

Consider again the diamond-shaped DAG example, where ealghjab uses the same submit description file.

HTCondor Version 8.6.4 Manual

2.10.5. DAG Submission 85

File name: diamond.dag

#

JOB A diamond_job.condor
JOB B diamond_job.condor
JOB C diamond_job.condor
JOB D diamond_job.condor
PARENT A CHILD B C
PARENT B C CHILD D

Here is a sample HTCondor submit description file for this DAG

File name: diamond_job.condor

#

executable = /path/diamond.exe
output = diamond.out.$(cluster)
error = diamond.err.$(cluster)
log = diamond_condor.log
universe = vanilla

queue

Since each node uses the same HTCondor submit descripépthfd implies that each node within the DAG runs
the same job. Th&(Cluster) macro produces unique file names for each job’s output.

The job ClassAd attribut®AGParentNodeNames is also available for use within the submit description file.
It defines a comma separated list of edolbbNamewhich is a parent node of this job’s node. This attribute may b
used in thearguments command for all but scheduler universe jobs. For exampliefiob has two parents, with
JobName B and C, the submit description file command

arguments = $$([DAGParentNodeNames])

will pass the stringB,C" as the command line argument when invoking the job.

2.10.5 DAG Submission

A DAG is submitted using the to@londor_submit_dagrhe manual pade 9b3 details the command. The simplest of
DAG submissions has the syntax

condor_submit_dag DAGInputFileName
and the current working directory contains the DAG input file

The diamond-shaped DAG example may be submitted with

condor_submit_dag diamond.dag

HTCondor Version 8.6.4 Manual

2.10.5. DAG Submission 86

Do not submit the same DAG, with same DAG input file, from witthhe same directory, such that more than one
of this same DAG is running at the same time. It will fail in ampuedictable manner, as each instance of this same
DAG will attempt to use the same file to enforce dependencies.

To increase robustness and guarantee recoverabilitgathéor _dagmaiprocess is run as an HTCondor job. As
such, it needs a submit description filkondor_submit_dagenerates this needed submit description file, naming it
by appendingcondor.sub to the name of the DAG input file. This submit description filaynbe edited if the
DAG is submitted with

condor_submit_dag -no_submit diamond.dag

causingcondor_submit_datp create the submit description file, but not subagihdor_dagmamo HTCondor. To
submit the DAG, once the submit description file is edite@, us

condor_submit diamond.dag.condor.sub

Submit machines with limited resources are supported byntand line options that place limits on the submission
and handling of HTCondor jobs and PRE and POST scripts. Riexdere are descriptions of the command line
options tocondor_submit_dagThese same limits can be set in configuration. Each limipfiad within a single
DAG.

DAG Throttling

Total nodes/clusters: The -maxjobs option specifies the maximum number of clusters #@idor_dagmarcan
submit at one time. Since each node corresponds to a singieclthis limit restricts the number of nodes that can be
submitted (in the HTCondor queue) at a time. Itis commongdushen there is a limited amount of input file staging
capacity. As a specific example, consider a case where eaghrapresents a single HTCondor proc that requires 4
MB of input files, and the proc will run in a directory with a wwhe of 100 MB of free space. Using the argument
-maxjobs 25guarantees that a maximum of 25 clusters, using a maximur@®MB of space, will be submitted to
HTCondor at one time. (See tleendor_submit_dagan page [(11) for more information. Also see the equivalent
DAGMAN_MAX_JOBS_SUBMITT&dnfiguration option[((3.5.24).)

Idle procs: The number of idle procs within a given DAG can be limited vitik optional command line argument
-maxidle. condor_dagmarmwill not submit any more node jobs until the number of idle ggaon the DAG goes
below this specified value, even if there are ready nodesa#hG. This allowscondor_dagmarmo submit jobs in
a way that adapts to the load on the HTCondor pool at any giwem tif the pool is lightly loadedgondor_dagman
will end up submitting more jobs; if the pool is heavily loaljeondor_dagmanvill submit fewer jobs. (See the
condor_submit_dagnan page [(11) for more information. Also see the equivaPAGMAN_MAX_JOBS_IDLE

configuration option[(3.5.24).)

Note that the-maxjobs option applies to counts aflusters whereas themaxidle option applies to counts of
procs Unfortunately, this can be a bit confusing. Of course, ii@®f your submit files create more than one proc,
the distinction doesn’'t matter. For example, though, a rjodesubmit file that queues 5 procs will count as one for
-maxjobs, but five for-maxidle (if all of the procs are idle).

HTCondor Version 8.6.4 Manual

2.10.6. File Paths in DAGs 87

Subsets of nodesNode submission can also be throttled in a finer-grained eraoy grouping nodes into cate-
gories. See section_2.10.9 for more details.

PRE/POST scripts: Since PRE and POST scripts run on the submit machine, it malebieable to limit the
number of PRE or POST scripts running at one time. The optienaxpre command line argument limits the
number of PRE scripts that may be running at one time, and gitieral -maxpostcommand line argument limits
the number of POST scripts that may be running at one timee {{8ondor_submit_dagan page [(111) for more
information. Also see the equivaldbDAGMAN_MAX_PRE_SCRIP{E5.24) andDAGMAN_MAX_POST_SCRIPTS
(B5.23) configuration options.)

2.10.6 File Paths in DAGs

condor_dagmamssumes that all relative paths in a DAG input file and thecate HTCondor submit description
files are relative to the current working directory whmandor_submit_dags run. This works well for submitting a
single DAG. It presents problems when multiple independei®s are submitted with a single invocation @dn-
dor_submit_dagEach of these independent DAGs would logically be in its aivaectory, such that it could be run
or tested independent of other DAGs. Thus, all referencéigetowill be designed to be relative to the DAG’s own
directory.

Consider an example DAG within a directory nanuayl . There would be a DAG input file, namexie.dag
for this example. Assume the contents of this DAG input filecify a node job with
JOB A A.submit

Further assume that partial contents of submit descrifit®i.submit specify

executable = programA
input = A.input

Directory contents are

dagl (directory)
one.dag
A.submit
programA
A.input

All file paths are correct relative to tlilagl directory. Submission of this example DAG sets the currearking
directory todagl and invokesondor_submit_dag

cd dagl
condor_submit_dag one.dag

HTCondor Version 8.6.4 Manual

2.10.7. DAG Monitoring and DAG Removal 88

Expand this example such that there are now two independ®®@sDand each is contained within its own direc-
tory. For simplicity, assume that the DAG dag2 has remarkably similar files and file naming as the DA@Gag1 .
Assume that the directory contents are

parent (directory)

dagl (directory)
one.dag
A.submit
programA
A.input

dag2 (directory)
two.dag
B.submit
programB
B.input

The goal is to use a single invocationafnhdor_submit_datp run both dagl and dag2. The invocation

cd parent
condor_submit_dag dagl/one.dag dag2/two.dag

does not workPath names are now relativegarent , which isnotthe desired behavior.

The solution is theusedagdircommand line argument wondor_submit_dagThis feature runs each DAG as if
condor_submit_dabad been run in the directory in which the relevant DAG filesexi A working invocation is

cd parent
condor_submit_dag -usedagdir dagl/one.dag dag2/two.dag

Output files will be placed in the correct directory, and itiegman.out file will also be in the correct directory.
A Rescue DAG file will be written to the current working diregy, which is the directory wheoondor_submit_dag
is invoked. The Rescue DAG should be run from that same cuwerking directory. The Rescue DAG includes all
the path information necessary to run each node job in thegomirectory.

Use of-usedagdidoesnotwork in conjunction with a JOB node specification within thA®input file using the
DIR keyword. Using both will be detected and generate an error.

2.10.7 DAG Monitoring and DAG Removal

After submission, the progress of the DAG can be monitoretbbking at the job event log file(s), observing the
e-mail that job submission to HTCondor causes, or by usorglor_q -dag

There is also a large amount of information logged in an efdga The name of this extra file is produced by
appendingdagman.out to the name of the DAG input file; for example, if the DAG inpug fis diamond.dag

HTCondor Version 8.6.4 Manual

2.10.8. Suspending a Running DAG 89

this extra file is namediamond.dag.dagman.out . If this extra file grows too large, limit its size with the con
figuration variableMAX_DAGMAN_LQ&S defined in sectidn 3.5.3. THagman.out file is an important resource
for debugging; save this file if a problem occurs. Hagman.out is appended to, rather than overwritten, with each
new DAGMan run.

To remove an entire DAG, consisting of thendor_dagmaiob, plus any jobs submitted to HTCondor, remove
thecondor_dagmajob by runningcondor_rm For example,

% condor_q

-- Submitter: turunmaa.cs.wisc.edu : <128.105.175.125:3 6165> : turunmaa.cs.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
9.0 taylor 10/12 11:47 0+00:01:32 R O 8.7 condor_dagman -f -
11.0 taylor 10/12 11:48 0+00:00:00 I O 3.6 B.out
12.0 taylor 10/12 11:48 0+400:00:00 I O 3.6 C.out

3 jobs; 2 idle, 1 running, 0 held

% condor_rm 9.0

When acondor_dagmarjob is removed, all node jobs (including sub-DAGS) of tikahdor_dagmarwill be
removed by theondor_scheddAs of version 8.5.8, the default is thewndor_dagmaiitself also removes the node
jobs (to fix a race condition that could result in "orphanedda jobs). (Theondor_schedtias to remove the node
jobs to deal with the case of removingandor_dagmaiob that has been held.)

The previous behavior ofondor_dagmaritself not removing the node jobs can be restored by setting the
DAGMAN_REMOVE_NODE_J@BSfiguration macro (se€_3.5]24) False . This will decrease the load on the
condor_scheddat the cost of allowing the possibility of "orphaned" nodbg.

A removed DAG will be considered failed unless the DAG hasNAtl node that succeeds.

In the case where a machine is scheduled to go down, DAGMdwcledn up memory and exit. However, it will
leave any submitted jobs in the HTCondor queue.

2.10.8 Suspending a Running DAG

It may be desired to temporarily suspend a running DAG. Fangde, the load may be high on the submit machine,
and therefore it is desired to prevent DAGMan from subnrgtény more jobs until the load goes down. There are two
ways to suspend (and resume) a running DAG.

« Usecondor_holdcondor_releasen thecondor_dagmajob.

After placing thecondor_dagmarob on hold, no new node jobs will be submitted, and no PRE o8PO
scripts will be run. Any node jobs already in the HTCondor wgievill continue undisturbed. Any running
PRE or POST scripts will be killed. If theondor_dagmaiob is left on hold, it will remain in the HTCondor
gueue after all of the currently running node jobs are firdshi® resume the DAG, usmndor_releasen the
condor_dagmajob.

Note that while theeondor_dagmaijob is on hold, no updates will be made to degman.out file.

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 90

* Use a DAG halt file.

The second way of suspending a DAG uses the existence of mbp@&amed file to change the state of the
DAG. When in this halted state, no PRE scripts will be run, andnode jobs will be submitted. Running
node jobs will continue undisturbed. A halted DAG will stilin POST scripts, and it will still update the
dagman.out file. This differs from behavior of a DAG that is held. Furthesre, a halted DAG will not
remain in the queue indefinitely; when all of the running njdes have finished, DAGMan will create a Rescue
DAG and exit.

To resume a halted DAG, remove the halt file.

The specially-named file must be placed in the same direet®itihe DAG input file. The naming is the same
as the DAG input file concatenated with the strihglt . For example, if the DAG input file iest1.dag
thentestl.dag.halt will be the required name of the halt file.

As any DAG is first submitted witltondor_submit_daga check is made for a halt file. If one exists, it is
removed.

Note that neither condor_holdnor a DAG halt is propagated to sub-DAGs.In other words, if yowcondor_hold
or create a halt file for a DAG that has sub-DAGs, any sub-DAf@tsare already in the queue will continue to submit
node jobs.

A condor_holdor DAG haltdoes however, apply to splices, because they are merged intpatent DAG and
controlled by a singleondor_dagmainstance.

2.10.9 Advanced Features of DAGMan
Retrying Failed Nodes

DAGMan can retry any failed node in a DAG by specifying the aadthe DAG input file with th(RETRYcommand.
The use of retry is optional. The syntax for retry is

RETRY JobNam@LL_NODES NumberOfRetriefUNLESS-EXIT valug

whereJobNamaedentifies the nodeNumberOfRetries an integer number of times to retry the node after failure.
The implied number of retries for any node is 0, the same akanihg a retry line in the file. Retry is implemented
on nodes, not parts of a node.

The diamond-shaped DAG example may be modified to retry node C

File name: diamond.dag
#

JOB A A.condor

JOB B B.condor

JOB C C.condor

JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
Retry C 3

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 91

If node C is marked as failed for any reason, then it is stastet as a first retry. The node will be tried a second
and third time, if it continues to fail. If the node is markexlsuccessful, then further retries do not occur.

Retry of a node may be short circuited using the optional kegNLESS-EXIT followed by an integer exit
value. If the node exits with the specified integer exit vathen no further processing will be done on the node.

The macr@bRETRYevaluates to an integer value, set to O first time a node isanohis incremented each time for
each time the node is retried. The magidAX_RETRIESs the value set foNumberOfRetriesThese macros may
be used as arguments passed to a PRE or POST script.

Stopping the Entire DAG

The ABORT-DAG-ONcommand provides a way to abort the entire DAG if a given nedierns a specific exit code.
The syntax foABORT-DAG-ONs

ABORT-DAG-ON JobNam@LL_NODES AbortExitValu RETURN DAGReturnValug

If the return value of the node specified bypNamenatchesAbortExitValue the DAG is immediately aborted. A
DAG abort differs from a node failure, in that a DAG abort casiall nodes within the DAG to be stopped immediately.
This includes removing the jobs in nodes that are currentiping. A node failure differs, as it would allow the DAG
to continue running, until no more progress can be made ddeggendencies.

The behavior differs based on the existence of PRE and/oifRROdts. If a PRE script returns tiAdortExitValue
value, the DAG is immediately aborted. If the HTCondor jolthivi a node returns th&bortExitValuevalue, the DAG
is aborted if the node has no POST script. If the POST scriptme theAbortExitValuevalue, the DAG is aborted.

An abort overrides node retries. If a node returns the abartvalue, the DAG is aborted, even if the node has
retry specified.

When a DAG aborts, by default it exits with the node returnueahat caused the abort. This can be changed by
using the optiondRETURNKkeyword along with specifying the desirBdA\GReturnValueThe DAG abort return value
can be used for DAGs within DAGSs, allowing an inner DAG to caas abort of an outer DAG.

A DAG return value other than 0, 1, or 2 will cause twndor_dagmaiob to stay in the queue after it exits and
get retried, unless then_exit_remove expression in thecondor.sub file is manually modified.

Adding ABORT-DAG-ONor node C in the diamond-shaped DAG

File name: diamond.dag

#

JOB A A.condor

JOB B B.condor

JOB C C.condor

JOB D D.condor

PARENT A CHILD B C

PARENT B C CHILD D

Retry C 3

ABORT-DAG-ON C 10 RETURN 1

causes the DAG to be aborted, if node C exits with a returnevaful0. Any other currently running nodes, of

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 92

which only node B is a possibility for this particular examphre stopped and removed. If this abort occurs, the return
value for the DAG is 1.

Variable Values Associated with Nodes

Macros defined for DAG nodes can be used within the submitrighti® file of the node job. Th%¥ ARScommand
provides a method for defining a macro. Macros are defined @n-aque basis, using the syntax

VARS JobNamALL_NODES macroname="string'[macroname="string"". .]

The macro may be used within the submit description file ofrédevant node. Anacronameamay contain al-
phanumeric characters (a-z, A-Z, and 0-9) and the unde¥sdw@racter. The space character delimits macros, such

that there may be more than one macro defined on a single linkiph lines defining macros for the same node are
permitted.

