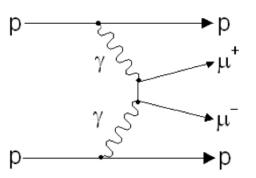


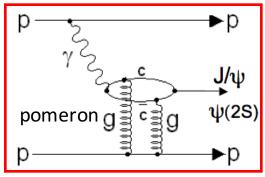
Central exclusive production of J/ψ and $\psi(2S)$ mesons in pp collisions at $\sqrt{s}=13~{\rm TeV}$

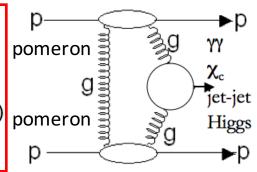
Liupan An

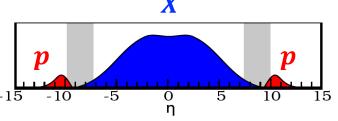
On behalf of the LHCb collaboration

Tsinghua University


QWG 2017, Nov 9th 2017 @ Beijing, China

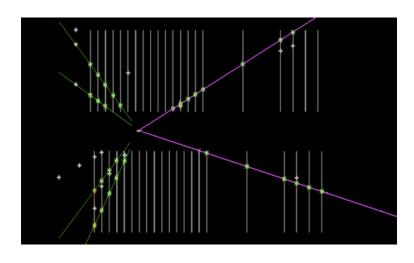



Introduction

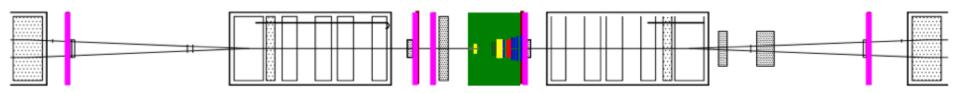

 \triangleright Central exclusive production: $p + p \rightarrow p + X + p$

- ✓ Clean final state with low event multiplicity
- $\checkmark X$ well isolated in rapidity
- ✓ Provides essential QCD information

- $\nearrow J/\psi$ and $\psi(2S)$ in CEP are produced through the fusion of a photon and a pomeron (a colorless strongly-coupled object), and can provide
 - ✓ A test of QCD
 - ✓ An investigation of the nature of the pomeron
 - ✓ A means for constraining the gluon parton distribution function



CEP at LHCb


- \succ LHCb is a single-arm forward region spectrometer covering $2 < \eta < 5$
 - ✓ Rapidity range complementary to other experiments
 - ✓ Dedicated CEP trigger lines
 - ✓ Low pile-up environment
 - ✓ VELO has backward coverage

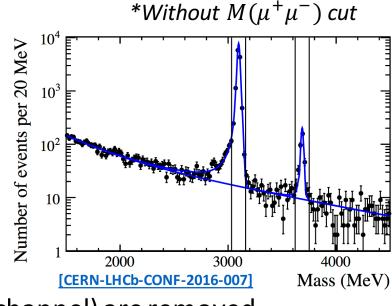
$$-3.5 < \eta < -1.5$$

✓ HERSCHEL: new high rapidity shower counters in RunII;

 η coverage largely increased! Can reduce non-CEP backgrounds powerfully

VELO&Herschel: $-10 < \eta < -5, -3.5 < \eta < -1.5, 1.5 < \eta < 10$

Dataset and selections



- \triangleright Measurement performed using 204 pb⁻¹ data at $\sqrt{s} = 13 \text{ TeV}$
- ➤ Trigger requirements
 - ✓ Hardware: less than 30 deposits in the scintillating-pad (SPD); at least one muon with $p_{\rm T}>200~{\rm MeV}/c$
 - ✓ **Software**: < 10 reconstructed tracks; at least one muon

> Event selection

- ✓ Two muons with $2 < \eta < 4.5$
- $\checkmark M(\mu^+\mu^-) \in M(\psi) \pm 65 \text{ MeV}/c^2$
- $\sqrt{p_{\rm T}^2}(\mu^+\mu^-) < 0.8 \,({\rm GeV}/c)^2$
- ✓ Events with
 - 1) additional VELO tracks or
 - 2) neutral energy > 200 MeV or
 - 3) significant deposits in HERSCHEL

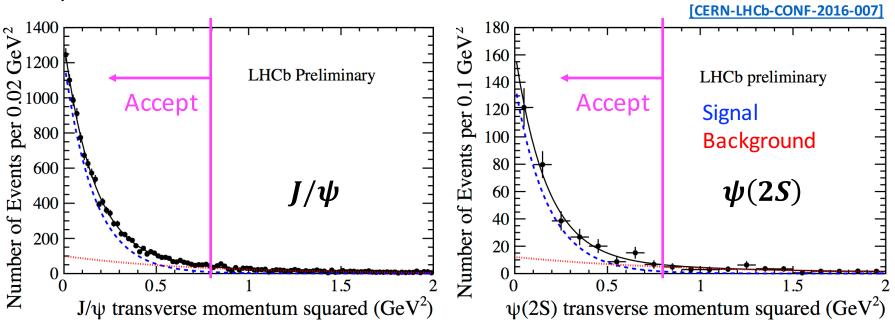
(Σ_H : sum of normalized signals in each channel) are removed

Cross-section calculation

- ➤ Differential cross-sections in bins of rapidity are measured
- ➤ Master relation

$$\frac{d\sigma_{\psi\to\mu^+\mu^-}}{dy} (2.0 < \eta_{\mu^+}, \eta_{\mu^-} < 4.5) = \frac{pN}{\epsilon_{\rm rec}\epsilon_{\rm sel}\Delta y\epsilon_{\rm single}L}$$

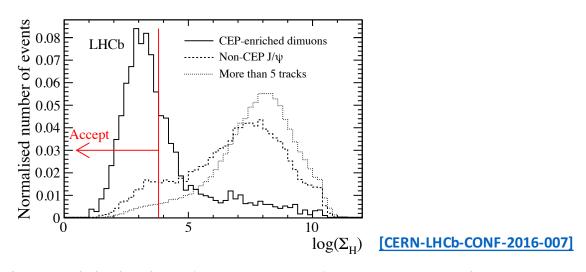
- $\checkmark p$: signal purity
- $\checkmark N$: number of selected events
- $\checkmark \epsilon_{\rm rec/sel}$: reconstruction/selection efficiency
- $\checkmark \Delta y$: width of the rapidity bin
- $\checkmark L$: integrated luminosity
- $\checkmark \epsilon_{\rm single} = \mu e^{-\mu}$: fraction of single interaction beam-crossings, assuming number of visible pp interactions follows Poisson distribution $P(n) = \mu^n e^{-\mu}/n!$

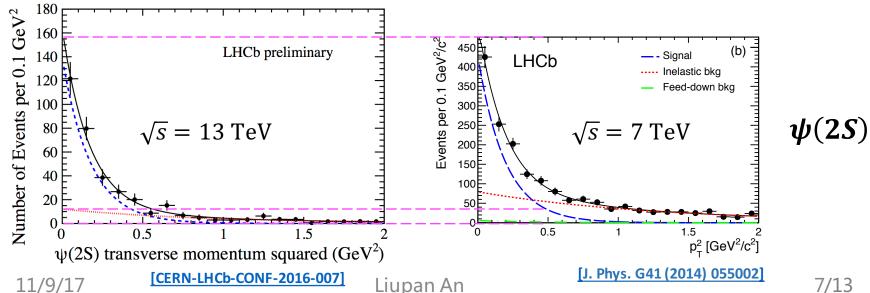


Signal purity p

➤ Remaining background sources

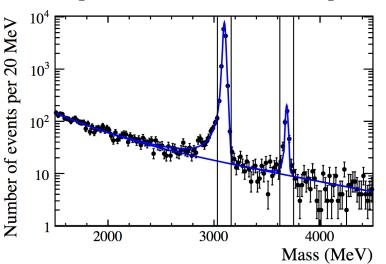
- 1) Non-resonant dimuon: fit to $M(\mu^+\mu^-)$ distribution
- 2) Feed-down of CEP χ_c or $\psi(2S)$ to J/ψ
 - $\psi(2S)$: determined using simulated events normalized to $\psi(2S) \to \mu^+\mu^-$ signal in data
 - χ_c : determined using calibration sample reconstructed with $J/\psi + \gamma$, scaled by the ratio of J/ψ to $J/\psi + \gamma$ in the simulated χ_c sample
- 3) Non-exclusive events where remnants are undetected

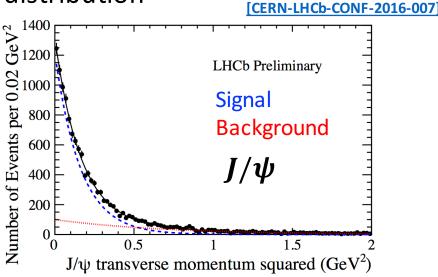



Utilization of HERSCHEL

➤ Good discrimination between CEP and non-CEP candidates

➤ Background level roughly halved compared to RunI analysis





Efficiencies $\epsilon_{\rm rec}$ and $\epsilon_{\rm sel}$

- \triangleright Reconstruction efficiency $\epsilon_{
 m rec}$
 - ✓ Product of trigger, tracking and muon identification efficiency
 - ✓ Each determined from simulation and calibrated using data
- \succ Selection efficiency $\epsilon_{
 m sel}$
 - $\checkmark M(\mu^+\mu^-)$ cut: fit to $M(\mu^+\mu^-)$ distribution
 - $\checkmark p_T^2(\mu^+\mu^-)$ cut: fit to $p_T^2(\mu^+\mu^-)$ distribution

✓ **Veto** on VELO, HERSCHEL or photon activity: fit to $p_{\rm T}^2(\mu^+\mu^-)$ distribution of non-resonant data sample with/without the cut

Systematic uncertainties

	J/ψ analysis	$\psi(2S)$ analysis
Source	Uncertainty (%)	Uncertainty (%)
Proton dissociation	4.0	4.0
Tracking efficiency	4.0	4.0
Non-resonant background	0.1	1.4
Feed-down background	0.6	-
Mass-window	0.4	0.4
HERSCHEL Veto	1.5	1.5
Luminosity	3.9	3.9
Total excluding luminosity	5.9	6.1

[CERN-LHCb-CONF-2016-007]

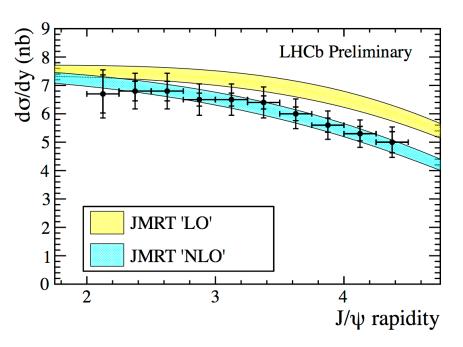
> Proton dissociation:

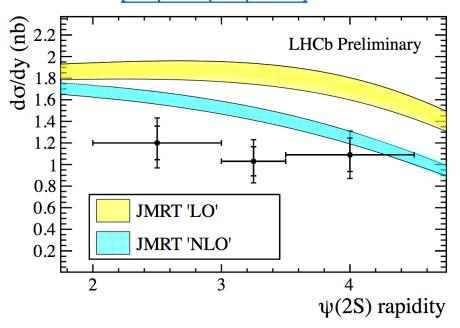
Uncertainty due to imperfect modelling in the fit to $p_T^2(\mu^+\mu^-)$; determined using alternative models

> Tracking efficiency:

Uncertainty due to variation of efficiencies determined from the calibration data sample

Cross-sections




➤ Total cross-sections

$$\begin{split} \sigma_{J/\psi\to\mu^+\mu^-}\big(2.0 < \eta_{\mu^+}, \eta_{\mu^-} < 4.5\big) &= 407 \pm 8(\text{stat}) \pm 24(\text{syst}) \pm 16(\text{lumi}) \text{ pb} \\ \sigma_{\psi(2S)\to\mu^+\mu^-}\big(2.0 < \eta_{\mu^+}, \eta_{\mu^-} < 4.5\big) &= 9.4 \pm 0.9(\text{stat}) \pm 0.6(\text{syst}) \pm 0.4(\text{lumi}) \text{ pb} \end{split}$$

Differential cross-sections with respect to rapidity

✓ Better agreement with JMRT NLO predictions [JHEP 11 (2013) 085]
[J. Phys. G41 (2014) 055009]

[CERN-LHCb-CONF-2016-007]

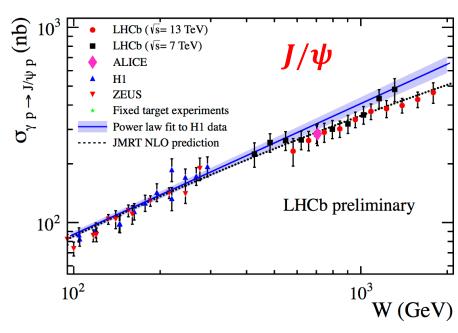
Photo-production cross-section

 \succ Relation with the photo-production cross-section $\sigma_{\gamma p o \psi p}$

$$\sigma_{pp\to pXp} = r(W_{+})k_{+} \frac{dn}{dk_{+}} \sigma_{\gamma p\to \psi p}(W^{+}) + r(W_{-})k_{-} \frac{dn}{dk_{-}} \sigma_{\gamma p\to \psi p}(W^{-})$$

$$p \qquad (a) \qquad p \qquad (b) \qquad p \qquad (b) \qquad p \qquad (c) \qquad (c) \qquad (c) \qquad (c) \qquad (d) \qquad$$

- $\checkmark r(W_+)$: gap survival factor; taken from previous studies
- $\checkmark k_{\pm}$: photon energy, = $m_{\psi}/2 \times e^{\pm |y|}$
- $\sqrt{\frac{an}{dk_{+}}}$: photon flux; taken from previous studies
- \checkmark W₊: center-of-mass energy of the photon-proton system;


$$W_{\pm} = \sqrt{m_{\psi} \times e^{\pm |y|} \times \sqrt{s}}$$

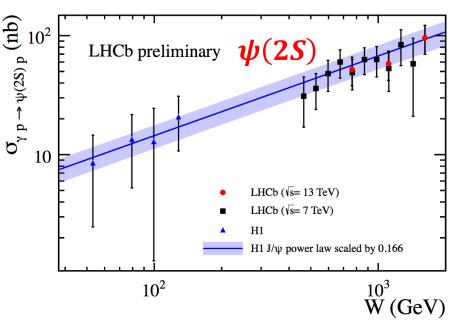

 $W_{\pm}=\sqrt{m_{\psi}\times e^{\pm|y|}\times\sqrt{s}}$ can explore W=2 TeV with $\sqrt{s}=13$ TeV data collected by LHCb; the highest energy so far!

Photo-production cross-section (cont.)

$> J/\psi$ production:

- ✓ In agreement with 7 TeV results where they overlap
- ✓ Reach extended to $W \sim 2 \text{ TeV}$
- ✓ Deviation from the power-law fit to H1 data at highest energies
- ✓ Good agreement with JMRT NLO prediction [JHEP 11 (2013) 085]

 [J. Phys. G41 (2014) 055009]

[J. Phys. G41 (2014) 055002] [CERN-LHCb-CONF-2016-007]

$\triangleright \psi(2S)$ production:

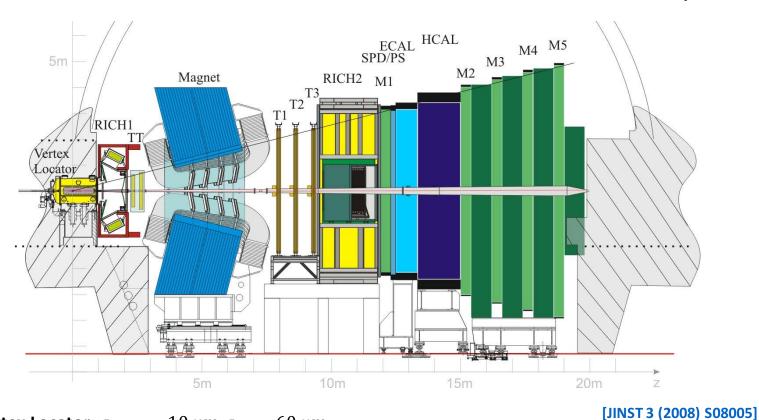
- ✓ Good agreement with H1 data extrapolation, which is scaled from the J/ψ power-law fit
- ✓ Larger statistics needed

