

Charmed baryon decays at Belle Yuji Kato (KMI, Nagoya University)

•
$$\Xi_c^* \rightarrow \Lambda D$$

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

- Doubly Cabibbo Suppressed decay $\Lambda_c^+ \rightarrow pK^+\pi^-$
- Hidden Strange pentaquark via $\Lambda_c^+ \rightarrow \pi^0 \phi p$ decay

Charmed baryon production at Belle

Integrated luminosity of B factories

- Charmed baryons are produced mainly via $e^+e^- \rightarrow \gamma^* \rightarrow c\overline{c}$
- Total integrated luminosity ~=1.0 ab⁻¹. \rightarrow ~1.0 × 10⁹ e⁺e⁻ \rightarrow cc.
- Many charmed baryons are discovered by Belle and BaBar so far.
 (Λ_c(2940), Σ_c(2800), Ξ_c(2980), Ξ_c(3055), Ξ_c(3080), Ω_c(2770))

Charmed strange baryons (Ξ_c **)**

u/d-s diquark system!

- u-s di-quark, which can not be achieved in the Λ state.
- The states below $\Xi_c(2815)$ are well descrived by the quark model.
- Higher excited states contains rich dynamical information!

Higher excited Ξ_c states in $\Sigma_c^{++}K^-$ (past studies) 4

- Both Belle and BaBar observed
- $\Xi_{c}(2980)^{+}$, $\Xi_{c}(3055)^{+}$, and $\Xi_{c}(3080)^{+}$ in $\sum_{c}^{++}K^{-}$ final state.
- $\Xi_{c}(3080)^{+}$ in $\Sigma_{c}^{*++}K^{-}$ final state (only BaBar observed $\Xi_{c}(3123)^{+}$)

• Decays where charm quark in contained in meson will give more insight $\rightarrow \Lambda D!$ 2017/11/8

• First observation of the "decay" of $\Xi_c(3055/3080)$ into ΛD^+ . • $N(\Xi_c(3055)^+) > N(\Xi_c(3080)^+)$: Opposite to $\Sigma_c^{++}K^-$. • First observation of $\Xi_c(3055)^0$ (8.6 σ)

Relative branching fractions

 $\begin{aligned} \Xi_{c}(3080)^{+} & Similar in 3 decays \\ Br(\Lambda D^{+})/Br(\Sigma_{c}^{++}K^{-}) &= 1.29 \pm 0.30 \pm 0.15 \\ Br(\Sigma_{c}^{*++}K^{-})/Br(\Sigma_{c}^{++}K^{-}) &= 1.07 \pm 0.27 \pm 0.01 \end{aligned}$

First ever measurement of relative branching fraction of (heavy-baryon + light-meson) and (light-baryon + heavy-meson).

Partial width of $\Xi_c(3055)$ by chiral quark model (MeV)

 $\Sigma_c \bar{K}$ $\Sigma_c^* \bar{K}$ $\Xi_{c}^{*}(2645)\pi$ $\Xi_{c}^{\prime}\pi$ $D\Lambda$ total **Inconsistent with** $|\Xi_c^2 D_{\lambda\lambda}(3/2^+)\rangle$ 2.3 0.5 1.0 0.1 0.1 4.0 our measurement! $|\Xi_{c}^{2}D_{\rho\rho}(3/2^{+})\rangle$ 5.6 0.8 3.3 0.3 10.0Phys. Rev. D 86, 034024 2017/11/8 6

Doubly Cabibbo Suppressed decay: $\Lambda_c^+ \rightarrow pK^+\pi^-$ 7

- In the baryon sector, Doubly Cabbibo Suppressed (DCS) decay had never been observed. $\Lambda_c^+ \rightarrow pK^+\pi^-$ is expected to be sensitive.
- Naively, ratio to CF decay, pK⁻ π^+ is expected to be $\frac{B(\Lambda_c^+ \to pK^+\pi^-)}{B(\Lambda_c^+ \to pK^-\pi^+)} \cong \tan^4 \theta_c$
- W-exchange diagram can contribute only in CF decay.

Results

- Branching fraction ratio = $(2.35 \pm 0.27(\text{Stat}) \pm 0.21(\text{Sys})) \times 10^{-3}$ = $(0.82 \pm 0.12) \times \tan^4\Theta_c$
- After subtracting contribution of $\Lambda(1520)$ or Δ intermediate, which contribute only on the CF decay, the ratio is $(1.10\pm0.17) \times \tan^4\Theta$ Phys. Rev. Lett. 117, 011801
- Contribution from W exchange diagram is not large.

Search for pentaquark via $\Lambda_c^+ \rightarrow \pi^0 \phi p$

- LHCb observed hidden charm pentaquark state in the $\Lambda_b{}^0 \to K^{-} P_c{}^+ \to K^{-} (J/\psi \ p)$
- Natural extension is analogue search for hidden-strange pentaquark by switching b->c $(\Lambda_b^{\ 0} \rightarrow \Lambda_c^{\ +})$, c->s $(J/\psi \rightarrow \phi)$ $:\Lambda_c^{\ +} \rightarrow \pi^0 P_s^{\ +} \rightarrow \pi^0 (\phi p)$
- $\Lambda_c^+ \rightarrow \pi^0 \phi p$ decay itself is not observed so far.

