# ALICE results on charmonia and bottomonia

Roberta Arnaldi INFN Torino for the ALICE Collaboration





### **Quarkonium in AA collisions**

### the original idea:

quarkonium production suppressed via color screening in the QGP

T.Matsui,H.Satz, PLB178 (1986) 416



Roberta Arnaldi

2

### Quarkonium in AA collisions

### the original idea:

quarkonium production suppressed via color screening in the QGP

T.Matsui,H.Satz, PLB178 (1986) 416



Roberta Arnaldi

QWG 2017



3

### Quarkonium in AA collisions

### the original idea:

quarkonium production suppressed via color screening in the QGP (T.Matsui, H.Satz, PLB178 (1986) 416)



### **Statistical regeneration**

cc multiplicity increases with collision energy → enhanced quarkonium production via (re)combination at hadronization or during QGP

P. Braun-Muzinger, J. Stachel, PLB 490(2000)196, R. Thews et al, Phys. Rev. C63:054905(2001)

### Sequential melting

differences in the quarkonium binding energies lead to a sequential melting with increasing temperature

Digal, Petrecki, Satz PRD 64(2001) 0940150

Roberta Arnaldi

### Cold nuclear matter effects

On top of the hot matter mechanisms, other effects, related to cold nuclear matter (CNM), might affect quarkonium production

- nuclear parton shadowing/color glass condensate
- energy loss
- *cc* break-up in nuclear matter

CNM are investigated in pA collisions, addressing:



Role of the various contributions, whose importance depends on kinematic and energy of the collisions

Size of CNM effects, fundamental to interpret quarkonium AA results



### **Quarkonium measurements: ALICE**



**Central Barrel**  $J/\psi \rightarrow e^+e^ |\gamma_{LAB}| < 0.9$ Electrons tracked using ITS and TPC Particle id: ITS, TPC, TOF, TRD

Forward muon arm  $J/\psi \rightarrow \mu^+\mu^-$ 2.5< $y_{LAB}$ <4 Muons identified and tracked in the muon spectrometer

acceptance coverage in both yregions down to zero  $p_T$ 

ALICE measures inclusive J/ψ at mid and forward-y and prompt J/ψ at mid-y

### Quarkonium at mid-rapidity

### $J/\psi \rightarrow e^+e^-$

- Minimum bias trigger
- Good mass resolution, but low significance especially in Pb-Pb
   → only J/ψ analysis so far

### Signal extraction:

- Combinatorial background subtracted via event mixing
- Signal obtained by counting technique



Roberta Arnaldi

### Quarkonium at forward-rapidity

### quarkonium $\rightarrow \mu^+\mu^-$

Dimuon trigger

Good S/B for J/ψ and Y(1S)
 → study of excited resonances still limited in Pb-Pb

#### Signal extraction:

- Yields extracted from a fit with signal + background shapes
- In Pb-Pb, background subtracted also via mixed-events



#### Roberta Arnaldi

|                        | System | $\sqrt{s_{_{ m NN}}}$ (TeV) | L (MB)                        | L (dimuon)                         |  |  |
|------------------------|--------|-----------------------------|-------------------------------|------------------------------------|--|--|
| Run 1                  | рр     | 0.9, 2.76,<br>7, 8          | 1.1 nb <sup>-1</sup><br>@2.76 | 19.9 nb <sup>-1</sup><br>@2.76     |  |  |
| 2009-                  | p-Pb   | 5.02                        | 51 μb <sup>-1</sup>           | 5-5.8 nb <sup>-1</sup>             |  |  |
|                        | Pb-Pb  | 2.76                        | 26 μb <sup>-1</sup>           | 69 μb <sup>-1</sup>                |  |  |
| Run 2<br>2015-<br>2018 | рр     | 5.02, 13                    | 2nb <sup>-1</sup><br>@5.02    | 106nb <sup>-1</sup><br>@5.02       |  |  |
|                        | p-Pb   | 5.02, 8.16                  | 0.4 nb <sup>-1</sup><br>@5.02 | 8.7-12.9 nb <sup>-1</sup><br>@8.16 |  |  |
|                        | Pb-Pb  | 5.02                        | 19 μb <sup>-1</sup>           | 225 μb <sup>-1</sup>               |  |  |
|                        | Xe-Xe  | 5.44                        | -                             | -                                  |  |  |

