

Chinese Academy of Sciences

Search for Zs in $e^+e^- \rightarrow \phi \pi \pi$ at Ecm=2.125GeV

Fang Liu (on behalf of BESIII Collaboration)

the 12th International Workshop on Heavy Quarkonium 2017.11.6-10

Outline

- Introduction
- Search for Zs in $e^+e^- \rightarrow \phi \pi \pi$
- Cross section for $e^+e^- \rightarrow \phi \pi \pi$ @2.125 GeV
- Systematic uncertainties
- Summary

Introduction

Introduction

The study of Y(2175) $\rightarrow \phi \pi^+ \pi^-$ via the Initial Single Pion Emission (ISPE) mechanism indicates that there exist two charged strangeonium-like structures

Search for the strangeonium-like structure (Z_{s1}) in e⁺e⁻ $\rightarrow \phi \pi \pi$ @2.125 GeV, provides more experimental information for Y(2175)

Beijing Electron Positron Collider II (BEPC II)

The BESIII detector

The new BESIII detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

3.1 fb⁻¹ data at 4.18 GeV, 2016

World largest J/ψ, ψ(3686), ψ(3770), ... produced directly from e⁺e⁻ collision: an ideal factory to study light meson spectroscopy

Event selection

> Data sets @ 2.125 GeV $L_{int} = (108.49 \pm 0.75) \ pb^{-1}$ (arXiv:1705.09722)

 $e^+e^- \rightarrow \phi \pi^+ \pi^-$ with $\phi \rightarrow K^+K^-$

Charged tracks

✓ Ngood = 3 || 4

≻PID:

 \checkmark two pions are identified

 \checkmark at least one K is identified

> 1C kinematic fit (missing one K) $\checkmark \chi^2_{1C} < 10$ $e^+e^- \rightarrow \phi \pi^0 \pi^0$ with $\phi \rightarrow K^+K^- \& \pi^0 \rightarrow \gamma \gamma$

- Charged tracks
 - ✓ Ngood = 1 || 2
- PID: identify at least one K
- At least 4 good photons
- IC kinematic fit

 $\checkmark \chi^2{}_{1C}\!\!<\!\!20$

 $\gg \pi^0$ reconstruction

 $\checkmark \ \chi^2_{min} = \sqrt{|M(\gamma_1\gamma_2) - M(\pi^0)|^2 + |M(\gamma_3\gamma_4) - M(\pi^0)|^2}$

Dalitz plot for $e^+e^- \rightarrow \phi \pi \pi$ and mass spectra with $|M(K^+K^-)-M(\phi)| < 0.01 \text{GeV/c}^2$

No obvious Z_S signal around 1.4GeV in M($\phi \pi_I$)

Background study with ϕ signal

- ✓ To describe data without Zs contribution (with ϕ signal), such as $\phi f_0(980)$, $\phi \sigma$..., PWA for the $\phi \pi \pi$ is performed.
 - Partial waves: $\phi\sigma$, $\phi f_0(980)$, $\phi f_0(1370)$, $\phi f_2(1270)$ > For $f_0(980)$, Flatte formula is used[1] > For $f_0(1370)$, simple BW is used[1] > For $\sigma[2]$ $f = \frac{G_{\sigma}}{M^2 - s - iM\Gamma_{tot}(s)}$, $\Gamma_{tot}(s) = g_1 \frac{\rho_{\pi\pi}(s)}{\rho_{\pi\pi}(M^2)} + g_2 \frac{\rho_{4\pi}(s)}{\rho_{4\pi}(M^2)}$, $g_1 = f(s) \frac{s - m_{\pi}^2/2}{M^2 - m_{\pi}^2/2} \exp[-(s - M^2)/a]$. > For $f_2(1270)$, energy-dependent BW is used [1] [1] Phys. Lett. B 607 (2005), 243 [2] Phys. Lett. B 598 (2004), 149
 - The parameters are all fixed accordingly
 - Backgrounds from ϕ sideband is subtracted in Log-Likelihood
- ✓ Based on the PWA results, a dedicated MC sample (mDIY) modeled with decay amplitudes is generated to determine the background contribution with ϕ signal and the reconstruction efficiency for $\sigma(e^+e^- \rightarrow \phi \pi \pi)$ @2.125 GeV. ¹¹

