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Introduction
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Expected nuclear effects on (involved in) heavy
quark(onium) production in proton-nucleus collisions

@ Nuclear modification of the parton densities, nPDF: initial-state effect
Analogous aspects to that of saturation/CGC: see K. Watanabe’s talk
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Expected nuclear effects on (involved in) heavy
quark(onium) production in proton-nucleus collisions

Nuclear modification of the parton densities, nPDF: initial-state effect

Analogous aspects to that of saturation/CGC: see K. Watanabe’s talk
Energy loss (w.r.t to pp collisions): initial-state or final-state effect

Break up of the quarkonium in the nuclear matter: final-state effect

Break up by comoving particles: final-state effect

Colour filtering of intrinsic QQ pairs: initial-state effect

In what follows, I will assume (and then cross check) the dominance of the
nuclear modification of PDF over the other effects in the LHC kinematics
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Part II

Automating the computation of nuclear PDF
effects
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An automated code to evaluate the impact of nuclear PDF I

JPL, H.S. Shao Eur.Phys.]. C77 (2017) 1
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An automated code to evaluate the impact of nuclear PDF I
JPL, H.S. Shao Eur.Phys.]. C77 (2017) 1

e Partonic scattering cross section fit from pp data with a Crystal Ball function
parametrising |Agg_>HX|2 C.H. Kom, A. Kulesza, W.J. Stirling PRL 107 (2011) 082002
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Can be validated with state-of-the-art pQCD computation [FONLL,GM-VENS]

Any nPDF set available in LHAPDFS5 or 6 can be used

Currently limited to processes dominated by a single partonic channel
(ggorqqg,..)

@ Not yet interfaced to a Glauber model
[no centrality and no combination with other nuclear effects]

J.P. Lansberg (IPNO) nPDF and heavy quark(onium) in pA collisions November 8, 2017 5/17



An automated code to evaluate the impact of nuclear PDF II

JPL, H.S. Shao Eur.Phys.]. C77 (2017) 1
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@ Conversely, one can test this hypothesis by comparing our curves with data
?
Global agreement = only nPDFs matter

@ One can go further in the data comparison with reweighting (see later)
and then HF-data inclusion in nPDF fits

@ Bonus: since the pp yields are fit, the procedure sometimes hints at
normalisation issues (absent in Rpp) which could otherwise be misinterpreted
as nuclear suppressions/enhancements

@ Last but not least: the automation of the evaluation allows one to study
different nPDF sets AND the scale uncertainties: better control of the theory
uncertainties
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Part II1

Results for pA collisions using nCTEQI5 &
EPPSI16 out-of-the-box
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Some ] /y comparisons [with EPPS16 added later on]
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More results: Y(1S) and ... %,
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Part IV

First step toward the inclusion of HF pA data
in a fit: the reweighting*

*From now on, all nPDF uncertainties are 68%CL
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Reweighting: the principle behind

2

3

. Convert Hessian error PDFs into replicas

N (+) (=)
he=fo+ Y 12l g,
.
Calculate weights for each replica

Ndata (D; = Tk)?
wi = —
Neep

Calculate observables with new (reweighted) PDFs
Nrep

1
wrO(fk),
1

O)new = %
O = 5707 %

Neep

5 (O)new = | 7= 2 wk (O(fk) = (O)*.
TP oy

(IPNO)

nPDF and heavy quark(onium) in pA collisions

N is the # of eigensets, Ny is the # of
constructed replicas

fo is the “central-value” of the nPDF vector
(i.e. of functions of x) in Nfj,yyr dimension
fi(i) (i € [1: N]) is the "upper/lower value”
function of a given eigenset i

Ry is a number randomly choosen for each
set of (k, i) (thus fixed for all Nfjayour)
according to a standard Normal distribution

fi is the constructed vector

T is the tolerance factor (for 68% CL: 13 for
nCTEQI5; 19 for EPPS16)
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@ When a replica k describes well the data, it gets a higher weight wy, thanks

to a smaller )(i

@ The nPDF are then modified —-reweighted- since the initial set of replicas
is altered. If replicas closer to (further from) the central value are

favoured, the nPDF uncertainty is reduced (enlarged). nPDF

uncertainties for any flavour can easily be redrawn

@ Any other observables can also be redrawn (pA do, Ry, Rp, ...)
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Used data sets

D° Iy B—]ly Y (1)
2
m \/4M§)0 +P L, \/MIZ/W +PL \/4M§ + (%P”N,) M 15+ Pyas)
p+p data LHCb (1) LHCb (2; 3) LHCb (2; 3) ALICE (4), ATLAS (5),
CMS (6), LHCb (7; 8)
Rypp data |  ALICE (9), ALICE (10; 11), LHCb (12) ALICE (13), ATLAS (14),
LHCb (15) LHCb (16; 12) LHCb (17)

] LHCb, R. Aaij et al., JHEP 06, 147 (2017), 1610.02230.

