

Charmonium Decays into Light Hadrons at BESIII

Huanhuan LIU (Institute of High Energy Physics, CAS) On behalf of BESIII Collaboration

- Data Set at BESIII
- Light Meson Spectroscopy
- X(pp) and X(1835)
 - $J/\psi \to \gamma X \to \gamma K^0_S K^0_S \eta$
 - $J/\psi \to \gamma X \to \gamma \eta' \pi^+ \pi^-$
- Glueball Searches
 - $J/\psi \to \gamma \pi^0 \pi^0$
 - $J/\psi \to \gamma \phi \phi$
- $\chi_{c1} \to \eta \pi^+ \pi^-$
- Light Baryon Spectroscopy
 - $\psi(3686) \rightarrow (\gamma) K^{\mp} \Lambda \overline{\Xi}^{\pm}$
- Summary

World largest J/ ψ , ψ (3686), ψ (3770), ... produced directly from e⁺e⁻ collision: an ideal factory to study light meson spectroscopy

T -charm physics

- Charmonium(-like) physics
- Light hadron spectroscopy
- Charm physics

т physics

2017-11-7

QWG 2017

- Light meson spectroscopy plays a crucial role in examining and understanding the QCD theory in non-perturbative energy region.
- J/ψ, χ_{c1} (the lowest 1⁻⁻, 1⁺⁺ ccbar states) decays provide an ideal place to study the light meson spectroscopy.

PWA of $J/\psi \rightarrow \gamma p \overline{p}$

- The fit with a BW and S-wave FSI factor can well describe $p\overline{p}$ mass threshold structure.
- It is much better than that without FSI effect (7.1σ).
- It has model dependent uncertainty.

Spin parity, mass, width and branching ratio:

J^{pc}=0⁻⁺ (>6.8σ, better than other J^{pc} assignments)

 $M = 1832_{-5}^{+19}(stat.)_{-17}^{+18}(sys.) \pm 19(model) MeV/c^{2},$

 $\Gamma = 13 \pm 39(stat.)^{+10}_{-13}(sys.) \pm 4(model) MeV/c^2, < 76 MeV/c^2(90\% CL),$

 $B(J/\psi \to \gamma X)B(X \to p\overline{p}) = (9.0^{+0.4}_{-1.1}(stat.)^{+1.5}_{-5.0}(sys.) \pm 2.3(model)) \times 10^{-5}$

2017-11-7

Phys. Rev. Lett. 108, 112003 (2012)

In J/ψ Hadronicdecays

Events /

Efficiency

QWG 2017

100

0.4

0.2

0.1

Study of $J/\psi \rightarrow \omega p\bar{p}$ and $J/\psi \rightarrow \Phi p\bar{p}$ may shed further light on the nature of $X(p\bar{p})$

 $J/\psi \to \omega p \overline{p}$

B(J/ ψ → ω X(p \bar{p}) → ω p \bar{p}) <3.7x10⁻⁶ (95% CL)

> >10x suppressed compared to $J/\psi \rightarrow \gamma X(p\bar{p}) \rightarrow \gamma p\bar{p}$

 $J/\psi \to \phi p \overline{p}$

B(J/ψ→ΦX(pp̄)→Φpp̄) <2x10⁻⁷ (90% CL)

>100x suppressed compared to $J/\psi \rightarrow \gamma X(p\bar{p}) \rightarrow \gamma p\bar{p}$

 $\psi(3686), B \rightarrow \gamma p \overline{p} \ also \times$

Phys. Rev. Lett. 95, 262001 (2005) Discovered by BESII in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ Confirmed by BESIII in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

 $M = 1836.5 \pm 3.0^{+5.6}_{-2.1} MeV/c^2$

 $\Gamma = 190 \pm 9^{+38}_{-36} MeV/c^2$

Phys. Rev. Lett. 106, 072002 (2011)