Correct syntax requires that tisring must be enclosed in double quotes. To use a double quote nitdik &

string, escape the double quote mark with the backslash charag¢tefd add the backslash character itself, use two
backslashes\).

A restriction is that themacronamatself cannot begin with the stringueue, in any combination of upper or
lower case letters.

Examples

If the DAG input file contains

File name: diamond.dag

#

JOB A A.submit
JOB B B.submit
JOB C C.submit

JOB D D.submit

VARS A state="Wisconsin"
PARENT A CHILD B C
PARENT B C CHILD D

then the submit description fila.submit may use the macretate . Consider this submit description file
A.submit

file name: A.submit
executable = A.exe

log = Alog
arguments = "$(state)"
queue

The macro value expands to become a command-line argumting invocation of the job. The job is invoked with

A.exe Wisconsin

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 93

The use of macros may allow a reduction in the number of adisSnbmit description files. A separate example
shows this intended use YARS In the case where the submit description file for each nodesanly in file naming,
macros reduce the number of submit description files to one.

This example references a single submit description fileé@h of the nodes in the DAG input file, and it uses the
VARSentry to name files used by each job.

The relevant portion of the DAG input file appears as

JOB A theonefile.sub
JOB B theonefile.sub
JOB C theonefile.sub

VARS A filename="A"
VARS B filename="B"
VARS C filename="C"

The submit description file appears as

submit description file called: theonefile.sub

executable = progX

output = $(filename)
error = error.$(filename)
log = $(filename).log
queue

For a DAG such as this one, but with thousands of nodes, thigydbiwrite and maintain a single submit descrip-
tion file together with a single, yet more complex, DAG inpid fs worthwhile.

Multiple macroname definitions

If a macro name for a specific node in a DAG is defined more thae,as it would be with the partial file contents

JOB jobl jobl.submit
VARS jobl a="foo"
VARS jobl a="bar"

a warning is written to the log, of the format

Warning: VAR <macroname> is already defined in job <JobName >
Discovered at file "<DAG input file name>", line <line numbe r>

The behavior of DAGMan is such that all definitions for the moaexist, but only the last one defined is used as
the variable’s value. Using this example, if jobl.submit submit description file contains

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 94

arguments = "$(a)"
then the argument will bbar .
Special characters within VARS string definitions

The value defined for a macro may contain spaces and tabsalddgossible to have double quote marks and
backslashes within a value. In order to have spaces or tahswai value specified for a command line argument, use
the New Syntax format for tharguments submit command, as described in secfioh 11. Escapes folelqubte
marks depend on whether the New Syntax or Old Syntax formagesl for thearguments submit command. Note
that in both syntaxes, double quote marks require two leMescaping: one level is for the parsing of the DAG input
file, and the other level is for passing the resulting valueughcondor_submit

As of HTCondor version 8.3.7, single quotes are permittafiwithe value specification. For the specification of
command linearguments single quotes can be used in three ways:

« in Old Syntax, within a macro’s value specification
« in New Syntax, within a macro’s value specification

« in New Syntax only, to delimit an argument containing whsipace

There are examples of all three cases below. In New Syntgage a single quote as part of an argument, escape it
with another single quote famondor_submiparsing as in the example’s Nodédurth macro.

As an example that shows uses of all special charactersahemly the relevant parts of a DAG input file. Note
that the NodeA value for the macsecond contains a tab.

VARS NodeA first="Alberto Contador"

VARS NodeA second="\"\"Andy Schleck\"\""

VARS NodeA third="Lance\\ Armstrong"

VARS NodeA fourth="Vincenzo "The Shark" Nibali"
VARS NodeA misc="1@#$%"&* ()_-=+=[]{}?/"

VARS NodeB first="Lance_Armstrong"

VARS NodeB second="\\\"Andreas_Kloden\\\""
VARS NodeB third="Ivan_Basso"

VARS NodeB fourth="Bernard_'The_Badger'_Hinault"
VARS NodeB misc="1@#$%"&* ()_-=+=[|{}?/"

VARS NodeC args="Nairo Quintana' '‘Chris Froome"

Consiéjer an example in which the submit description file fod8A uses the New Syntax for tleeguments
command:

arguments = "$(first)’ '$(second)’ '$(third)" '($fourth)" '$(misc)™

The single quotes around each variable reference are oogssary if the variable value may contain spaces or tabs.
The resulting values passed to the NodeA executable are:

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 95

Alberto Contador

"Andy Schleck"

Lance\ Armstrong

Vincenzo 'The Shark' Nibali
@#$%"& ()_-=+=[1{}?/

Consiéjer an example in which the submit description file faddB uses the Old Syntax for tteeguments
command:

arguments = $(first) $(second) $(third) $(fourth) $(misc)
The resulting values passed to the NodeB executable are:

Lance_Armstrong
"Andreas_Kloden"
lvan_Basso
Bernard_'The_Badger'_Hinault
|@#$%0"& ()_-=+=[{}?/

Consi((jjer an example in which the submit description file fodBIC uses the New Syntax for theguments
command:

arguments = "$(args)"
The resulting values passed to the NodeC executable are:

Nairo Quintana
Chris Froome

Using special macros within a definition

The$(JOB) and$(RETRY) macros may be used within a definition of tsteing that defines a variable. This

usage requires parentheses, such that proper macro stibstinay take place when the macro’s value is only a
portion of the string.

« $(JOB) expands to the nodd@dobName If the VARSIine appears in a DAG file used as a splice file, then
$(JOB) will be the fully scoped name of the node.

For example, the DAG input file lines

JOB NodeC NodeC.submit
VARS NodeC nodename="$(JOB)"

setnodename to NodeC, and the DAG input file lines

JOB NodeD NodeD.submit
VARS NodeD outfilename="$(JOB)-output"

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 96

setoutfilename to NodeD-output

* $(RETRY) expands to 0 the first time a node is run; the value is increedsedich time the node is retried. For
example:

VARS NodeE noderetry="$(RETRY)"
Using VARS to define ClassAd attributes

Themacronamenay also begin with & character, in which case it names a ClassAd attribute. Faomele, the
VARS specification

VARS NodeF +A="\"bob\""
results in the job ClassAd attribute
A = "bob"

Note that ClassAd string values must be quoted, hence theresaaped quotes in the example above. The outer
guotes are consumed in the parsing of the DAG input file, sesisaped inner quotes remain in the definition of the
attribute value.

Continuing this example, it allows the HTCondor submit digsion file for NodeF to use the following line:
arguments = "$$([A])"
The special macros may also be used. For example
VARS NodeG +B="$(RETRY)"
places the numerical attribute
B=1

into the ClassAd when the NodeG job is run for a second timégtwis the first retry and the value 1.

Setting Priorities for Nodes

The PRIORITYcommand assigns a priority to a DAG node (and to the HTCormla(s) associated with the node).
The syntax foPRIORITYis

PRIORITY JobNam@LL_NODES PriorityValue

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 97

The priority value is an integer (which can be negative). iyém numerical priority is better. The default priority
is 0.

The node priority affects the order in which nodes that aaelygall of their parent nodes have finished success-
fully) at the same time will be submitted. The node priorityaasets the node job’s priority in the queue (that is, its
JobPrio attribute), which affects the order in which jobs will be ronce they are submitted (sée_2]7.1 for more
information about job priority). The node priority only effts the order of job submissiaevithin a given DAG but
once jobs are submitted, thdiobPrio value affects the order in which they will be run relative ig@bs submitted
by the same user.

Sub-DAGs can have priorities, just as "regular" nodes c@he priority of a sub-DAG will affect the priorities of
its nodes: see "effective node priorities" below.) Splicasnot be assigned a priority, but individual nodes within a
splicecanbe assigned priorities.

Note that node priority doesotoverride the DAG dependencies. Also note that node présraire noguarantees
of the relative order in which nodes will be run, even amonde®that become ready at the same time — so node
priorities should not be used as a substitute for pareid/cleipendencies. In other words, priorities should be used
when it is preferable, but not required, that some jobs rdorbeothers. (The order in which jobs are run once they
are submitted can be affected by many things other than tie joiority; for example, whether there are machines
available in the pool that match the job’s requirements.)

PRE scripts can affect the order in which jobs run, so DAGgaioing PRE scripts may not submit the nodes in
exact priority order, even if doing so would satisfy the DAGyendencies.

Node priority is most relevant if node submission is theatt(via the-maxjobsor -maxidlecommand-line ar-
guments or thdAGMAN_MAX_JOBS_SUBMITTEEDAGMAN_MAX_JOBS_IDLébNnfiguration variables), or if
there are not enough resources in the pool to immediatelglignbmitted node jobs. This is often the case for DAGs
with large numbers of "sibling" nodes, or DAGs running onvilaloaded pools.

Example

Adding PRIORITYfor node C in the diamond-shaped DAG:

File name: diamond.dag
#

JOB A A.condor

JOB B B.condor

JOB C C.condor

JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
Retry C 3

PRIORITY C 1

This will cause node C to be submitted (and, mostly likely))rbefore node B. Without this priority setting for
node C, node B would be submitted first because the "JOB"mst@tefor node B comes earlier in the DAG file than
the "JOB" statement for node C.

Effective node priorities

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 98

The "effective" priority for a node (the priority controlli ng the order in which nodes are actually submitted,
and which is assigned taJobPr i 0) is the sum of the explicit priority (specified in the DAG file) and the priority
of the DAG itself. DAG priorities also default to 0, so they are most relevamtsiab-DAGs (although a top-level
DAG can be submitted with a non-zero priority by specifyingpdority value on thecondor_submit_dagommand
line). This algorithm for calculating effective priorities is a simplification introduced in version 8.5.7 (a node’s
effective priority is no longer dependent on the prioritiesof its parents).

Here is an example to clarify:

File name: priorities.dag
#
JOB A Asub
SUBDAG EXTERNAL B SD.dag
PARENT A CHILD B
PRIORITY A 60
PRIORITY B 100

File name: SD.dag
#
JOB SA SA.sub
JOB SB SB.sub
PARENT SA CHILD SB
PRIORITY SA 10
PRIORITY SB 20

In this example (assuming that priorities.dag is submittétl the default priority of 0), the effective priority of
node A will be 60, and the effective priority of sub-DAG B wile 100. Therefore, the effective priority of node SA
will be 110 and the effective priority of node SB will be 120.

The effective priorities listed above are assigned by DA@MEhere is no way to change the priority in the submit
description file for a job, as DAGMan will override apyiority command placed in a submit description file (unless
the effective node priority is 0; in this case, any prioripesified in the submit file will take effect).

Throttling Nodes by Category

In order to limit the number of submitted job clusters witlDAG, the nodes may be placed into categories by
assignment of a name. Then, a maximum number of submittstectumay be specified for each category.

The CATEGORYcommand assigns a category name to a DAG node. The synt@&AHEGORMs
CATEGORY JobNamiALL _NODES CategoryName
Category names cannot contain white space.

The MAXJOBScommand limits the number of submitted job clusters on a peegory basis. The syntax for
MAXJOBSs

MAXJOBS CategoryName MaxJobsValue

If the number of submitted job clusters for a given categeaches the limit, no further job clusters in that category

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 99

will be submitted until other job clusters within the categterminate. If MAXJOBS is not set for a defined category,
then there is no limit placed on the number of submissionsiwthat category.

Note that a single invocation @bndor_submitesults in one job cluster. The number of HTCondor jobs wwithi
cluster may be greater than 1.

The configuration variablBAGMAN_MAX_JOBS_SUBMITTa&ml thecondor_submit_dag -maxjolsemmand-
line option are still enforced if theSBATEGORYandMAXJOBShrottles are used.

Please see the end of section 2.110.9 on DAG Splicing for ariggisn of the interaction between categories and
splices.

Configuration Specific to a DAG

All configuration variables and their definitions that reled DAGMan may be found in section 3.5124.

Configuration variables farondor_dagmaugan be specified in several ways, as given within the ordésed |

1. Inan HTCondor configuration file.
2. With an environment variable. Prepend the stri@@PNDORto the configuration variable’s name.

3. With a line in the DAG input file using the keywof@ONFIG, such that there is a configuration file specified
that is specific to an instance obndor_dagmanThe configuration file specification may instead be specified
on thecondor_submit_dagommand line using the&onfig option.

4. For some configuration variablexyndor_submit_dagommand line argument specifies a configuration vari-
able. For example, the configuration variabDlRGMAN_MAX_JOBS_SUBMITTEE> the corresponding com-

mand line argumenmaxjobs

For this ordered list, configuration values specified or @étater in the list override ones specified earlier. For ex-
ample, a value specified on thendor_submit_dagommand line overrides corresponding values in any cordtgur
file. And, a value specified in a DAGMan-specific configurafitmoverrides values specified in a general HTCondor

configuration file.

The CONFIG command within the DAG input file specifies a configuration fdebe used to set configuration
variables related toondor_dagmamvhen running this DAG. The syntax f&-ONFIGis

CONFIG ConfigFileName

As an example, if the DAG input file contains:
CONFIG dagman.config

then the configuration values in fildagman.config will be used for this DAG. If the contents of file
dagman.config is

DAGMAN_MAX_JOBS_IDLE = 10

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 100

then this configuration is defined for this DAG.

Only a single configuration file can be specified for a gieemdor_dagmamun. For example, if one file is
specified within a DAG input file, and a different file is spesifion thecondor_submit_dagommand line, this is a
fatal error at submit time. The same is true if different cgufation files are specified in multiple DAG input files and
referenced in a singleondor_submit_dagommand.

If multiple DAGs are runin a singleondor_dagmarun, the configuration options specified in t@dor_dagman
configuration file, if any, apply to all DAGs, even if some o0étBAGs specify no configuration file.

Configuration variables that are not foondor_dagmasmnd not utilized by DaemonCore, yet are specified in a
condor_dagmasspecific configuration file are ignored.

Setting ClassAd attributes in the DAG file

The SET_JOB_ATTReyword within the DAG input file specifies an attribute/\alpair to be set in the DAGMan
job’s ClassAd. The syntax f@ET_JOB_ATTR
SET_JOB_ATTR AttributeNameAttributeValue

As an example, if the DAG input file contains:
SET _JOB_ATTR TestNumber = 17

the ClassAd of the DAGMan job itself will have an attribdtestNumber with the valuel?.

The attribute set by th8ET_JOB_ATTRommand is set only in the ClassAd of the DAGMan job itselfis itot
propagated to node jobs of the DAG.

Values with spaces can be set by surrounding the string ioimgea. space with single or double quotes. (Note that
the quote marks themselves will be part of the value.)

Only a single attribute/value pair can be specified®ET_JOB_ATTRommand. If the same attribute is specified
multiple times in the DAG (or in multiple DAGs run by the samA®GMan instance) the last-specified value is the one
that will be utilized. An attribute set in the DAG file can bessridden by specifying

-append '+<attribute> = <value>'

on thecondor_submit_dagommand line.

Optimization of Submission Time

condor_dagmanvorks by watching log files for events, such as submissiamiteation, and going on hold. When
a new job is ready to be run, it is submitted to tendor_scheddwhich needs to acquire a computing resource.
Acquisition requires theondor_schedtb contact the central manager and get a claim on a machidehanclaim
cycle can take many minutes.

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 101

Configuration variabl©AGMAN_HOLD_CLAIM_TIMi#voids the wait for a negotiation cycle. When set to a non
zero value, theondor_sched#eeps a claim idle, such that tisendor_startddelays in shifting from the Claimed
to the Preempting state (see Figlre 3.1). Thus, if anotheajppears that is suitable for the claimed resource, then
thecondor_scheddvill submit the job directly to theondor_startdavoiding the wait and overhead of a negotiation
cycle. This results in a speed up of job completion, esplgdiat linear DAGS in pools that have lengthy negotiation
cycle times.

