Study of D_{s0}^* (2317) decay at BESII

Guang Zhao (IHEP) (On behalf of the BESIII Collaboration)

The 12th International Workshop on Heavy Quarkonium Nov. 6th -10th , 2017

Motivation

• The $D_{s0}^*(2317)^-$ meson

- was first observed at BABAR, confirmed by CLEO and Belle.
- the measured mass is (2317.7 ± 0.6) MeV
- is extremely narrow, and the upper limit of the width is 3.8 MeV @ 95% CL
- the only known decay is π⁰D_s⁻, but no measured branching fraction/partial decay width
- is suggested to be the P-wave cs state with spin-parity J^P = 0⁺.

Motivation (cont.)

However...

- The measured mass (2317.7 \pm 0.6) MeV is at least 150 MeV lower than the calculation of potential model and lattice QCD
- As $D_{s0}^*(2317)^-$ is about 45 MeV below the DK threshold, it has been proposed as a good candidate of
 - DK molecule
 - a *csqq* tetraquark state
 - or a mixture of a \overline{cs} meson and a \overline{csqq} tetraquark.
- Theoretical calculations give different values for the partial decay width $\Gamma(D_{s0}^*(2317)^- \rightarrow \pi^0 D_s^-)$
 - ~30 keV or even as low as a few keV if it is a pure $\bar{c}s$ state
 - can be enhanced by ~100 keV or even larger in the molecule picture due to the contribution of meson loop
- So the partial decay width or the branching fraction of $D_{s0}^*(2317)^- \rightarrow \pi^0 D_s^-$ is a key quantity to identify the nature of the $D_{s0}^*(2317)^-$

Detector and data samples

Symmetric-energy e⁺e⁻ collider

Wire tracker (no Si); TOF + dE/dx for PID; CsI Ecal; RPC muon

Sample for this work: 566.93 pb⁻¹, E_{cm} = 4.6 GeV taken at BESIII

Analysis strategy

Topology

• $e^+e^- \rightarrow D_s^{*+}D_{s0}^*(2317)^-; D_{s0}^*(2317)^- \rightarrow \pi^0 D_s^-$

Strategy

- Tag D_s^{*+} with $\gamma D_s^+ \rightarrow \gamma K^+ K^- \pi^+$
- Search for D^{*}_{s0}(2317)⁻ in the recoil mass of D^{*+}_s, and obtain the # of D^{*}_{s0}(2317)⁻ events
- Tag π^0 from $D_{s0}^*(2317)^-$ decay, and obtain the # of $\pi^0 D_s^-$ event
- The absolute branching fraction of $D_{s0}^*(2317)^- \rightarrow \pi^0 D_s^-$ is calculable

Event selections of D_s^{*+} tag

- Reconstruct $D_s^{*+} \rightarrow \gamma D_s^+ \rightarrow \gamma K^+ K^- \pi^+$ in $e^+ e^- \rightarrow D_s^{*+} D_{s0}^* (2317)^-$
 - At least 3 good charged tracks with vertex and PID requirements
 - At least 1 good photon
 - Make combinations of tracks/photos to form a D⁺_s and a D^{*+}_s candidate, and require
 - $|M(KK\pi) M(D_s)| < 16 \text{ MeV}$
 - $|M(\gamma KK\pi) M(D_s^*)| < 11 \text{ MeV}$
 - Perform 2C (constrain D_s^+ and D_s^{*+} mass) kinematic fit, and require $\chi^2 < 14$
 - (Event selections have been optimized based on MC)

Recoil mass of D_s^{*+}

Clear $D_{s0}^*(2317)^-$ peak

- Inclusive MC matches well with data background
- Backgrounds come from
 - non- D_s^* bkg: non- D_s^+ and mis-combined γD_s^+ events, cannot form a peak at 2317 MeV
 - real-D^{*}_s bkg: e.g. D^{*}_sD^{*}_s, D^{*}_sD_s. Their RM(D^{*+}_s) peak is distributed far away from 2317 MeV
 - Both of them cannot form peaking bkg

Event selections of π^0 tag

- Due to the low statistics, we partially reconstruct the $D_{s0}(2317)^-$ from the particles not associated with the D_{s}^{*+} tag
 - Reconstruct the π^0 from $D_{s0}(2317)^- \rightarrow \pi^0 D_s^-$, let D_s^- missing
 - If more than one π^0 exist, keep all combinations
 - Perform 4C kinematic fit (constrain M(D_s^+), M(D_s^{*+}), M(π^0) and M(D_s^-)_{miss}), require $\chi^2 < 36$
 - (Event selections have been optimized based on MC)