Angular distribution is consistent with 0⁻

7

- the K_sK_sη mass spectrum is strongly correlated to f₀(980)
- **Partial Wave Analysis for** $M(K_{S}K_{S}) < 1.1 \text{ GeV/c}^{2}$
 - $X(1835) \rightarrow K_s K_s \eta$ (f₀(980) is dominant) $J^{PC} = 0^{-+}, > 12.9\sigma$

 $M = 1844 \pm 9^{+16}_{-25} MeV/c^2, \Gamma = 192^{+20}_{-17} + \frac{38}{-36} MeV/c^2$

 $B(J/\psi \rightarrow \gamma X(1835))B(X(1835) \rightarrow K_s K_s \eta)$

- $=(3.31^{+0.33}_{-0.30})\times10^{-5}$
- X(1560)→f₀(980)η

 $J^{PC} = 0^{-+}, > 8.9\sigma$

 $M = 1565 \pm 8^{+0}_{-63} MeV/c^2, \Gamma = 45^{+14}_{-13} + 21_{-28} MeV/c^2$ QWG 2017

X(1835) and ppbar Threshold

- What is the role of the ppbar threshold?
- Patterns in the production and decay modes

2017-11-7 QWG 2017

J/ψ⇒γη'π+π-

Model 1:

Flatte lineshape with strong coupling to pp and one additional, narrow Breit-Wigner at ~1920 MeV/c²

 $\sqrt{\rho_{\rm out}}$ $\overline{\mathcal{M}^2 - s - i \sum_k g_k^2 \rho_k}$ $M^2 - s - ig_0^2 (\rho_0 +$

* The pole nearest to the $\mathrm{p}\overline{\mathrm{p}}$ mass threshold

a $p\overline{p}$ molecule-like state?

Significance of $g_{\rm p\overline{p}}^2/g_0^2$ being non-zero is larger than 7σ

X(1920) is needed with 5.7σ 10

γη'π+π-

Model 2:

T =

Coherent sum of X(1835) Breit-Wigner and one additional, narrow Breit-Wigner at ~1870 MeV/c²

PRL 117, 042002 (2016)								
X(1835)								
M (MeV/ <i>c</i> ²)	$1825.3 \begin{array}{c} +2.4 \\ +17.3 \\ -2.4 \\ -2.4 \end{array}$							
$\Gamma (MeV/c^2)$	$245.2 \begin{array}{c} +14.2 \\ -12.6 \\ -9.6 \end{array}$							
B.R. (constructive interference)	$(3.01 {}^{+0.17}_{-0.17} {}^{+0.26}_{-0.28}) \times 10^{-4}$							
B.R. (destructive interference)	$(3.72 {}^{+0.21}_{-0.21} {}^{+0.18}_{-0.35}) \times 10^{-4}$							
X(1870)								
M (MeV/ <i>c</i> ²)	$1870.2 \begin{array}{c} +2.2 \\ -2.3 \end{array} \begin{array}{c} +2.3 \\ -0.7 \end{array}$							
Г (MeV/ <i>c</i> ²)	$13.0 \begin{array}{c} +7.1 \\ -5.5 \\ -3.8 \end{array}$							
B.R. (constructive interference)	$(2.03^{+0.12}_{-0.12}{}^{+0.43}_{-0.70}) \times 10^{-7}$							
B.R. (destructive interference)	$(1.57^{+0.09}_{-0.09}{}^{+0.49}_{-0.86}) \times 10^{-5}$							
0:	r = f = r = r = r = r = r = r = r = r =							

Significance of X(1870) is larger than 7σ

 $\frac{\sqrt{\rho_{\text{out}}}}{M_1^2 - s - iM_1\Gamma_1} + \frac{\beta e^{i\theta}\sqrt{\rho_{\text{out}}}}{M_2^2 - s - iM_2\Gamma_2} \bigg) X(1920) \text{ is not significant}$

11

ψ⇒γη'π⁺π⁻

- The anomalous line shape can be modeled by two models with equally good fit quality.
 - Suggest the existence of a state, either a broad state with strong couplings to $p\overline{p}$, or a narrow state just below the $p\overline{p}$ mass threshold
 - Support the existence of a $p\overline{p}$ molecule-like state or bound state
- **To elucidate further the nature of the state**
 - more data or studying line shapes in other related decay channels