By default, DAGMAN_HOLD_CLAIM_TIME 20, causing a claim to remain idle for 20 seconds, duringlvh
time a new job can be submitted directly to the already-cdgioondor_startd A value of 0 means that claims are
not held idle for a running DAG. If a DAG node has no childrdrg talue o0 DAGMAN_HOLD_CLAIM_TIMHill be
ignored; theKeepClaimldle attribute will not be defined in the job ClassAd of the node jatiess the job requests
it using the submit commariakep_claim_idle

Single Submission of Multiple, Independent DAGs

A single use oftondor_submit_dagay execute multiple, independent DAGs. Each independaf Bas its own,
distinct DAG input file. These DAG input files are commandelarguments teondor_submit_dag

Internally, all of the independent DAGs are combined intongle, larger DAG, with no dependencies between
the original independent DAGs. As a result, any generatetiReDAG file represents all of the original independent
DAGs with a single DAG. The file name of this Rescue DAG is basedhe DAG input file listed first within the
command-line arguments. For example, assume that threpaéndient DAGs are submitted with

condor_submit_dag A.dag B.dag C.dag

The first listed isA.dag . The remainder of the specialized file name adds a suffix digditst DAG input file name,
A.dag . The suffix is_multi.rescue<XXX> , where<XXX>is substituted by the 3-digit number of the Rescue
DAG created as defined in section 2.10.10. The first time aulReBAG is created for the example, it will have the
file nameA.dag_multi.rescue001

Other files such adagman.out and the lock file also have names based on this first DAG ingut fil

The success or failure of the independent DAGs is well defikiéiten multiple, independent DAGs are submitted
with a single command, the success of the composite DAG isielbfas the logical AND of the success of each
independent DAG. This implies that failure is defined as tiggdal OR of the failure of any of the independent DAGs.

By default, DAGMan internally renames the nodes to avoidenmaime collisions. If all node names are unique, the
renaming of nodes may be disabled by setting the configuratidableDAGMAN_MUNGE_NODE_NAtdESIse
(see[3.5.24).

INCLUDE

The INCLUDE command allows the contents of one DAG file to be parsed agyfwere physically included in the
referencing DAG file. The syntax fdNCLUDE is

INCLUDE FileName

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan

102

For example, if we have two DAG files like this:

File name: foo.dag
#
JOB A Assub
INCLUDE bar.dag

File name: bar.dag
#
JOB B B.sub
JOB C C.sub

this is equivalent to the single DAG file:

JOB A Asub
JOB B B.sub
JOB C C.sub

Note that the included file must be in proper DAG syntax. Athere are many cases where a valid included DAG

file will cause a parse error, such as the including and iredifdes defining nodes with the same name.

INCLUDEsS can be nested to any depth (be sure not to create a cycldud@st).

Example: Using INCLUDE to simplify multiple similar workflo ws

One use of théNCLUDE command is to simplify the DAG files when we have a single workfthat we want to

run on a number of data sets. In that case, we can do someitkertgis:

File name: workflow.dag

Defines the structure of the workflow
JOB Split split.sub
JOB Process00 process.sub

JOB Process99 process.sub
JOB Combine combine.sub

PARENT Split CHILD Process00 ... Process99
PARENT Process00 ... Process99 CHILD Combine

File name: split.sub
executable = my_split
input = $(dataset).phasel
output = $(dataset).phase?2

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 103

File name: data57.vars
VARS Split dataset="data57"
VARS Process00 dataset="data57"

VARS Process99 dataset="data57"
VARS Combine dataset="data57"

File name: run_dataset57.dag
INCLUDE workflow.dag
INCLUDE data57.vars

Then, to run our workflow on dataset 57, we run the followinghawand:
condor_submit_dag run_dataset57.dag

This avoids having to duplicate ti®BandPARENT/CHILDcommands for every dataset — we can just re-use the
workflow.dag file, in combination with a dataset-specific vars file.

Composing workflows from multiple DAG files

The organization and dependencies of the jobs within a DAGle keys to its utility. Some workflows are naturally
constructed hierarchically, such that a node within a DAGIs a DAG (instead of a "simple” HTCondor job).
HTCondor DAGMan handles this situation easily, and allowg33 to be nested to any depth.

There are two ways that DAGs can be nested within other DA@s:BAGs (se€ 2.101.9) and splices (eee 2]10.9).

With sub-DAGs, each DAG has its owaondor_dagmaipob, which then becomes a node job within the higher-
level DAG. With splices, on the other hand, the nodes of thieegh DAG are directly incorporated into the higher-level
DAG. Therefore, splices do not result in additionahdor_dagmainstances.

A weakness in scalability exists when submitting externdFBAGS, because each executing independent DAG
requires its own instance ebndor_dagmato be running. The outer DAG has an instanceafdor_dagmanand
each named SUBDAG has an instancecohdor_dagmamwhile it is in the HTCondor queue. The scaling issue
presents itself when a workflow contains hundreds or thalsahsub-DAGs that are queued at the same time. (In
this case, the resources (especially memory) consumecehwtiftiplecondor_dagmainstances can be a problem.)
Further, there may be many Rescue DAGs created if a problenr&ic(Note that the scaling issue depends only on
how many sub-DAGs are queued at any given time, not the totaber of sub-DAGs in a given workflow; division
of a large workflow intosequentialsub-DAGs can actually enhance scalability.) To allevitiese concerns, the
DAGMan language introduces the concept of graph splicing.

Because splices are simpler in some ways than sub-DAGs, taey generally preferred un-
less certain features are needed that are only availableh vatib-DAGs. This document:
https://htcondor-wiki.cs.wisc.edu/index.cgi/wikiZpebDagsVsSplices explains the pros and cons of splices
and external sub-DAGs, and should help users decide whieinative is better for their application.

HTCondor Version 8.6.4 Manual

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=SubDagsVsSplices

2.10.9. Advanced Features of DAGMan 104

Note that sub-DAGs and splices can be combined in a singlkflear, and can be nested to any depth (but be sure
to avoid recursion, which will cause problems!).

A DAG Within a DAG Is a SUBDAG

As stated above, the SUBDAG EXTERNAL command causes thafsgabDAG file to be run by a separate instance
of condor_dagmaywith thecondor_dagmajob becoming a node job within the higher-level DAG.

The syntax for the SUBDAG command is
SUBDAG EXTERNAL JobName DagFileNam@®IR directory] [NOOP] [DONE]

The optional specifications &fIR, NOOP, andDONE, if used, must appear in this order within the entdfDOP
andDONE for SUBDAG nodes have the same effect that they doJf0B nodes.

A SUBDAG node is essentially the same as any other node, except thBXAG input file for the inner DAG is
specified, instead of the HTCondor submit file. The keywoXIERNAL means that the SUBDAG is run within its
own instance ofondor_dagman

Since more than one DAG is being discussed, here is ternggafdroduced to clarify which DAG is which.
Reuse the example diamond-shaped DAG as given in FigureA2sime that node B of this diamond-shaped DAG
will itself be a DAG. The DAG of node B is called a SUBDAG, inf2AG, or lower-level DAG. The diamond-shaped
DAG is called the outer or top-level DAG.

Work on the inner DAG first. Here is a very simple linear DAGunfile used as an example of the inner DAG.

File name: inner.dag
#

JOB X X.submit
JOB Y Y.submit
JOB Z Z.submit
PARENT X CHILD Y
PARENT Y CHILD z

The HTCondor submit description file, used lepndor_dagman corresponding toinner.dag will be
named inner.dag.condor.sub . The DAGMan submit description file is always name®AG file
name>.condor.sub . Each DAG or SUBDAG results in the submissioncoindor_dagmaims an HTCondor job,
andcondor_submit_dagreates this submit description file.

The preferred specification of the DAG input file for the oud&G is

File name: diamond.dag
#
JOB A A.submit
SUBDAG EXTERNAL B inner.dag
JOB C C.submit
JOB D D.submit

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 105

PARENT A CHILD B C
PARENT B C CHILD D

Within the outer DAG’s input file, th&UBDAG command specifies a special case dfaB node, where the job
is itself a DAG.

One of the benefits of using the SUBDAG feature is that postiohthe overall workflow can be constructed
and modified during the execution of the DAG (a SUBDAG file doekave to exist until just before it is submit-
ted). A drawback can be that each SUBDAG causes its own digtih submission otondor_dagmayleading to a
larger number of jobs, together with their potential needakfully constructed policy configuration to throttle eod
submission or execution (because each SUBDAG has its owttlds).

Here are details that affect SUBDAGS:

» Nested DAG Submit Description File Generation
There are three ways to generate tfixAG file name>.condor.sub file of a SUBDAG:

— Lazily (the defaultin HTCondor version 7.5.2 and later versions)
— Eagerly (the defaultin HTCondor versions 7.4.1 through 7.5.1)
— Manually (the only way prior to version HTCondor version 7.4.1)

When the<DAG file name>.condor.sub file is generatedhzily, this file is generated immediately be-
fore the SUBDAG job is submitted. Generation is accomplildine running

condor_submit_dag -no_submit

on the DAG input file specified in theUBDAG entry. This is the default behavior. There are advantaggsgo
lazy mode of submit description file creation for the SUBDAG:

— The DAG input file for a SUBDAG does not have to exist until tHeBPDAG is ready to run, so this file
can be dynamically created by earlier parts of the outer DABGyahe PRE script of the node containing
the SUBDAG.

— Itis now possible to have SUBDAGSs within splices. That ispassible with eager submit description file
creation, becausmondor_submit_dadoes not understand splices.

The main disadvantage of lazy submit file generation is tlsgthgax error in the DAG input file of a SUBDAG
will not be discovered until the outer DAG tries to run theenDAG.

When<DAG file name>.condor.sub files are generateghgerly, condor_submit_daguns itself recur-
sively (with the-no_submitoption) on each SUBDAG, so all of theDAG file name>.condor.sub

files are generated before the top-level DAG is actually stibth To generate the<DAG file
name>.condor.sub files eagerly, pass thedo_recurseflag to condor_submit_dag also set the
DAGMAN_GENERATE_SUBDAG_SUBMidiSiguration variable td-alse , so thatcondor_dagmardoes
not re-runcondor_submit_dagt run time thereby regenerating the submit descriptios.file

To generate thecondor.sub files manually, run

condor_submit_dag -no_submit

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 106

on each lower-level DAG file, before runningpndor_submit_dagn the top-level DAG file; also set
the DAGMAN_GENERATE_SUBDAG_SUBMia@ffiguration variable td-alse , so thatcondor_dagman
does not re-runcondor_submit_dagat run time. The main reason for generating thBAG file
name>.condor.sub files manually is to set options for the lower-level DAG thatavould not otherwise
be able to set An example of this is thasert_sub_fileption. For instance, using the given example do the
following to manually generate HTCondor submit descripfiites:

condor_submit_dag -no_submit -insert_sub_file fragment .sub inner.dag
condor_submit_dag diamond.dag

Note that mostondor_submit_dagommand-line flags have corresponding configuration verslso we en-
courage the use of per-DAG configuration files, especiallhécase of nested DAGs. This is the easiest way
to set different options for different DAGs in an overall Wfiow.

It is possible to combine more than one method of generatieg<DAG file name>.condor.sub

files. For example, one might pass thdo_recurse flag to condor_submit_dag but leave the
DAGMAN_GENERATE_SUBDAG_SUBMIdIiguration variable set to the default ©fue . Doing this
would provide the benefit of an immediate error message anhgubne, if there is a syntax error in one of
the inner DAG input files, but the lower-leveDAG file name>.condor.sub files would still be regen-
erated before each nested DAG is submitted.

The values of the following command-line flags are passenh fitte top-levetondor_submit_damstance to
any lower-levelkcondor_submit_damstances. This occurs whether the lower-level submitrifgsan files are
generated lazily or eagerly:

— -verbose

— -force

— -notification

— -allowlogerror

— -dagman

— -usedagdir

— -outfile_dir

— -oldrescue

— -autorescue

— -dorescuefrom

— -allowversionmismatch

— -no_recurse/do_recurse

— -update_submit

— -import_env

— -suppress_notification

— -priority

— -dont_use_default_node_log

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 107

The values of the following command-line flags are presemenhy already-existing lower-level DAG submit
description files:

-maxjobs

-maxidle

-maxpre

-maxpost
— -debug

Other command-line arguments are set to their defaultsyinaver-level invocations ofondor_submit_dag
The -force option will cause existing DAG submit description files to d@eerwritten without preserving any
existing values.

» Submission of the outer DAG
The outer DAG is submitted as before, with the command

condor_submit_dag diamond.dag

« Interaction with Rescue DAGs

The use of new-style Rescue DAGs is now the default. With sgie rescue DAGs, the appropriate res-
cue DAG(s) will be run automatically if there is a failure sewhere in the workflow. For example (given
the DAGs in the example at the beginning of the SUBDAG segtitfnone of the nodes innner.dag

fails, this will produce a Rescue DAG famner.dag (namedinner.dag.rescue.001). Then, since
inner.dag failed, node B ofliamond.dag will fail, producing a Rescue DAG fatiamond.dag (named
diamond.dag.rescue.001 , etc.). If the command

condor_submit_dag diamond.dag

is re-run, the most recent outer Rescue DAG will be run, arsvifil re-run the inner DAG, which will in turn
run the most recent inner Rescue DAG.

* File Paths

Remember that, unless the DIR keyword is used in the outer,BA&inner DAG utilizes the current working
directory when the outer DAG is submitted. Therefore, ahpautilized by the inner DAG file must be specified
accordingly.

DAG Splicing

As stated above, the SPLICE command causes the nodes oflitedsPAG to be directly incorporated into the
higher-level DAG (the DAG containing the SPLICE command).
The syntax for th&sPLICEcommand is

SPLICE SpliceName DagFileNani®IR directory]

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 108

A splice is a named instance of a subgraph which is specifiedseparate DAG file. The splice is treated as an
entity for dependency specification in the including DAGoCeptually, a splice is treated as a node within the DAG
containing the SPLICE command, although there are somdaliimns, which are discussed below. This means, for
example, that splices can have parents and children.) Bespdin also be incorporated into an including DAG without
any dependencies; it is then considered a disjoint DAG withé including DAG.

The same DAG file can be reused as differently named splieeh, @ne incorporating a copy of the dependency
graph (and nodes therein) into the including DAG.

The nodes within a splice are scoped according to a hierarthgmes associated with the splices, as the splices
are parsed from the top level DAG file. The scoping charactelescribe the inclusion hierarchy of nodes into the
top level dag is+' . (In other words, if a splice named "SpliceX" contains a nodeed "NodeY", the full node
name once the DAGs are parsed is "SpliceX+NodeY". This ctarés chosen due to a restriction in the allowable
characters which may be in a file name across the variety tbptas that HTCondor supports. In any DAG input file,
all splices must have unique names, but the same splice naybea@reused in different DAG input files.

HTCondor does not detect nor support splices that form seowithin the DAG. A DAGMan job that causes a
cyclic inclusion of splices will eventually exhaust avaike memory and crash.

The SPLICEcommand in a DAG input file creates a named instance of a DA@edifeed in another file as an

entity which may havé®ARENTandCHILD dependencies associated with other splice names or nodesnarthe
including DAG file.