Projection on M($\pi\pi$) and M($\phi\pi$) from PWA

$e^+e^- \rightarrow \phi \pi^+ \pi^-$

Upper limit on $\sigma(e^+e^- \rightarrow Z_s \pi, Z_s \rightarrow \phi \pi)$

- Solution Assume M=1.4GeV, Γ =0 for Z_s in Ref. Eur. Phys. J. C72, 2008(2012).
- ➢ Phase space MC sample of e⁺e[−] → Z_sπ@2.125GeV(Z_s → φπ) is used for Z_s signal shape and to estimate the selection efficiency
- Fit M(φπ_l) with Zs signal + background shape with φ events from mDIY MC sample (modeled with decay amplitudes based on PWA)
 + background with non-φ events (from φ sideband)
- By changing the fit range and background shape, the maximum number of Zs events is taken as the upper limit
- The uncorrelated systematic uncertainties (described in detail later) are taken into account by smearing the likelihood curves 2017/11/6

Upper limit on $\sigma(e^+e^- \rightarrow Z_s \pi, Z_s \rightarrow \phi \pi)$

(1+δ) is the radiative correction, which is calculated to second-order in QED by assuming that the line-shape follows the measured cross section of the BaBar experiments[Phys. Rev. D86, 012008(2012)].

Upper limit on Zs cross section

We also determine the upper limit by assuming its width to be 5 MeV or 10 MeV and its mass to be 1.38GeV or 1.42GeV, respectively.

							$ \rightarrow $			
	Mass (GeV/c ²)	1.380		1.400		1.420				
	Width (MeV/ c^2)	NUL	ε(%)	$\sigma_{Z_s}^{UL}(pb)$	NUL	E(%)	∑ _s ^L (pb)	NUL	ε(%)	$\sigma_{Z_s}^{UL}(pb)$
	0	22.2	47.3	0.90	16.6	46 9	0.68	44.4	46.8	1.82
$\phi \pi^+ \pi^-$	5	37.8	47.5	1.53	29.8	49.3	1.22	54.6	47.2	2.22
	10	49.6	47.5	2.01	40.2	% .4	1.63	60.8	47.3	2.47
	0	25.6	13.8	3.75	25.2	13.7	3.72	27.2	13.5	4.07
$\phi \pi^0 \pi^0$	5	28.0	13.8	4.10	23.6	13.7	4.22	30.2	13.5	4.52
	10	31.2	13.8	4.57	32.4	13.7	4.78	33.6	13.6	4.99

Cross section for $e^+e^- \rightarrow \phi \pi \pi$ @2.125 GeV

 Fit M(KK) with MC-shape
 S Gaussian + 2nd-order Chebychev polynomial background function

Systematic Uncertainties

Course	7±		70	±=0=0
Source	L_{S}	φπ·π	L_{S}	φπ-π-
MDC tracking	4.5	4.5	1.5	1.5
Photon detection	_	_	4	4
K PID	3	3	3	3
π PID	2	2		
Kinematic fit	2.1	2.1	0.1	0.1
π^0 mass window	_	_	0.1	0.1
Fitting range	_	0.1		1.4
Background shape	_	1.3		2.0
Branching fractions	1.1	1.1	1.1	1.1
Integrated luminosity	0.7	0.7	0.7	0.7
Model uncertainty	_	0.8		1.3
Total	6.3	6.5	5.4	6.1

Summary

- No Zs signal around 1.4GeV is observed in e+e- $\rightarrow \phi \pi \pi @$ 2.125GeV.
- The upper limits of Zs cross sections (at 90%C.L.) are obtained

	Mass (GeV/c ²)	1.380			1.400			1.420		
	Width (MeV/ c^2)	NUL	ε(%)	$\sigma_{Z_s}^{UL}(pb)$	NUL	ε(%) σ	(pb)	NUL	ε(%)	$\sigma_{Z_s}^{UL}(pb)$
	0	22.2	47.3	0.90	16.6	46.9	0.68	44.4	46.8	1.82
φπ+π_	5	37.8	47.5	1.53	29.8	455	1.22	54.6	47.2	2.22
	10	49.6	47.5	2.01	40.2	A A	1.63	60.8	47.3	2.47
	0	25.6	13.8	3.75	25.2	13.7	3.72	27.2	13.5	4.07
φπ ⁰ π ⁰	5	28.0	13.8	4.10	26.6	13.7	4.22	30.2	13.5	4.52
	10	31.2	13.8	4.57	.32.4	13.7	4.78	33.6	13.6	4.99

• The cross sections for $e^+e^- \rightarrow \phi \pi \gtrsim @2.125 GeV$ are measured

$\phi \pi^+ \pi^-$								
E _{e.m.} (GeV)	BaBar	Belle	BESIII					
2.1125	$510 \pm 50 \pm 21$	$480\pm60\pm42$	-					
2.125	-	-	$343.0 \pm 5.1 \pm 22.3$					
		$\phi \pi^0 \pi^0$						
2.10	$195 \pm 50 \pm 14$	-	-					
2.125	-	-	$208.3 \pm 7.6 \pm 12.7$					

Thank you for your attention!

