Results on baryon spectroscopy from LHCb

Daniel Vieira University of Chinese Academy of Sciences On behalf of LHCb collaboration

06/11/2017

12th International Workshop on Heavy Quarkonium, Beijing, China

Outline

□ Introduction

- □ Study of D⁰p amplitude in $\Lambda^{0}_{b} \rightarrow D^{0}p\pi^{-}$
- □ Measurement of the $\Lambda^{0_{b}} \rightarrow \Lambda^{+_{c}} \mu^{-} \bar{\nu}_{\mu}$ differential decay rates

 $\Box \quad \text{Observation of Five New Narrow } \Omega^{0}_{c} \text{ States}$

Conclusion

Introduction

- LHC is a heavy baryon factory
- □ LHCb can provide unique datasets
- Baryon spectroscopy and precision measurements are an important test for the standard model

D^op amplitude analysis in $\Lambda^{o}_{b} \rightarrow D^{o}p\pi^{-}$

J. High Energ. Phys. (2017) 2017: 30

- \square Run I dataset (3.0 fb⁻¹)
- $\Box D^0 \rightarrow K^-\pi^+$
- \Box Selection:
 - ✓ Preselection
 - ✓ Kinematical fit
 - BDT: Kinematical properties, reconstruction, refit quality and PID
- \square ~11k Λ^{0}_{b} events

[1,2]

5D phase space

- □ Helicity formalism
- \Box Fit can be done only in M²(D⁰p) and M²(p π -)

Fit procedure

J. High Energ. Phys. (2017) 2017: 30

- Resonances parametrised with relativistic Breit-Wigner
- **Efficiency taken from MC**
- Background taken from sidebands
- D⁰p resonances well
 separated from pπ resonances
- □ Fit performed in regions

Fit Results

J. High Energ. Phys. (2017) 2017: 30

New Λ^*_c state

First constraint on \Lambda+_c (2940) spin

Resonance	M [MeV]	$\Gamma [MeV]$	J^P
$\Lambda_{c}^{+}(2860)$	2856	67	$3/2^+$ (Preferred w/ > 6σ)
$\Lambda_{c}^{+}(2880)$	2881	5.4	$5/2^{+}$
$\Lambda_{c}^{+}(2940)$	2945	28	$3/2^-$ (Preferred w/ > 3σ)

 $\Box \quad \Lambda_{c} (2880), \Lambda_{c} (2940) \text{ in agreement} \\ \text{with previous measurements}$

Measurement of the form factor in $\Lambda^{0}_{b} \rightarrow \Lambda^{+}_{c} \mu^{-} \bar{\nu}_{\mu}$

- Precise measurements of CKM parameters are an important test of the Standard model
- Understanding the form factors used to describe hadronic currents can help with these measurements
- Heavy Quark Effective Theory provides the framework to parametrise the form factors in the infinite heavy quark-mass limit
 - Proportional to the universal Isgur-Wise (IW) Function

$$w = (m_{\Lambda_b^0}^2 + m_{\Lambda_c^+}^2 - q^2)/(2m_{\Lambda_b^0}m_{\Lambda_c^+}),$$

$$\frac{d\Gamma}{dw} = GK(w)\xi_B^2(w),$$

$$\xi_B(w) = -\rho^2(w-1) + \frac{1}{2}\sigma^2(w-1)^2 + \dots,$$

Slope Curvature

ſ	$ ho^2$	Approach	Reference
ſ	1.35 ± 0.13	QCD sum rules	(3)
	$1.2^{+0.8}_{-1.1}$	Lattice QCD (static approach)	(4)
	1.51	HQET + Relativistic wave function	(5)

Data samples

- \Box Run I dataset (3.0 fb⁻¹)
- 2.74 M raw events
- $\Box \quad \Lambda_{c} \rightarrow p K^{-} \pi_{+}$
- Selection: Kinematical properties and reconstruction quality
- $\Box \quad \Lambda^*_c \text{ contributions also} \\ \text{estimated using} \\ \Lambda^0_b \rightarrow \Lambda^+_c \pi^+\pi^-\mu^-\bar{\nu}_\mu$

The spectral distribution $dN_{corr}/d\omega(\Lambda^{0}_{b} \rightarrow \Lambda^{+}_{c} \mu^{-} \bar{\nu}_{\mu})$

arXiv:1709.01920

- **Efficiency taken from MC**
- $\Box \Lambda^*_{c}$ contributions subtracted
- Combinatorial background shape from wrong-sign sample subtracted
 - Unfolding based on the single value decomposition (SVP) method to take detector resolution and other effects into account

IW Fit results arXiv:1709.01920

Three parametrisations attempted:

- ✓ Exponential
- ✓ Dipole
- ✓ Taylor series
- Good agreement with predictions of HQET, sum rules, and relativistic quark model.

