

Bottomonium transitions from Belle

XiaoLong Wang (on behalf of the Belle Collaboration)

Fudan University, Shanghai

The 12th International Workshop on Heavy Quarkonium 11/7/2017, Peking University, Beijing

Hadronic transitions

 Last decade has been a fertile era for bottomonium spectroscopy: many missing states and exotica

Hadronic transitions

- Important informations on bottomonium given also by the study of transitions between its states.
- These transitions can be predicted by effective potential models, rather well established in the case of the dominant radiative transitions
- Instead BRs not well predicted in particular in the 2-body hadronic transitions (η, π^0)
- In quarkonia below open-bottom threshold, should be explained by QCDME (analogy with the QED multiple expansion) in terms of momentum of the emitted gluons
- From Heavy Quark Spin Symmetry (HQSS), the spin-flipping η -transtions between bottomonia are suppress by a factor $(\Lambda_{QCD}/m_b)^2$ comparing to $\pi^+\pi^-$ -transitions:

$$\mathcal{R}_{\pi^+\pi^--tran}^{\eta-tran}(n,m) = \frac{\mathcal{B}(\Upsilon(nS) \to \eta\Upsilon(mS))}{\mathcal{B}(\Upsilon(nS) \to \pi^+\pi^-\Upsilon(mS))} \approx 10^{-3}$$
(1)

- Expectations:
 - suppression of spin-flipping transitions
 - (i.e. mS $\rightarrow \eta+nS$ wrt mS $\rightarrow \pi^+\pi^-+nS$, and mS $\rightarrow \pi^+\pi^-+nP$ wrt mS $\rightarrow \pi^+\pi^-nS$)
 - further suppression of isospin-violating transitions
 - (i.e. mS $\rightarrow \pi^0 + nS$ wrt others)

The η vs $\pi^+\pi^-$ transitions from $\Upsilon(nS)$: theory vs exp

More hadronic transitions

The partial width in units of keV:

Limited by available channels	$\Upsilon(5S)$ transitions
$\frac{\Upsilon(4S) \rightarrow}{\Upsilon(1S)\pi^{+}\pi^{-} 1.7 \pm 0.2} \\ \Upsilon(1S)\eta 4.0 \pm 0.8 \\ \Upsilon(2S)\pi^{+}\pi^{-} 1.8 \pm 0.3 \\ h_{b}(1P) 45 \pm 7 \\ \hline \mathcal{B}(\Upsilon(4S) \rightarrow \eta\Upsilon(1S)) > \mathcal{B}(\Upsilon(4S) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S))!!!$	$\begin{array}{c c} & \underbrace{\Upsilon(5S)}_{\gamma(1S)\pi^{+}\pi^{-}} & 238 \pm 41 \\ & \Upsilon(1S)\eta & 39 \pm 11 \\ & \Upsilon(1S)\kappa^{+}K^{-} & 33 \pm 11 \\ & \Upsilon(2S)\pi^{+}\pi^{-} & 428 \pm 83 \\ & \Upsilon(2S)\eta & 204 \pm 44 \\ & \Upsilon(3S)\pi^{+}\pi^{-} & 153 \pm 31 \\ & \chi_{b1}(1P)\omega & 84 \pm 20 \\ & \chi_{b1}(1P)(\pi^{+}\pi^{-}\pi^{0})_{non-\omega} & 28 \pm 11 \\ & \chi_{b1}(1P)(\pi^{+}\pi^{-}\pi^{0})_{non-\omega} & 28 + 11 \\ & \chi_{b1}(1P)(\pi^{+}\pi^{-}\pi^{0})_{non-\omega} & 28 + 11 \\ & \chi_{b1}(1P)(\pi^{+}\pi^{-}\pi^{0})_{non$
Limited by available statistics	$\chi_{b2}(1P)(\pi^+\pi^-\pi^0)_{\text{non}-\omega}$ 33 ± 20
$\begin{array}{c c} & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	$\begin{array}{cccc} \Upsilon_{J}(1D)\pi^{+}\pi^{-} & \sim 60 \\ \Upsilon_{J}(1D)\eta & 150 \pm 48 \\ Z_{b}(10610)^{\pm}\pi^{\mp} & 2070 \pm 440 \\ Z_{b}(10650)^{\pm}\pi^{\mp} & 1200 \pm 300 \end{array}$
$\underline{Z_b(10610, 10650)^{\pm} \pi^{\mp} 1300 - 6600}$	$\pi^+\pi^-$ -transition is enhanced by Z_b states.

A full scan (1 MeV/ c^2 steps, $\int \mathcal{L}dt$) from the $B\bar{B}$ threshold to the maximum available energy will give Belle II a unique opportunity to shed light on the hadronization mechanism.

