Observation of a doubly charmed baryon at LHCb

PRL 119, 112001 (2017)

Daniel Vieira University of Chinese Academy of Sciences On behalf of LHCb collaboration

12th International Workshop on Heavy Quarkonium, Beijing, China

Outline

Experimental status

□ Dataset, reconstruction and selection

\Box Results

Prospects and conclusion

Doubly Heavy Baryons

- Baryon spectroscopy is an important test for the Standard Model (SM)
- **Charm doubly heavy baryons predicted include:** Ξ_{cc} +(dcc), Ξ_{cc} ++(ucc), and Ω_{cc} +(scc)
- Theoretical predictions of Ξ_{cc}^{++} mass are 3.5-3.7 GeV/c² and expected to be close to Ξ_{cc}^{+} [1-6]
- Theoretical predictions of Ξ_{cc}^{++} lifetime are within the 150-1550 fs [7-12]
- **Bottom doubly heavy baryons:** Ξ_{bc} , Ω_{bc} , Ξ_{bb} , ...

 CP violation, hadron spectroscopy and rare decays in b and c quark systems

□ 2011 - 2012 -> Run I (3.0 fb⁻¹)

□ 2015 - 2017 -> Run II (3.5 fb⁻¹)

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022

IJMPA 30 (2015) 1530022

SELEX experiment Ξ_{cc}^+ measurement

 SELEX (Fermilab E781) collides high energy hyperon beams (Σ⁻, p)
with nuclear fixed targets, dedicated to study charm baryons

Observed $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$ and $\Xi_{cc}^+ \rightarrow p D^+ K^-$ decays

- > Signal yields: 15.9 and 5.62
- Short lifetime: $\tau_{\pm cc+}$ < 33 fs @90% CL, but not zero
- > Large production: exceeding theoretical predictions by ~20%

> Mass (combined): 3518.7 ± 1.7 MeV

6

Other Ξ_{cc}^+ searches

- Other experiments attempted to confirm SELEX's results, but no confirmation was obtained yet
- ☐ FOCUS, BaBar, Belle and LHCb
- LHCb new search ongoing, with selection criteria and methodology drastically improved
 - Nevertheless, SELEX's result cannot be discarded

Dataset, reconstruction and selection

□ 2016 data (1.7fb⁻¹)

```
\Box \quad \Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+} \operatorname{K}^{-} \pi^{+} \pi^{+} [13]
```

□ Signal kinematical distributions taken from MC

□ Background distributions taken from wrong-sign $\Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+}\pi^{-}$ samples

□ First reconstruct $\Lambda_c^+ \rightarrow pK^-\pi^+$, then combine with $K^-\pi^+\pi^+$

8

Dataset, reconstruction and selection

□ Selection is performed in three steps:

- > Trigger (dedicated trigger line): Kinematical constraints, PID, track and vertex quality
- > Preselection: Ghost probability, kinematical constraints, vertex and PV refit quality
- > MVA: Kinematical constraints and Vertex refit quality

Mass fit

PRL 119 (2017) 112001

Observable:

- $m(\Xi_{cc}^{++}) = m(\Lambda_{c}^{+}K^{-}\pi^{+}) m(\Lambda_{c}^{+}) + m_{PDG}(\Lambda_{c}^{+})$
- Gaussian + double sided crystal ball for signal
- Chebychev Polynomial for background
- Signal yield: 313 ± 33
- Resolution: 6.6 ± 0.8 MeV, consistent with detector resolution

Local significance > 12 σ

 $m_{\Xi_{cc}^{++}} = 3621.40 \pm 0.72(stat) \pm 0.27(syst) \pm 0.14(\Lambda_c)MeV$

Mass value consistent with theoretical range of predictions! Not consistent with Ξ_{cc} + SELEX measurement [M_{LHCb}(Ξ_{cc} ++) - M_{SELEX}(Ξ_{cc} +) = 102.7 MeV]

Additional tests

- **Multiple candidates: not creating fake narrow structure**
- **Checking combinations of tracks from** Λ_c^+ and Ξ_{cc}^{++} : not peaking
- ☐ MVA efficiency as a function of mass: very smooth
- Varying threshold value of MVA selector and using cut based selection: structure stays significant
- Varying particle ID selections: no peaking structure emerging in WS combinations, structure stays in RS sample
- □ Run I sample used as crosscheck: same structure seen