The following series of examples illustrate potential usiesplicing. To simplify the examples, presume that each
and every job uses the same, simple HTCondor submit deiserijiie:

BEGIN SUBMIT FILE submit.condor

executable = /bin/echo
arguments = OK

universe = vanilla

output = $(jobname).out
error = $(jobname).err
log = submit.log
notification = NEVER

queue

END SUBMIT FILE submit.condor

This first simple example splices a diamond-shaped DAG iwéet the two nodes of a top level DAG. Here is
the DAG input file for the diamond-shaped DAG:

BEGIN DAG FILE diamond.dag
JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor
VARS B jobname="$(JOB)"

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 109

JOB C submit.condor
VARS C jobname="$(JOB)"

JOB D submit.condor
VARS D jobname="$(JOB)"

PARENT A CHILD B C

PARENT B C CHILD D
END DAG FILE diamond.dag

The top level DAG incorporates the diamond-shaped splice:

BEGIN DAG FILE toplevel.dag
JOB X submit.condor
VARS X jobname="$(JOB)"

JOB Y submit.condor
VARS Y jobname="$(JOB)"

This is an instance of diamond.dag, given the symbolic name DIAMOND
SPLICE DIAMOND diamond.dag

Set up a relationship between the nodes in this dag and the sp lice

PARENT X CHILD DIAMOND
PARENT DIAMOND CHILD Y

END DAG FILE toplevel.dag

Figure[2.3 illustrates the resulting top level DAG and theatelencies produced. Notice the naming of nodes
scoped with the splice name. This hierarchy of splice nareggras unique names associated with all nodes.

Figure[2.4 illustrates the starting point for a more comm@gample. The DAG input fil&X.dag describes this
X-shaped DAG. The completed example displays more of théadmanstructs provided by splices. Pay particular
attention to the notion that each named splice creates a regt geven when the same DAG input file is specified.

BEGIN DAG FILE X.dag

JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor
VARS B jobname="$(JOB)"

JOB C submit.condor

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 110

DIAMOND+A

DIAMOND+B DIAMOND+C

DIAMOND+D

Figure 2.3: The diamond-shaped DAG spliced between twosiode

VARS C jobname="$(JOB)"

JOB D submit.condor
VARS D jobname="$(JOB)"

JOB E submit.condor
VARS E jobname="$(JOB)"

JOB F submit.condor
VARS F jobname="$(JOB)"

JOB G submit.condor
VARS G jobname="$(JOB)"

Make an X-shaped dependency graph
PARENT A B C CHILD D
PARENT D CHILD E F G

END DAG FILE X.dag

File sl.dag continues the example, presenting the DAG input file thadriporates two separate splices of the
X-shaped DAG. Figure 215 illustrates the resulting DAG.

BEGIN DAG FILE sl.dag

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 111

Figure 2.4: The X-shaped DAG.

JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor
VARS B jobname="$(JOB)"

name two individual splices of the X-shaped DAG
SPLICE X1 X.dag
SPLICE X2 X.dag

Define dependencies

A must complete before the initial nodes in X1 can start
PARENT A CHILD X1

All final nodes in X1 must finish before

the initial nodes in X2 can begin

PARENT X1 CHILD X2

All final nodes in X2 must finish before B may begin.
PARENT X2 CHILD B

END DAG FILE sl.dag

The top level DAG in the hierarchy of this complex exampledsdibed by the DAG input filoplevel.dag
Figurd 2.6 illustrates the final DAG. Notice that the DAG has tlisjoint graphs in it as a result of splice S3 not having
any dependencies associated with it in this top level DAG.

BEGIN DAG FILE toplevel.dag

JOB A submit.condor
VARS A jobname="$(JOB)"

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 112

Figure 2.5: The DAG described Isl.dag .

JOB B submit.condor
VARS B jobname="$(JOB)"

JOB C submit.condor
VARS C jobname="$(JOB)"

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 113

JOB D submit.condor
VARS D jobname="$(JOB)"

a diamond-shaped DAG
PARENT A CHILD B C
PARENT B C CHILD D

This splice of the X-shaped DAG can only run after
the diamond dag finishes

SPLICE S2 X.dag

PARENT D CHILD S2

Since there are no dependencies for S3,
the following splice is disjoint
SPLICE S3 sl.dag

END DAG FILE toplevel.dag

Splices and rescue DAGs

Because the nodes of a splice are directly incorporatedhet®AG containing the SPLICE command, splices do
not generate their own rescue DAGS, unlike SUBDAG EXTERNALSs

The DIR option with splices

TheDIR option specifies a working directory for a splice, from whibk splice will be parsed and the jobs within
the splice submitted. The directory associated with theesgIDIR specification will be propagated as a prefix to
all nodes in the splice and any included splices. If a nodeadly has @IR specification, then the spliceBIR
specification will be a prefix to the node’s, separated by aatliry separator character. Jobs in included splices with
an absolute path for thedIR specification will have theiDIR specification untouched. Note that a DAG containing
DIR specifications cannot be run in conjunction with theedagdirommand-line argument wondor_submit_dag

A "full" rescue DAG generated by a DAG run with thesedagdirargument will contain DIR specifications, so
such a rescue DAG must be rwithout the -usedagdirargument. (Note that "full" rescue DAGs are no longer the
default.)

Limitation: splice DAGs must exist at submit time

Unlike the DAG files referenced in a SUBDAG EXTERNAL commabdG files referenced in a SPLICE command
must exist when the DAG containing the SPLICE command is sitiedn (Note that, if a SPLICE is contained within
a sub-DAG, the splice DAG must exist at the time that the s@lGs submitted, not when the top-most DAG is
submitted, so the splice DAG can be created by a part of th&fiear that runs before the relevant sub-DAG.)

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 114

Figure 2.6: The complex splice example DAG.
Limitation: Splices and PRE or POST Scripts

A PRE or POST script may not be specified for a splice (howengtes within a spliced DAG can have PRE and
POST scripts). (The reason for this is that, when the DAG isqx the splices are also parsed and the splice nodes
are directly incorporated into the DAG containing the SPEI€@mmand. Therefore, once parsing is complete, there
are no actual nodes corresponding to the splice itself talvu "attach” the PRE or POST scripts.)

To achieve the desired effect of having a PRE script asstiaith a splice, introduce a new NOOP node into the
DAG with the splice as a dependency. Attach the PRE scrifitadMOOP node.

BEGIN DAG FILE examplel.dag

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 115

Names a node with no associated node job, a NOOP node
Note that the file noop.submit does not need to exist
JOB OnlyPreNode noop.submit NOOP

Attach a PRE script to the NOOP node
SCRIPT PRE OnlyPreNode prescript.sh

Define the splice
SPLICE TheSplice thenode.dag

Define the dependency
PARENT OnlyPreNode CHILD TheSplice

END DAG FILE examplel.dag

The same technique is used to achieve the effect of havingsa Reript associated with a splice. Introduce a new
NOOP node into the DAG as a child of the splice, and attach @8Pscript to the NOOP node.

BEGIN DAG FILE example2.dag
Names a node with no associated node job, a NOOP node
Note that the file noop.submit does not need to exist.

JOB OnlyPostNode noop.submit NOOP

Attach a POST script to the NOOP node
SCRIPT POST OnlyPostNode postscript.sh

Define the splice
SPLICE TheSplice thenode.dag

Define the dependency
PARENT TheSplice CHILD OnlyPostNode

END DAG FILE example2.dag
Limitation: Splices and the RETRY of a Node, use of VARS, or us of PRIORITY

A RETRY, VARS or PRIORITY command cannot be specified for a B, however, individual nodes within a
spliced DAG can have a RETRY, VARS or PRIORITY specified.

Here is an example showing a DAG that will not be parsed ssfoihs

top level DAG input file
JOB A a.sub

SPLICE B b.dag
PARENT A CHILD B

cannot work, as B is not a node in the DAG once
splice B is incorporated
RETRY B 3

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 116

VARS B dataset="10"
PRIORITY B 20

The following examplawill work:

top level DAG input file
JOB A a.sub

SPLICE B b.dag
PARENT A CHILD B

file: b.dag
JOB X x.sub
RETRY X 3

VARS X dataset="10"
PRIORITY X 20

When RETRY is desired on an entire subgraph of a workflow, BABs (see above) must be used instead of
splices.

Here is the same example, now defining job B as a SUBDAG, aedtéify RETRY on that SUBDAG.

top level DAG input file
JOB A a.sub

SUBDAG EXTERNAL B b.dag
PARENT A CHILD B

RETRY B 3
Limitation: The Interaction of Categories and MAXJOBS with Splices

Categories normally refer only to nodes within a given spliall of the assignments of nodes to a category, and
the setting of the category throttle, should be done withgingle DAG file. However, it is now possible to have
categories include nodes from within more than one splice dd this, the category name is prefixed with the '+’
(plus) character. This tells DAGMan that the category isassfsplice category. Towards deeper understanding, what
this really does is prevent renaming of the category wherstiee is incorporated into the upper-level DAG. The
MAXJOBS specification for the category can appear in eitherupper-level DAG file or one of the splice DAG files.

It probably makes the most sense to put it in the upper-lexé Ble.

Here is an example which applies a single limitation on stteajobs, identifying the category witkinit

relevant portion of file name: upper.dag

SPLICE A splicel.dag
SPLICE B splice2.dag

MAXJOBS +init 2

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 117

relevant portion of file name: splicel.dag

JOB C C.sub
CATEGORY C +init
JOB D D.sub
CATEGORY D +init

relevant portion of file name: splice2.dag

JOB X X.sub
CATEGORY X +init
JOB Y Y.sub
CATEGORY Y +init

For both global and non-global category throttles, sestiaigp higher level in the DAG override settings at a lower
level. In this example:

relevant portion of file name: upper.dag
SPLICE A lower.dag

MAXJOBS A+catX 10
MAXJOBS +catY 2

relevant portion of file name: lower.dag

MAXJOBS catX 5
MAXJOBS +catY 1

the resulting throttle settings are 2 for theatY category and 10 for thA+catX category in splice. Note that
non-global category names are prefixed with their splicea{ajnso to refer to a non-global category at a higher level,
the splice name must be included.

DAG Splice Connections

In the "default" usage of splices described above, when pinegeds the parent of another splice, all "terminal” nodes
(nodes with no children) of the parent splice become paraH "initial" nodes (nodes with no parents) of the child
splice. The CONNECT, PIN_IN, and PIN_OUT commands (addeeision 8.5.7) allow more flexible dependencies
between splices. (The terms PIN_IN and PIN_OUT were choseause of the hardware analogy.)

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 118

The syntax folCONNECTis

CONNECT OutputSpliceName InputSpliceName
The syntax folPIN_IN is

PIN_IN NodeName PinNumber

The syntax folPIN_OUT is

PIN_OUT NodeName PinNumber

All output splice nodes connected to a given pin_out willdree parents of all input splice nodes connected to the
corresponding pin_in. (The pin_ins and pin_outs exist dalgreate the correct parent/child dependencies between
nodes. Once the DAG is parsed, there are no actual DAG olgeatssponding to the pin_ins and pin_outs.)

Any given splice can contain both PIN_IN and PIN_OUT deforis, and can be both an input and output splice
in different CONNECT commands. Furthermore, a splice cgreapin any number of CONNECT commands (for
example, a given splice could be the output splice in two CERN commands that have different input splices). Itis
notan error for a splice to have PIN_IN or PIN_OUT definitionstthiee not associated with a CONNECT command
—such PIN_IN and PIN_OUT commands are simply ignored.

Note that the pin_ins and pin_outs must be defiwitin the relevant splices (this can be done WRCLUDE
commands), not in the DAG that connects the splices.

There are a number of restrictions on splice connections:

« Connections can be made only between two splices; "régntates or sub-DAGs cannot be used in a CON-
NECT command.

* Pin_ins and pin_outs must be numbered consecutivelyrsjaat 1.

« The pin_outs of the output splice in a connect command mudtimthe pin_ins of the input splice in the
command.

« All"initial" nodes (nodes with no parents) of an input ggliused in a CONNECT command must be connected
to a pin_in.
Violating any of these restrictions will result in an erraurihg the parsing of the DAG files.

Note: itis probably desireable for any "terminal” node (d@with no children) in the output splice to be connected
to a pin_out — but this is not required.

Here is a simple example:

File: top.dag
SPLICE A spliceA.dag
SPLICE B spliceB.dag
SPLICE C spliceC.dag

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 119

CONNECT A B
CONNECT B C

File: spliceA.dag
JOB Al Al.sub
JOB A2 A2.sub

PIN_OUT Al 1
PIN_OUT A2 2

File: spliceB.dag
JOB B1 Bl.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB B4 B4.sub

PIN_IN B1 1
PIN_IN B2 1
PIN_IN B3 2
PIN_IN B4 2

PIN_OUT B1 1
PIN_OUT B2 2
PIN_OUT B3 3
PIN_OUT B4 4

File: spliceC.dag
JOB C1 Cl.sub

PIN_IN C1 1
PIN_IN C1 2
PIN_IN C1 3
PIN_IN C1 4

In this example, node Al will be the parent of B1 and B2; nodewPbe the parent of B3 and B4; and nodes B1,
B2, B3 and B4 will all be parents of C1.

A diagram of the above example:

FINAL node

A FINAL node is a single and special node that is always rumatend of the DAG, even if previous nodes in the
DAG have failed. A FINAL node can be used for tasks such asabgaup intermediate files and checking the output
of previous nodes. ThEINAL command in the DAG input file specifies a node job to be run agtiteof the DAG.

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 120

W) e

Splice B

Splice C

Figure 2.7: Diagram of the splice connect example

The syntax used for theINAL command is
FINAL JobName SubmitDescriptionFileNafi2R directory] [NOOP]

The FINAL node within the DAG is identified byjobNameand the HTCondor job is described by the contents of
the HTCondor submit description file given BybmitDescriptionFileName

The keywordDIR andNOOPare as detailed in sectibn 2.70.2. If b@R andNOOPare used, they must appear
in the order shown within the syntax specification.

There may only be one FINAL node in a DAG. A parse error will bgded by thecondor_dagmaiob in the
dagman.out file, if more than one FINAL node is specified.

The FINAL node is virtually always run. Itis run if theondor_dagmajob is removed wittcondor_rm The only
case in which a FINAL node is not run is if the configurationiahte DAGMAN_STARTUP_CYCLE_DETEESSet
to True , and a cycle is detected at start up timeDKGMAN_STARTUP_CYCLE_DETHS$et toFalse and a

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 121

cycle is detected during the course of the run, the FINAL neillebe run.

The success or failure of the FINAL node determines the ssooefailure of the entire DAG, overriding the status
of all previous nodes. This includes any status specifiedlgy?BORT-DAG-ON specification that has taken effect.
If some nodes of a DAG fail, but the FINAL node succeeds, th&Duill be considered successful. Therefore, it is
important to be careful about setting the exit status of tiNAE node.

The$DAG_STATUSNA$FAILED_COUNTmacros can be used both as PRE and POST script arguments, and i
node job submit description files. As an example of this, laeeghe partial contents of the DAG input file,

FINAL final_node final_node.sub
SCRIPT PRE final_node final_pre.pl $DAG_STATUS $FAILED_C OUNT

and here are the partial contents of the submit descriptieyfifial_node.sub
arguments = "$(DAG_STATUS) $(FAILED_COUNT)"

If there is a FINAL node specified for a DAG, it will be run at tead of the workflow. If this FINAL node must
not do anything in certain cases, use $¥AG_STATUSNd$FAILED_COUNTmMacros to take appropriate actions.
Here is an example of that behavior. It uses a PRE script tiatsif the DAG has been removed witbndor_rm
which, in turn, causes the FINAL node to be considered failitdout actually submitting the HTCondor job specified
for the node. Partial contents of the DAG input file:

FINAL final_node final_node.sub
SCRIPT PRE final_node final_pre.pl $DAG_STATUS

and partial contents of the Perl PRE scriptal_pre.pl

#! Jusr/bin/env perl

if (PARGVI[0] eq 4) {
exit(1);
}

There are restrictions on the use of a FINAL node. The DONEoaps not allowed for a FINAL node. And, a
FINAL node may not be referenced in any of the following sfieations:

PARENT, CHILD
RETRY

ABORT-DAG-ON

PRIORITY

HTCondor Version 8.6.4 Manual

2.10.9. Advanced Features of DAGMan 122

« CATEGORY

As of HTCondor version 8.3.7, DAGMan allows at most two sutatiempts of a FINAL node, if the DAG has
been removed from the queue witbhndor_rm

The ALL_NODES option

In the following commands, a specific node name can be reglagéhe optiorPALL_NODES

SCRIPT
PRE_SKIP

« RETRY
ABORT-DAG-ON
VARS
PRIORITY
CATEGORY

This will cause the given command to apply to all nodes (ekaap FINAL node) in that DAG.