9

Roberta Arnaldi

|                        | System | √ <i>s</i> <sub>NN</sub> (TeV) | L (MB)                        | L (dimuon)                         |  |
|------------------------|--------|--------------------------------|-------------------------------|------------------------------------|--|
| Run 1                  | рр     | 0.9, 2.76,<br>7, 8             | 1.1 nb <sup>-1</sup><br>@2.76 | 19.9 nb <sup>-1</sup><br>@2.76     |  |
| 2009-                  | p-Pb   | 5.02                           | 51 μb <sup>-1</sup>           | 5-5.8 nb <sup>-1</sup>             |  |
|                        | Pb-Pb  | 2.76                           | 26 µb⁻¹                       | 69 μb <sup>-1</sup>                |  |
| Run 2<br>2015-<br>2018 | рр     | 5.02, 13                       | 2nb <sup>-1</sup><br>@5.02    | 106nb <sup>-1</sup><br>@5.02       |  |
|                        | p-Pb   | 5.02, 8.16                     | 0.4 nb <sup>-1</sup><br>@5.02 | 8.7-12.9 nb <sup>-1</sup><br>@8.16 |  |
|                        | Pb-Pb  | 5.02                           | 19 μb <sup>-1</sup>           | 225 μb <sup>-1</sup>               |  |
|                        | Xe-Xe  | 5.44                           | -                             | -                                  |  |



#### ALICE talks:

- Hugo Pereira da Costa → Nov 8th Cristiane Janke
  - $\rightarrow$  Nov 9th



Roberta Arnaldi

|                        | System | $\sqrt{s_{_{ m NN}}}$ (TeV) | L (MB)                        | L (dimuon)                         |
|------------------------|--------|-----------------------------|-------------------------------|------------------------------------|
| Run 1                  | рр     | 0.9, 2.76,<br>7, 8          | 1.1 nb <sup>-1</sup><br>@2.76 | 19.9 nb <sup>-1</sup><br>@2.76     |
| 2009-                  | p-Pb   | 5.02                        | <b>51</b> μb <sup>-1</sup>    | 5-5.8 nb <sup>-1</sup>             |
|                        | Pb-Pb  | 2.76                        | 26 μb <sup>-1</sup>           | 69 μb⁻¹                            |
| Run 2<br>2015-<br>2018 | Рр     | 5.02, 13                    | 2nb <sup>-1</sup><br>@5.02    | 106nb <sup>-1</sup><br>@5.02       |
|                        | p-Pb   | 5.02, 8.16                  | 0.4 nb <sup>-1</sup><br>@5.02 | 8.7-12.9 nb <sup>-1</sup><br>@8.16 |
|                        | Pb-Pb  | 5.02                        | 19 μb <sup>-1</sup>           | 225 μb <sup>-1</sup>               |
|                        | Xe-Xe  | 5.44                        | -                             | -                                  |





Roberta Arnaldi

|                        | System | √ <i>s</i> <sub>NN</sub> (TeV) | L (MB)                        | L (dimuon)                         |   |
|------------------------|--------|--------------------------------|-------------------------------|------------------------------------|---|
| Run 1                  | рр     | 0.9, 2.76,<br>7, 8             | 1.1 nb <sup>-1</sup><br>@2.76 | 19.9 nb <sup>-1</sup><br>@2.76     | N |
| 2009-                  | p-Pb   | 5.02                           | 51 μb <sup>-1</sup>           | 5-5.8 nb <sup>-1</sup>             |   |
|                        | Pb-Pb  | 2.76                           | 26 μb <sup>-1</sup>           | 69 μb <sup>-1</sup>                |   |
| Run 2<br>2015-<br>2018 | Рр     | 5.02, 13                       | 2nb <sup>-1</sup><br>@5.02    | 106nb <sup>-1</sup><br>@5.02       |   |
|                        | p-Pb   | 5.02, 8.16                     | 0.4 nb <sup>-1</sup><br>@5.02 | 8.7-12.9 nb <sup>-1</sup><br>@8.16 |   |
|                        | Pb-Pb  | 5.02                           | 19 μb <sup>-1</sup>           | 225 μb <sup>-1</sup>               |   |
|                        | Xe-Xe  | 5.44                           | -                             | -                                  |   |

acuum reference for AA - pA, genuine pp physics program

hot matter effects

matter effects

Focus on pA and AA Run 2 results

Roberta Arnaldi

QWG 2017

November 7<sup>th</sup> 2017

### **Observables**

### Nuclear modification factor $R_{AA}$

Medium effects quantified comparing AA particle yield with pp cross section, scaled by a geometrical factor ( $\propto N_{coll}$ )

$$R_{AA} = \frac{Y_{AA}}{\langle T_{AA} \rangle \sigma_{\rm pp}}$$

- no medium effects  $\rightarrow R_{AA} = 1$
- hot/cold matter effects  $\rightarrow R_{AA} \neq 1$