Results

Μ(φp)

- Perform 2D fit on M(K⁺K⁻pπ⁰) and M(K⁺K⁻) plane. No significant Λ_c⁺ signals is observed. New upper limits:
 - Br (Λ_c⁺→φ p π⁰) < 15.3x10⁻⁵
 - Br $(\Lambda_c^+ \rightarrow K^+ K^- p \pi^0)_{NR} < 6.3 \times 10^{-5}$
- Also perform 2D fit in each M(φp) bin. No significant P_s⁺ signal observed.
 - Br(Λ_c⁺→P_s⁺π⁰)xBr(P_s⁺→φp) < 8.3 × 10⁻⁵

10

- First observation of the decay $\Xi_c(3055)$ and $\Xi_c(3080) \rightarrow \Lambda D$
 - Br(Λ D)/Br($\Sigma_c^{++}K^{-}$) are different for two states.
 - First observation of $\Xi_c(3055)^0$
- First observation of Doubly Cabibbo Suppressed decay: Λ_c⁺→pK⁺π⁻
 The ratio to CF decay can be explained by CKM suppression.
 Contribution from W-exchange diagram is small.
- Search for hidden strange pentaquark P_s^+ in $\Lambda_c^+ \rightarrow \pi^0$ (ϕp) - No signal for P_s^+ as well as the decay $\Lambda_c^+ \rightarrow \pi^0$ (ϕp)
- Stay tune for more results on charmed baryon from Belle!

Backup

Physics of single charmed baryons

- Charm quark is heavy: (1500 MeV/c²) > u,d,s quarks (300-500 MeV/c²) • spin-spin interaction $\propto 1/m_1m_2$
- Di-quark correlation in light quarks (more simple!).

Every pair can not be distinguished.

Charmed baryon

Light di-quark and charm quark.

2017/11/8

Observed charmed baryons

• 16/21 (12/17) charmed baryons are observed in e^+e^- collider experiment.

• All the ground states predicted by quark model are discovered.

Still many things to do!

- Spin-parity almost from quark model prediction ().
- Some states has only poor evidence (states in []).
- Many states are observed in only 1 decay mode.
- Accuracy of mass/width is not good enough.
- ^{2017/11/8} No λ and ρ mode excitation states identified.

← Today's topic

14

Belle experiment

Asymmetric energy e⁺e⁻ collider.

Vs=10.58 GeV = Y(4S) mass (and other energies)

1 4

Peak luminosity = 2.1 × 10³⁴ cm⁻²s⁻¹
 = World highest luminosity!

•General purpose feature of the Belle detector make it possible to study hadron spectroscopy.

Comparison with quark model prediction

• In the quark model, they should be N=2 shell and these states are identified as: $\Xi_c(3055) = {}^2D_{\lambda\lambda}(3/2^+)$ or ${}^2D_{\rho\rho}(3/2^+)$. (Phys. Rev. D 86, 034024)

- They predicted
 - ΛD decay is suppressed for both $\Xi_c(3055)^+$
- Inconsistent with this measurement.
- Challenge for theorists!

Comparison of Λ_c^+ and Ξ_c^- or Σ_c^- and Ξ_c^-

Jp	Λ _c ⁺	Ξ _c	ΔM(Mev/c²)	Note	
1/2+	Λ _c (2286) ⁺	Ξ _c (2470)	181	ground state	
1/2-	Λ _c (2595)+	Ξ _c (2790)	194	Λ(1405) like	spin0
3/2-	Λ _c (2625) ⁺	Ξ _c (2815)	188	Λ(1520) like	di-quark
??	Λ _c (2765) ^{+?}	Ξ _c (2980)?	205	Isospin not determined	
5/2+	Λ _c (2880)+	Ξ _c (3080)?	200		
Jb	Σ _c	Ξ _c ′	ΔM(Mev/c²)	Note	
1/2+	Σ _c (2455)	Ξ _c (2575)	120	ground state	anin1
3/2+	Σ _c (2520)	Ξ _c (2645)	125	Σ(1385) like	spint di-quark
??	Σ _c (2800)	??			u-yuark

• The mass difference of Λ_c and Ξ_c is ~200 MeV/c², Σ_c and Ξ_c' is ~120 MeV

 $\Xi_c(3055)$ has no corresponding state in Λ_c/Σ_c

2017/11/8

1,

DCS decay of the $\Lambda_c^{\ +}$

- In the baryon sector, Doubly Cabbibo Suppressed (DCS) decay has NEVER been observed. $\Lambda_c^+ \rightarrow pK^+\pi^-$ is expected to be sensitive.
- Naively, ratio to CF decay, pK⁻ π^+ is expected to be $\frac{B(\Lambda_c^{^+} \to pK^+\pi^-)}{B(\Lambda_c^{^+} \to pK^-\pi^+)} \cong \tan^4 \theta_c$
- In the CF decay, the W exchange diagram may contribute.

Dalitz plot for $\Lambda_c^+ \rightarrow pK^-\pi^+ Phy$

Weak decay of charmed baryon is unique light baryon laboratory

2017/11/8