The ALL_NODESneverapplies to a FINAL node. (If thALL_NODESoption is used in a DAG that has a FINAL
node, thedagman.out file will contain messages noting that the FINAL node is skippvhen parsing the relevant
commands.)

The ALL_NODESoption is case-insensitive.

It is important to note that thaLL_NODESoption doesot apply across splices and sub-DAGs. In other words,
anALL_NODESoption within a splice or sub-DAG will apply only to nodes tii that splice or sub-DAG; also, an
ALL_NODESoption in a parent DAG will not apply to any splices or sub-D#@ferenced by the parent DAG.

The ALL_NODESoptiondoeswork in combination with théNCLUDE command. In other words, a command
within an included file that uses thd_L_NODESoption will apply to all nodes in the including DAG (again,oept
any FINAL node).

As of version 8.5.8, th&LL_NODESoption cannot be used when multiple DAG files are specifiecherton-
dor_submit_dagommand line. Hopefully this limitation will be fixed in a fute release.

When multiple commands (whether using thiel. NODESoption or not) set a given property of a DAG node, the
last relevant command overrides earlier commands, as shmotle following examples:

For example, in this DAG:

JOB A node.sub
VARS A name="A"
VARS ALL_NODES name="X"

HTCondor Version 8.6.4 Manual

2.10.10. The Rescue DAG 123

the value ohamefor node A will be "X".

In this DAG:

JOB A node.sub

VARS A name="A"

VARS ALL_NODES name="X"
VARS A name="foo"

the value ohamefor node A will be "foo".

Here is an example DAG using tidé¢ L NODESoption:

File: all_ex.dag
JOB A node.sub
JOB B node.sub
JOB C node.sub

SCRIPT PRE ALL_NODES my_script $JOB
VARS ALL_NODES name="$(JOB)"

This overrides the above VARS command for node B.
VARS B name="nodeB"

RETRY all_nodes 3

2.10.10 The Rescue DAG

Any time a DAG exits unsuccessfully, DAGMan generates a Ref2AG. The Rescue DAG records the state of the
DAG, with information such as which nodes completed suda#igsand the Rescue DAG will be used when the DAG
is again submitted. With the Rescue DAG, nodes that havadyjrsuccessfully completed are not re-run.

There are a variety of circumstances under which a Rescueibgénerated. If a node in the DAG fails, the DAG
does not exit immediately; the remainder of the DAG is camghuntil no more forward progress can be made based
on the DAG’s dependencies. At this point, DAGMan producesRhscue DAG and exits. A Rescue DAG is produced
on Unix platforms if thecondor_dagmaliob itself is removed witlcondor_rm On Windows, a Rescue DAG st
generated in this situation, but re-submitting the origi¥G will invoke a lower-level recovery functionality, aritl
will produce similar behavior to using a Rescue DAG. A ResbA& is produced when a node sets and triggers an
ABORT-DAG-ONevent with a non-zero return value. A zero return value ¢tuiss successful DAG completion, and
therefore a Rescue DAG is not generated.

By default, if a Rescue DAG exists, it will be used when the D&BGubmitted specifying the original DAG
input file. If more than one Rescue DAG exists, the newest dfida/used. By using the Rescue DAG, DAGMan
will avoid re-running nodes that completed successfullyhia previous run.Note that passing the-force option

HTCondor Version 8.6.4 Manual

2.10.10. The Rescue DAG 124

to condor_submit_da@r condor_dagmarwill cause condor_dagmarto not use any existing rescue DAG. This
means that previously-completed node jobs will be re-run.

The granularity defining success or failure in the Rescue B\tBe node. For a node that fails, all parts of the
node will be re-run, even if some parts were successful thetfine. For example, if a node’s PRE script succeeds,
but then the node’s HTCondor job cluster fails, the entirdeancluding the PRE script, will be re-run. A job cluster
may result in the submission of multiple HTCondor jobs. Ieaf the jobs within the cluster fails, the node fails.
Therefore, the Rescue DAG will re-run the entire node, inmgthe submission of the entire cluster of jobs, not just
the one(s) that failed.

Statistics about the failed DAG execution are presentedasnents at the beginning of the Rescue DAG input
file.

Rescue DAG Naming

The file name of the Rescue DAG is obtained by appending tiregsiescue<XXX> to the original DAG
input file name. Values foxXXX>start at001 and continue t®02, 003, and beyond. The configuration variable
DAGMAN_MAX_RESCUE_Nigk8 a maximum value ferXXX> see sectioh 3.5.24 for the complete definition of
this configuration variable. If you hit tHRAGMAN_MAX_ RESCUE_ Nidi, the last Rescue DAG file is overwritten
if the DAG fails again.

If a Rescue DAG exists when the original DAG is re-submitthd,Rescue DAG with the largest magnitude value
for <XXX>will be used, and its usage is implied.

Example

Here is an example showing file naming and DAG submissionhfercase of a failed DAG. The initial DAG is
submitted with

condor_submit_dag my.dag

A failure of this DAG results in the Rescue DAG nanmeg.dag.rescue001 . The DAG is resubmitted using the
same command:

condor_submit_dag my.dag

This resubmission of the DAG uses the Rescue DAGHfiledag.rescue001 , because it exists. Failure of this
Rescue DAG results in another Rescue DAG caflgddag.rescue002 . If the DAG is again submitted, using the
same command as with the first two submissions, but not regéuere, then this third submission uses the Rescue
DAG file my.dag.rescue002 , because it exists, and because the vale is larger in magnitude tha®01.

Backtracking to an Older Rescue DAG

HTCondor Version 8.6.4 Manual

2.10.10. The Rescue DAG 125

To explicitly specify a particular Rescue DAG, use the opsloccommand-line argumerdorescuefromvith con-
dor_submit_dagNote that this will have the side effect of renaming exigtRescue DAG files with larger magnitude
values of<XXX> Each renamed file has its existing name appended with ting sttd . For example, assume that
my.dag has failed 4 times, resulting in the Rescue DAGs namgdiag.rescue001 , my.dag.rescue002 ,
my.dag.rescue003 , andmy.dag.rescue004 . A decision is made to re-run usingy.dag.rescue002
The submit command is

condor_submit_dag -dorescuefrom 2 my.dag

The DAG specified by the DAG input fileny.dag.rescue002 is submitted. And, the existing Rescue
DAG my.dag.rescue003 is renamed to bany.dag.rescue003.old , while the existing Rescue DAG
my.dag.rescue004 is renamed to beny.dag.rescue004.old

Special Cases

Note that if multiple DAG input files are specified on ttendor_submit_dagommand line, a single Rescue DAG
encompassing all of the input DAGs is generated. A DAG filetaming splices also produces a single Rescue DAG
file. On the other hand, a DAG containing sub-DAGs will proglacseparate Rescue DAG for each sub-DAG that is
gueued (and for the top-level DAG).

If the Rescue DAG file is generated before all retries of a nam@ecompleted, then the Rescue DAG file will
also containRetryentries. The number of retries will be set to the appropriateaining number of retries. The
configuration variabl©AGMAN_RESET_RETRIES_UPON_RESCidEtiord 3.5.24, controls whether or not node
retries are reset in a Rescue DAG.

Partial versus Full Rescue DAGs

As of HTCondor version 7.7.2, the Rescue DAG file is a partiédIfile, not a complete DAG input file as in the
past.

A partial Rescue DAG file contains only information about ethinodes are done, and the number of retries
remaining for nodes with retries. It does not contain infation such as the actual DAG structure and the specification
of the submit description file for each node job. Partial ResDAGs are automatically parsed in combination with
the original DAG input file, which contains information atidlie DAG structure. This updated implementation means
that a change in the original DAG input file, such as speciyardifferent submit description file for a node job, will
take effect when running the partial Rescue DAG. In otherdspyou can fix mistakes in the original DAG file while
still gaining the benefit of using the Rescue DAG.

To use a partial Rescue DAG, yowstre-runcondor_submit_dagn the original DAG file, not the Rescue DAG
file.

Note that the existence of a DONE specification in a parti@dde DAG for a node that no longer exists in the
original DAG input file is a warning, as opposed to an erroleastheDAGMAN_USE_ STRICJonfiguration variable
is set to a value of 1 or higher (which is now the default). Camtrout the line wittDONE in the partial Rescue
DAG file to avoid a warning or error.

HTCondor Version 8.6.4 Manual

2.10.11. DAG Recovery 126

The previous (prior to version 7.7.2) behavior of produdulfDAG input file as the Rescue DAG is obtained by
setting the configuration variabRAGMAN_WRITE_PARTIAL_RESCltEthe non-default value dfalse . Note
that the option to generate full Rescue DAGs is likely to disppear some time during the 8.3 series.

To run a full Rescue DAG, either one left over from an oldersi@n of DAGMan, or one produced by setting
DAGMAN_WRITE_PARTIAL_RESClWEFalse , directly specify the full Rescue DAG file on the command line
instead of the original DAG file. For example:

condor_submit_dag my.dag.rescue002

Attempting to re-submit the original DAG file, if the Rescu@® file is a complete DAG, will result in a parse
failure.

Rescue DAG Generated When There Are Parse Errors

Starting in HTCondor version 7.5.5, passing tHeumpRescue option to eithercondor_dagmaror con-
dor_submit_dagausesondor_dagmaro output a Rescue DAG file, even if the parsing of a DAG inpetfilils. In
this parse failure casepndor_dagmaproduces a specially named Rescue DAG containing whatelradisuccess-
fully parsed up until the point of the parse error. This RedDAG may be useful in debugging parse errors in complex
DAGs, especially ones using splices. This incomplete ReBAG is not meant to be used when resubmitting a failed
DAG. Note that this incomplete Rescue DAG generated byEhenpRescueoption is a full DAG input file, as pro-
duced by versions of HTCondor prior to HTCondor versionZ..t.is not a partial Rescue DAG file, regardless of the
value of the configuration variabRAGMAN_WRITE_PARTIAL_RESCUE

To avoid confusion between this incomplete Rescue DAG geeein the case of a parse failure and a usable Res-
cue DAG, a different name is given to the incomplete Rescu& DFhe name appends the stripgrse_failed
to the original DAG input file name. Therefore, if the subrossof a DAG with

condor_submit_dag my.dag

has a parse failure, the resulting incomplete Rescue DAeihamedny.dag.parse_failed

To further prevent one of these incomplete Rescue DAG file®s fioeing used, a line within the file contains the
single commandREJECT This causesondor_dagmato reject the DAG, if used as a DAG input file. This is done
because the incomplete Rescue DAG may be a syntacticallgatddAG input file. It will be incomplete relative to
the original DAG, such that if the incomplete Rescue DAG ddug run, it could erroneously be perceived as having
successfully executed the desired workflow, when, in fadigi not.

2.10.11 DAG Recovery

DAG recovery restores the state of a DAG upon resubmissieno¥ery is accomplished by reading thedes.log
file that is used to enforce the dependencies of the DAG. The Bén then continue towards completion.

HTCondor Version 8.6.4 Manual

2.10.12. Visualizing DAGs withlot 127

Recovery is different than a Rescue DAG. Recovery is appatgpwhen no Rescue DAG has been created. There
will be no Rescue DAG if the machine running thendor_dagmaijob crashes, or if theondor_scheddlaemon
crashes, or if theondor_dagmajob crashes, or if theondor_dagmaiob is placed on hold.

Much of the time, when a not-completed DAG is re-submittedijli automatically be placed into recovery mode
due to the existence and contents of a lock file created asAeiffirst run. In recovery mode, thaodes.log s
used to identify nodes that have completed and should na-salymitted.

DAGMan can be told to work in recovery mode by including tb®Recoveryoption on the command line, as in
the example

condor_submit_dag diamond.dag -DoRecovery

wherediamond.dag is the name of the DAG input file.

When debugging a DAG in which something has gone wrong, adetgrmination is whether a resubmission
will use a Rescue DAG or benefit from recovery. The existerfce Bescue DAG means that recovery would be
inappropriate. A Rescue DAG is has a file name endingascue<XXX> , where<XXX>is replaced by a 3-digit
number.

Determine if a DAG ever completed (independent of whethemis successful or not) by looking at the last lines
of the.dagman.out file. If there is a line similar to

(condor_DAGMAN) pid 445 EXITING WITH STATUS 0

then the DAG completed. This line explains that doedor_dagmaiob finished normally. If there is no line similar
to this at the end of thelagman.out file, and output frontondor_gshows that theondor_dagmaiob for the
DAG being debugged is not in the queue, then recovery is atelit

2.10.12 Visualizing DAGs withdot

It can be helpful to see a picture of a DAG. DAGMan can assist ipovisualizing a DAG by creating the input
files used by the AT&T Research Lalgsaphvizpackage. dot is a program within this package, available from
http://www.graphviz.org/, and it is used to draw picturé®aGs.

DAGMan produces one or more dot files as the result of an exieart a DAG input file. The line appears as
DOT dag.dot

This creates a file calledag.dot . which contains a specification of the DAG before any jobsinithe DAG
are submitted to HTCondor. Thiag.dot file is used to create a visualization of the DAG by using thésds input
to dot. This example creates a Postscript file, with a visualizaditthe DAG:

dot -Tps dag.dot -0 dag.ps

HTCondor Version 8.6.4 Manual

http://www.graphviz.org/

2.10.13. Capturing the Status of Nodes in a File 128

Within the DAG input file, the DOT command can take severaiaal parameters:

« UPDATE This will update the dot file every time a significant updatpens.

« DONT-UPDATE Creates a single dot file, when the DAGMan begins executingis & the default if the
parametelJPDATE is not used.

« OVERWRITE Overwrites the dot file each time it is created. This is thedkfunlesODONT-OVERWRITE
is specified.

« DONT-OVERWRITE Used to create multiple dot files, instead of overwriting #iregle one specified. To
create file names, DAGMan uses the name of the file concatenéite a period and an integer. For example,
the DAG input file line

DOT dag.dot DONT-OVERWRITE

causes fileglag.dot.0 , dag.dot.1 , dag.dot.2 , etc. to be created. This option is most useful when
combined with théJPDATE option to visualize the history of the DAG after it has finidhexecuting.

* INCLUDE path-to-filenaméncludes the contents of a file given pgith-to-filename in the file produced
by theDOT command. The include file contents are always placed afeelirike of the formlabel= . This
may be useful if further editing of the created files would leeassary, perhaps because you are automatically
visualizing the DAG as it progresses.

If conflicting parameters are used in a DOT command, the lastisted is used.

2.10.13 Capturing the Status of Nodes in a File

DAGMan can capture the status of the overall DAG and all DA@ew®in anode status filesuch that the user or a
script can monitor this status. This file is periodically riten while the DAG runs. To enable this feature, the DAG
input file must contain a line with thdODE_ STATUS_FILEommand.

The syntax for NODE_STATUS_FILEommand is
NODE_STATUS_ FILE statusFileNaméminimumUpdateTinjg ALWAYS-UPDATE]

The status file is written on the machine on which the DAG isnsittied; its location is given bgtatusFileName
and it may be a full path and file name.

