Radiative decays  $X_{cJ} \rightarrow V\gamma$ 





# in collaboration with M. Vanderhaeghen PRD96 (2017) 054007

QWG workshop, November 6-10, Beijing, China

### Radiative decays $X_{cJ} \rightarrow V\gamma$



Leading-order color-singlet contributions:



### Radiative decays $X_{cJ} \rightarrow V\gamma$

Br's in units of  $10^{-6}$ 

Data: CLEO & BES III

|                | $\chi_{c1} \to V\gamma$ | $\chi_{c1} \to V_{  } \gamma$ | $\chi_{c1} \to V_{\perp} \gamma$ | $\chi_{c0} \to V\gamma$ | $\chi_{c2} \to V\gamma$ |
|----------------|-------------------------|-------------------------------|----------------------------------|-------------------------|-------------------------|
| $\gamma  ho$   | $220 \pm 18$            | $184.8 \pm 15.7$              | $35.2 \pm 7.4$                   | < 9                     | < 20                    |
| $\gamma\omega$ | $69 \pm 8$              | $51.8\pm8.9$                  | $17.3 \pm 6.5$                   | < 8                     | < 6                     |
| $\gamma \phi$  | $25\pm5$                | $17.7 \pm 4.9$                | $7.3 \pm 3.6$                    | < 6                     | < 8                     |

#### Previous calculations

![](_page_2_Figure_5.jpeg)

Gao, Zhang, Chao 2006, 2007 quark model, nonrelativistic wave functions for vector meson V

 $10^6 Br[\chi_{c1} \to \rho\gamma] = 41$   $10^6 Br[\chi_{c1} \to \omega\gamma] = 4.6$   $10^6 Br[\chi_{c1} \to \phi\gamma] = 1.1$ 

### Radiative decays $X_{cJ} \rightarrow V_{||} \gamma$

![](_page_3_Figure_1.jpeg)

$$A[\chi_{cJ} \to V_{\parallel}\gamma] \sim \frac{R'_{21}(0)}{m_c^{5/2}} \sqrt{4\pi\alpha} \int_0^1 dx \; \frac{f_V}{m_c} \phi_V^{\parallel}(x) \, \alpha_s^2(\mu_h) T_J(x)$$

decay const.  $f_{\rho} = 221 \,\mathrm{MeV}, \quad f_{\omega} = 198 \,\mathrm{MeV}, \quad f_{\phi} = 161 \,\mathrm{MeV},$ 

### $\phi_V^{\parallel}(x)$ Light-cone distribution amplitude

describes the momentum-fraction distribution of partons at zero transverse separation in a 2-particle Fock state

This function is known in literature

Model 
$$\phi_V(x,\mu) = 6x\bar{x}\left\{1 + a_2^V(\mu)C_2^{3/2}(2x-1)\right\}$$

 $\mu = 1 \,\text{GeV}$   $a_2^{\rho} = a_2^{\omega} = 0.15 \pm 0.07, \ a_2^{\phi} = 0.18 \pm 0.08$ 

QCD SR Ball, Braun 1996, 1999 Ball, Braun, Lenz 2006

### Radiative decays $X_{cJ} \rightarrow V_{||} \gamma$

![](_page_4_Figure_1.jpeg)

$$\operatorname{Re} T_{1}(x) = -\frac{\pi^{2}}{12} \frac{1}{\bar{x}^{3}} - \frac{x}{4\bar{x}^{3}} \ln^{2} 2 + \left(-\frac{1}{\bar{x}^{2}} - \frac{1}{4\bar{x}} - \frac{3}{4x}\right) \ln 2 + \left(-\frac{3}{4\bar{x}} + \frac{1}{4x} - \frac{1}{2x-1}\right) \ln \bar{x} + \frac{x}{\bar{x}^{3}} \ln x \ln \bar{x} + \left(-\frac{1}{2\bar{x}^{2}} + \frac{3}{4\bar{x}} - \frac{1}{4x} + \frac{1}{2x-1}\right) \ln x - \frac{3x}{4\bar{x}^{3}} \ln^{2} x - \frac{x}{2\bar{x}^{3}} \ln x \ln 2$$

$$-\frac{1}{2}\frac{x}{\bar{x}^3}\left(\text{Li}\left[1-\frac{1}{2x}\right] + \text{Li}\left[1-2x\right] + \text{Li}\left[1-x\right] + \text{Li}\left[-\bar{x}/x\right] - \text{Li}\left[2x-1\right]\right) + (x \to \bar{x}),$$

