B_c decays from highly improved staggered quarks and NRQCD

Andrew Lytle (HPQCD Collaboration) University of Glasgow

> 08.11.17 Quarkonium 2017 Beijing, China

- B_c mesons are being produced in sufficient quantity for detailed measurements at LHCb, yet there are no lattice simulations of B_c semileptonic decays needed for extracting $|V_{cb}|$.
- Intriguing persistent anomalies in 'R-ratios' for $b \rightarrow c$ semileptonic transitions, also just observed in $B_c \rightarrow J/\psi \, l\nu$ decays at LHCb.
- Today's talk will focus on progress in simulating $B_c \to \eta_c l\nu$ and $B_c \to J/\psi l\nu$ semileptonic decays.
 - Technical progress in simulation of heavy quarks.
 - ▶ Results and discussion on impact for phenomenology.

R-ratio for $B_c \to J/\psi$ semileptonic decay defined as

$$R(B_c \to J/\psi) = \frac{\mathcal{B}(B_c \to J/\psi \,\tau \nu)}{\mathcal{B}(B_c \to J/\psi \,l\nu)}, \quad l = \mu, \, e \,,$$

- Test lepton flavour universality.
- There are persistent few-sigma anomalies in the ratios $R(B \to D^*)$ and $R(B \to D)$ involving the same $b \to c$ transition.
- The current work will provide reliable SM determination for $R(B_c \rightarrow J/\psi)$, to be compared with recent measurement by LHCb. lhcb-public.web.cern.ch/lhcb-public/

 $R(D^{(*)})$ – Expt'l status

- Treatment of c and especially b quarks challenging in lattice simulations due to lattice artifacts which grow as $(am_q)^n$.
- HPQCD treats the charm quark relativistically using a highly improved staggered quark (HISQ) action.
- Generally one uses an effective theory framework to handle the b quark, here focus on NRQCD.
- HPQCD use two complementary approaches for b quarks:
 - Improved non-relativistic formalism (NRQCD) at m_b .
 - ► Highly improved relativistic action at small a, extrapolate $m_h \rightarrow m_b$.

MILC ensemble parameters [1004.0342,1212.4768]

Quark propagator inversions carried out on the Darwin cluster at Cambridge.

Includes:

- 9600 Intel Sandy Bridge cores
- 2.6 GHz, 4 GB RAM/core
- 2 PB storage

Part of STFC's HPC facility for theoretical particle physics and astronomy.

B_c semileptonic decays

- Study of $B_c \to \eta_c$, $B_c \to J/\psi$ decay matrix elements.
- We work in the frame where the B_c is at rest.
- The form factors which parametrise the matrix elements are functions of q^2 , where q is the four-momentum transferred to the leptons.
 - ▶ $q_{\max}^2 = (M m)^2$, zero recoil of decay hadron.
 - $q^2 = 0$, maximum recoil of decay hadron.
- Matrix elements are determined by simultaneous fitting of three-point and two-point functions.

- All quarks are heavy $(m_c \text{ or heavier}) \rightarrow \text{good signal, can}$ control calculation across full q^2 range, both in NRQCD and full relativistic calculation.
- NRQCD $b \to c$ transition currents of the form: $(1 + \alpha_s z + \cdots)(J^{(0)}_{\mu} + J^{(1)}_{\mu} + \cdots)$
 - ▶ Syst. error from the matching uncertainty appears in all $b \to c$ semileptonic transition calculations $B_{(s)} \to D_{(s)}^{(*)}$.
 - ► Can cross-check NRQCD systematics using the fully relativistic formulation.
- $B_c \to \eta_c$ (pseudoscalar): $f_0(q^2)$, $f_+(q^2)$ $B_c \to J/\psi$ (vector): $A_{0,1,2,3}(q^2)$ (three independent), $V(q^2)$

Semileptonic decays - meson correlators

Two-point functions:

Three-point functions:

Semileptonic decays

$$Z\langle \eta_c(p)|V^{\mu}|B_c(P)\rangle = f_+(q^2) \left[P^{\mu} + p^{\mu} - \frac{M^2 - m^2}{q^2}q^{\mu}\right] + f_0(q^2) \frac{M^2 - m^2}{q^2} q^{\mu},$$

From PCVC,

$$\langle \eta_c(p)|S|B_c(P)\rangle = \frac{M^2 - m^2}{m_{b0} - m_{c0}} f_0(q^2)$$

Find Z by calculating both matrix elements at q_{max}^2 .

$$f_0(q^2=0,{\sf max})/f_{H_c}$$
 compared to NRQCD

 $f_0(q_{\rm max}^2)/f_{H_c}$

$$\begin{split} \langle J/\psi(p,\varepsilon)|V^{\mu} - A^{\mu}|B_{c}(P)\rangle = \\ & \frac{2i\epsilon^{\mu\nu\rho\sigma}}{M+m}\varepsilon_{\nu}^{*}p_{\rho}P_{\sigma}V(q^{2}) - (M+m)\varepsilon^{*\mu}A_{1}(q^{2}) + \\ & \frac{\varepsilon^{*}\cdot q}{M+m}\left(p+P\right)^{\mu}A_{2}(q^{2}) + 2m\frac{\varepsilon^{*}\cdot q}{q^{2}}q^{\mu}A_{3}(q^{2}) - 2m\frac{\varepsilon^{*}\cdot q}{q^{2}}q^{\mu}A_{0}(q^{2}) \end{split}$$