- Lattice QCD predictions:
 - Ground state of 2⁺⁺ glueball in 2.3~2.4 GeV/c²
 - Ground state of 0⁻⁺ glueball in 2.3~2.6 GeV/c²
- Structures in φφ spectrum:
 - Pseudoscalar state η(2225) was observed in J/ψ→γφφ in DM2, MARKIII and BESII [PLB 241, 617 (1990); PRL 65, 1309 (1990); PLB 662, 330(2008)]
 - For higher 0⁻⁺mass states above 2GeV/c², very little is known
 - Broad 2⁺⁺ structures f₂(2010), f₂(2300) and f₂(2340) were observed at BNL [PLB 165, 217 (1985); PLB 201, 568 (1988)]
- Tensor:
 - f₂(2010), f₂(2300), f₂(2340): stated in π⁻p reaction
 - strong f₂(2340) production
- Pseudoscalar:
 - η(2225): Dominant
 - η(2100) and X(2500)

QWG 2017

Model Independent PWA $J/\psi \rightarrow \gamma \pi^0 \pi^0$

- Extract amplitudes in each $M(\pi^0\pi^0)$ mass bin
- Significant features of the scalar spectrum includes structures near 1.5, 1.7 and 2.0GeV/c²
- Multi-solution problem in MIPWA is usually unavoidable
- Model dependent fit to the data is needed to extract model parameters

Ambiguous Solution

PWA of J/ψ→γφφ

- Besides η(2225), very little was known in the sector of pseudoscalar above 2 GeV. The new experimental results are helpful for mapping out the pseudoscalarexcitations and searching for 0-+glueball
- Dominant contribution from pseudoscalars
 - η(2225) is confirmed;
 - η(2100) and X(2500) are observed with large significance.
- The three tensors $f_2(2010)$, $f_2(2300)$ and $f_2(2340)$ stated in π -N reactions (and ppar collisions) are also observed with a strong production of $f_2(2340)$.
 - Model-dependent PWA results are well consistent with results from MIPWA

Resonance	$M(MeV/c^2)$	$\Gamma({\rm MeV}/c^2)$	$B.F.(\times 10^{-4})$	Sig.
$\eta(2225)$	$2216^{+4}_{-5}{}^{+18}_{-11}$	185^{+12+44}_{-14-17}	$(2.40\pm0.10^{+2.47}_{-0.18})$	28.1σ
$\eta(2100)$	2050^{+30+77}_{-24-26}	$250^{+36}_{-30}{}^{+187}_{-164}$	$(3.30\pm0.09^{+0.18}_{-3.04})$	21.5σ
X(2500)	$2470^{+15}_{-19}{}^{+63}_{-23}$	$230^{+64}_{-35}{}^{+53}_{-33}$	$(0.17\pm0.02^{+0.02}_{-0.08})$	8.8σ
$f_0(2100)$	2102	211	$(0.43\pm0.04^{+0.24}_{-0.03})$	24.2σ
$f_2(2010)$	2011	202	$(0.35\pm0.05^{+0.28}_{-0.15})$	9.5σ
$f_2(2300)$	2297	149	$(0.44\pm0.07^{+0.09}_{-0.15})$	6.4σ
$f_2(2340)$	2339	319	$(1.91\pm0.07^{+0.72}_{-0.69})$	10.7σ
0^{-+} PHSP			$(2.74\pm0.15^{+0.16}_{-1.48})$	6.8σ

Phys. Rev. D 93 112011 (2016) 15

- χ_{c1} provides another suitable environment to look for 1⁻⁺
- **π**₁(1600) studied in χ_{c1} decays by CLEO-c
- only $\pi_1(1400)$ has been reported decays to $\eta\pi$
- Properties of a₂ and a₀ still need further studies