Im 
$$T_1(x) = \frac{\pi}{4x\bar{x}^3} \left( \bar{x}(1 + x(2x - 1)) + 2x^2 \ln[x] \right) + (x \to \bar{x})$$

endpoint behavior 
$$\operatorname{Re} T_i(x) \stackrel{x \to 1}{\sim} \frac{\ln \bar{x}}{\bar{x}}, \ \operatorname{Im} T_i(x) \stackrel{x \to 1}{\sim} \frac{1}{\bar{x}}$$
  
$$\phi_V(x,\mu) = 6x\bar{x} \left\{ 1 + a_2^V(\mu)C_2^{3/2}(2x-1) \right\}$$

![](_page_5_Figure_0.jpeg)

| Br's in units 10 <sup>-6</sup> | $\alpha_s(2m_c^2) = 0.29$ | $m_c^2$ | $< \mu_h^2$ | $< 4m_{c}^{2}$ |
|--------------------------------|---------------------------|---------|-------------|----------------|
|--------------------------------|---------------------------|---------|-------------|----------------|

|                                                                                  | $\gamma  ho$                                                                     | $\gamma\omega$                                                         | $\gamma \phi$                                                            |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|
| $\begin{array}{c} \chi_{c1} \to V_{\parallel} \gamma\\ \text{exp.} \end{array}$  | $\begin{array}{c} 153.1^{+18.2+103.7}_{-16.7-70.5}\\ 184.8 \pm 15.7 \end{array}$ | $\begin{array}{c} 13.6^{+1.6+9.2}_{-1.5-6.3}\\ 51.8\pm8.9 \end{array}$ | $\begin{array}{c} 31.3^{+4.2+21.4}_{-3.8-14.5}\\ 17.7\pm4.9 \end{array}$ |
| $\begin{array}{c} \chi_{c2} \to V_{\parallel} \gamma \\ \text{exp.} \end{array}$ | $4.8^{+0.2+3.1}_{-0.2-2.1} < 20$                                                 | $ \begin{array}{r} 0.43^{+0.02+0.27}_{-0.02-0.19} \\ < 6 \end{array} $ | $ \begin{array}{c c} 0.9^{+0.05+0.59}_{-0.04-0.41} \\ < 8 \end{array} $  |

Theory

$$\frac{Br\left[\chi_{c1} \to \omega_{\parallel} \gamma\right]}{Br\left[\chi_{c1} \to \rho_{\parallel} \gamma\right]} \simeq \frac{1}{9} \quad \textbf{(0.28+/-0.06) ?}$$

clear indication about significance of the color-octet mechanism

$$\langle V(p)|J^{\mu}_{em}|\chi_{cJ}\rangle = \langle V(p)|\sum_{u,d,s} e_q \ \bar{q}\gamma^{\mu}q|\chi_{cJ}\rangle + \langle V(p)|e_c \ \bar{c}\gamma^{\mu}c|\chi_{cJ}\rangle$$
color-octet mechanism

### Radiative decays $X_{cJ} \rightarrow V_T \gamma$

#### color singlet

 $\mu = 1 \,\mathrm{GeV}$ 

![](_page_6_Picture_2.jpeg)

![](_page_6_Figure_3.jpeg)

the collinear integrals don't have endpoint IR-divergencies

# **Twist-3 DAs** $A(\alpha_{i}) = 360\zeta_{3}\alpha_{1}\alpha_{2}\alpha_{3}^{2}\left(1 + \omega_{3}^{A}\frac{1}{2}(7\alpha_{3} - 3)\right) \qquad G(\alpha_{i}) = 5040 \ \zeta_{3}\omega_{3}^{G}\alpha_{1}^{2}\alpha_{2}^{2}\alpha_{3}^{2}$ $V(\alpha_{i}) = 540\zeta_{3}\omega_{3}^{V}\alpha_{1}\alpha_{2}\alpha_{3}^{2}(\alpha_{2} - \alpha_{1}).$