 $A_1(q_{\max}^2)$

$$A_1(q^2=0)$$

Comparisons $B_c
ightarrow J/\psi$ [hep-ph/0007169,0211021,0306306]

Recent result from HPQCD used NRQCD + improved staggered (asqtad) quarks to obtain $\frac{d\Gamma}{dq^2}$ over full q^2 range.

See also ETMC [1310.5238], FNAL/MILC [1202.6346], and HPQCD (HISQ) in progress [E. McLean]

 $B_{(s)} \rightarrow D^*_{(s)}$

Results at zero recoil from NRQCD.

Figure courtesy Judd Harrison $[1612.06716]_{\ \rm 25\ /\ 28}$

Summary & Future work

- A promising approach to study of $b \rightarrow c$ transitions:
 - ▶ Lattice NRQCD with HISQ quarks, plus
 - Fully relativistic formulation, extrapolate m_h to m_b .
- Proof-of-principle demonstrated for B_c semileptonic decay.
 - Controlled calculation over full q^2 range.
 - ▶ Good agreement seen with NRQCD results.
- Outputs:
 - B_c to $J/\Psi \to$ new possible determination of $|V_{cb}|$.
 - Reliable SM prediction for $R(B_c \to J/\psi)$.
 - ► Improved understanding of NRQCD currents feeds into additional calculations (B to D, B to D*, ...).
 - ▶ Expand relativistic calculations, e.g. to $B_s \to D_s^*$ at zero recoil.

Thank you!

Generic HQET-inspired fit form given by

$$F(q^2, M_{\eta_h}, a^2) = A(q^2) \left(\frac{M_{\eta_h}}{M_0}\right)^b \times \left[\sum_{ijkl} c_{ijkl}(q^2) \left(\frac{M_0}{M_{\eta_h}}\right)^i \left(\frac{am_c}{\pi}\right)^{2j} \left(\frac{am_h}{\pi}\right)^{2k} \left(\frac{a\Lambda_{\rm QCD}}{\pi}\right)^{2l}\right]$$

٠

Continuum result evaluated at $m_h = m_b$:

$$F(q^2, M_{\eta_b}, 0) = A(q^2) \left(\frac{M_{\eta_b}}{M_0}\right)^b \sum_i c_{i000}(q^2) \left(\frac{M_0}{M_{\eta_h}}\right)^i$$

Bare quark masses are input parameters to lattice simulations. These parameters are tuned to reproduce physical quantities, e.g.

- $m_{ud0} \rightarrow m_{\pi}^2$
- $m_{s0} \rightarrow m_K^2$
- $m_{c0} \rightarrow m_{\eta_c}$

Tuning performed at multiple lattice spacings, defining a continuum trajectory for which $a^2 \to 0$ limit can be taken.

- Rest of physics is then prediction of QCD.
- Parameters can be varied away from physical values.. understand effect of quark mass, quantify systematics, etc.

Energies and matrix elements are determined by fitting (sums of) exponentials.

$$\langle \pi(t) \ \pi^{\dagger}(0) \rangle \xrightarrow[\text{large } t]{} \frac{|\langle 0|\pi|\pi\rangle|^2}{2m_{\pi}} e^{-m_{\pi}t} \propto f_{\pi}^2 e^{-m_{\pi}t}$$

Heavy quarks are challenging to simulate.

- Requires $am_0 < 1$ to keep discretization effects under control.
- Need large enough box to minimize finite-volume effects $\rightarrow N_{\rm site}$ large.

These conditions can be satisfied by using a highly improved action (e.g. HISQ).

Staggered quark action is defined in terms of one-component Grassman fields.

$$\mathcal{L}_{\text{naive}} = \bar{\chi}(x) \left[\eta^{\mu}(x) \Delta_{\mu}(U(x)) + m \right] \chi(x)$$

where

$$\eta^{\mu}(x) = (-1)^{\sum_{\nu < \mu} x^{\nu}}$$

- 2a translation symmetry
- Represents four identical "tastes" of quark in the continuum.
- Reduce to one dynamical quark via "rooting" procedure.

$$\Delta_{\mu}^{\text{HISQ}} = \Delta_{\mu}(W) - \frac{a^2}{6}(1+\epsilon)\Delta_{\mu}^3(X)$$

- Removes all $\mathcal{O}(a^2)$ discretisation effects.
- Highly suppressed one-loop taste exchange errors.
- No tree-level $\mathcal{O}((am)^4)$ errors to leading order in v/c.