### Azimuthal anisotropy $v_2$

Multiple interactions in the medium convert initial geometric anisotropy into particle momenta anisotropy

→ elliptic flow (v<sub>2</sub>) is the 2<sup>nd</sup> coeff. of the Fourier expansion of the azimuthal distributions of the produced particles

$$v_2 = \langle \cos 2(\phi_{\text{particle}} - \Psi_{\text{EP}}) \rangle$$



Roberta Arnaldi

QWG 2017

November 7<sup>th</sup> 2017

# quarkonium in AA



Roberta Arnaldi

## $J/\psi R_{AA}$ at forward-y- Run 1



 Stronger centrality suppression at RHIC, in spite of LHC larger energy densities

• Very different  $p_{T}$  dependence

suppression + regeneration mechanisms



Roberta Arnaldi

Low  $p_T J/\psi$ 

## $J/\psi R_{AA}$ at forward-y- Run 2



 $J/\psi$  suppression in Run2 confirms Run1 observation, with an increased precision



Roberta Arnaldi

 $J/\psi R_{AA}$  at mid-y- Run 2



No significant  $\sqrt{s}$ -dependence at mid-rapidity, confirming observation at forward-yIncrease at low  $p_T$  compared to forward-y



Roberta Arnaldi

### **Comparison with theoretical models**



Transport models:

based on thermal rate eq. with continuous  $J/\psi$  dissociation and regeneration in QGP and hadronic phase

X. Zhao, R. Rapp NPA 859 (2011) 114, K. Zhou et al, PRC 89 (2011) 05491

#### Comover model:

J/ψ dissociated via interactions with partons - hadrons + regeneration contribution E. Ferreiro, PLB749 (2015) 98, PLB731 (2014) 57

All models fairly describe the data, as already in Run1

but large uncertainties associated to charm cross section and shadowing (data precision better than the theory one)

Roberta Arnaldi



## Multi-differential R<sub>AA</sub> at forward-y





Zhao et al., NPA 859 (2011) 114

 $R_{AA}$  vs  $p_{T}$  for different centrality bins (and vice-versa) at  $\sqrt{s_{NN}}$ =5.02 TeV

Striking features observed

- $\rightarrow$  no  $R_{AA}$  centrality dependence in 0.3< $p_T$ <2 GeV/c
- $\rightarrow$  ~80% suppression for central events at  $p_T \sim 10$  GeV/c

Increase in results precision opens up the way to precise model comparisons

Roberta Arnaldi

QWG 2017

November 7<sup>th</sup> 2017

# ψ**(2S)** *R*<sub>AA</sub>

#### $\psi$ (2S) shows a stronger suppression than the J/ $\psi$ , in semi-central and central collisions

However, the low significance limits the precision of the measurements



Results at  $\sqrt{s_{NN}} = 5.02$  TeV compatible with those at  $\sqrt{s_{NN}} = 2.76$  TeV

Good agreement also with CMS results at  $\sqrt{s_{NN}}$  = 5.02 TeV

#### Roberta Arnaldi



## $J/\psi$ elliptic flow



 $J/\psi$  from recombination should inherit the charm flow, leading to a  $\nu_2$  signal

ALICE Run 1 result  $\rightarrow$  indication of non-zero flow (2.7 $\sigma$ ) **Higher Run2 precision** 

 $\rightarrow$  evidence for non-zero flow  $(7\sigma \text{ effect in } 4 < p_T < 6 \text{ GeV}/c)$ 

ALI-DER-139475

ALICE, arXiv:1709.05260

## $J/\psi$ elliptic flow: mid and forward-y



 $J/\psi$  from recombination should inherit the charm flow, leading to a  $v_2$  signal

ALICE Run 1 result  $\rightarrow$  indication of non-zero flow (2.7 $\sigma$ )

Higher Run2 precision
→ evidence for non-zero flow
(7σ effect in 4<p<sub>T</sub><6 GeV/c)</li>

First J/ $\psi$   $v_2$  measurement at mid-y $\rightarrow$  agreement with forward-y result