QCD sum rules Ball, Braun 1996, 1999 Ball, Braun, Koike, Tanaka 1998 Ball, Braun, Lenz 2006

$$\rho \text{ and } \omega \text{-mesons} : \qquad \zeta_3 = 0.030 \pm 0.010, \quad \omega_3^A = -3.0 \pm 1.4, \quad \omega_3^V = 5.0 \pm 2.4 \\ \phi \text{-meson} : \qquad \zeta_3 = 0.024 \pm 0.008, \quad \omega_3^A = -2.6 \pm 1.3, \quad \omega_3^V = 5.3 \pm 3.0$$

qq-mesons have small overlap with gluons  $|\omega_3^G(\mu = 1 \text{GeV})| \ll 1$ 

### Radiative decays $X_{cJ} \rightarrow V_T \gamma$ only the color singlet contribution

**OZI-suppressed** 

![](_page_7_Figure_2.jpeg)

$$\Gamma_{\rho}^{\perp} = 222.4 \ \zeta_{3}^{2} (-9.82 + 4.78\omega_{3}^{A} + 3.31\omega_{3}^{V})^{2}$$
  
$$\Gamma_{\phi}^{\perp} = 168.7 \ \zeta_{3}^{2} (6.5 - 3.3 \ \omega_{3}^{A} + 2.9 \ \omega_{3}^{V} + 733.6 \ \omega_{3}^{G})^{2}$$

2

 $\Gamma_{\omega}^{\perp} = 181.2 \ \zeta_3^2 (-3.3 + 1.4 \ \omega_3^A + 8.3 \ \omega_3^V + 735.6 \ \omega_3^G)^2$ 

large numerical coefficient in front of small  $~\omega_3^G$ 

### Radiative decays $X_{cJ} \rightarrow V_T \gamma$

## DAs parameters (QCD Sum rules) $\zeta_3 = 0.030 \pm 0.010, \quad \omega_3^A = -3.0 \pm 1.4, \quad \omega_3^V = 5.0 \pm 2.4$ $|\omega_3^G(\mu = 1 \text{GeV})| \ll 1$

only the color singlet branching fractions in units 10<sup>-4</sup>  $\chi_{c1} \to V_{\perp} \gamma$  $\omega_3^A$  $\omega_3^V$  $\omega_3^G$  $\zeta_3$  $\phi$  $\omega$ ρ  $(35.2 \pm 7.4)$  $(7.3 \pm 3.6)$  $(17.3 \pm 6.5)$ 2.8-0.037-2.20.0329.620.84.8 -4.4 5.9-0.0438.5 0.03 30.0 13.9-2.53.7-0.041 6.50.04 39.2 13.55.16.20.04 -3.4 -0.03833.2 14.2

Data can be described including small 3g contribution

| $\chi_{c2} \to V\gamma$ |      |        | $\chi_{c0} \to V\gamma$ |      |        |
|-------------------------|------|--------|-------------------------|------|--------|
| $\rho$                  | ω    | $\phi$ | ρ                       | ω    | $\phi$ |
| < 20                    | < 6  | < 8    | < 9                     | < 8  | < 6    |
| 3.4                     | 0.18 | 2.6    | 2.0                     | 0.17 | 0.66   |
| 17.2                    | 3.7  | 6.5    | 0.40                    | 0.05 | 0.15   |
| 7.1                     | 0.40 | 5.6    | 1.9                     | 0.16 | 0.54   |
| 16.3                    | 3.6  | 6.50   | 0.62                    | 0.09 | 0.23   |

### Radiative decays $X_{cJ} \rightarrow V_T \gamma$

![](_page_9_Figure_1.jpeg)

only the color-singlet contributions

Data can only be described including small 3g contributions

$$Br[\chi_{c1} \to \gamma \rho] > Br[\chi_{c2} \to \gamma \rho] > Br[\chi_{c0} \to \gamma \rho]$$

$$Br[\chi_{c2} \to \gamma \rho] > Br[\chi_{c2} \to \gamma \phi] > Br[\chi_{c2} \to \gamma \omega]$$

 $Br[\chi_{c2} \to \gamma \phi] \ge Br[\chi_{c1} \to \gamma \phi]$ 

# More accurate measurements of $Br[X_{c2} \rightarrow \gamma \rho]$ can help to reduce theoretical ambiguity

color-singlet

tw.-3 DAs

the collinear integrals don't have endpoint **IR-divergencies** 

![](_page_10_Figure_4.jpeg)

color-octet

power counting  $mv^2 \sim \Lambda$   $mv \sim \sqrt{m\Lambda}$ 

$$\chi_{cJ} \to g_{us} + c\bar{c}_8({}^3S_1) \to g_{us} + \{q_c \,\bar{q}_c\}_8 \to \gamma + V_{\parallel}$$

![](_page_10_Picture_9.jpeg)

 $\sim \alpha_s v^4 (\Lambda/m_c)^2$ 

color-octet is of the same order as the color-singlet

 $\Rightarrow$  large theoretical uncertainty!

a 2 b 2 C 2

Theory vs. experiment : only the color-singlet contribution

branching fractions in units 10<sup>-4</sup>  $m_c < \mu_h < 2m_c$ 

|                                                                                  | $\gamma  ho$                                                                  | $\gamma\omega$                                                         | $\gamma \phi$                                                            |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|
| $\begin{array}{c} \chi_{c1} \to V_{\parallel} \gamma\\ \text{exp.} \end{array}$  | $\begin{array}{c} 153.1^{+18.2+103.7}_{-16.7-70.5}\\ 184.8\pm15.7\end{array}$ | $\begin{array}{c} 13.6^{+1.6+9.2}_{-1.5-6.3}\\ 51.8\pm8.9 \end{array}$ | $\begin{array}{c} 31.3^{+4.2+21.4}_{-3.8-14.5}\\ 17.7\pm4.9 \end{array}$ |
| $\begin{array}{c} \chi_{c2} \to V_{\parallel} \gamma \\ \text{exp.} \end{array}$ | $4.8^{+0.2+3.1}_{-0.2-2.1}_{< 20}$                                            | $ \begin{array}{r} 0.43^{+0.02+0.27}_{-0.02-0.19} \\ < 6 \end{array} $ | $0.9^{+0.05+0.59}_{-0.04-0.41} < 8$                                      |

Theory

$$\frac{Br\left[\chi_{c1} \to \omega_{\parallel} \gamma\right]}{Br\left[\chi_{c1} \to \rho_{\parallel} \gamma\right]} \simeq \frac{1}{9} \quad \textbf{0.28(6)} \ \textbf{?}$$

clear indication about significance of the color-octet mechanism

$$\langle V(p)|J^{\mu}_{em}|\chi_{cJ}\rangle = \langle V(p)|\sum_{u,d,s} e_q \ \bar{q}\gamma^{\mu}q|\chi_{cJ}\rangle + \langle V(p)|e_c \ \bar{c}\gamma^{\mu}c|\chi_{cJ}\rangle$$

$$color-octet \ mechanism$$

![](_page_12_Figure_1.jpeg)

 $\Rightarrow$  large theor. uncertainty but can not explain large

 $\frac{Br[\chi_{c1} \to \omega_{\parallel} \gamma]}{Br[\chi_{c1} \to \rho_{\parallel} \gamma]}$ 

![](_page_13_Figure_1.jpeg)

$$\chi_{cJ} \to g_{us} + c\bar{c}_8({}^3S_1) \to \underline{g_{us} + (g_{hc} + g_{hc})_8} + \gamma \to \omega_{\parallel} + \gamma$$
$$\overline{\xi_c}\xi_c({}^1S_0)$$

