Status of Measurement of R Value at BESIII

Wenbiao Yan

On behalf of BESIII Collaboration

2017/11/10

Wenbiao @ Quarkonium2017

R value

• The Born cross section of e^+e^- annihilation into hadrons normalized by theoretical $\mu^+\mu^-$ cross sectiom

• Precision !!!

Muon magnetic moment $(g-2)_{\mu}$

• The Standard Model prediction for muon $a_{\mu} = (g_{\mu}-2)/2$

$$a^{Had}_{\mu}[LO] = rac{1}{3}(rac{lpha}{\pi})^2 \int_{m_\pi^2}^\infty ds rac{K(s)}{s} R(s)$$

K(s): analytically known

Prof. Michel Davier @ Tau2016

QED	11658471.885	+- 0.004
EW	15.4	+- 0.1
had LBL	10.5	+- 2.6
had LO	692.8	+- 3.3
had NLO	-9.87	+- 0.09
had NNLO	1.24	+- 0.01
prediction	11659181.9	+- 4.2
exp BNL	11659208.9	+- 6.3

Muon magnetic moment $(g-2)_{\mu}$

• **BESIII: ISR and energy scan**

EM fine structure constant

• The running of the electromagnetic fine structure constant is governed by the renormalized vacuum polarization function.

$$\begin{aligned} \alpha(s) &= \frac{\alpha(0)}{1 - \Delta \alpha_{1ep}(s) - \Delta \alpha_{top}(s) - \Delta \alpha_{had}^{5}(s)} \\ &\Delta \alpha_{Iep}(M_{Z}^{2}) = 0.03142 \\ &\Delta \alpha_{top}(M_{Z}^{2}) = 0.00007(1) \\ &\Delta \alpha_{had}^{5}(M_{Z}^{2}) = 0.0280 \pm 0.0009 \end{aligned}$$
$$\Delta \alpha_{had}^{5}(M_{Z}^{2}) &= -\frac{\alpha(0)M_{Z}^{2}}{3\pi} \operatorname{Re} \int_{4m_{\pi}^{2}}^{\infty} ds \, \frac{R(s)}{s(s - M_{Z}^{2}) - is} \end{aligned}$$

R value @ pQCD and charmonium

• Test pQCD prediction on R values

$$R = 3\sum_{f} Q_{f}^{2} \left[1 + \left(\frac{\alpha_{s}(s)}{\pi}\right) + 1.411\left(\frac{\alpha_{s}(s)}{\pi}\right)^{2} - 12.8\left(\frac{\alpha_{s}(s)}{\pi}\right)^{3} + \ldots\right]$$

Fitting to R values: resonance parameters of Ψ(3770), Ψ(4040), Ψ(4160) and Ψ(4410).

ψ (4040)	
	ψ(404
VALUE (MeV) 4039 ± 1 OUR ESTIMATE	DOCUM
4039.6± 4.3	¹ ABLIK

$G_{(J^{PC})}$	=	$0^{-}(1$)	
----------------	---	-----------	---	--

(4040) MASS

1

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
4039 \pm 1 OUR ESTIMATE				
4039.6± 4.3	¹ ABLIKIM	08D	BES2	$e^+ e^- \rightarrow$ hadrons
• • • we do not use the following	g data for average	ь, птs,	innits, e	etc. • • •
4034 \pm 6	² MO	10	RVUE	$e^+ e^- \rightarrow$ hadrons
4037 ± 2	³ SETH	05A	RVUE	$e^+e^- \rightarrow hadrons$
4040 ± 1	⁴ SETH	05A	RVUE	$e^+e^- \rightarrow hadrons$
4040 ± 10	BRANDELIK	78C	DASP	e ⁺ e ⁻

Data sets for R value

• Phase I: test run @ 2012

✓ Ecm = 2.232/2.400/2.800/3.400 GeV, ~12pb⁻¹

- Phase II: fine scan for heavy charm resonant @2013-2014
 ✓ Ecm ∈ [3.800, 4.590]GeV, 104 energy points, ~800pb⁻¹
- Phase III: R & QCD scan @ 2015
 - ✓ Ecm ∈ [2.000, 3.080]GeV, 21 energy points, ~500pb⁻¹

R value

• R values are measured as

$$R = \frac{1}{\sigma_{\mu+\mu-}} \cdot \frac{N_{had} - N_{bg}}{L \cdot \varepsilon_{had} \cdot (1 + \delta)}$$

Lintegrated luminosity $1+\delta$ radiative correction factor N_{had} observed hadronic events N_{bg} from background events ε_{had} selection efficiency $\sigma_{\mu\mu}$ Born cross section of μ pairproduction in QED

Generators @ R analysis

 $e^+e^- \rightarrow (\gamma)e^+e^-$: Babayaga

 $e^+e^- \rightarrow (\gamma)\mu^+\mu^-$: Babayaga $e^+e^- \rightarrow (\gamma)\tau^+\tau^-$: KKMC

Luminosity

• Large-angle Bhabha $e^+e^- \rightarrow (\gamma)e^+e^-$ and diphoton $e^+e^- \rightarrow (\gamma)\gamma\gamma$: about 0.8% uncertainty

• Chinese Physics C41 (2017) 063001

Radiative correction factor $(1+\delta)$

• The Feynman diagrams scheme (CB) and structure function schemes (KF & WU) are used, results by there methods are consistent within 1.2%.