November 7<sup>th</sup> 2017

ALICE, arXiv:1709.05260

### $J/\psi$ elliptic flow: theory models



**ALICE,** arXiv:1709.05260 Zhou et al., PRC89(2014) 054911 Du et al., NPA943 (2015) 147  $J/\psi$  from recombination should inherit the charm flow, leading to a  $v_2$  signal

- ALICE Run 1 result  $\rightarrow$  indication of non-zero flow (2.7 $\sigma$ )
- Higher Run2 precision  $\rightarrow$  evidence for non-zero flow (7 $\sigma$  effect in 4< $p_T$ <6 GeV/c)
- First J/ $\psi$   $v_2$  measurement at mid-y  $\rightarrow$  agreement with forward-y result

#### Comparison with models:

- → low  $p_T$ :  $v_2$  reproduced including a strong J/ $\psi$  regeneration component
- → high  $p_T$ :  $v_2$  underestimated (prompt J/v from CMS also show  $v_2 \neq 0$ )

Roberta Arnaldi

# $J/\psi$ elliptic flow: comparison with open charm



ALI-DER-138768

ALICE, arXiv:1707.01005

Similar  $v_2$  observed for open charm

- $\rightarrow$  different kinematic range:
- J/ψ: 2.5 < y< 4, centrality= 20-40% D: |y|< 0.8, centrality= 30-50%
- $\rightarrow$  Low  $p_{\rm T} v_2$  larger for D
- Charm quarks strongly interact in the medium
   Comparison between J/ψ and D flow can give insights on flow properties of heavy vs light quarks



Roberta Arnaldi

### **Bottomonia in ALICE**



Strong  $\Upsilon$ (1S) suppression vs centrality, similar, within uncertainties, to the  $\sqrt{s_{NN}}$  = 2.76TeV one

bottomonium states accessible with higher precision in Run 2

Hint for stronger  $\Upsilon(2S)$  suppression vs  $\Upsilon(1S)$ , as observed by CMS

 $R_{AA} (\Upsilon(2S)) = 0.26 \pm 0.12 \pm 0.06 (sys.) <$  $< R_{AA} (\Upsilon(1S)) = 0.40 \pm 0.03 \pm 0.04 (sys.)$ 

suppression of directly produced  $\Upsilon(1S)$ ?  $\rightarrow$  feed-down contribution~30%

### Y(1S) in ALICE: theory comparison



Transport and anisotropic hydrodynamical models qualitatively describe the centrality and the p<sub>T</sub> evolution

Some tension in the *y* dependence?

No need for significant contribution of regenerated  $\Upsilon(1S)$ 

Roberta Arnaldi

QWG 2017

November 7<sup>th</sup> 2017

26

# quarkonium in pA



Roberta Arnaldi

## $J/\psi$ in p-Pb collisions

pA collisions are a tool to:

Disentangle among CNM effects Investigate role of CNM effects underlying AA collisions Search for possible hot matter effects?

#### Two beam configurations: p-Pb and Pb-p $H_{\rm pPb}$ ALICE, inclusive $J/\psi \rightarrow \mu^+\mu^-$ 1.2 0.8 2.03<*y*<sub>CMS</sub><3.53 0.6 -4.46<*y*<sub>CMS</sub><-2.96 0.4 Clear J/ $\psi$ suppression at forward-y, while $R_{pA}$ p-Pb \sqrt{s\_{NN}} = 5.02 TeV (JHEP 02 (2014) 073) 0.2 is compatible with unity at backward-y p-Pb \screwspiperset states and states and states p-Pb \screwspiperset states and states Compatible $R_{pPb}$ at $\sqrt{s_{NN}}$ = 5.02 and 8.16 TeV У<sub>стs</sub> ALI-PREL-118140 (slightly different $x_{\rm F}$ range) CERN-ALICE-PUBLIC-2017-001

Roberta Arnaldi

QWG 2017

November 7<sup>th</sup> 2017

28

### $J/\psi$ in p-Pb collisions: Run1 vs Run2



Roberta Arnaldi

### Comparison with theory models

**QWG 2017** 

Good agreement between data and models based on shadowing and/or energy loss, as at  $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 



Size of theory uncertainties (mainly shadowing) still limits a more quantitative comparison

Ducloue et al, PRD91(2015)114005, Lansberg et al, EPJC77(2017)1, Ma et al, PRD92(2015)071901, Chen et al, PLB765(2017)323, Arleo, Vogt arXiv:1707.09973

