Perspectives on spectroscopy study at Belle II

Yiming Li (李一鸣) Institute of High Energy Physics on behalf of the Belle II collaboration

Quarkonium 2017 @ Peking University, 6-10 Nov 2017

Spectroscopy of heavy quarkonia

- Treated with NRQCD due to the heavy c/b mass
- Tests of perturbative and non-perturbative QCD
- B-factories did great job in establishing the long awaited states and finding surprises in exotic quarkonium-like states

Belle @ KEKB \rightarrow Belle II @ SuperKEKB

Belle II detector

More info & status: YE Hua's talk "Status of Belle II and SuperKEKB"

Better vertexing; Improved PID capability; Fast data-acquisition...

Bottomonia(-like)

Scan above Y(4S)

- Total cross-section above BB Γ threshold have been measured in $\Upsilon(nS)\pi\pi$ and $B_{s}^{(*)}\bar{B}_{s}^{(*)}$
 - R_b dip vs. $\Upsilon \pi \pi$ bump
 - Sign of $Y_{\rm b}$ states?

10.7

Expected study: $BB, BB^*, B^*B^*(\pi), \Upsilon\pi\pi, \Upsilon\eta,$ especially at 10.65, 10.75 GeV.

(b)

B*Ē*

B,Ē,*

B_s^{*}B_s*

B_sB_s

10.8

√s/GeV

6/11/17

BĀ

ВĨ

BB

BB*

B^{*}Ē*

ΔR

.2

.1

0.1

10.6

Z_b in $\Upsilon(6S)$

- Charged Z_b^+ state is observed in $\Upsilon(5S) \rightarrow \pi[\pi \Upsilon]/\pi[\pi h_b]$
- Evidence of $\Upsilon(6S) \rightarrow \pi^+\pi^-h_b(nP)$, via $Z_b(10610)$ or $Z_b(10650)$
- Statistics is not large enough to distinguish contributions from the two states
- More data needed for this FS and other possibilities:
 - $\Upsilon(6S) \rightarrow \pi^+\pi^-\Upsilon(mS),$ $\pi^+\pi^-h_b(nP)$
 - With $\pi^0 \pi^0$

Z_b in $\Upsilon(6S)$

- Z_b(10610) and Z_b(10650) also found in $B\overline{B}^*$ and $B^*\overline{B}^*$ final states, respectively
- For molecular bottomonia interpretation, Z_b has neutral partners W_b
- Potential searches:
 - $\Upsilon(6S) \rightarrow \gamma W_b$
 - $\Upsilon(6S) \rightarrow \pi^+ \pi^- W_b / \rho W_b$
 - $W_b \rightarrow \eta_b \pi$, $\chi_b \pi$, $\Upsilon \rho$

Voloshin, PRD 84, 031502 (R)

Hadronic transition of Y(5S) and Y(6S)

- For bottomonium states above BB threshold, hadronic transitions suppressed by Heavy Quark Spin Symmetry are enhanced
- Could be explained if the Y states are not pure bb but a "molecular" admixture of meson pairs

State	Decomposition into $b\bar{b}$ spin eigenstates
$B\bar{B}$	$\frac{1}{2\sqrt{3}}\psi_{10} + \frac{1}{2}\psi_{11} + \frac{\sqrt{5}}{2\sqrt{3}}\psi_{12} + \frac{1}{2}\psi_{01}$
$B\bar{B}^*$	$\frac{1}{\sqrt{3}}\psi_{10} + \frac{1}{2}\psi_{11} - \frac{\sqrt{5}}{2\sqrt{3}}\psi_{12}$
$(B^*\bar{B}^*)_{S=0}$	$-\frac{1}{6}\psi_{10} - \frac{1}{2\sqrt{3}}\psi_{11} - \frac{\sqrt{5}}{6}\psi_{12} + \frac{\sqrt{3}}{2}\psi_{01}$
$(B^*\bar{B}^*)_{S=2}$	$\frac{\sqrt{5}}{3}\psi_{10} - \frac{\sqrt{5}}{2\sqrt{3}}\psi_{11} + \frac{1}{6}\psi_{12}$

Spin eigenstate	Expected decays
ψ_{10}	$\Upsilon(nS) \pi^+ \pi^-, \Upsilon(nS) K^+ K^-$ in S wave
ψ_{11}	$\Upsilon(nS)\eta,\Upsilon(nS)\eta'$
ψ_{11}, ψ_{12}	$\Upsilon(nS) \pi^+ \pi^-, \Upsilon(nS) K^+ K^-$ in D wave
ψ_{01}	$\eta_b(nS)\omega,\eta_b(nS)\phi,h_b(nP)\eta,h_b(nP)\eta'$

Missing $b\bar{b}$ states below $B\bar{B}$ threshold

• $\Upsilon(1D), \Upsilon(2D)$ can be searched in direct scan

Resolving Y(1D) triplet in Y(3S) decays

- Y(1D) produced in Y(3S) radiative decay
 - Followed by dipion decay to Y(1S)
 - Four-gamma cascade