The optionaminimumUpdateTimspecifies the minimum number of seconds that must elapsebatupdates to
the node status file. This setting exists to avoid having DA@Mpend too much time writing the node status file for
very large DAGs. If no value is specified, this value defatdt§0 seconds (as of version 8.5.8; previously, it defaulted
to 0). The node status file can be updated at most oncBAGMAN_USER_LOG_SCAN_INTERYad defined at
sectior 3.5.24, no matter how small tenimumUpdateTimealue. Also, the node status file will be updated when
the DAG finishes, whether successfully or not, evemifimumUpdateTimseconds have not elapsed since the last
update.

HTCondor Version 8.6.4 Manual

2.10.13. Capturing the Status of Nodes in a File 129

Normally, the node status file is only updated if the statusamhe nodes has changed since the last time the file
was written. However, the optionALWAY S-UPDAT Kkeyword specifies that the node status file should be updated
every time the minimum update time (aBAGMAN_USER_LOG_SCAN_INTERY,Aas passed, even if no nodes
have changed status since the last time the file was updatkd.fi{e will change slightly, because timestamps will
be updated.) For performance reasons, large DAGs with ajpadely 10,000 or more nodes are poor candidates for
using theALWAY S-UPDATBption.

As an example, if the DAG input file contains the line
NODE_STATUS_FILE my.dag.status 30

the filemy.dag.status will be rewritten at intervals of 30 seconds or more.

This node status file is overwritten each time it is updatdteréfore, it only holds information about tearrent
status of each node; it does not provide a history of the ntzdess

NOTE: HTCondor version 8.1.6 changes the format of the nodessfatu

The node status file is a collection of ClassAds in New Cladsfwhat. There is one ClassAd for the overall status
of the DAG, one ClassAd for the status of each node, and orss&thwith the time at which the node status file was
completed as well as the time of the next update.

Here is an example portion of a node status file:

Type = "DagStatus";
DagFiles = {
"job_dagman_node_status.dag"

h

Timestamp = 399674138; /[= "Fri May 9 17:22:18 2014" */
DagStatus = 3; / * "STATUS_SUBMITTED ()" =/

NodesTotal = 12

NodesDone = 11;

NodesPre = 0;

NodesQueued = 1;
NodesPost = 0'
NodesReady =
NodesUnready
NodesFailed =
JobProcsHeld =
JobProcsldle 1;

O

Type = "NodeStatus";
Node = "A";
NodeStatus = 5; / * "STATUS_DONE" */

StatusDetails = "

HTCondor Version 8.6.4 Manual

2.10.14. A Machine-Readable Event History, the jobstageHile 130

RetryCount = O;
JobProcsQueued

= O,
JobProcsHeld = 0;

Type = "NodeStatus";

Node = "C";
NodeStatus = 3; / * "STATUS SUBMITTED" */
StatusDetails = "idle";
RetryCount = O;
JobProcsQueued = 1;
JobProcsHeld = 0;
]
[
Type = "StatusEnd";
EndTime = 1399674138; / =* "Fri May 9 17:22:18 2014" */
NextUpdate = 1399674141; / + "Fri May 9 17:22:21 2014" * [

PossibleDagStatus andNodeStatus attribute values are:

0 (STATUS_NOT_READYAt least one parent has not yet finished or the node is a FINéde.

1 (STATUS_READY All parents have finished, but the node is not yet running.

2 (STATUS_PRERUNThe node’s PRE script is running.

3 (STATUS_SUBMITTED The node’s HTCondor job(s) are in the queue.

4 (STATUS_POSTRUNThe node’s POST script is running.

5 (STATUS_DONEThe node has completed successfully.

6 (STATUS_ERRORThe node has failed.

A NODE_STATUS_FILEommand inside any splice is ignored. If multiple DAG files apecified on theon-
dor_submit_dagommand line, and more than one specifies a node status éilfishspecification takes precedence.

2.10.14 A Machine-Readable Event History, the jobstate.tpFile

DAGMan can produce a machine-readable history of eventse jditstate.log file is designed for use by
the Pegasus Workflow Management System, which operates agea dn top of DAGMan. Pegasus uses the
jobstate.log file to monitor the state of a workflow. Thebstate.log file can used by any automated
tool for the monitoring of workflows.

HTCondor Version 8.6.4 Manual

2.10.14. A Machine-Readable Event History, the jobstageHile 131

DAGMan produces this file when the commad@BSTATE_LOGs in the DAG input file. The syntax for
JOBSTATE_LOGs

JOBSTATE_LOG JobstateLogFileName

No more than on@bstate.log file can be created by a single instanceofidor_dagmanlf more than one
jobstate.log file is specified, the first file name specified will take effeaid a warning will be printed in the
dagman.out file when subsequedOBSTATE_LOGpecifications are parsed. Multiple specifications mayt éxis
the same DAG file, within splices, or within multiple, indeykent DAGSs run with a singleondor_dagmainstance.

Thejobstate.log file can be considered a filtered version of ttegman.out file, in a machine-readable
format. It contains the actual node job events that fommdor_dagmayplus some additional meta-events.

Thejobstate.log file is different from the node status file, in that flobstate.log file is appended to,
rather than being overwritten as the DAG runs. Thereforegritains a history of the DAG, rather than a snapshot of
the current state of the DAG.

There are 5 line types in thebstate.log file. Each line begins with a Unix timestamp in the form of sed®
since the Epoch. Fields within each line are separated hygesspace character.

DAGMan start This line identifies theondor_dagmajob. The formatting of the line is
timestamgNTERNAL *** DAGMAN_STARTED dagmanCondorlD**
The dagmanCondorlfield is thecondor_dagmaijob’s Clusterld attribute, a period, and therocld
attribute.

DAGMan exit This line identifies the completion of tlendor_dagmajob. The formatting of the line is
timestamdgNTERNAL *** DAGMAN_FINISHED exitCode***
TheexitCodefield is value thecondor_dagmajob returns upon exit.

Recovery started If the condor_dagmaiob goes into recovery mode, this meta-event is printed.irigurecovery

mode, events will only be printed in the file if they were notaldy printed before recovery mode started. The
formatting of the line is

timestamdgNTERNAL *** RECOVERY_STARTED ***
Recovery finished or Recovery failure At the end of recovery mode, either a RECOVERY_FINISHED oRE/-
ERY_FAILURE meta-event will be printed, as appropriate.
The formatting of the line is
timestamdgNTERNAL *** RECOVERY_FINISHED ***
or
timestamgNTERNAL *** RECOVERY_FAILURE ***

Normal This line is used for all other event and meta-event types.féhmatting of the line is
timestamp JobName eventName condorID jobTsgguenceNumber

The JobNamads the name given to the node job as defined in the DAG input file the commandOB. It
identifies the node within the DAG.

HTCondor Version 8.6.4 Manual

2.10.14. A Machine-Readable Event History, the jobstageHile 132

TheeventNamés one of the many defined event or meta-events given in ttseldedow.

ThecondorlDfield is the job’sClusterld attribute, a period, and tierocld attribute. There is noondorID
assigned yet for some meta-events, such as PRE_SCRIPT TEIAR-or these, the dash character (-') is
printed.

The jobTagfield is defined for the Pegasus workflow manager. Its usagerisrglized to be useful to other
workflow managers. Pegasus-managed jobs add a line of tbeiiog form to their HTCondor submit descrip-
tion file:

+pegasus_site = "local"

This defines the strinpcal as thgobTagfield.

Generalized usage adds a set of 2 commands to the HTConduitgigscription file to define a string as the
jobTagfield:

+job_tag_name
+job_tag_value

"+job_tag_value"

= "viz
This defines the stringiz as thgobTagfield. Without any of these added lines within the HTConddoraii
description file, the dash character (’-’) is printed for jbleTagfield.

ThesequenceNumbé& a monotonically-increasing number that starts at onis.dssociated with each attempt
at running a node. If a node is retried, it gets a new sequemtdar; a submit failure does not result in a new
sequence number. When a Rescue DAG is run, the sequence nsupiddeup from where they left off within
the previous attempt at running the DAG. Note that this oplylies if the Rescue DAG is run automatically or
with the-dorescuefrontcommand-line option.

Here is an example of a very simple Peggsbistate.log file, assuming the exampjebTagfield of local

1292620511 INTERNAL = DAGMAN_STARTED 4972.0xx
1292620523 NodeA PRE_SCRIPT_STARTED - local - 1
1292620523 NodeA PRE_SCRIPT_SUCCESS - local - 1
1292620525 NodeA SUBMIT 4973.0 local - 1

1292620525 NodeA EXECUTE 4973.0 local - 1

1292620526 NodeA JOB_TERMINATED 4973.0 local - 1
1292620526 NodeA JOB_SUCCESS O local - 1

1292620526 NodeA POST_SCRIPT_STARTED 4973.0 local - 1
1292620531 NodeA POST_SCRIPT_TERMINATED 4973.0 local - 1
1292620531 NodeA POST_SCRIPT_SUCCESS 4973.0 local - 1
1292620535 INTERNAL =+ DAGMAN_FINISHED Ox**

Events defining the eventName field + SUBMIT
« EXECUTE
 EXECUTABLE_ERROR
¢« CHECKPOINTED

HTCondor Version 8.6.4 Manual

2.10.14. A Machine-Readable Event History, the jobstageHile

133

Meta-Events defining the eventName field

JOB_EVICTED
JOB_TERMINATED
IMAGE_SIZE
SHADOW_EXCEPTION
GENERIC

JOB_ABORTED
JOB_SUSPENDED
JOB_UNSUSPENDED
JOB_HELD
JOB_RELEASED
NODE_EXECUTE
NODE_TERMINATED
POST_SCRIPT_TERMINATED
GLOBUS_SUBMIT
GLOBUS_SUBMIT_FAILED
GLOBUS_RESOURCE_UP
GLOBUS_RESOURCE_DOWN
REMOTE_ERROR
JOB_DISCONNECTED
JOB_RECONNECTED
JOB_RECONNECT_FAILED
GRID_RESOURCE_UP
GRID_RESOURCE_DOWN
GRID_SUBMIT
JOB_AD_INFORMATION
JOB_STATUS_UNKNOWN
JOB_STATUS_KNOWN
JOB_STAGE_IN
JOB_STAGE_OUT

JOB_SUCCESS
JOB_FAILURE
PRE_SCRIPT_STARTED
PRE_SCRIPT_SUCCESS
PRE_SCRIPT_FAILURE

* SUBMIT_FAILURE

HTCondor Version 8.6.4 Manual

2.10.15. Status Information for the DAG in a ClassAd 134

« POST_SCRIPT_STARTED
« POST_SCRIPT_SUCCESS
« POST_SCRIPT_FAILURE
« DAGMAN_STARTED

« DAGMAN_FINISHED

« RECOVERY_STARTED

« RECOVERY_FINISHED

« RECOVERY_FAILURE

2.10.15 Status Information for the DAG in a ClassAd

Thecondor_dagmaiob places information about the status of the DAG into its1geb ClassAd. The attributes are
fully described at sectiof_12. The attributes are

DAG_NodesTotal
 DAG_NodesDone

« DAG_NodesPrerun
* DAG_NodesQueued
« DAG_NodesPostrun
* DAG_NodesReady
« DAG_NodesFailed

« DAG_NodesUnready
« DAG_Status

¢ DAG_InRecovery

Note that most of this information is also available in tegman.out file as described in sectiogn 2.70.7.

2.10.16 Utilizing the Power of DAGMan for Large Numbers of Jds

Using DAGMan is recommended when submitting large numbgjsbs. The recommendation holds whether the
jobs are represented by a DAG due to dependencies, or abliseaje independent of each other, such as they might
be in a parameter sweep. DAGMan offers:

Throttling Throttling limits the number of submitted jobs at any pomtime.

HTCondor Version 8.6.4 Manual

2.10.16. Utilizing the Power of DAGMan for Large Numbers ob3 135

Retry of jobs that fail This is a useful tool when an intermittent error may causebadgdfail or may cause a job to
fail to run to completion when attempted at one point in tiime&, not at another point in time. The conditions
under which retry occurs are user-defined. In addition, thmiaistrative support that facilitates the rerunning
of only those jobs that fail is automatically generated.

Scripts associated with node jobsPRE and POST scripts run on the submit host before and/arthé&&xecution of
specified node jobs.

Each of these capabilities is described in detail withis thanual section about DAGMan. To make effective use
of DAGMan, there is no way around reading the appropriatseciions.

To run DAGMan with large numbers of independent jobs, theeegenerally two ways of organizing and speci-
fying the files that control the jobs. Both ways presume thiagpms or scripts will generate needed files, because
the file contents are either large and repetitive, or becthese are a large number of similar files to be generated
representing the large numbers of jobs. The two file typedertare the DAG input file and the submit description
file(s) for the HTCondor jobs represented. Each of the twosnwapresented separately:

A unique submit description file for each of the many jobs. A single DAG input file lists each of the jobs and spec-
ifies a distinct submit description file for each job. The DAGUt file is simple to generate, as it chooses an
identifier for each job and names the submit description Fite.example, the simplest DAG input file for a set
of 1000 independent jobs, as might be part of a parameterps\appears as

file sweep.dag

JOB job0 job0.submit
JOB jobl jobl.submit
JOB job2 job2.submit

JOB job999 job999.submit

There are 1000 submit description files, with a unique oneéah of the job<N> jobs. Assuming that all files
associated with this set of jobs are in the same directodytlaat files continue the same naming and numbering
scheme, the submit description file job6.submit ~ might appear as

file job6.submit

universe = vanilla

executable = /path/to/executable
log = job6.log

input = job6.in

output = job6.out

arguments = "-file job6.out"
queue

Submission of the entire set of jobs uses the command line

condor_submit_dag sweep.dag

HTCondor Version 8.6.4 Manual

2.10.16. Utilizing the Power of DAGMan for Large Numbers ob3 136

A benefit to having unique submit description files for eaclhef jobs is that they are available if one of the
jobs needs to be submitted individually. A drawback to hguinique submit description files for each of the
jobs is that there are lots of submit description files.

Single submit description file. A single HTCondor submit description file might be used fbtta many jobs of the
parameter sweep. To distinguish the jobs and their assdloiistinct input and output files, the DAG input file
assigns a unique identifier with ttMARScommand.

file sweep.dag

JOB jobO common.submit
VARS job0O runnumber="0"
JOB jobl common.submit
VARS jobl runnumber="1"
JOB job2 common.submit
VARS job2 runnumber="2"

JOB job999 common.submit
VARS job999 runnumber="999"

The single submit description file for all these jobs utdizberunnumber variable value in its identification
of the job’s files. This submit description file might appesr a

file common.submit

universe = vanilla

executable = /path/to/executable
log = wholeDAG.log

input = job$(runnumber).in
output = job$(runnumber).out
arguments = "-$(runnumber)”
gueue

The job withrunnumber="8" expects to find its input fil@b8.in in the single, common directory, and it
sends its output tpb8.out . The single log for all job events of the entire DAGAf0leDAG.log . Using
one file for the entire DAG meets the limitation that no maarbsiitution may be specified for the job log file,
and it is likely more efficient as well. This node’s executaislinvoked with

/path/to/executable -8

These examples work well with respect to file naming and fillion when there are less than several thousand
jobs submitted as part of a DAG. The large numbers of files pectbry becomes an issue when there are greater
than several thousand jobs submitted as part of a DAG. IrcHss, consider a more hierarchical structure for the files
instead of a single directory. Introduce a separate dirgétw each run. For example, if there were 10,000 jobs, there
would be 10,000 directories, one for each of these jobs. THeetdries are presumed to be generated and populated
by programs or scripts that, like the previous examplebzeth run number. Each of these directories named utilizing
the run number will be used for the input, output, and log fitesone of the many jobs.

HTCondor Version 8.6.4 Manual

2.10.17. Workflow Metrics 137

As an example, for this set of 10,000 jobs and directoriesjrag that there is a run number of 600. The directory
will be nameddir600 , and it will hold the 3 files calledn , out , andlog , representing the input, output, and
HTCondor job log files associated with run number 600.

