Quarkonium 2017

The 12th International Workshop on Heavy Quarkonium

November 6-10, 2017, Peking University, Beijing, China

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

Radiative Transitions in e^+e^- collisions above 4 GeV

Bin Wang (on the behalf of BESIII collaboration) Institute of High energy Physics, CAS

Quarkonium 2017, Beijing, China, November 6-10, 2017

Outline

- ►BESIII data samples
- ≻Summary of QWG 2016
- Evidence for $e^+e^- \rightarrow \gamma \eta_c$
- Summary and Outlook

BESIII data Samples

Summary of QWG 2016

≻Observation of *X*(3872) PRL 112, 092001 (2014)

Search for Y(4140) via $e^+e^- \rightarrow \gamma \phi J/\psi$ PRD 91, 032002 (2015)

 \succ Evidence for $e^+e^- \rightarrow \gamma \chi_{cJ}$ CPC 39, 041001 (2015)

Observation of X(3872)

➤ In this Letter, we report the first observation of the process of $e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma \pi^+\pi^- J/\psi$ at center of mass (c.m.) energy $\sqrt{s} = 4009, 4230, 4260$, and 4360 MeV.

➤ The measured mass of the X(3872) is (3872.9 ± 0.7_{stat} ± 0.2_{syst}) MeV/c², the width is 0.0^{+1.7}_{-0.9} MeV, or < 2.4 MeV @ 90% C.L. The statistical significance of X(3872) is 6.3σ.
 ➤ Suggestive of Y(4260)→γX(3872).

PRD 91, 032002 (2015)

Search for *Y*(4140) via $e^+e^- \rightarrow \gamma \phi J/\psi$

Three decay modes to reconstructed ϕ :

- $\phi \rightarrow \mathbf{K}^+ \mathbf{K}^-$
- $\phi \to K^0_S K^0_L, K^0_S \to \pi^+ \pi^-$

827

545

 $\bullet \ \phi \to \pi^+\pi^-\pi^0$

Two decay modes to reconstructed J/ψ :

- $J/\psi \rightarrow e^+e^-$
- $J/\psi \rightarrow \mu^+\mu^-$

4.26

4.36

Combined 6 modes (3 ϕ modes and 2 J/ψ modes) \sqrt{s} (GeV) Luminosity (pb⁻¹) (1 + δ) n^{prod} $\sigma^{B} \cdot \mathcal{B}$ (pb) 4.23 1094 0.840 < 339 < 0.35

0.847

0.944

≻ No significant *Y*(4140) signal found at BESIII.

< 207

< 179

< 0.28

< 0.33

► Set the upper limits on $\sigma^B[e^+e^- \rightarrow \gamma Y(4140)] \times \mathcal{B}[Y(4140) \rightarrow \phi J/\psi]$ at 90% C.L. The upper limit has the same magnitude of the *X*(3872) production ($\sigma^B[e^+e^- \rightarrow \gamma X(3872)] \times \mathcal{B}[X(3872) \rightarrow \pi^+\pi^- J/\psi]$).

Evidence for $e^+e^- \rightarrow \gamma \chi_{cJ}$

➤The statistical significances of χ_{c0} , χ_{c1} and χ_{c2} are 0, 2.4 σ and 4.0 σ , respectively.
➤We find evidence for the processes of $e^+e^- \rightarrow \gamma \chi_{c1}$ and $e^+e^- \rightarrow \gamma \chi_{c2}$. No evidence of $e^+e^- \rightarrow \gamma \chi_{c0}$ is observed.

The upper limit on the Born cross section are compatible with the theoretical prediction from the 3.65 3.7 NRQCD calculation.