η transitions from $\Upsilon(5S)$

• η reconstructed in $\eta\to\gamma\gamma,$ look at the missing mass spectrum, after combinatorial background subtraction

- In particular, B(Υ(5S) → ηΥ(1D)) in compatible with the prediction (via triangular meson loops) Wang et al., PRD94, 094039(2016)
- Observation of $\Upsilon(5S) \to \eta \Upsilon(1D)$ $\mathcal{B}(\Upsilon(5S) \to \eta \Upsilon(1D)) = (2.8 \pm 0.7 \pm 0.4) \times 10^{-3}$
- Now finalizing the result on the branching fractions

Investigations on the $\Upsilon(1D)$ triplet

- Signal in M²_{miss}(γγ): 3 Crystal Ball functions, with free relative fractions f₁, f₂ that are precisely predicted in Wang et al., PRD94, 094039(2016)
- m₂ fixed to world average, ΔM_{ij} fixed to different values between 3 and 15 MeV/c² (reasonable according to calculations and observations)

 $\Delta M_{12} = m_2 - m_1, \ \Delta M_{23} = m_3 - m_2$

- Values returned by the fit in any of these configurations are compatible with 0
- 90% C.L. ULs on f₁, f₃ as a function of ΔM₁₂ and ΔM₂₃
- f_1 favored value excluded in 3 regions where 10 < ΔM_{12} < 13 MeV/ c^2

To be submitted to EPJ-C

$$\mathcal{F}_{1D} = \frac{N_{1D}}{1 + f_1 + f_2} \cdot [\mathcal{C}_2(m_2) + f_1 \mathcal{C}_1(m_1) + f_3 \mathcal{C}_3(m_3)],$$
with
(2)

with

$$f_1 = \frac{\mathcal{B}[\Upsilon(5S) \to \eta\Upsilon(1D_1)]}{\mathcal{B}[\Upsilon(5S) \to \eta\Upsilon(1D_2)]} (= 0.68)_{theory} \quad (3)$$

$$f_3 = \frac{\Upsilon(5S) \to \eta\Upsilon(1D_3)}{(1000)} (= 0.13)_{theory} \quad (4)$$

$$\frac{1}{\mathcal{B}[\Upsilon(5S) \to \eta\Upsilon(1D_2)]} (= 0.13)_{theory} \quad (4)$$

$\Upsilon(1D) \rightarrow \eta \Upsilon(1S)$

- $\eta \to \pi^+ \pi^- \pi^0$ and $\pi^0 \to \gamma \gamma$, $\Upsilon(1S) \to \mu^+ \mu^-$
- Predicted to be enhanced with respect to the transition $\Upsilon(1D) \rightarrow \pi^+\pi^-\Upsilon(1S)$ by the axial anomaly in QCD

Voloshin PLB562, 68(2003)

Belle: PRD96,052005(2017)

- Υ(1D) could be produced via double-radiative transitions from Υ(4S) through χ_{bJ}(2P) states
- $\mathcal{B}(\Upsilon(4S) \to \gamma \gamma \Upsilon(1D)) \times \mathcal{B}(\Upsilon(1D) \to \eta \Upsilon(1S)) < 2.3 \times 10^{-5}$ at 90% C.L.

 $\Upsilon(4S) \rightarrow \eta \Upsilon(1S)$

Belle: PRD96,052005(2017)

- With the same approach and a similar event selection.
- Fit to $\Delta M_{\eta} = M_{\pi^+\pi^-\gamma\gamma\mu^+\mu^-} - M_{\mu^+\mu^-} - M_{\pi^+\pi^-\gamma\gamma}$
- Confirmation of the enhancement with respect to dipion transition

$$\mathcal{R} = \frac{\mathcal{B}(\Upsilon(4S) \to \eta \Upsilon(1S))}{\mathcal{B}(\Upsilon(4S) \to \pi^+ \pi^- \Upsilon(1S))}$$
(5)

• Confirm the enhancement of $\Upsilon(4S) \rightarrow \eta \Upsilon(1S)$ via spin-flip transition.

Measurement	Result	PDG value
$\mathcal{B}(\Upsilon(4S) o \eta \Upsilon(1S))$	$(1.70\pm0.23\pm0.08)\times10^{-4}$	$(1.96 \pm 0.28) imes 10^{-4}$
\mathcal{R}	$2.07 \pm 0.30 \pm 0.11$	2.41 ± 0.42

Dipion transitions

Measurement of dipion transitions also provided

Measurement	Result	PDG value
${\cal B}(\Upsilon(4S) o\pi^+\pi^-\Upsilon(1S))$	$(8.2\pm0.5\pm0.4) imes10^{-5}$	$(8.1 \pm 0.6) \times 10^{-5}$
${\cal B}(\Upsilon(4S) o\pi^+\pi^-\Upsilon(2S))$	$(7.9 \pm 1.0 \pm 0.4) imes 10^{-5}$	$(8.6 \pm 1.3) imes 10^{-5}$
$\sigma_{\rm ISR}(\Upsilon(2S))$	$(17.36 \pm 0.19 \pm 0.69) { m pb}$	(17.1 ± 0.3) pb
$\sigma_{\rm ISR}(\Upsilon(3S))$	$(28.9 \pm 0.5 \pm 1.3) { m pb}$	(28.6 ± 0.5) pb

The ISR cross section σ_{ISR} is based on $\mathcal{B}^{\text{PDG}}(\Upsilon(2S,3S) \to \pi^+\pi^-\Upsilon(1S))$

X.L. Wang (Fudan Univ.)