Shape	$ ho^2$	σ^2	correlation coefficient	χ^2 / DOF
Exponential*	1.65 ± 0.03	2.72 ± 0.10	100%	5.3/5
Dipole*	1.82 ± 0.03	4.22 ± 0.12	100%	5.3/5
Taylor series	1.63 ± 0.07	2.16 ± 0.34	97%	4.5/4

Observation of Five New Narrow Ω⁰c States

PRL118, 182001 (2017)

- Many baryon states are expected
- Ground states already observed
- Regarding $Ω_c$ only $Ω_c^0$ and $Ω_c^0$ (2770) have already been observed
- Several theoretical approaches: HQET, lattice QCD...

Dataset & reconstruction

PRL118, 182001 (2017)

 \Box pp $\rightarrow \Xi^+_c K^-$ spectrum

 $\Box = \Xi^+_c \rightarrow p K^- \pi^+$

 $\Box = \Xi_c$ combined with K-

Primary vertex refit

Fit Results PRL118, 182001 (2017)

Resonance	Mass (MeV)	Γ (MeV)	Yield	N _σ
$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$	$1300\pm100\pm80$	20.4
$\Omega_{c}(3050)^{0}$	$3050.2 \pm 0.1 \pm 0.1 \substack{+0.3 \\ -0.5}$	$0.8\pm0.2\pm0.1$	$970\pm60\pm20$	20.4
	0.5	<1.2 MeV, 95% C.L.		
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$	$1740\pm100\pm50$	23.9
$\Omega_{c}(3090)^{0}$	$3090.2 \pm 0.3 \pm 0.5 \substack{+0.3 \\ -0.5}$	$8.7\pm1.0\pm0.8$	$2000\pm140\pm130$	21.1
$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9 \substack{+0.3 \\ -0.5}$	$1.1\pm0.8\pm0.4$	$480\pm70\pm30$	10.4
	0.5	<2.6 MeV, 95% C.L.		
$\Omega_c(3188)^0$	$3188\pm5\pm13$	$60\pm15\pm11$	$1670\pm450\pm360$	

Resonant states modeled with Relativistic Breit-Wigners + Resolution + feed-down components

5 new states (plus hints of a broader contribution)

Does not allow to determine quantum numbers

Possible interpretations already under discussion [6,7]

Conclusions

- LHC and LHCb provide an excellent environment for baryon spectroscopy and precision measurements
- □ The D⁰p amplitude analysis in $\Lambda^{0}_{b} \rightarrow D^{0}p\pi^{-}$ presents a first observation of a new Λ^{*}_{c} state, provides more information about Λ^{+}_{c} (2940) and confirms previous measurements on Λ^{+}_{c} (2880).
- The measurement of the form factor of the $\Lambda^{0_b} \rightarrow \Lambda^{+_c} \mu^{-} \bar{\nu}_{\mu}$ presents a precise measurement in agreement with theoretical predictions
 - The observation of five new narrow Ω^{0}_{c} states was reported
 - Many more baryon studies to be performed in LHCb (Run II dataset)

References

[1] B. Chen, K.-W. Wei, and A. Zhang, Investigation of Λ_Q and Ξ_Q baryons in the heavy quark-light diquark picture, Eur. Phys. J. A51 (2015) 82, arXiv:1406.6561.

[2] Belle collaboration, R. Mizuk et al., Experimental constraints on the possible spin and parity of the $\Lambda c(2880)$ +, Phys. Rev. Lett. 98 (2007) 262001, arXiv:hep-ex/0608043.

[3] M.-Q. Huang, H.-Y. Jin, J. G. Korner, and C. Liu, Note on the slope parameter of the baryonic $\Lambda_b \rightarrow \Lambda_c$ Isgur-Wise function, Phys. Lett. B629 (2005) 27, arXiv:hep-ph/0502004.

[4] UKQCD collaboration, K. C. Bowler et al., *First lattice study of semileptonic decays of Ab and Eb baryons*, Phys. Rev. D57 (1998) 6948, arXiv:hep-lat/9709028.

[5] D. Ebert, R. N. Faustov, and V. O. Galkin, Semileptonic decays of heavy baryons in the relativistic quark model, Phys. Rev. D73 (2006) 094002, arXiv:hep-ph/0604017.

[6] Marek Karliner and Jonathan L. Rosner, Very narrow excited Ωc baryons, Phys. Rev. D 95, 114012

[7] Wang et al , PRD95(2017)116019