The DAG input file sets a variable representing the run nupasein the previous example:

file biggersweep.dag
JOB jobO bigger.submit
VARS job0 runnumber="0"
JOB jobl bigger.submit
VARS jobl runnumber="1"
JOB job2 bigger.submit
VARS job2 runnumber="2"

JOB job9999 bigger.submit
VARS job9999 runnumber="9999"

A single HTCondor submit description file may be written.dsides in the same directory as the DAG input file.

file bigger.submit
universe = vanilla
executable = /path/to/executable

log = log

input = in

output = out

arguments = "-$(runnumber)"
initialdir = dir$(runnumber)
queue

One item to care about with this set up is the underlying filteay for the pool. The transfer of files (or not) when
usinginitialdir differs based upon the jalmiverse and whether or not there is a shared file system. See sécfion 11
for the details on the submit commaimitialdir .

Submission of this set of jobs is no different than the presiexamples. With the current working directory the
same as the one containing the submit description file, th& vut file, and the subdirectories,

condor_submit_dag biggersweep.dag

2.10.17 Workflow Metrics

condor_dagmamay report workflow metrics to one or more HTTP servers. Thgability is currently only used for
workflows run undePegasusThe reporting is disabled by setting 8®NDOR_DEVELOPE&Sfiguration variable

HTCondor Version 8.6.4 Manual

2.10.17. Workflow Metrics 138

to NONEor by setting the EGASUS_METRIC&nvironment variable to any value other tliame (case-insensitive)
or 1. Thedagman.out file will indicate whether or not metrics were reported.

For every DAG, a metrics file is created independent of theném of those metrics. This metrics file is named
<dag_file_name>.metrics , Where<dag_file_name> s the name of the DAG input file. In a workflow
with nested DAGSs, each nested DAG will create its own metfiies

Here is an example metrics output file:

"client":"condor_dagman",

"version™:"8.1.0",

"planner":"/Ifs1l/devel/Pegasus/pegasus/bin/pegasus- plan®,
"planner_version™":"4.3.0cvs",

"type":"metrics",

"wf_uuid":"htcondor-test-job_dagman_metrics-A-subda g’
"root_wf_uuid":"htcondor-test-job_dagman_metrics-A" ,
"start_time":1375313459.603,

"end_time™":1375313491.498,

"duration™:31.895,

"exitcode":1,

"dagman_id":"26",

"parent_dagman_id":"11",

"rescue_dag_number":0,

"jobs™:4,

"jobs_failed":1,

"jobs_succeeded":3,

"dag_jobs":0,

"dag_jobs_failed":0,

"dag_jobs_succeeded":0,

"total_jobs":4,

"total_jobs_run™:4,

"total_job_time":0.000,

"dag_status":2

Here is an explanation of each of the items in the file:

« client :the name of the client workflow software; in the examples fcondor_dagman”
« version : the version of the client workflow software

 planner : the workflow planner, as read from theaindump.txt file
 planner_version : the planner software version, as read fromhlih&ndump.txt file

« type : the type of data;metrics"

HTCondor Version 8.6.4 Manual

2.10.17. Workflow Metrics 139

o wf_uuid : the workflow ID, generated byegasus-plaras read from théraindump.txt file

e root_wf_uuid : the root workflow ID, which is relevant for nested workflowsis generated byegasus-
plan, as read from theraindump.txt file.

« start_time : the start time of the client, in epoch seconds, with midised precision
« end_time : the end time of the client, in epoch seconds, with millisetprecision

e duration : the duration of the client, in seconds, with millisecondgsion

» exitcode :thecondor_dagmaexit code

« dagman_id : the value of theClusterld attribute of thecondor_dagmaimstance

« parent_dagman_id : the value of theClusterld attribute of the parertondor_dagmainstance of this
DAG; empty if this DAG isnota SUBDAG

» rescue_dag_number : the number of the Rescue DAG being run, or 0 if not running scee DAG
« jobs : the number of nodes in the DAG input file, not including SUBBAodes
* jobs_failed : the number of failed nodes in the workflow, not including SW&5 nodes

* jobs_succeeded : the number of successful nodes in the workflow, not inclgddUBDAG nodes; this
includes jobs that succeeded after retries

« dag_jobs : the number of SUBDAG nodes in the DAG input file
» dag_jobs_failed : the number of SUBDAG nodes that failed
« dag_jobs_succeeded : the number of SUBDAG nodes that succeeded

- total jobs : the total number of jobs in the DAG input file

« total _jobs_run . the total number of nodes executed in a DAG. It should be ledoa
jobs_succeeded + jobs_failed + dag_jobs succeeded + dag |j obs_failed
« total_job_time : the sum of the time between the first execute event and thertated event for all jobs

that are not SUBDAGS
« dag_status : the final status of the DAG, with values
- 0: 0K
— 1: error; an error condition different than those listed here
— 2: one or more nodes in the DAG have failed
— 3: the DAG has been aborted by an ABORT-DAG-ON specification
— 4: removed; the DAG has been removeddondor_rm

— 5: acycle was found in the DAG
— 6: the DAG has been halted; see section 2]10.8 for an exptematihalting a DAG

HTCondor Version 8.6.4 Manual

2.10.18. DAGMan and Accounting Groups 140

Note that anydag_status other than O corresponds to a non-zero exit code.

The braindump.txt file is generated byegasus-planthe name of thebraindump.txt file is spec-
ified with the PEGASUS_BRAINDUMP_FILEnvironment variable. If not specified, the file name defatdt

braindump.txt , and itis placed in the current directory.
Note that thetotal job_time value is always zero, because the calculation of that vahseniot yet been
implemented.

If a DAG succeeds, but the metrics reporting fails, the DAGtik considered successful.

The metrics are reported only at the end of a DAG run. Thisuhe$ reporting the metrics if troondor_dagman
job is removed, or if the DAG drains from the queue becausewfghalted by a halt file.

The metrics are reported by tkendor_dagman_metrics_reportexecutable as described in the manual page at
[794.

2.10.18 DAGMan and Accounting Groups

As of version 8.5.6¢condor_dagmapropagateaccounting_groupandaccounting_group_usewnalues specified for
condor_dagmaitself to all jobs within the DAG (including sub-DAGS).

The accounting_group and accounting_group_uservalues can be specified using tkeppend flag to con-
dor_submit_dagfor example:

condor_submit_dag -append accounting_group=group_phys ics -append accounting_group_user=albert

See section 3.6.7 for a discussion of group accounting astibeE3.6.8 for a discussion of accounting groups with
hierarchical group quotas.

2.11 Virtual Machine Applications

Thevm universe facilitates an HTCondor job that matches and taedd a disk image on an execute machine within
an HTCondor pool. This disk image is intended to be a virtuathine. In this manner, the virtual machine is the job
to be executed.

This section describes this type of HTCondor job. See se@i6.26 for details of configuration variables.

2.11.1 The Submit Description File

Different than all other universe jobs, then universe job specifies a disk image, not an executable. Tdrerghe
submit commandmput, output, anderror do not apply. If specifiedcondor_submitejects the job with an error.

HTCondor Version 8.6.4 Manual

2.11.1. The Submit Description File 141

The executablecommand changes definition withinvan universe job. It no longer specifies an executable file, but
instead provides a string that identifies the job for toolshsascondor_q Other commands specific to the type of
virtual machine software identify the disk image.

VMware, Xen, and KVM virtual machine software are supportéd these differ from each other, the submit
description file specifies one of

vm_type = vmware

or

xen

vm_type

or

kvm

vm_type

The job is required to specify its memory needs for the diskgenwithvm_memory, which is given in Mbytes.
HTCondor uses this number to assure a match with a machiheghagrovide the needed memory space.

Virtual machine networking is enabled with the command
vm_networking = true

And, when networking is enabled, a definitionvoii_networking_typeasbridge matches the job only with a machine
that is configured to use bridge networking. A definitiorvof_networking_type asnat matches the job only with a
machine that is configured to use NAT networking. When no d@&finof vm_networking_typeis given, HTCondor
may match the job with a machine that enables networking fartder, the choice of bridge or NAT networking is
determined by the machine’s configuration.

Modified disk images are transferred back to the machine fwbioh the job was submitted as thim universe job
completes. Job completion fovan universe job occurs when the virtual machine is shut dowth HihCondor notices
(as the result of a periodic check on the state of the virtwalhine). Should the job not want any files transferred back
(modified or not), for example because the job explicitiynsferred its own files, the submit command to prevent the
transfer is

vm_no_output_vm = true

The required disk image must be identified for a virtual maehi Thisvm_disk command specifies a list of
comma-separated files. Each disk file is specified by colpars¢ed fields. The first field is the path and file name
of the disk file. The second field specifies the device. Thelthéld specifies permissions, and the optional fourth
specifies the format. Here is an example that identifies desfiig:

vm_disk = swap.img:sda2:w:raw

HTCondor Version 8.6.4 Manual

2.11.1. The Submit Description File 142

If HTCondor will be transferring the disk file, then the filema given invm_disk should not contain any path
information. Otherwise, the full path to the file should beegi.

Setting values in the submit description file for some comusamave consequences for the virtual machine de-
scription file. These commands are

e vm_memory
e vm_macaddr

e vm_networking

« vm_networking_type

e vm_disk

For VMware virtual machines, setting values for these comasaauses HTCondor to modify thenx file, overwrit-
ing existing values. For KVM and Xen virtual machines, HT@onuses these values when it produces the description
file.

For Xen and KVM jobs, if any files need to be transferred from $hbmit machine to the machine where the
universe job will execute, HTCondor must be explicitly tédddo so with the standard file transfer attributes:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /myxen/diskfile.img,/myxen/swa p.img

Any and all needed files that will not accessible directlyrirtihe machines where the job may execute must be listed.

Further commands specify information that is specific tovinteral machine type targeted.

VMware-Specific Submit Commands

Specific to VMware, the submit description file commamaware_dir gives the path and directory (on the machine
from which the job is submitted) to where VMware-specificSiland applications reside. One example of a VMware-
specific application is the VMDK files, which form a virtualddadrive (disk image) for the virtual machine. VMX
files containing the primary configuration for the virtualchane would also be in this directory.

HTCondor must be told whether or not the contents of ¥inewvare_dir directory must be transferred to
the machine where the job is to be executed. This requirentrirdtion is given with the submit command
vmware_should_transfer_files With a value ofTrue , HTCondor does transfer the contents of the directory. With
a value offFalse , HTCondor does not transfer the contents of the directeony,iastead presumes that access to this
directory is available through a shared file system.

By default, HTCondor uses a snapshot disk for new and modifiesit They may also be utilized for check-
points. The snapshot disk is initially quite small, growimgly as new files are created or files are modified. When
vmware_should_transfer_filess True , a job may specify that a snapshot disk@tto be used with the command

HTCondor Version 8.6.4 Manual

2.11.1. The Submit Description File 143

vmware_snapshot_disk = False

In this case, HTCondor will utilize original disk files in ptacing checkpoints. Note thabndor_submitssues an
error message and does not submit the job if batlware _should_transfer_filesandvmware_snapshot_diskare
False .

Because/Mware Playerdoes not support snapshots, machines ugidgvare Playemay only runvm jobs that
setvmware_snapshot_diskto False . These jobs will also setmware_should_transfer_filesto True . A job
usingVMware Playemwill go on hold if it attempts to use a snapshot. The pool adstiator should have configured
the pool such that machines will not start jobs they can not ru

Note that if snapshot disks are requested and file transfaptideing used, themware_dir setting given
in the submit description file should not contain any symbdink path components, as described on the
https://htcondor-wiki.cs.wisc.edu/index.cgi/wikitgewToAdminRecipes page under the answer to why VMware
jobs with symbolic links fail.

Here is a sample submit description file for a VMware virtualaiine:

universe = vm

executable = vmware_sample_job
log = simple.vm.log.txt
vm_type = vmware
vm_memory = 64

vmware_dir = C:\condor-test
vmware_should_transfer_files = True

queue

This sample uses thanware_dir command to identify the location of the disk image to be exettas an HTCondor
job. The contents of this directory are transferred to thehirge assigned to execute the HTCondor job.

Xen-Specific Submit Commands

A Xen vm universe job requires specification of the guest kernel. X kernel command accomplishes this,
utilizing one of the following definitions.

1. xen_kernel = included implies that the kernel is to be found in disk image given leydefinition of the
single file specified ivm_disk.

2. xen_kernel = path-to-kernel gives the file name of the required kernel. If this kernel nfagstrans-
ferred to machine on which than universe job will execute, it must also be included intitaesfer_input_files
command.

This form of thexen_kernel command also requires further definition of tken_root command.xen_root
defines the device containing files neededdnyt .

HTCondor Version 8.6.4 Manual

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToAdminRecipes

2.11.2. Checkpoints 144

2.11.2 Checkpoints

Creating a checkpoint is straightforward for a virtual maehas a checkpointis a set of files that represent a snapshot
of both disk image and memory. The checkpointis created lfika are transferred back to ti§¢SPOOL) directory
on the machine from which the job was submitted. The submmitrnand to create checkpoints is

vm_checkpoint = true

Without this command, no checkpoints are created (by dgfamth the command, a checkpoint is created any time
thevm universe jobs is evicted from the machine upon which it isceteg. This occurs as a result of the machine
configuration indicating that it will no longer execute tfob.

vm universe jobs canotuse a checkpoint server.
Periodic creation of checkpoints is not supported at thigti

Enabling both networking and checkpointing fovrm universe job can cause networking problems when the job
restarts, particularly if the job migrates to a differentami@e. condor_submitvill normally reject such jobs. To
enable both, then add the command

when_to_transfer_output = ON_EXIT_OR_EVICT

Take care with respect to the use of network connectionsmwitte virtual machine and their interaction with
checkpoints. Open network connections at the time of thelgant will likely be lost when the checkpoint is
subsequently used to resume execution of the virtual macfihis occurs whether or not the execution resumes on
the same machine or a different one within the HTCondor pool.

2.11.3 Disk Images
VMware on Windows and Linux

Following the platform-specific guest oS installation fastions found at
http://partnerweb.vmware.com/GOSIG/home.html, creatgMware disk image.

Xen and KVM

While the following web page contains instructions spet¢diEedora on how to create a virtual guest image, it should
provide a good starting point for other platforms as well.

http://fedoraproject.org/wiki/Virtualization_Quicktart

HTCondor Version 8.6.4 Manual

http://partnerweb.vmware.com/GOSIG/home.html
http://fedoraproject.org/wiki/Virtualization_Quick_Start

2.11.4. Job Completion in the vm Universe 145

2.11.4 Job Completion in the vm Universe

Job completion for asm universe job occurs when the virtual machine is shut down, ldiCondor notices (as
the result of a periodic check on the state of the virtual nregh This is different from jobs executed under the
environment of other universes.

Shut down of a virtual machine occurs from within the virtoechine environment. A script, executed with the
proper authorization level, is the likely source of the slhmvn commands.

Under a Windows 2000, Windows XP, or Vista virtual machineadministrator issues the command
shutdown -s -t 01
Under a Linux virtual machine, th@ot user executes
/shin/poweroff
The commandsbin/halt will not completely shut down some Linux distributions, andtead causes the job to

hang.

Since the successful completion of tra universe job requires the successful shut down of the Vinahine,
it is good advice to try the shut down procedure outside of bifdr, before am universe job is submitted.

2.11.5 Failuresto Launch

It is not uncommon for am universe job to fail to launch because of a problem with thecate machine. In these
cases, HTCondor will reschedule the job and note, in its egent log (if requested), the reason for the failure and
that the job will be rescheduled. The reason is unlikely tdibectly useful to you as an HTCondor user, but may help
your HTCondor administrator understand the problem.