	1 The Party of The Party	
5. M		
	THU &	

nts / 10 MeV/c ²	600 a) 500 400 -				$\begin{array}{ll} & & a_0(980)\pi \\ & & a_2(1320)\pi \\ & & a_2(1700)\pi \\ & & & a_2(1700)\pi \\ & & & & \\ & & & \\ &$		ππ S-wave: N/D by A.Szczepaniak PRD84, 112009		a ₀ (98) disper PRD7	0): rsion integrals /8,74023
vel	200		A		Constanting the second		Decay	${\cal F}~[\%]$	Significance $[\sigma]$	$\mathcal{B}(\chi_{c1} \to \eta \pi^+ \pi^-) \ [10^{-3}]$
Ð	100	1	- Lung	فتبينهم			$\eta \pi^+ \pi^-$			$4.67 \pm 0.03 \pm 0.23 \pm 0.16$
	0	Laure a partie	A STATISTICS	anteringenter	and the second		$a_0(980)^+\pi^-$	$72.8 \pm 0.6 \pm 2.3$	> 100	$3.40 \pm 0.03 \pm 0.19 \pm 0.11$
	0.5	1	1.5	2	2.5 3	3.	$5 a_2(1320)^+\pi^-$	$3.8 \pm 0.2 \pm 0.3$	32	$0.18 \pm 0.01 \pm 0.02 \pm 0.01$
			M(η <i>τ</i>	Μ(ηπ) [GeV/c²]			$a_2(1700)^+\pi^-$	$1.0 \pm 0.1 \pm 0.1$	20	$0.047 \pm 0.004 \pm 0.006 \pm 0.002$
	Ē			a (080) 	a (980)π		$S_{K\bar{K}}\eta$	$2.5 \pm 0.2 \pm 0.3$	22	$0.119 \pm 0.007 \pm 0.015 \pm 0.004$
2	600 [b)	ų† –		$a_0(980)\pi$ 		$S_{\pi\pi}\eta$	$16.4 \pm 0.5 \pm 0.7$	> 100	$0.76 \pm 0.02 \pm 0.05 \pm 0.03$
\sim	500 ^E		Λ.		a ₂ (1700)π S _{KK→ππ} η		$(\pi^+\pi^-)_S\eta$	$17.8 \pm 0.5 \pm 0.6$		$0.83 \pm 0.02 \pm 0.05 \pm 0.03$
Ve	Ē		-R		S _{ππ→ππ} η f₂(1270)η		$f_2(1270)\eta$	$7.8 \pm 0.3 \pm 1.1$	> 100	$0.36 \pm 0.01 \pm 0.06 \pm 0.01$
0	400 		M		f ₄ (2050)η		$f_4(2050)\eta$	$0.6 \pm 0.1 \pm 0.2$	9.8	$0.026 \pm 0.004 \pm 0.008 \pm 0.001$
	300						Exotic candidat	es		U.L. [90% C.L.]
nts	200		M				$\pi_1(1400)^+\pi^-$	0.58 ± 0.20	3.5	< 0.046
ve	200	1 3	and the second				$\pi_1(1600)^+\pi^-$	0.11 ± 0.10	1.3	< 0.015
Φ	100		() / Jy				$\pi_1(2015)^+\pi^-$	0.06 ± 0.03	2.6	< 0.008
	0		and a particular							
	-	0.5	1 1	.5 2	2.5	3				

Clear evidence for $a_2(1700)$ in χ_{c1} decays.

 $M(\pi^{+}\pi^{-})$ [GeV/c²]

• Measured upper limits for $\pi_1(1^{-+})$ in 1.4-2.0 GeV/c² region.