Sample dividing based on π^0 tag

- Divide the $e^+e^- \rightarrow D_s^{*+}D_{s0}^*(2317)^$ events into 2 sub-samples:
 - Sample-I: "π⁰-tag succeeded"
 - at least one π^0 is tagged
 - Sample-II: "π⁰-tag failed"
- Will obtain better statistical precision if simultaneous fit these two sub-samples constraining the ratio of $\pi^0 D_s^-$ (or non- $\pi^0 D_s^-$) events in them be fixed by the MC efficiencies

Simultaneous fit to $RM(D_s^{*+})$

Parametrization:

- Signal shape: Crystal ball (fixed by MC simulation except for mass) convolved a Gaussian (fixed by control sample: D_s^{*+}D_s^{*-})
- Background: 1-order polynomial

Fit results:

- # of $D_{s0}^*(2317)^-$ events: 115 ± 21
 - in sample-I: N1 = 46.8 ± 9.4
 - in sample-II: N2 = 68.2 ± 12.9
- Mass of D^{*}_{s0} (2317): (2318.3 ± 1.2) MeV

Statistical significance of the $D_{s0}^*(2317)^-$ signal is 5.8 σ

BF measurements

According to the formula above, the absolute branching fraction is measured as

$BF(D_{s0}^*(2317)^- \to \pi^0 D_s^-) = 1.00_{-0.14},$

where the statistical error 0.14 is estimated by covering 68.3% confidence level from the likelihood distribution of the BF.

Angular distributions

If the J^P of $D_{s0}^*(2317)^-$ is 0⁺, both the $D_s^{*+}D_{s0}^*(2317)^-$ and $\pi^0 D_s^-$ systems could be in relative S-wave, and the angular distributions should be flat

Systematics for BF

For absolute branching fraction study, many sources of the systematics related to D_s^{*+} tag can be canceled

	Source	Uncertainty (%)	
The remaining	π^0 reconstruction	0.7	
	Signal shape	inary 5.0	
	Background shape	7.4	
	$\pi^0 D_s^-$ selections	3.1	
	Width of $\mathcal{D}_{s0}^{L}(2317)^-$	5.3	
	Peaking backgrounds	8.5	
	Total	13.8	

Systematics for BF

For absolute branching fraction study, many sources of the systematics related to D_s^{*+} tag can be canceled

	Source	Uncertainty (%)	
	π^0 reconstruction	0.7	
	Signal shape	inary 5.0	
The remaining	Background shape	7.4	Due to the limited statistics, systematics related to $RM(D_s^{*+})$ fit dominate
	$\pi^0 D_s^-$ selections	3.1	
	Width of $D_{s0}^{(2317)}$	5.3	
	Peaking backgrounds	8.5	
	Total	13.8	

Systematics for BF

For absolute branching fraction study, many sources of the systematics related to D_s^{*+} tag can be canceled

	Source	Uncertainty (%)		
	π^0 reconstruction	0.7		
	Signal shape	nary 5.0	The other major	
The remaining	Background shape	7.4	Studied by simulating all the potential peaking backgrounds, including γD_s^{*-} , $\gamma \gamma D_s^{-}$	
	$\pi^0 D_s^-$ selections	3.1		
	Width of $D_{s0}^{(2317)}$	5.3		
	Peaking backgrounds	8.5	and $\pi^+\pi^-D_s^-$	
	Total	13.8		

Systematics for mass of $D_{s0}^*(2317)^-$

Use control sample $e^+e^- \rightarrow D_s^{*+}D_s^{*-}$ at 4.6 GeV. Compare RM(D_s^{*+}) with PDG value. The difference 1.2 MeV is taken as systematic uncertainty

Summary

- We observe $D_{s0}^*(2317)^-$ signal via $e^+e^- \rightarrow D_s^{*+}D_{s0}^*(2317)^-$ using BESIII 4.6 GeV data (5.8 σ)
- The mass of $D_{s0}^*(2317)^-$ is determined to be (2318.3 ± 1.2 ± 1.2) MeV (preliminary)
- The branching fraction of $D_{s0}^*(2317)^- \rightarrow \pi^0 D_s^-$ is measured as $1.00_{-0.14} \pm 0.14$ (preliminary) for the first time
- D^{*}_{s0}(2317)⁻ tends to have a significantly smaller branching fraction to γD^{*}_s than to π⁰D⁻_s, and this differs from the expectation of the conventional c̄s hypothesis but agrees well with the calculation in molecule picture
- The width of $D_{s0}^*(2317)^-$ could be measured in the future with more data, which may shed light on the nature of the $D_{s0}^*(2317)^-$.