\sqrt{s}/GeV		$N^{\rm obs}$	significance (σ)	$N^{\rm UP}$	ϵ (%)	$1 + \delta^r$	$1+\delta^v$	$\sigma^{\rm UP}/{ m pb}$	$\sigma^{\rm B}/{ m pb}$
4.009	χ_{c0}	$7.0{\pm}6.6$	1.6	18	$36.4 {\pm} 0.2$			179	$65.0 \pm 61.3 \pm 4.2$
	χ_{c1}	$4.4{\pm}2.6$	2.2	9	23.4 ± 0.1	0.738	1.04	5.3	$2.4{\pm}1.4{\pm}0.2$
	χ_{c2}	$1.8 {\pm} 1.7$	1.5	6	$8.7 {\pm} 0.1$			18	$4.7 {\pm} 4.4 {\pm} 0.6$
4.230	χ_{c0}	0.2 ± 2.3	0.0	7	37.2 ± 0.2			26	$0.7{\pm}8.0{\pm}0.1$
	χ_{c1}	$6.7 {\pm} 4.3$	1.9	14	44.4 ± 0.2	0.840	1.06	1.7	$0.7 {\pm} 0.5 {\pm} 0.1$
	χ_{c2}	13.3 ± 5.2	2.9	22	$42.0 {\pm} 0.2$			5.0	$2.7{\pm}1.1{\pm}0.3$
4.260	χ_{c0}	0.1 ± 1.9	0.0	5	36.7 ± 0.2			25	$0.5{\pm}8.8{\pm}0.1$
	χ_{c1}	3.0 ± 3.0	1.1	7	42.7 ± 0.2	0.842	1.06	1.1	$0.4{\pm}0.4{\pm}0.1$
	χ_{c2}	7.5 ± 3.9	2.3	14	41.7 ± 0.2			4.2	$2.0{\pm}1.1{\pm}0.2$
4.360	χ_{c0}	$0.1 {\pm} 0.7$	0.0	3	32.4 ± 0.2			23	$0.7{\pm}5.0{\pm}0.1$
	χ_{c1}	5.2 ± 4.9	2.4	10	$31.7 {\pm} 0.2$	0.943	1.05	2.9	$1.4{\pm}1.3{\pm}0.1$
	χ_{c2}	$4.4 {\pm} 4.5$	2.0	9	30.3 ± 0.2			5.0	$2.3 \pm 2.3 \pm 0.2$

Evidence for $e^+e^- \rightarrow \gamma \eta_c$

PRD 96, 051101 (2017) (R)

Motivation

- The Y(4260) was first discovered BABAR in the initial state radiation (ISR) process $e^+e^- \rightarrow \gamma_{ISR}Y(4260) \rightarrow \gamma_{ISR}\pi^+\pi^- J/\psi$.
- The J^{PC} of Y(4260) is 1⁻⁻, but it can not be easily explained within the traditional charmonium states.
- One possibility is that the Y(4260) is a hybrid meson. If so, the recent lattice QCD calculations predict that its rate of decay to $\gamma \eta_c$ will be enhanced relative to $\gamma \chi_{c0}$.
- Finding evidence for $Y(4260) \rightarrow \gamma \eta_c$ could thus give additional support to the hybrid interpretation.

Analysis technique and data sets

• We report on a search for $e^+e^- \to \gamma \eta_c$, $\eta_c \to X_i$, $X_i = 2(\pi^+\pi^-\pi^0)$, $\pi^+\pi^-\pi^0\pi^0$, $\pi^+\pi^+\pi^-\pi^-\eta$, $K^+K^-\pi^+\pi^-\pi^0$, $2(\pi^+\pi^-)$, $3(\pi^+\pi^-)$, $\pi^+\pi^-\eta$, $K^\pm K_S\pi^\mp\pi^+\pi^-$, $K^\pm K_S\pi^\mp$, $K^+K^-\pi^0$, $K^+K^-\pi^+\pi^-$, and $K^+K^-\pi^+\pi^-\pi^+\pi^-$ at c.m. energy between 4.01 and 4.6 GeV.

$\eta_{\mathcal{C}}$ Mode	Branching Fraction (%)
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	17.23
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	4.660
$\eta \pi^+ \pi^- \pi^+ \pi^-$	4.400
$ \qquad \qquad$	3.500
$\pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$	2.020
$\pi^+\pi^-\pi^+\pi^-$	1.720
$\eta \pi^+ \pi^-$	1.660
$\kappa^- \kappa_S \pi^+ \pi^+ \pi^-$	1.375
$K^+ K_S \pi^- \pi^+ \pi^-$	1.375
$\kappa^{-}\kappa_{S}\pi^{+}$	1.300
$\kappa^+ \kappa_S \pi^-$	1.300
$\kappa^+\kappa^-\pi^0$	1.040
$\kappa^+\kappa^-\pi^+\pi^-$	0.9500
$K^+K^-\pi^+\pi^-\pi^+\pi^-$	0.8300

PRD 86, 092009 (2012)

Data sets				
\sqrt{s} (GeV)	\mathcal{L}_{int} (pb ⁻¹)			
4.01	482			
4.23	1094			
4.26	826			
4.36	540			
4.42	1074			
4.60	567			

Event selection -- Four assumptions

Four different assumptions about the energy-dependence of the cross section

- σ_{FLAT} : The cross section is constant, consistent with the theoretical calculation.
- σ_{BELLE} : The cross section follows the Belle parameterization of $\sigma(e^+e^- \rightarrow \pi^+\pi^- J/\psi)$, modeled with a *Y*(4008) and *Y*(4260);
- $\sigma_{Y(4260)}$: The cross section follows a nonrelativistic Breit-Wigner distribution for the Y(4260) with mass and width values from the Particle Data Group (PDG);
- $\sigma_{Y(4360)}$: The cross section follows a nonrelativistic Breit-Wigner distribution for the Y(4360) with mass and width values from the Particle Data Group (PDG);

Event selection -- Four assumptions

Evidence for $e^+e^- \rightarrow \gamma \eta_c$

• An unbinned maximum likelihood method is used to simultaneously fit the distributions of the recoil-mass distributions of the transition photon associated with the twelve final states γX_i .

