Charmonium transitions at BESIII

Lianjin Wu (On behalf of BESIII Collaboration)

The 12th International Workshop on Heavy Quarkonium

Nov.6th-10th, 2017

BESIII

- ▶ World largest J/ψ and ψ (3686) data sets via e^+e^- annihilation
 - 1.3 billion J/ψ events collected in 2009 and 2012
 - ▶ 0.5 billion ψ (3686) events collected in 2009 and 2012
- An ideal laboratory to study charmonium decays
 - High statistic
 - Low background
- Many other data sets from 2 4.6 GeV

Recent studies of charmonium transitions at BESIII

- Sensitive to the inner structure
- Untangle charmonium states

- ψ (3686) $\rightarrow \gamma \chi_{cJ}$
- ψ (3686) $\rightarrow e^+e^-\chi_{cJ}$
- ► $\chi_{cJ} \rightarrow e^+ e^- J/\psi$
- ▶ $\eta_c(2S) \rightarrow \gamma J/\psi$

▶ Higher-order multipole amplitudes in $\psi(3686) \rightarrow \gamma \chi_{c1,2}$ with $\chi_{c1,2} \rightarrow \gamma J/\psi$ and search for the transition $\eta_c(2S) \rightarrow \gamma J/\psi$

• Branching fraction measurements of $\psi(3686) \rightarrow \gamma \chi_{cJ}$

▶ Observation of ψ (3686) $\rightarrow e^+e^-\chi_{cJ}$ and $\chi_{cJ} \rightarrow e^+e^-J/\psi$

- ▶ E1 (electric-dipole) amplitude dominated transitions ψ (3686) $\rightarrow \gamma \chi_{c1,2}$ and $\chi_{c1,2} \rightarrow \gamma J/\psi$ allow for higher multipole amplitudes
 - M2 (magnetic-quadrupole) transition
 - E3 (electric-octupol) transition
- Contributions of these higher multipole amplitudes give information on the anomalous magnetic moment of the charm quark and on the admixture of S- and D-wave states
- ▶ M2 contributions of $\psi(3686) \rightarrow \gamma \chi_{c1,2}$ have been predicted in PRL 45 215 (1980)

Mass distributions for $\psi(3686) \rightarrow \gamma \chi_{c1,2}$

- Select two good charged tracks with MDC information (net charge is zero)
- Select photons with EMC information (at least two photons)
- Identify the electron and muon by E/p
- Improve the resolution and reduce backgrounds with four-constraint kinematic fit
- Mass windows are performed to repress backgrounds

Angular distributions for $\psi(3686) \rightarrow \gamma \chi_{c1,2}$

 Higher-order multipole amplitudes can be obtained by investigating the angular distributions of the finial states.

Results of the multidimensional fit on the joint angular distribution $(\chi = (N_{data} - N_{fit})/\sqrt{N_{data}})$. upper figures are χ_{c1} , down figures are χ_{c2}

Higher-order multipole amplitudes

$$\label{eq:classical_constraint} \begin{split} \overline{\chi_{c1}} & a_2^1 = -0.0740 \pm 0.0033 \pm 0.0034, \\ b_2^1 = 0.0229 \pm 0.0039 \pm 0.0027 \\ & \rho_{a_2b_2}^1 = 0.133 \\ \hline & a_2^2 = -0.120 \pm 0.013 \pm 0.004, \\ b_2^2 = 0.017 \pm 0.008 \pm 0.002 \\ & a_3^2 = -0.013 \pm 0.009 \pm 0.004, \\ b_3^2 = -0.014 \pm 0.007 \pm 0.004 \\ & \rho_{a_2b_2}^2 = -0.605, \\ \rho_{a_2a_3}^2 = 0.733, \\ \rho_{a_2b_3}^2 = -0.095 \\ & \rho_{a_3b_2}^2 = -0.422, \\ \rho_{b_2b_3}^2 = 0.384, \\ \rho_{a_3b_3}^2 = -0.024 \end{split}$$

The normalized M2 and E3 contributions and correlation coefficients.

- Statistical significance of nonpure E1 transition is 24.5 σ for χ_{c1}
- ▶ Statistical significance of nonpure E1 transition is 13.5 σ for χ_{c2}
- ▶ Statistical significance of the E3 contribution for χ_{c2} is 2.3σ
- ▶ Pearson- χ^2 test are performed with $\chi^2/ndf = 1.02$ for $\chi_{c1,2}$

Higher-order multipole amplitudes

Normalized M2 and E3 amplitudes from this analysis compared with previous experimental results and theoretical predictions

- Consistent with and more precise than the results obtained by CLEO-c
- Confirm theoretical predictions in PRD 78 114011 (2008) and PRD 45 3163 (1992)

9/28

Fit results

- Simultaneous maximum likelihood fit
- ► Signal line shapes of the $\chi_{c0,1,2}$: $(E_{\gamma_1}^3 \times E_{\gamma_2}^3 \times (BW(m) \otimes R \times \epsilon(m))) \otimes G(\mu, \sigma)$
- ► Signal line shapes of the $\eta_c(2S)$: $(E^3_{\gamma_1} \times E^7_{\gamma_2} \times (BW(m) \otimes R \times \epsilon(m))) \otimes G(\mu, \sigma)$

Fit results (top) and corresponding relative residual (bottom)

Results

Mode	Branching fraction measurement ($ imes 10^{-4}$)
$\overline{\mathcal{B}_{\psi(3686)\to\gamma\chi_{c0}}\cdot\mathcal{B}_{\chi_{c0}\to\gamma J/\psi}}$	$15.6\pm0.3\pm0.6$
$\mathcal{B}_{\psi(3686) \to \gamma \chi_{c1}} \cdot \mathcal{B}_{\chi_{c1} \to \gamma J/\psi}$	$351.8 \pm 1.0 \pm 12.0$
$\mathcal{B}_{\psi(3686) o \gamma \chi_{c2}} \cdot \mathcal{B}_{\chi_{c2} o \gamma J/\psi}$	$199.6 \pm 0.8 \pm 7.0$
$\mathcal{B}_{\psi(3686)\to\gamma\eta_c(25)}\cdot\mathcal{B}_{\eta_c(25)\to\gamma J/\psi}$	< 0.097

More precise and consistent with BESIII's previous results

- ▶ Higher-order multipole amplitudes in $\psi(3686) \rightarrow \gamma \chi_{c1,2}$ with $\chi_{c1,2} \rightarrow \gamma J/\psi$ and search for the transition $\eta_c(2S) \rightarrow \gamma J/\psi$
- Branching fraction measurements of $\psi(3686) \rightarrow \gamma \chi_{cJ}$
- ▶ Observation of ψ (3686) $\rightarrow e^+e^-\chi_{cJ}$ and $\chi_{cJ} \rightarrow e^+e^-J/\psi$

Inclusive photon energy distributions for $\psi(3686) ightarrow \gamma X$ PRD 96 032001 (2017)

▶ Inclusive photon energy distribution of decays $\psi(3686) \rightarrow \gamma X$ (106 M $\psi(3686)$)

- ► Clear peak for ψ (3686) $\rightarrow \gamma \chi_{c2} / \gamma \chi_{c1} / \gamma \chi_{c0}$, and $\chi_{c1} / \chi_{c2} \rightarrow \gamma J / \psi$
- $\chi_{c0} \rightarrow \gamma J/\psi$ is not visible
- