Three perspectives on decoding charmonium-like states

Xiang Liu Lanzhou University

The 12th International Workshop on Heavy Quarkonium November 6-10, 2017, Peking University, Beijing, China

- An overview of experimental status
- · Theory
- Selected topics
- 1. What can we learn from X(3872)
- 2. From Y(4260) to Y(4220) narrow structure
- 3. Charged Zc states
- · Summary

An overview of experimental status

The observed XYZ states

According to the production mechanisms, we can categorize them into five groups

$b \longrightarrow c$ $\overline{q} \longrightarrow \overline{q}$	e^{-} γ^{*} c e^{+} \overline{c}	e^{-} γ^{*} c \overline{c} J/q		${Z_c^{\pm}}$
X(3872)	Y(4260)	X(3940)	X(3915)	Z _c (3900)
Y(3940)	Y(4008)	X(4160)	X(4350)	$Z_{c}(4025)$
Z ⁺ (4430)	Y(4360)		Z(3930)	$Z_{c}(4020)$
$Z^{+}(4051)$	Y(4630)			$Z_{c}(3885)$
$Z^{+}(4248)$	Y(4660)			
Y(4140)			Physics Reports 639 (201	6) 1-121
Y(4274)		200	Physics Rep	orts
$Z_{c}^{+}(4200)$		soo roviow	journal homepage: www.elsevier	.com/locate/physrep
$Z^{+}(4240)$			hidden-charm pentaquark and tetra	ouark states 🔊 🔎
X(3823)		Hua	-Xing Chen ^{a,b,1} , Wei Chen ^{c,1} , Xiang Liu ^{de,*} , Shi-	Lin Zhu ^{a,f,g,**}

Abundant discovery modes—hidden-charm and open-charm decay channels

States	Status	Mass [MeV]	Widt [MeV	h /]	$I^G J^{PC} / I J^P$	Observation	1	Note	
X (3872)	** **	3871.69 ± 0.17 [1]	<1.2	[1]	0+1++	$B \rightarrow KX(38)$ $p\bar{p} \rightarrow \cdots +$ $pp \rightarrow \cdots +$ $e^+e^-[\rightarrow Y]$	$ \begin{array}{l} \Rightarrow J/\psi \rho^{0}, J/\psi \pi^{+}\pi^{-} \\ \Rightarrow J/\psi \omega (\Rightarrow \pi^{+}\pi^{-}\pi^{0}) \\ \Rightarrow D^{0}\bar{D}^{*0}, D^{0}\bar{D}^{0}\pi^{0} \\ \Rightarrow \gamma J/\psi, \gamma \psi (3686) \\ -X(3872) (\Rightarrow J/\psi \pi^{+}\pi^{-}) \\ -X(3872) \begin{cases} \Rightarrow J/\psi \pi^{+}\pi^{-} \\ \Rightarrow \gamma J/\psi, \gamma \psi (3686) \\ (4260)] \Rightarrow \gamma X(3872) (\Rightarrow J/\psi \pi^{+}\pi^{-}) \end{cases} $	Belle [6 Belle [7 Belle [7 Belle [7 CDF [67 LHCb [9 BESIII [9]	3], BaBar [84] 5], BaBar [90] 6], BaBar [87] 5], BaBar [86] 7], D0 [68] 91], CMS [73] 92]
Y(4260)	**	4251 ± 9 [1]	120 : 12 [1	±]	0-1	$e^+e^- ightarrow \gamma_1$ $e^+e^- ightarrow Y$ $e^+e^- [ightarrow Y]$	$ (4260) \begin{cases} \rightarrow J/\psi \pi^{+}\pi^{-} \\ \rightarrow J/\psi f_{0}(980) \\ \rightarrow J/\psi \pi^{0}\pi^{0} \\ (4260) \begin{cases} \rightarrow \pi^{-}Z_{c}(3900)^{+}(\rightarrow J/\psi \pi^{+}) \\ \rightarrow \pi^{-}Z_{c}(3885)^{+}(\rightarrow (D\bar{D}^{*})^{+}) \\ \rightarrow \pi^{-}Z_{c}(4020)^{+}(\rightarrow h_{c}\pi^{+}) \\ \rightarrow \pi^{-}Z_{c}(4025)^{+}(\rightarrow (D^{*}\bar{D}^{*})^{+}) \end{cases} \\ (4260)] \rightarrow \gamma X(3872)(\rightarrow J/\psi \pi^{+}\pi^{-}) \end{cases} $	BaBar [BaBar [CLEO [1 BESIII [BESIII [BESIII [BESIII [BESIII [52], CLEO [60], Belle [119] 123] 20] 54], Belle [124] 159] 160] 161] 93]
States	Statu	s Mass [MeV]		Width [MeV]	I ^G J ^{PC} /IJ ^P	Observation		Note
Y(3940)	***	3919.1 ^{+3.8} _{-3.5} ±		$31^{+10}_{-8} \pm$	- 5 [90]	0 ⁺ ? ⁺	$B \rightarrow KY(3940)(\rightarrow J/\psi\omega)$		Belle [96], BaBar [97]
Y(4140)	***	2.0 [90] 4148.0 ± 2.4 ± 6.3 [74]	F	28 ⁺¹⁵ _{−11} ±	: 19 [74]	0 ⁺ ? ⁺	$B \to KY(4140) (\to J/\psi \phi)$		CDF [69], D0 [102], CMS [74]
Y(4274)	***	$\begin{array}{c} 4274.4^{+8.4}_{-6.7} \pm \\ 1.9 [100] \end{array}$		32.3 ⁺²¹ 7.6 [100	.9 .3 ±]	0+??+	$B \rightarrow KY(4274) (\rightarrow J/\psi\phi)$		CDF [100], CMS [74]
X(3823)	* * * *	3821.7 ± 1.3 ± 0.7 [118]	F	<16 [1]	18]	0-2	$\psi' \to J/\psi \pi^{+}\pi^{-}$ $B \to KX(3823)(\to \gamma \chi_{c1})$ $e^{+}e^{-} \to \pi^{+}\pi^{-}X(3823)(\to \gamma \chi_{c1})$		E705 [111], Belle [112], BESIII [118]
Y(4360)	***	4354 ± 10 [1]		78 ± 16	5[1]	0-1	$e^+e^- \rightarrow \gamma_{\rm ISR} Y(4360) (\rightarrow \psi(3686)\pi^+\pi^-)$	-)	BaBar [144],Belle [145]
Y (4660)	** **	4665 ± 10 [1]		53 ± 16	6[1]	0-1	$e e \rightarrow \gamma_{\rm ISR} Y (4660) (\rightarrow \psi (3686) \pi \pi$)	Belle [145], BaBar [146]
Y(4630) X(3915)	***	4634 ⁺⁸⁺⁵ ₋₇₋₈ [147 3915±3±2[1] 52]	$92^{+40+1}_{-24-2}_{17\pm10}$	¹⁰ [147] ±3[152]	0 ⁺ 0 ⁺⁺	$e^+e^- \rightarrow \gamma_{\rm ISR} Y(4630) (\rightarrow \Lambda_c \bar{\Lambda}_c) \gamma \gamma \rightarrow X(3915) (\rightarrow J/\psi \omega)$		Belle [147] Belle [152], BaBar [155]
Z(3930)	***	3929±5±2[1	51]	29 ± 10	±2[151]	0+2++	$\gamma\gamma\to Z(3930)(\to D\bar{D})$		Belle [151], Belle [151],
Z ⁺ (4430)) ***	4478 ⁺¹⁵ ₋₁₈ [1]		181 ± 3	81 [1]	1+1+-	$B \to KZ^+(4430) (\to \psi(3686)\pi^+)$	· / / ->	Belle [103],LHCb [108]
$Z_c(3900)$) **	3888.7 \pm 3.4 [1]	35 ± 7	[1]	1+1+-	$e^+e^- \rightarrow \Upsilon(4260) \rightarrow \pi^- Z_c(3900)^+(\rightarrow e^+e^- \rightarrow \psi(4160) \rightarrow \pi^- Z_c(3900)^+(\rightarrow$	/ψπ ') /ψπ ⁺)	Xiao et al. [61]
Z _c (3885)) **	3883.9 ± 1.5 ±	E	24.8 ± 11.0 [15	$3.3 \pm$	-	$e^+e^- \to Y(4260) \to \pi^- Z_c(3885)^+ (\to$	$(D\bar{D}^*)^+)$	BESIII [159]
$Z_c(4020)$) **	4022.9 ± 0.8 ±	E	7.9 ± 2	.7 ±	1+1+-	$e^+e^- \rightarrow Y(4260) \rightarrow \pi^- Z_c(4020)^+ (\rightarrow$	$h_c \pi^+$)	BESIII [160]

 $e^+e^- \rightarrow Y(4260) \rightarrow \pi^- Z_c(4025)^+ (\rightarrow (D^* \bar{D}^*)^+)$ BESIII [161]

2.6 [160]

7.7 [161]

 $24.8\pm5.6\pm$

2.7 [160]

3.7 [161]

4026.3 \pm 2.6 \pm

* *

 $Z_{c}(4025)$

Discovery modes (continued)

States	Status	Mass [MeV]	Width [MeV]	$I^G J^{PC} / I J^P$	Observation	Note
Y(4008)	*	$4008 \pm 40^{+114}_{-28}$ [119]	$226 \pm 44 \pm 87$ [119]	0-1	$e^+e^- \rightarrow \gamma_{\rm ISR} Y(4008) (\rightarrow J/\psi \pi^+\pi^-)$	Belle [119]
X(3940)	*	$3942_{-6}^{+7} \pm 6[148]$	$37^{+26}_{-15}\pm8[148]$? [?] ? ^{?+}	$e^+e^- \rightarrow J/\psi X(3940)(\rightarrow \bar{D}D^*)$	Belle [148]
X(4160)	*	$4156^{+25}_{-20}\pm15[148]$	$139^{+111}_{-61} \pm$? [?] ? ^{?+}	$e^+e^- \rightarrow J/\psi X(4160) (\rightarrow \bar{D}^*D^*)$	Belle [148]
X(4350)	*	4350.6 $^{+4.6}_{-5.1}$ ± 0.7 [99]	$21[148]\\13^{+18}_{-9}\pm4[99]$? [?] 0 ^{?+} /2 ^{?+}	$\gamma\gamma \rightarrow X(4350) (\rightarrow J/\psi\phi)$	Belle [99]
Z ⁺ (4051)	*	$4051 \pm 14^{+20}_{-41}$ [109]	82^{+21+47}_{-17-22} [109]	?? [?]	$B \rightarrow KZ^+(4051) (\rightarrow \chi_{c1}\pi^+)$	Belle [109]
Z ⁺ (4248)	*	$4248^{+44+180}_{-29-35}$ [109]	$177^{+54+316}_{-39-61}$ [109]	?? [?]	$B \rightarrow KZ^+(4248) (\rightarrow \chi_{c1}\pi^+)$	Belle [109]
Z ⁺ (4200)	*	4196^{+31+17}_{-29-13} [107]	$370^{+70+70}_{-70-132}$ [107]	$1^{+}1^{+-}$	$B \rightarrow KZ^+(4200) (\rightarrow J/\psi \pi^+)$	Belle [107]
Z ⁺ (4240)	*	$4239 \pm 18^{+45}_{-10} [108]$	220 ± 47 ⁺¹⁰⁸ ₋₇₄ [108]	?0 ⁻ /?1 ⁺	$B \to KZ^+(4240) (\to \psi(3686)\pi^+)$	LHCb [108]
Z _b (10610)	**	10607.2±2.0[172]	18.4±2.4[172]	1+1+-	$\begin{split} &\Upsilon(5S) \to \pi^{\mp} Z_{b}^{\pm}(10610) \begin{cases} \to \pi^{\pm} \Upsilon(nS) (n = 1, 2, 3) \\ \to \pi^{\pm} h_{b}(mP) (m = 1, 2) \end{cases} \\ &\Upsilon(10860) \to \pi^{\mp} Z_{b}^{\pm}(10610) (\to [B\bar{B}^{*} + \text{c.c.}]^{\pm}) \end{split}$	Belle [172], Belle [177]
Z _b (10650)	**	10652.2±1.5[172]	11.5±2.2[172]	1+1+-	$ \Upsilon(5S) \to \pi^{\mp} Z_{b}^{\pm}(10610) \begin{cases} \to \pi^{\pm} \Upsilon(nS)(n = 1, 2, 3) \\ \to \pi^{\pm} h_{b}(mP)(m = 1, 2) \end{cases} \\ \Upsilon(10860) \to \pi^{\mp} Z_{b}^{\pm}(10650)(\to [B^{*}\bar{B}^{*}]^{\pm}) $	Belle [172], Belle [177]
$P_{c}(4380)^{+}$	*	$4380 \pm 8 \pm 29$ [2]	$205 \pm 18 \pm 86$	$\frac{1}{2}$?	$\Lambda_b^0 \to K^- P_c(4380)^+ (\to J/\psi p)$	LHCb [2]
$P_{c}(4450)^{+}$	*	4449.8 \pm 1.7 \pm 2.5 [2]	$39 \pm 5 \pm 19$ [2]	$\frac{1}{2}$?	$\Lambda_b^0 \to K^- P_c(4450)^+ (\to J/\psi p)$	LHCb [2]

Studying hadron spectrum is helpful to enlarge our knowledge of color confinement and xSB

The exotic muliquark states were predicted at the birth of Quark Model

1 February 1964

Phys.Lett. 8 (1964) 214-215

Volume 8, number 3

PHYSICS LETTERS

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

. . .

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members $u^{\frac{2}{3}}$, $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (q q q), $(q q q \bar{q})$, etc., while mesons are made out of $(q \bar{q})$, $(q q \bar{q} q)$, etc. It is assuming that the lowest baryon configuration (q q q) gives just the representations 1, 8, and 10 that have been observed, while

8419/TH.412 21 February 1964

AN	SU3	MODEL	FOR	STRONG	INTERACTION	SYMMETRY	AND	ITS	BREAKING
----	-----	-------	-----	--------	-------------	----------	-----	-----	----------

11 *)

G. Zweig CERN---Geneva

Version I is CERN preprint 8182/TH.401, Jan. 17, 1964.

. . .

6) In general, we would expect that baryons are built not only from the product of three aces, AAA, but also from AAAAA, AAAAAAA, etc., where A denotes an anti-ace. Similarly, mesons could be formed from AA, AAAA etc. For the low mass mesons and baryons we will assume the simplest possibilities, AA and AAA, that is, "deuces and treys".

Types of hadrons in nature

- Identifying exotic states is one of the most important research issues of particle physics
- The observed XYZ states provide us good platform to identify exotic state

Theoretical explanations

Resonant Conventional hadrons charmonium

Exotic states

Molecular states: loosely bound states composed of a pair of mesons, probably bound by the pion exchange

•

Tetraquarks: bound states of four quarks, bound by colored-force between quarks, some are charged or carry strangeness, there are many states within the same multiplet

dmm**ū**

Hybrid charmonium: bound states composed of a pair of quarks and one excited gluon VS

Non-resonant

Many XYZ states lie very close to open-charm threshold

It's quite possible some threshold enhancements are not *real* resonances.

- Kinematical effect
- Opening of new threshold
- Cusp effect
- Final state interaction
- Interference between continuum and well-known charmonium states
- Triangle singularity due to the special kinematics

Selected topic I

What can we learn from X(3872)?

Abundant experimental information

PRL 91 (2003) 262001

Low mass puzzle:

The mass of X(3872) is 50-200 MeV lower than the prediction from potential model

X(3872)=molecular state?

- Reproduce the mass of X(3872)
- Explain isospin violating $J/\psi\rho$ decay mode of X(3872)

The radiative decays of X(3872)

BaBar
 LHCb

 PRL102:132001
 arXiv: 1404.0275

$$BR(X(3872) \rightarrow \psi' \gamma)$$
 $= 3.4 \pm 1.4$
 $(2.46 \pm 0.64 \pm 0.29)$

- The E1 decay pattern suggests that X(3872) is a good candidate of the axial vector charmonium.
- If X(3872) is $\chi_{c1}(2P)$, both the radial WFs of $\chi_{c1}(2P)$ and $\psi(2S)$ contain one node. Their overlapping is large. $\chi_{c1}(2P)$ will decay into $\psi(2S) + \gamma$ more easily.
- In fact, this rate is consistent with the quark model prediction for the $\chi_{c1}(2P)$.

X(3872) as mixture of charmonium and molecule

Firstly proposed by Suzuki (PRD72:114013) and Meng&Gao&Chao (hep-ph/0506222)

- Moreover, the production cross section of X(3872) is comparable with that of $\psi(2S)$, which requires significant ($c\bar{c}$) component!
- On the other hand, the isospin violating dipion decay of X(3872) requires the molecular component!

Coupled-channel effect

Kalashnikova PRD72: 034010 Danilkin&Simonov PRL105:102002

The coupling of the bare $2^{3}P_{1}$ state to $D\bar{D}^{*}$ channel can generate a near-threshold virtual state, which can correspond to X(3872).

Dynamical lattice QCD simulation

Padmanath, Lang, Prelovsek PRD92:034501

They found a lattice candidate for the X(3872) with $J^{PC} = 1^{++}$ and I = 0 only if both $c\bar{c}$ and $D\bar{D}^{*}$ operators are included

Supports X(3872) as a mixture of $c\bar{c}$ and $D\bar{D}^*$ molecule

Common Feature: Couple-channel effects important

٨(1405)

- Lower than quark model prediction for P-wave uds state
- Very close to KN threshold
- Dynamically generated resonance or genuine quark model state?
- Or mixture of uds and KN?
- Two poles with JP=1/2- near $\Lambda(1405)$?

D_{s0} (2317)

- Lower than quark model prediction for P-wave cs state
- Very close to DK threshold
- Dynamically generated resonance or genuine quark model state?
- Or mixture of cs and DK?

X(3872)

- Lower than quark model prediction for P-wave state χ'_{c1}
- Very close to DD* threshold
 - Mixture of DD* and χ'_{c1} ?

Couple channel effects lower bare quark model level S-wave continuum distorts QM spectrum

Its bottomonium analogue X_b not found since χ'_{b1} not close to BB* threshold

Selected topic II

From Y(4260) to Y(4220) narrow structure

Theoretical explanations

Exotic state Conventional **Charmonium hybrid** charmonium Zhu, Kou&Pene, Close&Page **4S-3D vector charmonium Diquark-antidiquark state** Maiani&Riquer&Piccinini&Polosa Lanes-Estrada Ebert&Faustov&Galkin 2³D₁ state decay behavior **Molecular state** Eichten&Lane&Quigg Liu&Zeng&Li, Yuan&Wang&Mo, Mass spectrum Y(4260) Qiao, Ding, Torres&Khemchandani&Gamerma nn&Oset, Close&Downum&Thomas *≠*charmonium Charmonium hybrid state with Segovia&Yasser&Entem&Fernandez strong coupling with DD1 and Screened potential $Y(4260) = \Psi(4S)$ **DD0** Kalashnikova & Nefediev Li&Chao

Difficulty

The lack of signal in certain channels also poses a serious challenge to a number of the explanations proposed in the framework of an exotic state

Difficulty

No evidence of Y(4260) in R scan data and opencharm decay channels

Non-resonant picture of Y(4260)

Asymmetric Y(4260) structure can be reproduced by Fano-like interference picture

Continuum

Interference

Chen, He, Liu, PRD83 (2011) 05402 Chen, He, Liu, PRD83 (2011) 074012 Chen, Liu, Matsuki, PRD93 (2016) 014011

Charmonium

$$\mathcal{A}^{ ext{Total}} = \mathcal{A}_{ ext{Continuum}} + e^{i\phi_1} \mathcal{A}_{\psi(4160)} + e^{i\phi_2} \mathcal{A}_{\psi(4415)},$$

Success:

- Explain why ψ(4160) and ψ(4415) signals are missing in data
- Naturally understand why no evidence of Y(4260) in R scan data and the open-charm decay channels

Very recently BESIII gave more precise data of $e^+e^- \rightarrow J/\psi \pi^+\pi^-$

PRL 118, 092001 (2017)

PHYSICAL REVIEW LETTERS

week ending 3 MARCH 2017

Precise Measurement of the $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ Cross Section at Center-of-Mass Energies from 3.77 to 4.60 GeV

FIG. 1. Measured cross section $\sigma(e^+e^- \rightarrow \pi^+\pi^- J/\psi)$ and simultaneous fit to the XYZ data (left) and scan data (right) with the coherent sum of three Breit-Wigner functions (red solid curves) and the coherent sum of an exponential continuum and two Breit-Wigner functions (blue dashed curves). Dots with error bars are data.

Introducing a narrow structure Y(4220) and considering Fano-like interference picture can reproduce the data well!

	$e^+e^- o \pi^+\pi^- J/\psi$				
Parameters	2R Fit	3R Fit			
g (GeV ⁻¹)	49.93 ± 6.51	49.86 ± 5.89			
$a (\text{GeV}^{-2})$	2.00 ± 0.17	2.11 ± 0.16			
$\mathcal{R}_{\psi(4160)}$ (eV)	5.59 ± 0.25	2.38 ± 1.37			
ϕ_1 (rad)	5.70 ± 0.23	1.59 ± 0.76			
$\mathcal{R}_{\psi(4415)}$ (eV)	5.14 ± 1.82	5.05 ± 2.54			
ϕ_2 (rad)	4.41 ± 0.21	4.62 ± 0.46			
$m_{Y(4220)}$	_	4207 ± 12			
$\Gamma_{Y(4220)}$	_	58 ± 38			
$R_{Y(4220)}$	_	6.59 ± 4.88			
ϕ_3	_	5.75 ± 0.93			
$\chi^2/\text{n.d.f}$	205/157	118/153			

FIG. 2: (color online). Our fit to the cross sections for the $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ process measured by the Belle [8] and BESIII collaborations [11] under the 2R and 3R fit schemes. Here, the BES scan data [11] are also listed for comparison.

Resonance parameter

$$M = (4207 \pm 12)$$
 MeV
 $\Gamma = (58 \pm 38)$ MeV

Fano-like interference picture plays resonance killer to Y(4330)

What is Y(4220)?

The predicted $\psi(4S)$ and its property

The similarity between J/ψ and Y families

The screening potential prediction of $\psi(4S)$ mass:

- 4273 MeV Li&Chao PRD79, 094004 (2009)
- 4247 MeV Dong et al., PRD49, 1642

Open-charm decay behavior

Due to node effect! The predicted charmonium ψ(4S) has very narrow width around 6 MeV

Y(4220)= ψ(4S)?

Selected topic III

Charged Zc states

Predicted charged charmoniumlike structures in the hidden-charm dipion decay of higher charmonia

Dian-Yong Chen^{1,3} and Xiang Liu^{1,2,*,†}

In this work, we predict two charged charmoniumlike enhancement structures close to the $D^*\bar{D}$ and $D^*\bar{D}^*$ thresholds, where the Initial Single Pion Emission mechanism is introduced in the hidden-charm dipion decays of higher charmonia $\psi(4040)$, $\psi(4160)$, $\psi(4415)$ and charmoniumlike state Y(4260). We suggest BESIII to search for these structures in the $J/\psi\pi^+$, $\psi(2S)\pi^+$ and $h_b(1P)\pi^+$ invariant mass spectra of the $\psi(4040)$ decays into $J/\psi\pi^+\pi^-$, $\psi(2S)\pi^+\pi^-$ and $h_b(1P)\pi^+\pi^-$. In addition, the experimental search for these enhancement structures in the $J/\psi\pi^+$, $\psi(2S)\pi^+$ and $h_c(1P)\pi^+$ invariant mass spectra of the $\psi(4260)$ hidden-charm dipion decays will be accessible at Belle and BABAR.

Initial Single Pioin Emission (ISPE) mechanism

Chen, Liu, PRD84 (2011) 094003

Explicitly predict charged charmonium-like structures existing in hidden-charm dipion decays of Y(4260)

Discovery of Zc(3900)

Discovery of Zc(4020)

Discovery of Zc(4032)

PRL111 (2013) 242001

arXiv: 1703.08787

PHYSICAL REVIEW D 88, 036008 (2013)

Reproducing the $Z_c(3900)$ structure through the initial-single-pion-emission mechanism

Dian-Yong Chen,^{1,3,*} Xiang Liu,^{1,2,†} and Takayuki Matsuki^{4,‡}

Reproduce Zc(3900) via the ISPE mechanism

Lattice QCD simulation

PRL 117, 242001 (2016)

PHYSICAL REVIEW LETTERS

week ending 9 DECEMBER 2016

Fate of the Tetraquark Candidate $Z_c(3900)$ from Lattice QCD

Yoichi Ikeda,^{1,2} Sinya Aoki,^{3,4} Takumi Doi,² Shinya Gongyo,³ Tetsuo Hatsuda,^{2,5} Takashi Inoue,⁶ Takumi Iritani,⁷ Noriyoshi Ishii,¹ Keiko Murano,¹ and Kenji Sasaki^{3,4}

(HAL QCD Collaboration)

The possible exotic meson $Z_c(3900)$, found in e^+e^- reactions, is studied by the method of coupledchannel scattering in lattice QCD. The interactions among $\pi J/\psi$, $\rho\eta_c$, and $\overline{D}D^*$ channels are derived from (2 + 1)-flavor QCD simulations at $m_{\pi} = 410-700$ MeV. The interactions are dominated by the offdiagonal $\pi J/\psi - \overline{D}D^*$ and $\rho\eta_c - \overline{D}D^*$ couplings, which indicates that the $Z_c(3900)$ is not a usual resonance but a threshold cusp. Semiphenomenological analyses with the coupled-channel interaction are also presented to confirm this conclusion.

Lattice QCD simulation does not support exotic resonance explanation to Zc(3900)

Heavy Flavour Spectroscopy

A research field full of challenges and opportunities

LHCb CMS BESIII Bellell

Thank you for your attention!