• R value @ PDG2016 as input

$e^+e^- \rightarrow e^+e^- + X$

Measured quantity or reaction	Studied physical object or investigated problem	The $ee \rightarrow eeh$ cross section (cm ²) to be measured (at $\sqrt{s} \sim 5 - 10$ GeV)
$\gamma\gamma \rightarrow \pi^+\pi^-$ $\pi^0\pi^0$	Threshold theorems, Born term PCAC, current algebra Two-particle unitarity approximation (Range of validity) The number of essential partial waves $\pi\pi$ -phase and scattering lengths Going out of mass shell The first Weinberg sum rule $\pi \xi^{S^*}$	$ \begin{array}{r} 10^{-33} \\ 10^{-35} - 10^{-36} \\ 10^{-34} - 10^{-35} \\ 10^{-35} - 10^{-36} \\ 10^{-35} - 10^{-36} \\ 10^{-33} - 10^{-34} \\ \end{array} $
$\gamma\gamma \rightarrow K\bar{K}$	Connection with the trace of energy-momentum tensor FESR	101
$\gamma\gamma \rightarrow n\pi; n>2$	PCAC, chiral Lagrangians	$10^{-36}-10^{-37}$
$\gamma\gamma \to \pi^0(\eta)$	π^0 -lifetime Triangle anomaly, q^2 -dependence	10 ⁻³³
$\gamma\gamma \rightarrow R$ (resonance)	Resonance parameters (ϵ , f , A_s , etc.) Spin of X^0 , E FESR, symmetries Parameters of A_1 , etc	$\begin{array}{l} 10^{-33}-10^{-35}\\ 10^{-33}-10^{-34}\\ \lesssim 10^{-35} \end{array}$

• Background from two photon process

✓ Underestimation by BesTwoGam MC

✓ Use generator for (dominant) exclusive processes: e⁺e⁻e⁺e⁻; e⁺e⁻ $\mu^+\mu^-$; e⁺e⁻ $\pi^+\pi^-$; e⁺e⁻K⁺K⁻; e⁺e⁻ η and e⁺e⁻ η'

• Other process: unclear but tiny

MC generator for e⁺e[−]→hadrons

- High energy e⁺e⁻ collision: Herwig @ Cluster model; Jetset and Pythia @ String model
- Low energy e⁺e⁻ collision: LUND Area Law, hep-ph/9910285
 - ✓ Simulate ISR inclusive continuous channels and J^{PC}=1⁻ resonance between 2GeV and 5GeV. Need MC tuning
 ✓ Left-right symmetry, NO

MC generator for e⁺e[−]→hadrons

- LUARLW: 100% by LUARLW
- ConExc generator:
 - ✓ ConExc + Phokhara + LUARLW
 - ✓ Phokhara deal with 10 exclusive processes
 - ✓ Others measured processes with ConExc
 - ✓ unknown by LUNDARLW

ConExc @[2.232, 3.671]GeV

ConExc could describe experimental data

LUARLW @[2.232, 3.671]GeV

• LUARLW could describe experimental data

Status of R Measurement

Shade:MC Dot:Data

• **BESIII memo at Convener's review**

BESIII Analysis Memo

BAM-00XXX

June 13, 2017

2000 ngood cos0 EVENTS E, (GeV) cos0. pseudorapidity STUT 2000 30000 30000 4000 20000 3000 20000 2000 10000 10000 p_{track} (GeV) φ(rad)

• MC tuning at [3.800, 4.590]GeV

4.26GeV

$$e^{+}e^{-} \Rightarrow \gamma^{*} \Rightarrow \begin{cases} \psi(4040) \Rightarrow D\bar{D}, D^{*}\bar{D}^{*}, D\bar{D}^{*}, \bar{D}D^{*}, D_{s}\bar{D}_{s}; \\ \psi(4160) \Rightarrow D\bar{D}, D^{*}\bar{D}^{*}, D\bar{D}^{*}, \bar{D}D^{*}, D_{s}\bar{D}_{s}, D_{s}\bar{D}_{s}^{*}; \\ \psi(4415) \Rightarrow D\bar{D}, D^{*}\bar{D}^{*}, D\bar{D}^{*}, \bar{D}D^{*}, D_{s}\bar{D}_{s}, D_{s}\bar{D}_{s}^{*}, D_{s}^{*}\bar{D}_{s}^{*}. \end{cases}$$

 $e^+e^- \Rightarrow \gamma^* \Rightarrow X(4160), X(4260) \cdots$ with $J^{PC} = 1^{--}$

Summary

- R values are important for $(g-2)_{\mu}$, $\alpha(M_z)$, $\alpha_s(s)$, and test pQCD prediction, and resonance parameters of charmonium states
- BESIII have collected with R scan data @ [2.0, 4.6]GeV
- Data analysis @ [2.232, 3.671]GeV is finished
 - ✓ Integrated luminosity: about 0.8% uncertainty
 - ✓ Radiative correction factor (1+ δ): 1.2% uncertainty
 - ✓ MC generator: ConExc and LUARLW
- Data analysis @ [3.800, 4.590]GeV is in progress

Bird's View of BEPCII & BESIII

BEPC-N

BESIII

detector

Storage ring

Beijing electron positron collider BEPCII

Linac

Beam energy 1.0-2.3 GeV Energy spread: 5.16×10⁻⁴

Design luminosity 1×10^{33} /cm²/s @ $\psi(3770)$

BESIII Detector

Hermetic spectrometer for neutral and charged particle with excellent resolution, PID, and large coverage