Roberta Arnaldi



# $J/\psi v_2$ in p-Pb

Azimuthal correlations between forward / backward J/ $\psi$  and mid-y charged particles



*p*<sub>T</sub><3 GeV/*c* → *v*<sub>2</sub> compatible with 0 (in line with expectation of no recombination)
 3<*p*<sub>T</sub><6 GeV/*c* → *v*<sub>2</sub>>0



- →  $v_2 > 0$  → suggests J/ $\psi$  participation to the collective flow of the medium
- → ~5σ total significance (forward + backward, 5.02+8.16 TeV)
- values comparable to J/ψ ν<sub>2</sub> in central Pb-Pb collisions
- → common mechanism at the origin of the J/ $\psi$   $v_2$ ?



Roberta Arnaldi

### $\psi$ (2S) in pA collisions

#### Strong $\psi(2S)$ suppression of at both forward and backward $\gamma$



Effect similar to the one observed at  $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 

No sizeable  $\sqrt{s_{NN}}$  dependence, both in y and  $p_T$ 

### $J/\psi$ and $\psi$ (2S) comparison in pA

Strong  $\psi(2S)$  suppression of at both forward and backward  $\gamma$ 



#### $\Rightarrow \psi(2S)$ suppression is stronger than the J/ $\psi$ one, in particular at backward-y

unexpected J/ $\psi$  and  $\psi$  (2S) different behavior since at LHC energies formation time > crossing time

Roberta Arnaldi

### $J/\psi$ and $\psi$ (2S) comparison with theory



#### shadowing/energy loss:

- similar for J/ $\psi$  and  $\psi$ (2S)
- not enough to describe the ψ(2S) suppression at backward-y



#### need final state effects

- soft color exchanges between hadronizing cc and comoving partons (Ma and Venugopalan)
- "classical" comover model, with break-up σ tuned on low energy data (Ferreiro)

#### Roberta Arnaldi

### $\Upsilon$ in pA collisions – Run 1



Model predictions describe the measured R<sub>pPb</sub> at forward y and tend to underestimate the suppression at backward y

Compatible within (large) uncertainties with LHCb results

Run 2 data will be soon available!



### Conclusions

### New high-precision results on flavor production in pA and AA collisions

- J/ $\psi$  described by interplay of suppression and recombination mechanisms
- **\***

AA

- Significant J/ $\psi$   $v_2$  at intermediate  $p_T$  confirms formation by recombination
- Strong  $\psi(2S)$  suppression
- Hint for sequential suppression of bottomonium states



- Modification of  $J/\psi$  yields, with strong kinematic dependence, understood in terms of "standard" cold nuclear matter effects
- Size of J/ $\psi$   $v_2$  at intermediate  $p_T$ , reminiscent of the Pb-Pb one. Common mechanism at play?
- Strong  $\psi$ (2S) suppression due to final state effects?

November 7<sup>th</sup> 2017

# Backup slides



Roberta Arnaldi

**EPS-HEP 2017** 

July 12th 2017

### Quarkonium sequential melting



#### the original idea:

quarkonium production suppressed via color screening in the QGP

### sequential melting:

differences in the quarkonium binding energies lead to a sequential melting with increasing temperature



Roberta Arnaldi

NPQCD17

May 23<sup>rd</sup> 2017

6

### Quarkonium sequential melting

| state               | J/ψ  | χ <sub>c</sub> | ψ <b>(</b> 2S) | Ƴ <b>(1S)</b> | Υ <b>(2S)</b> | Υ <b>(3S)</b> |
|---------------------|------|----------------|----------------|---------------|---------------|---------------|
| Mass(GeV)           | 3.10 | 3.51           | 3.69           | 9.46          | 10.0          | 10.36         |
| ∆E (GeV)            | 0.64 | 0.22           | 0.05           | 1.10          | 0.54          | 0.20          |
| r <sub>o</sub> (fm) | 0.50 | 0.72           | 0.90           | 0.28          | 0.56          | 0.78          |

(Digal, Petrecki, Satz PRD 64(2001) 0940150)

### sequential melting:

differences in the quarkonium binding energies lead to a sequential melting with increasing temperature

> Quarkonium as thermometer of the initial QGP temperature



July 12th 2017

### Caveat

Even if the "suppression-recombination" approach looks simple, a realistic description of the involved mechanisms is rather complex:

#### $\rightarrow$ on the theory side:

- Link between suppression and critical temperature requires precise assessment of  $T_D$ ,  $M_{\psi}(T)$ ,  $\Gamma_{\psi}(T)$  from QCD calculations using EFT/LQCD spectral functions
- Short QGP thermalization time at LHC might imply in-medium formation of quarkonia rather than suppression

#### $\rightarrow$ on the experimental side:

- Precise determination of open charm σ
- Assessment of quarkonium feed-down into lighter states



NPQCD17

### Comparison with theoretical models



Transport models: based on thermal rate eq. with continuous J/ $\psi$  dissociation and regeneration in QGP and hadronic phase X. Zhao, R. Rapp NPA 859 (2011) 114, K. Zhou et al, PRC 89 (2011) 05491

Statistical hadronization:  $J/\psi$  produced at chemical freeze-out according to their statistical weight A. Andronic et al., NPA 904-905 (2013) 535

Comover model: J/ $\psi$  dissociated via interactions with partons - hadrons + regeneration contribution E. Ferreiro, PLB749 (2015) 98, PLB731 (2014) 57

All models fairly describe the data, as already in Run1

| Model           | dσ <sub>J/ψ</sub> /dy<br>[mb] fw-y | shadowing      |  |
|-----------------|------------------------------------|----------------|--|
| Transport, TM1  | 0.57                               | EPS09          |  |
| Transport, TM2  | 0.82                               | EPS09          |  |
| Stat. Hadroniz. | 0.32                               | EPS09          |  |
| Comovers        | 0.45-0.7                           | Glauber-Gribov |  |

but large uncertainties associated to charm cross section and shadowing

November 7<sup>th</sup> 2017

Roberta Arnaldi

 $J/\psi R_{AA}$  at mid-y. Run 2



No significant  $\sqrt{s}$ -dependence also at mid-rapidity, confirming observation at forward-y

Small  $R_{AA}$  increase in most central collisions, wrt forward-y, as expected in a (re)generation scenario (but fluctuations cannot be yet excluded)

Roberta Arnaldi

### $p_{\rm T}$ dependence of $R_{\rm AA}$



Similar  $R_{AA}$  at  $\sqrt{s_{NN}} = 2.76$  and 5.02 TeV, with a hint for an increase in the range  $2 < p_T < 6$  GeV/c  $J/\psi R_{AA}$  is higher at low  $p_T$ , where  $J/\psi$  from regeneration dominate



Roberta Arnaldi

**CERN PH Seminar** 

May 2<sup>nd</sup> 2017

## More differential J/ $\psi$ $R_{AA}$ : $p_T$

Constraints to the theoretical models can be imposed by more differential  $R_{AA}$  studies



no centrality dependence in  $0.3 < p_T < 2$  GeV/c in central collisions, smaller suppression for low- $p_T$  J/ $\psi$ , as expected by (re)generation



High- $p_T$  J/ $\psi$ : pattern qualitatively similar to the one measured by ATLAS and CMS, reaching  $R_{AA}$ ~0.2

#### Roberta Arnaldi

#### **CERN PH Seminar**

#### May 2<sup>nd</sup> 2017

### From pA to AA

Once CNM effects are measured in pA, what can we learn on  $J/\psi$ production in PbPb?

Hypothesis:  $2 \rightarrow 1$  kinematics for J/ $\psi$  production CNM effects (dominated by shadowing) factorize in p-A

CNM obtained as  $R_{pA} \times R_{Ap} (R_{pA}^2)$ , similar x-coverage as PbPb



Sizeable  $p_{T}$  dependent suppression still visible  $\rightarrow$  CNM effects not enough to explain AA data at high  $p_{T}$ 

we get rid of CNM effects with

AA / pA

CNM effects not enough to explain PbPb data at high  $p_{T}$ 



Evidence for hot matter effects in Pb-Pb!