] LHCb, R. Aaij et al., Eur. Phys. J. C71, 1645 (2011), 1103.0423. .
] LHCb, R. Aaij et al., JHEP 06, 064 (2013), 1304.6977. TO be added' e'g'
] ALICE, B. B. Abelev et al., Eur. Phys. J. C74, 2974 (2014), 1403.3648. 0

] ATLAS, G. Aad et al., Phys. Rev. D87, 052004 (2013), 1211.7255. ALICE D data
] CMS, S. Chatrchyan et al., Phys. Lett. B727, 101 (2013), 1303.5900. : :

] LHCD, R. Aaij et al,, Eur. Phys. J. C72, 2025 (2012), 1202.6579. publlShed m PRC’
] LHCb, R. Aaij et al, JHEP 11,103 (2015), 1509.02372.

] ALICE, B. B. Abelev et al., Phys. Rev. Lett. 113, 232301 (2014), 1405.3452.
]

]

]

]

]

]

]

]

ALICE, J. Adam et al., JHEP 06, 055 (2015), 1503.07179.

ALICE, B. B. Abelev et al., JHEP 02, 073 (2014), 1308.6726.
LHCD, R. Aaij et al., (2017), 1706.07122.

ALICE, B. B. Abelev et al., Phys. Lett. B740, 105 (2015), 1410.2234.
The ATLAS collaboration, (2015), ATLAS-CONF-2015-050.
LHCb, R. Aaij et al., (2017), 1707.02750.

LHCb, R. Aaij et al., JHEP 02, 072 (2014), 1308.6729.

LHCDb, R. Aaij ELI., JHEP 07, 094 (2014), 1405.5152.
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Reweighting results: D and J/y
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Reweighting results: J/y from Band Y
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Compared to the D
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2) the data are not
yet as precise
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Results of the reweighting process
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o Global coherence of the data constraints: necessary condition to assume a shadowing-only approach

o First clear experimental observation on gluon SHADOWING at low x; Visible reduction of the
EPPSI16 uncertainties; confirmation of the extrapolation done in nCTEQ15

o The scale ambiguity for D and J/y production is now the dominant uncertainty

o Non-prompt J/y are really promising if improved data can be obtained

o Confirmation of the existence of a gluon anti-shadowing : | R¢(0.05 S x <5 0.1) > 1
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Conclusions

@ Gluon nPDFs at low x are extrapolated : indeed no low x data used in fits

- ‘ need for new constraints ‘ atx <1077
@ We have proposed a quick and robust method to evaluate nPDF effects
- complementary to full (but time consuming) pQCD computations
e With standard data-theory comparisons, and then with the (n)PDF
Bayesian reweighting technique, we tested —and validated- a
shadowing-only hypothesis with D, J/w, B — J/y and Y(1S) data
@ Under this hypothesis, we argue for an experimental observation of gluon
shadowing and antishadowing
@ For the first time, we thoroughly considered the scale uncertainty (ur)
@ For the charm sector, it seems to induce
uncertainties as large as the nPDF reweighted range !
o The scale uncertainty cannot be neglected and is a known issue for the J/y
PbPb UPC data interpretation
o Heavy-flavour leptons could be added to the list as well as other differential
data [no drastic change expected with the current data]
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MI Ap Munich Institute for
Astro- and Particle Physics

Probing the Quark-Gluon Plasma with Collective Phenomena and Heavy Quarks

will start with a 3-day topical workshop (August 27 to 29, 2018)

Registration form and further information at
http://www.munich-iapp.de/programmes-topical-workshops/2018/heavy-ion/

MIAPP requires attendance for at least two weeks to support the participants

The registration deadline is November 27, 2017

Submission of proposals/application for programme participation:

www.munich-iapp.de
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xsection in the space
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