Introduction

 $\Upsilon(5S) \rightarrow h_b(mP)\pi^+\pi^- (m = 1, 2)$

FIG. 3: The (a) $h_b(1P)$ and (b) $h_b(2P)$ yields as a function of $M_{\text{miss}}(\pi)$ (points with error bars) and results of the fit (histogram).

π^0 reconstruction in $e^+e^- \rightarrow \phi \pi^0 \pi^0$

 $\chi^2_{min} = \sqrt{|M(\gamma_1\gamma_2) - M(\pi^0)|^2 + |M(\gamma_3\gamma_4) - M(\pi^0)|^2}$

 $|M(\gamma\gamma) - 0.135| < 0.02 GeV/c^2$

The two π^0 are ordered as $\pi^0_{\ l}$ and $\pi^0_{\ h}$ according to their energy in Lab-S.

Projection of angular distributions ($\phi \pi^+ \pi^-$)

Projection of angular distributions ($\phi \pi^0 \pi^0$)

Z_s Signal shape

- Phase space MC sample of $e^+e^- \rightarrow Z_s \pi @2.125 GeV(Z_s \rightarrow \phi \pi)$ will be used for Z_s signal shape and to estimate the selection efficiency
- Assuming M=1.4GeV, Γ =0 for Z_s in Ref. Eur. Phys. J. C72, 2008(2012).

Systematic Uncertainties(1)

- Tracking and Photon
 - ✓ 1.5% and 1.5% for each charged kaon and pion, and 1.0% per photon

• Kinematic fit

✓ Correct the helix parameters for the charged track (used in kinematic fit), the difference before and after the correction are taken as the systematic error (Phys. Rev. D 87, 012002 (2013))

• π^0 mass window

✓ Estimated as the difference on selection efficiency between data and MC simulation associated with π^0 cut

• Fitting range

✓ Estimated as the maximum changes on the calculated cross section in alternative fits with different fitting range

Systematic Uncertainties(2)

Background shape

 ✓ Estimated as the changes on the calculated cross section in alternative fits by changing the background function (2-order /3 order polynomial)

Intermediate state

✓ The branching fractions of the intermediate process are quoted from PDG.
 So 1.1% is taken as the uncertainty associated with the intermediate decays

• Luminosity

✓ The luminosity is determined to be (108.49±0.75) pb⁻¹ with the wide angle Bhabha events. So the uncertainty from this source is estimated to be 0.7%

• Efficiency from PWA

✓ By changing f₀(1370) to 0⁺⁺ PHSP, the differences on the calculated cross section are taken as the systematic uncertainty

Systematic Uncertainty for PID efficiency

Control sample of $\phi\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$

- Good charged track:
 - Ngood=3 or Ngood=4 with Q=0
- PID: one kaon is identified, the other track is assumed to be kaon or pion.
- 1C-fit to $K\pi\pi$ (missing K) or $KK\pi$ (missing π) hypotheses for three and four good charged tracks, and the minimum χ^2_{1C} is selected.

Uncertainty from Kaon PID Efficiency

- $\checkmark \chi^2_{1C}(KK\pi\pi_{missing}) < 10.$
- ✓ Another track assuming to be pion from 1C-fit is identified as pion.
- ✓ PID eff.(K)=N_Φ(with K identified)/N_Φ by fitting KK mass

PID Eff.

Relative difference of PID Eff. Between data and MC

The difference of K PID is ~3%

Uncertainty from pion PID Efficiency

- $\checkmark \chi^2_{1C}(K K_{\text{missing}} \pi^+ \pi^-) < 10.$
- ✓ Addition criterion: $|M(KK_{missing})-M_{\Phi}|<0.015GeV/C^2$
- \checkmark Negative π is identified as pion
- ✓ PID eff.(π^+)=N(π^+ is identified)/N_{tot}