Additional tests

$\Box \quad \text{Structure still significant} \\ \text{with } \tau_{\Xi cc} > 5\sigma$

Consistent with weak decay

Future prospects

Mid-term

- > Searching for Ξ_{cc}^{++} with more channels: $\Xi_{c\pi^{+}}^{+}$, $\Lambda_{c}^{+}\pi^{+}$, $pD^{+}K^{-}\pi^{+}$
- > Measurement of the Ξ_{cc}^{++} lifetime
- > Measurement of the production cross-section
- > Searching for its isospin partner Ξ_{cc} + in a larger sample than the previous measurement
- > Searching for Ω_{cc}^+
- > Doubly heavy baryons with bottom quark: Ξ_{bc} , Ω_{bc} , Ξ_{bb}
- > The excited states?

□ Long-Term:

- > Confirming its spin-parity: 1/2+
- > CP violation studies

13

Conclusions

□ A significant structure consistent with Ξ_{cc}^{++} was observed in LHCb 2016 data

PRL 119, 112001 (2017)

- **Measured mass is consistent with theoretical range of** predictions, but not with SELEX Ξ_{cc} + measurement
 - Many studies more to come!

References

[1]W. Roberts and M. Pervin, Heavy baryons in a quark model, Int. J. Mod. Phys. A23 (2008) 2817, arXiv:0711.2492.

[2]D.-H. He et al., Evaluation of spectra of baryons containing two heavy quarks in bag model, Phys. Rev. D70 (2004) 094004, arXiv:hep-ph/0403301.

[3]Z.-G. Wang, Analysis of the 1 + doubly heavy baryon states with QCD sum rules, Eur. 2 Phys. J. A45 (2010) 267, arXiv:1001.4693.

[4]C.-H. Chang, C.-F. Qiao, J.-X. Wang, and X.-G. Wu, Estimate of the hadronic production of the doubly charmed baryon \equiv cc under GM-VFN scheme, Phys. Rev. D73 (2006) 094022, arXiv:hep-ph/0601032.

[5]A. Valcarce, H. Garcilazo, and J. Vijande, Towards an understanding of heavy baryon spectroscopy, Eur. Phys. J. A37 (2008) 217, arXiv: 0807.2973.

[6] J.-R. Zhang and M.-Q. Huang, Doubly heavy baryons in QCD sum rules, Phys. Rev. D78 (2008) 094007, arXiv:0810.5396.

[7]M. Karliner and J. L. Rosner, Baryons with two heavy quarks: Masses, production, decays, and detection, Phys. Rev. D90 (2014), no. 9 094007, arXiv:1408.5877.

[8]C.-H. Chang, T. Li, X.-Q. Li, and Y.-M. Wang, Lifetime of doubly charmed baryons, Commun. Theor. Phys. 49 (2008) 993, arXiv:0704.0016.

[9]D. Ebert, R. N. Faustov, V. O. Galkin, and A. P. Martynenko, *Mass spectra of doubly heavy baryons in the relativistic quark model*, Phys. Rev. D66 (2002) 014008, arXiv:hep-ph/0201217.

[10]B. Guberina, B. Melic, and H. Stefancic, Inclusive decays and lifetimes of doubly charmed baryons, Eur. Phys. J. C9 (1999) 213, arXiv:hep-ph/ 9901323.

[11]V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, Lifetimes of dou- bly charmed baryons: Xi(cc)+ and Xi(cc)++, Phys. Rev. D60 (1999) 014007, arXiv:hep-ph/9807354.

[12] V. V. Kiselev and A. K. Likhoded, *Baryons with two heavy quarks*, Phys. Usp. 45 (2002) 455, arXiv:hep-ph/0103169, [Usp. Fiz. Nauk172,497(2002)].

[13]F.-S. Yu, H.-Y. Jiang, R.-H. Li, C.-D. L, W. Wang, and Z.-X. Zhao, arXiv:1703.09086.

15

Backup

Systematic uncertainties

Source	Value (MeV/ c^2)
Momentum-scale calibration	0.22
Selection bias correction	0.14
Unknown Ξ_{cc}^{++} lifetime	0.06
Mass fit model	0.07
Sum of above in quadrature	0.27
Λ_c^+ mass uncertainty	0.14