![](_page_13_Figure_4.jpeg)

soft gluon fusion into longit. meson might explain the large ratio

### Conclusions

• The dominant contribution in  $\chi_{c1} \rightarrow V_{\parallel} \gamma$  is the color-singlet term suppressed as  $\chi_{c_{s}} = \int_{0}^{\infty} \int_{0}^{v_{ll}} \sim \alpha_s^2 v^4 \Lambda / m_c$ 

• The discrepancy with data for the ratio

$$\frac{Br\left[\chi_{c1} \to \omega_{\parallel}\gamma\right]}{Br\left[\chi_{c1} \to \rho_{\parallel}\gamma\right]} \simeq \frac{1}{9} \text{ (exp: 0.28+/-0.06)}$$

indicates about a large contribution beyond OZI-suppressed configuration

Possible mechanism: color-octet gluon fusion

$$\leftarrow \alpha_{s} v^{5} (\Lambda/m_{c})^{2}$$

- The octet and singlet contributions in χ<sub>c1</sub> → V<sub>⊥</sub>γ are of the same order. Observation: the data can be described by color-singlet mechanism including small 3g coupling for I=0 mesons. More accurate data for hadronic DAs are important!
- Further measurements for  $\chi_{c0,2} o V\gamma$  will help to clarify the decay mechanism

![](_page_15_Picture_0.jpeg)

Radiative decays  $X_{cJ} \rightarrow V\gamma$ 

### Helicity amplitudes

$$A_{0V}^{\perp}: \chi_{c0} \to V(\lambda_V = \pm 1)\gamma(\lambda_\gamma = \pm 1)$$

$$A_{1V}^{\perp} : \chi_{c1}(\lambda_{\chi} = 0) \to V(\lambda_{V} = \pm 1)\gamma(\lambda_{\gamma} = \pm 1)$$
  
$$A_{1V}^{\parallel} : \chi_{c1}(\lambda_{\chi} = \pm 1) \to V(\lambda_{V} = 0)\gamma(\lambda_{\gamma} = \pm 1)$$

$$A_{2V}^{\perp} : \chi_{c2}(\lambda_{\chi} = 0) \to V(\lambda_{V} = \pm 1)\gamma(\lambda_{\gamma} = \pm 1)$$

$$A_{2V}^{\parallel} : \underline{\chi_{c2}(\lambda_{\chi} = \pm 1)} \to V(\lambda_{V} = 0)\gamma(\lambda_{\gamma} = \pm 1)$$

$$T_{2V}^{\perp} : \underline{\chi_{c2}(\lambda_{\chi} = \pm 2)} \to V(\lambda_{V} = \mp 1)\gamma(\lambda_{\gamma} = \pm 1)$$

![](_page_17_Figure_1.jpeg)

higher Fock state of the light meson

![](_page_17_Figure_3.jpeg)

### Radiative decays $X_{cJ} \rightarrow V_{||} \gamma$

#### Theory vs. experiment : only the color singlet contribution

branching fractions in units 10<sup>-4</sup>

|                                           | $\gamma ho$                                                                   | $\gamma\omega$                                                         | $\gamma \phi$                                                            |
|-------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|
| $\chi_{c1} \to V_{\parallel} \gamma$ exp. | $\begin{array}{c} 153.1^{+18.2+103.7}_{-16.7-70.5}\\ 184.8\pm15.7\end{array}$ | $\begin{array}{c} 13.6^{+1.6+9.2}_{-1.5-6.3}\\ 51.8\pm8.9 \end{array}$ | $\begin{array}{c} 31.3^{+4.2+21.4}_{-3.8-14.5}\\ 17.7\pm4.9 \end{array}$ |
| $\chi_{c2} \to V_{\parallel} \gamma$ exp. | $2.11^{+0.09+1.3}_{-0.08-0.9} < \frac{20}{20}$                                | $0.19^{+0.008+0.12}_{-0.007-0.08} < \frac{6}{6}$                       | $ \begin{array}{c} 0.41^{+0.02+0.26}_{-0.02-0.18} \\ < 8 \end{array} $   |

color octet contributions c-quark  $v^2 \simeq 0.3$   $\alpha_s(2m_c^2) = 0.29$ 

$$\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & &$$

US