If the VM fails to launch for other reasons, the job will be gga on hold and the reason placed in the job ClassAd’s
HoldReason attribute. The following table may help in understandingtsteasons.

VMGAHP_ERR_JOBCLASSAD_NO_VM_MEMORY_PARAM

The attribute JobVMMemory was not set in the job ad sent to the
VM GAHP. HTCondor will usually prevent you from submitting a VM universe job
without JobVMMemory set. Examine your job and verify that Jo bVMMemory is set.
If it is, please contact your administrator.

VMGAHP_ERR_JOBCLASSAD_NO_VMWARE_VMX_PARAM

The attribute VMPARAM_VMware_Dir was not set in the job ad se nt to the
VM GAHP. HTCondor will usually set this attribute when you su bmit a valid

HTCondor Version 8.6.4 Manual

2.11.5. Failures to Launch 146

VMWare job (it is derived from vmware_dir). If you used condo r_submit to
submit this job, contact your administrator. Otherwise, ex amine your job
and verify that VMPARAM_VMware_Dir is set. If it is, contact your

administrator.

VMGAHP_ERR_JOBCLASSAD_KVM_NO_DISK_PARAM

The attribute VMPARAM_vm_Disk was not set in the job ad sent t o the
VM GAHP. HTCondor will usually set this attribute when you su bmit a valid
KVM job (it is derived from vm_disk). Examine your job and ver ify that
VMPARAM_vm_Disk is set. If it is, please contact your admini strator.

VMGAHP_ERR_JOBCLASSAD_KVM_INVALID_DISK_PARAM

The attribute vm_disk was invalid. Please consult the manua l,

or the condor_submit man page, for information about the syn tax of
vm_disk. A syntactically correct value may be invalid if the

on-disk permissions of a file specified in it do not match the requested
permissions. Presently, files not transferred to the root o f the working

directory must be specified with full paths.
VMGAHP_ERR_JOBCLASSAD_KVM_MISMATCHED_CHECKPOINT

KVM jobs can not presently checkpoint if any of their disk fil es are not
on a shared filesystem. Files on a shared filesystem must be s pecified in

vm_disk with full paths.

VMGAHP_ERR_JOBCLASSAD_XEN_NO_KERNEL_PARAM

The attribute VMPARAM_Xen_Kernel was not set in the job ad se nt to the
VM GAHP. HTCondor will usually set this attribute when you su bmit a valid
Xen job (it is derived from xen_kernel). Examine your job and verify that
VMPARAM_Xen_Kernel is set. |If it is, please contact your adm inistrator.

VMGAHP_ERR_JOBCLASSAD_MISMATCHED_HARDWARE_VT

Don't use 'vmx' as the name of your kernel image. Pick somethi ng else and
change xen_kernel to match.

VMGAHP_ERR_JOBCLASSAD_XEN_KERNEL_NOT_FOUND

HTCondor could not read from the file specified by xen_kerne l.
Check the path and the file's permissions. If it's on a shared filesystem,
you may need to alter your job's requirements expression to e nsure the
filesystem's availability.

HTCondor Version 8.6.4 Manual

2.12. Docker Universe Applications 147

VMGAHP_ERR_JOBCLASSAD_XEN_INITRD_NOT_FOUND

HTCondor could not read from the file specified by xen_initr d.
Check the path and the file's permissions. If it's on a shared filesystem,
you may need to alter your job's requirements expression to e nsure the

filesystem's availability.

VMGAHP_ERR_JOBCLASSAD_XEN_NO_ROOT_DEVICE_PARAM

The attribute VMPARAM_Xen_Root was not set in the job ad sent to the
VM GAHP. HTCondor will usually set this attribute when you su bmit a valid
Xen job (it is derived from xen_root). Examine your job and ve rify that
VMPARAM_Xen_Root is set. |If it is, please contact your admin istrator.

VMGAHP_ERR_JOBCLASSAD_XEN_NO_DISK_PARAM

The attribute VMPARAM_vm_Disk was not set in the job ad sent t o the
VM GAHP. HTCondor will usually set this attribute when you su bmit a valid
Xen job (it is derived from vm_disk). Examine your job and ver ify that
VMPARAM_vm_Disk is set. If it is, please contact your admini strator.

VMGAHP_ERR_JOBCLASSAD_XEN_INVALID_DISK_PARAM

The attribute vm_disk was invalid. Please consult the manua l,

or the condor_submit man page, for information about the syn tax of
vm_disk. A syntactically correct value may be invalid if the

on-disk permissions of a file specified in it do not match the requested
permissions. Presently, files not transferred to the root o f the working

directory must be specified with full paths.
VMGAHP_ERR_JOBCLASSAD_XEN_MISMATCHED_CHECKPOINT

Xen jobs can not presently checkpoint if any of their disk fil es are not
on a shared filesystem. Files on a shared filesystem must be s pecified in
vm_disk with full paths.

2.12 Docker Universe Applications

A docker universe job instantiates a Docker container froBoaker image, and HTCondor manages the running
of that container as an HTCondor job, on an execute machih& rlinning container can then be managed as any
HTCondor job. For example, it can be scheduled, removedpputold, or be part of a workflow managed by
DAGMan.

HTCondor Version 8.6.4 Manual

2.12. Docker Universe Applications 148

The docker universe job will only be matched with an executst lthat advertises its capability to run docker
universe jobs. When an execute machine with docker suptaots sthe machine checks to see if tteckercommand
is available and has the correct settings for HTCondor. Bosképport is advertised if available and if it has the cdrrec
settings.

The image from which the container is instantiated is defingdpecifying a Docker image with the submit
commandiocker_image This image must be pre-staged on a docker hub that the exeraghine can access.

After submission, the job is treated much the same way asilavaniverse job. Details of file transfer are the same
as applied to the vanilla universe. One of the benefits of Bockntainers is the file system isolation they provide.
Each container has a distinct file system, from the root onmgewd this file system is completely independent of the
file system on the host machine. The container does not sHéeesgstem with either the execute host or the submit
host, with the exception of the scratch directory, which édume mounted to the host, and is the initial working
directory of the job. Optionally, the administrator may figare other directories from the host machine to be volume
mounted, and thus visible inside the container. See theattaelction of the administrator’s manual for details.

Therefore, the submit description file should contain tHensitcommand
should_transfer_files = YES
With this command, all input and output files will be transéeras required to and from the scratch directory mounted

as a Docker volume.

If no executableis specified in the submit description file, it is presumed tha Docker container has a default
command to run.

When the job completes, is held, evicted, or is otherwiseoraad from the machine, the container will be removed.

Here is a complete submit description file for a sample dockarerse job:

universe = docker
docker_image = debian
executable = /bin/cat
arguments = /etc/hosts
should_transfer_files = YES
when_to_transfer_output = ON_EXIT

output = out.$(Process)
error = err.$(Process)
log = log.$(Process)
request_memory = 100M

queue 1

A debian container is the HTCondor job, and it runsAtia/catprogram on théetc/hosts file before exiting.

HTCondor Version 8.6.4 Manual

2.13. Time Scheduling for Job Execution 149

2.13 Time Scheduling for Job Execution

Jobs may be scheduled to begin execution at a specified tithe fature with HTCondor's job deferral functionality.
All specifications are in a job’s submit description file. Jidferral functionality is expanded to provide for the
periodic execution of a job, known as the CronTab scheduling

2.13.1 Job Deferral

Job deferral allows the specification of the exact date ane &t which a job is to begin executing. HTCondor attempts
to match the job to an execution machine just like any otherjowever, the job will wait until the exact time to begin
execution. A user can define the job to allow some flexibilitytie execution of jobs that miss their execution time.

Deferred Execution Time

A job’s deferral time is the exact time that HTCondor shoutdmapt to execute the job. The deferral time attribute is
defined as an expression that evaluates to a Unix Epoch eimegthe number of seconds elapsed since 00:00:00 on
January 1, 1970, Coordinated Universal Time). This is time tihat HTCondor will begin to execute the job.

After a job is matched and all of its files have been transfetoean execution machine, HTCondor checks to
see if the job’s ClassAd contains a deferral time. If it dd¢§Condor calculates the number of seconds between the
execution machine’s current system time and the job’s daféme. If the deferral time is in the future, the job waits
to begin execution. While a job waits, its job ClassAd atitélobStatus indicates the job is in the Running state.
As the deferral time arrives, the job begins to execute. ¢hamisses its execution time, that is, if the deferral time is
in the past, the job is evicted from the execution machineparidn hold in the queue.

The specification of a deferral time does not interfere witfddndor’s behavior. For example, if a job is waiting
to begin execution when@ndor_holdcommand is issued, the job is removed from the execution maemd is put
on hold. If a job is waiting to begin execution wher@ndor_suspendommand is issued, the job continues to wait.
When the deferral time arrives, HTCondor begins executiotiife job, but immediately suspends it.

The deferral time is specified in the job’s submit descripfite with the commandeferral_time.

Deferral Window

If a job arrives at its execution machine after the defemmaéthas passed, the job is evicted from the machine and put
on hold in the job queue. This may occur, for example, bectnesgansfer of needed files took too long due to a slow
network connection. A deferral window permits the exeautid a job that misses its deferral time by specifying a
window of time within which the job may begin.

The deferral window is the number of seconds after the dalfeéme, within which the job may begin. When a job
arrives too late, HTCondor calculates the difference imads between the execution machine’s current time and the
job’s deferral time. If this difference is less than or equehe deferral window, the job immediately begins exeautio

HTCondor Version 8.6.4 Manual

2.13.1. Job Deferral 150

If this difference is greater than the deferral window, thie is evicted from the execution machine and is put on hold
in the job queue.

The deferral window is specified in the job’s submit desavipfile with the commandeferral_window.
Preparation Time

When a job defines a deferral time far in the future and theraigh®d to an execution machine, potential computation
cycles are lost because the deferred job has claimed theimeadiut is not actually executing. Other jobs could
execute during the interval when the job waits for its defetime. To make use of the wasted time, a job defines
adeferral_prep_time with an integer expression that evaluates to a number ohsiscoAt this number of seconds
before the deferral time, the job may be matched with a machin

Usage Examples

Here are examples of how the job deferral time, deferral mindnd the preparation time may be used.

The job’s submit description file specifies that the job isegibh execution on January 1st, 2006 at 12:00 pm:
deferral_time = 1136138400

The Unixdateprogram may be used to calculate a Unix epoch time. The syfithie command to do this depends
on the options provided within that flavor of Unix. In somegjifpears as

% date --date "MM/DD/YYYY HH:MM:SS" +%s
and in others, it appears as
% date -d "YYYY-MM-DD HH:MM:SS" +%s

MMs a 2-digit month numbeDis a 2-digit day of the month number, aiYt¥'YYis a 4-digit year.HHis the
2-digit hour of the dayMMs the 2-digit minute of the hour, ar8iS are the 2-digit seconds within the minute. The
characters-%stell thedateprogram to give the output as a Unix epoch time.

The job always waits 60 seconds before beginning execution:
deferral_time = (time() + 60)

In this example, assume that the deferral time is 45 secontisipast as the job is available. The job begins
execution, because 75 seconds remain in the deferral window

deferral_window = 120

HTCondor Version 8.6.4 Manual

2.13.2. CronTab Scheduling 151

In this example, a job is scheduled to execute far in the &jtan January 1st, 2010 at 12:00 pm. Tdefer-
ral_prep_time attribute delays the job from being matched until 60 secdredsre the job is to begin execution.

deferral_time = 1262368800
deferral_prep_time = 60

Limitations
There are some limitations to HTCondor's job deferral featu
« Job deferral is not available for scheduler universe jobsA scheduler universe job defining the

deferral_time produces a fatal error when submitted.

« The time that the job begins to execute is based on the égaqutchine’s system clock, and not the submission
machine’s system clock. Be mindful of the ramifications wientwo clocks show dramatically different times.

* Ajob’'s JobStatus attribute is always in the Running state when job deferrabkisd. There is currently no
way to distinguish between a job that is executing and a jabishwaiting for its deferral time.

2.13.2 CronTab Scheduling

HTCondor’s CronTab scheduling functionality allows jobse scheduled to execute periodically. A job’s execution
schedule is defined by commands within the submit descrifiie. The notation is much like that used by the Unix
crondaemon. As such, HTCondor developers are fond of referoi@onTab scheduling &rondor. The scheduling

of jobs using HTCondor’s CronTab feature calculates arlzesi theDeferralTime ClassAd attribute.

Also, unlike the Unixcron daemon, HTCondor never runs more than one instance of a jble aame time.

The capability for repetitive or periodic execution of thé js enabled by specifying am_exit_removecommand
for the job, such that the job does not leave the queue urditet:

Semantics for CronTab Specification

A job’s execution schedule is defined by a set of specificatigithin the submit description file. HTCondor uses
these to calculate @eferralTime for the job.

Table[2.3 lists the submit commands and acceptable valughdee commands. At least one of these must be
defined in order for HTCondor to calculateDeferralTime for the job. Once one CronTab value is defined, the
default for all the others uses all the values in the allowades ranges.

The day of a job’s execution can be specified by bothdtem_day of monthand thecron_day of weekat-
tributes. The day will be the logical or of both.

The semantics allow more than one value to be specified by tisex operator, ranges, lists, and steps (strides)
within ranges.

HTCondor Version 8.6.4 Manual

2.13.2. CronTab Scheduling 152

Submit Command Allowed Values
cron_minute 0-59
cron_hour 0-23
cron_day _of month 1-31
cron_month 1-12

cron_day of week 0-7 (SundayisOor7)

Table 2.3: The list of submit commands and their value ranges

The asterisk operator The* (asterisk) operator specifies that all of the allowed vahresused for scheduling. For
example,

cron_month = *

becomes any and all of the list of possible months: (1,5%47,8,9,10,11,12). Thus, a job runs any month in
the year.

Ranges A range creates a set of integers from all the allowed valaesden two integers separated by a hyphen. The

specified range is inclusive, and the integer to the left eftfpphen must be less than the right hand integer. For
example,

cron_hour = 0-4

represents the set of hours from 12:00 am (midnight) to 400 (0,1,2,3,4).

Lists A list is the union of the values or ranges separated by comMabiple entries of the same value are ignored.
For example,

cron_minute = 15,20,25,30
cron_hour = 0-3,9-12,15

where thiscron_minute example represents (15,20,25,30) anzh_hour represents (0,1,2,3,9,10,11,12,15).

Steps Steps select specific numbers from a range, based on anahtérstep is specified by appending a range or
the asterisk operator with a slash characatdr followed by an integer value. For example,

cron_minute = 10-30/5
cron_hour = */3

where thiscron_minute example specifies every five minutes within the specified eaty represent
(10,15,20,25,30), ancton_hour specifies every three hours of the day to represent (0,35%5,18,21).

HTCondor Version 8.6.4 Manual

2.13.2. CronTab Scheduling 153

Preparation Time and Execution Window

The cron_prep_time command is analogous to the deferral timééferral_prep_time command. It specifies the
number of seconds before the deferral time that the job isstmbtched and sent to the execution machine. This
permits HTCondor to make necessary preparations befoidetieeral time occurs.

Consider the submit description file example that includes

cron_minute = 0
cron_hour = =
cron_prep_time = 300

The job is scheduled to begin execution at the top of every.lidate that the setting afron_hour in this example is
not required, as the default value will bespecifying any and every hour of the day. The job will be rhattand sent

to an execution machine no more than five minutes before thiedederral time. For example, if a job is submitted
at 9:30am, then the next deferral time will be calculateded ©:00am. HTCondor may attempt to match the job to a
machine and send the job once it is 9:55am.

As the CronTab scheduling calculates and uses deferral johe may also make use of the deferral window.
The submit commandron_window is analogous to the submit commadeferral_window. Consider the submit
description file example that includes

cron_minute = 0
cron_hour =«
cron_window = 360

As the pr