Planned data-points

12

Charmonium(-like) states

Charmonium-like exotics from B decays

- Amplitude analysis can be performed in B decays, thus the quantum number of exotic states could be determined
- With larger data sample, spin-parity of other exotic states is to be determined, especially for those observed in a single final state:
 - X(3915) in $B \to K \omega J / \psi$ (also interesting for X(3872)!)
 - Zc(4050), Zc(4250) in $B \rightarrow K \pi \chi_{c1}$
- Search for open flavour decays, esp. for candidates of molecules
 - $B \to KD\overline{D}, KD^*\overline{D}, KD^*\overline{D}^*$

Charmonia in B decay - absolute BF

- Absolute BF of exotic states can be measured in $B \rightarrow KX$ via the missing mass recoiling against the kaon
- Initial momentum of the mother B can be determined by fully reconstructing the accompany \overline{B} Unique at ee collider!

ISR

- Coverage of the full energy spectrum (line shape, fine structure...);
- Many simultaneous \sqrt{s} , point-to-point systematics small
- Lower efficiency (boost may help)

vs. direct production

- Higher luminosity at fixed \sqrt{s} ;
- Better resolution;
- Much higher efficiency

- Belle II can do ISR studies in
 - Charmonium + light hadrons
 - Charm meson pair (+light hadrons)

ISR with increased data sample at Belle II

- Charged Zc search:
 - Evidence of Zc(4050) found in Y(4360) $\rightarrow \pi^+\pi^-\psi(2S)$, needs confirmation
- ISR production of charmonium + light hadrons in addition to $\pi\pi\psi$:
 - $\gamma X(3872); \psi(4040), \psi(4160)$ into $\eta J/\psi, KK\psi, ...$
 - Charm meson pairs: $D\overline{D}$, $D\overline{D}^*(\pi)$, ...

Golden channels of ISR

	10 ab ⁻¹ by 2020		y 2020	(50 ab	o ⁻¹ by 2024)	
-	Golden Channels	$E_{c.m.}$ (GeV)	Statistical error (%)		Related XYZ states	
	$\pi^+\pi^- J/\psi$	4.23	7.5 (3.0)		$Y(4008), Y(4260), Z_c(3900)$	
	$\pi^+\pi^-\psi(2S)$	4.36	12(5.0)		$Y(4260), Y(4360), Y(4660), Z_c(4050)$	
	K^+K^-J/ψ	4.53	15(6.5)		Z_{cs}	
	$\pi^+\pi^-h_c$	4.23	15(6.5)		$Y(4220), Y(4390), Z_c(4020), Z_c(4025)$	
	$\omega\chi_{c0}$	4.23	35~(15)			Y(4220)

$e^+e^- \rightarrow \pi^+\pi^- J/\psi$:

Line shape around 4.26 GeV?
Confirm Y(4008)?
Detailed study of charged Zc(3900)
With 10/ab the statistical
uncertainty already competitive

Dedicated ISR generator PHOKHARA has been implemented in Belle II framework

Double charmonium production

- $e^+e^- \to J/\psi X, X = c\bar{c}$
 - X can be studied using J/ψ recoil, especially for *C*-even states
 - X = conventional $c\bar{c}$, η_c (1S, 2S); or = exotics: X(3940), X(4160), X*(3860)...
 - Decays of X can be further studied: $X(3940) \rightarrow D\overline{D}^*, X(4160) \rightarrow D^*\overline{D}^*$ found in $J/\psi D^*$ recoil

- Full list of the states accessible, with better accuracy eg. $\chi_{c0}(2P)$
- Angular analyses giving access to the ratio of different L contributions
- $e^+e^- \rightarrow \eta_c X / \chi_c X$... to be explored for the *C*-odd states!

Summary

- Heavy quarkonium spectroscopy is an active field, and many unsolved puzzles on the nature of dozens of exotic states
- SuperKEK and Belle II experiment are on the track for physics data taking in 2018
 - Expecting a x40 higher luminosity and a x50 larger data sample
- Plenty of studies on spectroscopy using Belle II data
 - Bottomonia studies at high energy eg. Y(5S), Y(6S) starting soon in early data-taking
 - 200~300 fb⁻¹ Y(3S) data-taking motivated
 - Charmonium(-like) states will be studied comprehensively in B decays, ISR and double production

Backup

Observation of Z_b in $\Upsilon(5S)$ at Belle

- Charged Z_b^+ state is observed in $\Upsilon(5S)$
 - $\Upsilon(5S) \to Z_b^+ \pi^- \to \Upsilon(nS)\pi^+\pi^- / h_b(mP)\pi^+\pi^-$, n=1,2,3, m=1,2
- **Zb**(10610) and Zb(10650) also found in $B\overline{B}^*$ and $B^*\overline{B}^*$ final states

Y(3S) operation

200~300 fb⁻¹ at or around Y(3S) will enable many studies like:

- Rare η transitions
- Spectroscopy of D and F waves
- Hindered (M1) radiative transitions
- Antitritium and He-3 in Y decays