2017-11-7

QWG 2017

Phys. Rev. D 95, 032002 (2017)

17

 $\psi(3686) \rightarrow (\gamma) K^{\mp} \Lambda \overline{\Xi}^{\pm}$

- Baryon spectroscopy is far from complete, since many of the states expected in the SU(3) multiplets are either undiscovered or not well established
- Small production cross sections(\(\mathbf{\Sigma}^*\))

 $\psi(3686) \to (\gamma) K^{\mp} \Lambda \overline{\Xi}^{\pm}$

- **Observe two hyperons,** $\Xi(1690)$ and $\Xi(1820)$ in M(KA)
 - Both are well established states
 - Resonance parameters consist with PDG
- The measurements provide new information on charmonium decays to hyperons and on the resonance parameters of the hyperons
- It may help in the understanding of the charmonium decay mechanism Phys. Rev. D 91, 092006 (2015)

Decay	Branching fraction			
$\psi(3686) \to K^- \Lambda \bar{\Xi}^+$	$(3.86 \pm 0.27 \pm 0.32) \times 10^{-5}$		$\Xi(1690)^{-}$	$\Xi(1820)^{-}$
$\psi(3686) \to \Xi(1690)^- \bar{\Xi}^+, \ \Xi(1690)^- \to K^- \Lambda$	$(5.21 \pm 1.48 \pm 0.57) \times 10^{-6}$	$M({ m MeV}/c^2)$	$1687.7 \pm 3.8 \pm 1.0$	$1826.7 \pm 5.5 \pm 1.6$
$\psi(3686) \to \Xi(1820)^- \bar{\Xi}^+, \ \Xi(1820)^- \to K^- \Lambda$	$(12.03 \pm 2.94 \pm 1.22) \times 10^{-6}$	$\Gamma({ m MeV})$	$27.1 \pm 10.0 \pm 2.7$	$54.4 \pm 15.7 \pm 4.2$
$\psi(3686) \rightarrow K^- \Sigma^0 \bar{\Xi}^+$	$(3.67 \pm 0.33 \pm 0.28) \times 10^{-5}$	Event yields	74.4 ± 21.2	136.2 ± 33.4
$\psi(3686) \rightarrow \gamma \chi_{c0}, \ \chi_{c0} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.90 \pm 0.30 \pm 0.16) \times 10^{-5}$	Significance(σ)	4.9	6.2
$\psi(3686) \rightarrow \gamma \chi_{c1}, \ \chi_{c1} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.32 \pm 0.20 \pm 0.12) \times 10^{-5}$	Efficiency $(\%)$	32.8	26.1
$\psi(3686) \rightarrow \gamma \chi_{c2}, \ \chi_{c2} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.68 \pm 0.26 \pm 0.15) \times 10^{-5}$	$\mathcal{B}(10^{-6})$	$5.21 \pm 1.48 \pm 0.57$	$12.03 \pm 2.94 \pm 1.22$
$\gamma_{c0} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.96 \pm 0.31 \pm 0.16) \times 10^{-4}$	$M_{\rm PDG}({ m MeV}/c^2)$	1690 ± 10	1823 ± 5
$\chi_{c1} \to K^- \Lambda \bar{\Xi}^+$	$(1.43 \pm 0.22 \pm 0.12) \times 10^{-4}$	$\Gamma_{\rm PDG}({\rm MeV})$	<30	24^{+15}_{-10}
$\chi_{c2} \to K^- \Lambda \bar{\Xi}^+$	$(1.93 \pm 0.30 \pm 0.15) \times 10^{-4}$			

Highlights of latest results in light hadron spectroscopy from BESIII

- Observation of X(1835) in J/ψ→γK_sK_sη
 - New decay mode of X(1835) and its JPC is determined: 0-+
- Observation of anomalous $\eta' \pi^+ \pi^-$ line shape near ppbar mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - Support the existence of a ppbar bound state or molecule-like state
- Model independent partial wave analysis of $J/\psi \rightarrow \gamma \pi^0 \pi^0$
 - Useful information for 0++, 2++ components
- Partial wave analysis of $J/\psi \rightarrow \gamma \phi \phi$
 - Resonance parameters for glueball search
- χ_{c1}→ηπ⁺π⁻
 - $a_2(1700)$ in χ_{c1} decays and upper limits for π_1
- $\psi(3686) \rightarrow (\gamma) K^{+} \Lambda \overline{\Xi}^{\pm}$
 - Observe two hyperons