$M_{\pi^+\pi^-}$ in the $\pi^+\pi^-$ -transitions

- Double peaked structure in $\Upsilon(4S) \to \pi^+\pi^-\Upsilon(2S)$ and $\Upsilon(3S) \to \pi^+\pi^-\Upsilon(1S)$, enhancement near $M_{\pi^+\pi^-}$ threshold.
- $f_0(980)$ in $\Upsilon(4S) \rightarrow \pi^+\pi^-\Upsilon(1S)$???

Belle: PRD96,052005(2017)

$f_0(980)$ in $\Upsilon(4S) ightarrow \pi^+\pi^-\Upsilon(1S)$

- Behaviour not seen in previous data at the
 ^(4S).
- However, $f_0(980)$ signals were observed in $Y(4260) \rightarrow \pi^+\pi^- J/\psi$ and $Y(4660) \rightarrow \pi^+\pi^-\psi(2S)$.

 $f_0(980)$ in $\Upsilon(4S)
ightarrow \pi^+\pi^-\Upsilon(1S)$

■ Major interest comes from $\Upsilon(4S) \rightarrow \pi^+\pi^-\Upsilon(1S)$ dipion invariant mass.

• very similar to what observed at the $\Upsilon(5S)$:

Belle: PRD96,052005(2017)

- Recently predicted by theory: Chen et al., PRD95, 034022(2017)
- An amplitude model including a resonant f₀(980) contribution is preferred by data (2.8σ)
- Addition of f₂(1270) does not improve the description

$\cos \theta_{hel}$ from $\pi^+\pi^-$ -transitions of $\Upsilon(4S)$

 $\cos \theta_{hel}$: helicity angle of the π^+ candidate.

Belle: PRD96,052005(2017)

Questions

 $\begin{aligned} & \Upsilon(1D) \text{ triplet} \\ & \mathcal{R} = \frac{\Upsilon(5S) \to \eta\Upsilon(nS)}{\Upsilon(5S) \to \pi^+\pi^-\Upsilon(nS)_{\text{non}-Z_b}} \\ & \Upsilon(1D) \to \eta\Upsilon(1S) \\ & M_{\pi^+\pi^-} \text{ in } \Upsilon(4S) \to \pi^+\pi^-\Upsilon(2S) \\ & \dots \end{aligned}$

The precision of the measurements should be increased with a larger data sample! \rightarrow Belle II

Profile of SuperKEKB luminosity and Belle II data sample

For more details about Belle II status, see Dr. Hua YE's talk on Friday.

Summary

- Hadronic transitions are a key ingredient in understanding bottomonium and QCD description of matter
- Belle has recently given a solid contribution, with many achievements in the topic:
 - Observation of $\Upsilon(5S) \rightarrow \eta \Upsilon(1D)$
 - Confirmation of the enhancement of $\Upsilon(4S) \rightarrow \eta \Upsilon(1S)$ with respect to $\Upsilon(4S) \rightarrow \pi^+ \pi^- \Upsilon(1S)$
 - Measurement of/search for other η transitions
 - Precise measurement of $\Upsilon(4S)$ dipion transitions and first indication for a resonant contribution in $\Upsilon(4S) \rightarrow f_0(980)\Upsilon(1S)$
- And many more results are likely to come in the future with Belle2.

Thank you!

Backup

Expected performance of Belle II

IP resolution

From Prof. Ushiroda's talk at LP2017.

X.L. Wang (Fudan Univ.)

Cosmic ray run (June, 2017)

Systems included: CDC, TOP, ECL, KLMMagnetic field: 1.5T

Phase II

Belle II roll in, 11/4/2017

What can be done with Phase 2 data?

- Background studies
- Detector and trigger performance studies
- Simulation validation
- Exercising of calibration and alignment procedures
- Reconstruction algorithm tuning
- Physics measurements

Commissioning of accelerator and sub-detectors

- Start beginning of 2018, duration about 5 months.
- Beam collisions with focusing magnets (QCS).
- Target luminosity is 10³⁴ cm⁻²s⁻¹, which is KEKB level.
- **20-40** fb^{-1} data for physics analyses.
- W/o vertex detector dependent measurements.

The first collision is expected in Feb. 2018, about 8 years after KEKB being shut down.