Continuum qq̄ processes: second order polynomial function in each decay channel;
 J/ψ ISR process: double Gaussian function whose parameters are fixed using MC studies, the sizes are float in each decay channel;

> η_c Signal: NBW (fixed mass and width) convolved with a histogram derived from MC describing detector resolution and effects due to ISR.

Evidence for $e^+e^- \rightarrow \gamma \eta_c$

$E_{\rm CM}$ (GeV)	$\sigma(e^+e^- \rightarrow \gamma \eta_c) \text{ (pb)}$	sig. (σ)	U.L. (pb)
4.01	$0.44 \pm 1.02 \pm 0.32$	0.4	2.4
4.23	$1.34 \pm 0.59 \pm 0.22$	2.2	2.2
4.26	$2.17 \pm 0.70 \pm 0.39$	3.0	3.2
4.36	$2.03 \pm 0.77 \pm 0.40$	2.7	3.2
4.42	$0.71 \pm 0.48 \pm 0.33$	1.4	1.6
4.60	$0.23 \pm 0.53 \pm 0.35$	0.4	1.4

The relative difference between four assumptions range from 1% to 6%, which are included in the systematic uncertainties.
 The largest statistical significances (3.0σ) is found at 4.26 GeV.

Evidence for $e^+e^- \rightarrow \gamma \eta_c$

The J/ψ ISR cross section, $\sigma(e^+e^- \rightarrow \gamma_{ISR}J/\psi)$, serves as an important cross-check to the η_c analysis. The theoretical calculation are shown as the blue line.

There is a good agreement between the measurements and the theoretical predictions.

- Combining all six energies under various assumptions for the energy-dependence of the cross section.
- The cross sections at different energies are constrained to follow the four assumptions.

Evidence for $e^+e^- \rightarrow \gamma \eta_c$

Assumption	$\sigma_{\rm peak}(e^+e^- \rightarrow \gamma \eta_c) ~({\rm pb})$	sig. (σ)	U.L. (pb)
$\sigma_{ m FLAT}$	$1.16 \pm 0.27 \pm 0.20$	4.1	1.6
$\sigma_{\rm BELLE}$	$2.27 \pm 0.49 \pm 0.39$	4.5	3.1
$\sigma_{Y(4260)}$	$2.11 \pm 0.49 \pm 0.36$	4.2	2.9
$\sigma_{Y(4360)}$	$2.72 \pm 0.71 \pm 0.46$	3.6	3.9

Combine all six energies under four assumptions.

- > The significances are at least 3.6σ when we combine data sets according to the four assumptions.
- The cross section is better explained by $\sigma_{Y(4260)}$ than by conventional charmonium states, $\psi(4040)$ (1.9σ) , $\psi(4160)(3.5\sigma)$ and $\psi(4415)(1.9\sigma)$.

 $\frac{\sigma_{peak}[e^+e^- \rightarrow \gamma \chi_{c0}]}{\sigma_{peak}[e^+e^- \rightarrow \gamma \eta_c]} < 2.8, \text{ the enhancement of}$ $e^+e^- \rightarrow \gamma \eta_c \text{ may suggest production via a hybrid}$ charmonium state.

Summary & Outlook

- With the large data sample above 4 GeV and good performance of BEPCII and BESIII, we have searched for some radiative transitions.
- We present first evidence for e⁺e⁻ → γη_c at six c.m. energies between
 4.01 and 4.60 GeV.
- We have collected more data samples above 4 GeV, more exciting results will come from BESIII.

Thanks for your attention!

backup

Beijing Electron and Positron Collider(BEPCII)

beam energy: 1.0 – 2.3 GeV

BESIII

detector

2004: started BEPCII upgrade, BESIII construction 2008: test run 2009 - now: BESIII physics run

• 1989-2004 (BEPC):

L_{peak}=1.0x10³¹ /cm²s

- 2009-now (BEPCII):
 - L_{peak}=1.0x10³³/cm²s [8

LINAC

The BESIII detector