### RAA vs y

#### Constraints to the theoretical models can be imposed by more differential RAA studies





Hint of enhanced production towards mid-y

May 2<sup>nd</sup> 2017

**CERN PH Seminar** 

## $J/\psi$ elliptic flow

J/ $\psi$  from recombination should inherit the charm flow, leading to a  $v_2$  signal

Effect should be important at LHC energies, in kinematic regions where regeneration plays a role



RHIC results favour  $v_2 \sim 0$ 

 $v_2 \neq 0$  at high  $p_T$   $\rightarrow$  possibly due to the energy loss path-length dependence ALICE observes evidence for non-zero flow at intermediate pT (7σ effe 26

Roberta Arnaldi

**EPS-HEP 2017** 

July 12th 2017

### $J/\psi$ elliptic flow: analysis technique

J/ $\psi$   $v_2 = \langle \cos 2(\phi_{\mu\mu} - \Psi_{EP}) \rangle$  is computed using the Event Plane from

SPD ( $\Delta\eta$ =1.1) at fw-y TPC ( $\Delta\eta$ =0) at mid-y

 $\sim v_2^{J/\psi}$  is obtained modeling <cos 2 ( $\phi_{\mu\mu}$ - $\Psi_{EP}$ )> vs inv. mass as

 $v_2(m_{\mu\mu}) = v_2^{J/\psi} \alpha(m_{\mu\mu}) + v_2^{bck} (1 - \alpha(m_{\mu\mu}))$ 

 $\sim v_2 = v_2^{obs} / \sigma_{EP}$ 





Roberta Arnaldi

**CERN PH Seminar** 

May 2<sup>nd</sup> 2017

 $\alpha$ (m<sub>µµ</sub>) is S/S+B from inv. mass fit

 $v_2^{bck}$  background parametrized by several functions

### $\psi$ (2S) in AA collisions

 $\psi$ (2s) is a loosely bound state (binding energy ~60 MeV wrt to ~640 MeV for J/ $\psi$ )

Expected to be more easily dissociated than J/ $\psi$   $\rightarrow$  sequential suppression scenario

► Less clear role played by recombination, taking place
→ at freeze-out, as for J/ψ in the statistical hadronization model

 → in later collision stages, when the system is more diluted (and radial flow is stronger) [sequential regeneration, Rapp, arXiv:1609.04868]

Ratio of charmonium states vs. centrality and vs.  $p_{\rm T}$  can give insight on quarkonium behaviour





#### Roberta Arnaldi

NPQCD17

# ψ**(**2S) *R*<sub>AA</sub>

At  $\sqrt{s_{NN}}$  = 5.02 TeV, results are compatible with CMS, in a similar kinematic range, while some tension exists at lower energy



Results in different kinematic ranges are sensitive to the fraction of primordial and regenerated charmonia, to different medium temperature and flow...

Roberta Arnaldi

**CERN PH Seminar** 



## Low pT J/ $\psi$ at fw-y

Strong R<sub>AA</sub> enhancement in peripheral collisions for 0<p<sub>T</sub><0.3 GeV/c



if excess is "removed" requiring  $p_T^{J/\psi}$ >0.3GeV/c  $\rightarrow$  ALICE R<sub>AA</sub> lowers by 20% at maximum (in the most peripheral bin)

significance of the excess is 5.4 (3.4)σ in 70-90% (50-70%)

behaviour not predicted by transport models

excess might be due to coherent  $J/\psi$  photoproduction in PbPb (as measured also in UPC)



#### Roberta Arnaldi

#### **CERN PH Seminar**

### Bottomonia in AA

Three states characterized by very different binding energies:

Y(1S): Eb~1100 MeV Y(2S): Eb~500 MeV Y(3S): Eb~200 MeV





Sensitive in very different ways to the medium

#### With respect to charmonium:

- Limited recombination effects
   interesting for sequential suppression studies
- More robust theoretical calculations, due to higher b quark mass
- No B hadron feed-down
   → simpler interpretation?

#### Some drawbacks

- Lower production cross sections
- Non negligible feed-down contributions from higher states



#### Roberta Arnaldi

QWG 2017

#### November 7<sup>th</sup> 2017

### Υ(2S) in ALICE



#### Stronger suppression has been observed for the $\Upsilon(2S)$ wrt $\Upsilon(1S)$

Theoretical models describe the  $R_{AA}$  ratio (no need for regeneration contribution)

Result is consistent with the centrality-integrated CMS measurement

Roberta Arnaldi



### Y(1S) in ALICE: theory comparison



Some tension in the  $R_{AA}$  evolution vs y with energy, but still large uncertainties



Roberta Arnaldi

### $p_{\rm T}$ dependence of J/ $\psi R_{\rm pA}$



# Slightly different y coverage in ALICE and LHCb, but rather similar $p_T$ dependences

May 31<sup>st</sup> 2017

Shadowing and energy loss models describe  $R_{pA}$  vs  $p_T$ 



Roberta Arnaldi Precision spectroscopy of QGP properties with jets and heavy quarks