Summary

13/13

- ightharpoonup Central exclusive J/ψ and $\psi(2S)$ production at $\sqrt{s}=13~{\rm TeV}$ measured using data collected by LHCb
 - ✓ Low background level shows good performance of HERSCHEL
 - ✓ Both J/ψ and $\psi(2S)$ show better agreement with JMRT NLO prediction
 - \checkmark The photo-production cross-section of J/ψ shows deviation from power-law extrapolation of HERA data
 - ✓ More data is needed to make a critical comparison for $\psi(2S)$

Thank you!


Backup

The LHCb detector

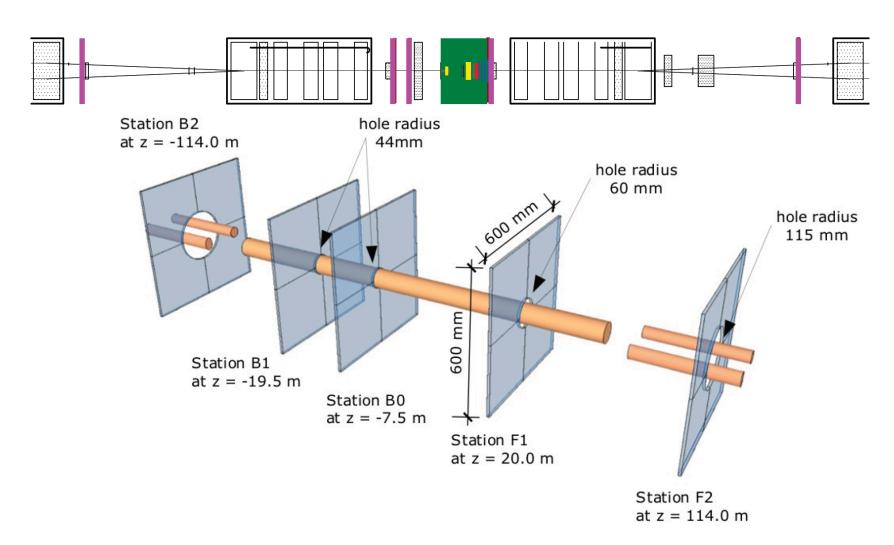
 \triangleright A single-arm forward region spectrometer covering $2 < \eta < 5$

 \checkmark Vertex Locator: $\sigma_{{
m PV},x/y}{\sim}10~\mu{
m m}$, $\sigma_{{
m PV},z}{\sim}60~\mu{
m m}$

 \checkmark Tracking (TT, T1-T3): $\Delta p/p = 0.5 - 0.6\%$ for 5

✓ RICHs: $\varepsilon(K \to K) \sim 95\%$ @ misID rate $(\pi \to K) \sim 5\%$

✓ Muon system (M1-M5): $\varepsilon(\mu \to \mu)$ ~97% @ misID rate $(\pi \to \mu)$ ~1 - 3%


✓ ECAL: $\sigma_E/E \sim 10\%/\sqrt{E} \otimes 1\%$ (*E* in GeV)

✓ **HCAL**: $\sigma_E/E \sim 70\%/\sqrt{E}$ ⊗ 10% (*E* in GeV)

Herschel

VELO&Herschel: $-10 < \eta < -5$, $-3.5 < \eta < -1.5$, $1.5 < \eta < 10$

HepData record

- Record of J/ψ and $\psi(2S)$ in CEP at $\sqrt{s}=7$ TeV: http://dx.doi.org/10.17182/hepdata.66883
- > Record of J/ψ and $\psi(2S)$ in CEP at $\sqrt{s}=13$ TeV will be available when the paper is published