# $\psi$ (2S) in pA collisions

Being more weakly bound than the J/ $\psi$ , the  $\psi$ (2S) is an interesting probe to have further insight on the charmonium behaviour in pA



 $\psi$  (2S) suppression stronger than the J/ $\psi$  one at RHIC and LHC

→ unexpected because time spent by the cc pair in the nucleus ( $\tau_c$ ) is shorter than charmonium formation time ( $\tau_f$ )

→ shadowing and energy loss, almost identical for J/ $\psi$  and  $\psi$ (2S), do not account for the different suppression

QGP+hadron resonance gas or comovers models describe the stronger  $\psi$ (2S) suppression  $\int$ 

Roberta Arnaldi

**EPS-HEP 2017** 



# $\psi$ (2S) in p-Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Being more weakly bound than the J/ $\psi$ , the  $\psi$ (2S) is an interesting probe to have further insight on the charmonium behaviour in pA

1.5

0.5

 $\psi$ (2S) suppression stronger than the J/ $\psi$  one at RHIC and LHC

- $\rightarrow$  unexpected because time spent by the cc pair in the nucleus ( $\tau_c$ ) is shorter than charmonium  $\mathfrak{Q}_{\mathsf{pPb}}$ formation time  $(\tau_f)$
- shadowing and energy loss, almost identical for  $J/\psi$  and  $\psi(2S)$ , do not account for the different suppression

√s=200 GeV **PH**<sup>\*</sup>ENIX p+Au preliminary N<sub>V(2s)</sub>p p+Al N/L N/V <sup>I</sup> d+Au PRL 111 202301 (2013)  $\frac{N_{\psi(2s)}}{N_{J/\psi}})^{p_+}$ ±15.6% global uncertainty on forward/backward rapidity points ±16% global uncertainty on midrapidity point rapidity  $o_{\mathsf{pPb}}$ ALICE, p-Pb  $\sqrt{s_{NN}}$ = 5.02 TeV, -4.46 < $y_{cms}$ < -2.96 ALICE, p-Pb  $\sqrt{s_{NN}}$ = 5.02 TeV, 2.03 < y<sub>ome</sub>< 3.53 Inclusive  $J/\psi$ ,  $\psi(2S) \rightarrow \mu^{+}\mu^{-}$ J/ψ: EPS09 LO + comovers (Ferreiro) ELoss (Arleo et al.) — J/ψ: EPS09 LO + comovers (Ferreiro)  $\psi(2S)$ : EPS09 LO + comovers (Ferreiro) v(2S): EPS09 LO + comovers (Ferreiro) EPS09 NLO (Vogt et al. J/ψ: QGP+HRG (Du et al.) J/ψ: QGP+HRG (Du et al.) EPS09 LO (Ferreiro) 1.5 ψ(2S): QGP+HRG (Du et al.) w(2S); QGP+HRG (Du et al.) • 0.5

• w(2S

QGP+hadron resonance gas or comovers models describe the stronger  $\psi(2S)$  suppression

Inclusive J/ $\psi$ ,  $\psi(2S) \rightarrow \mu^+ \mu$ 

EPS09 NLO (Vogt et al.)

ELoss (Arleo et al.)

EPS09 LO (Ferreiro)

Roberta Arnaldi

**CERN PH Seminar** 

12

<N

May 2<sup>nd</sup> 2017

12

<N

42

10

# $J/\psi v_2$ in pPb

Azimuthal correlations between forward/backward J/ $\psi$  and mid- $\gamma$  charged particles

Correlations expressed as associated SPD-tracklet yields per dimuon( $J/\psi$ ) trigger





additional enhancement at both near and away sides

Low multiplicity



clear away-side correlation
(jets?)



Jet correlations eliminated via subtraction

J/ $\psi v_2$  extracted assuming factorization of J/ $\psi$  and tracklet  $v_2$ 

Roberta Arnaldi

QWG 2017

November 7<sup>th</sup> 2017

### $\Upsilon$ in pA collisions

**EPS-HEP 2017** 



Stronger excited states suppression with respect to  $\Upsilon(1S)$ Initial state effects similar for the three  $\Upsilon$  states  $\rightarrow$  Final states effects in p-Pb?

no strong rapidity dependence of  $\Upsilon(1S) R_{pA}$ 

 $\Upsilon$ (1S)  $R_{pA}$  described by shadowing and energy loss models



Roberta Arnaldi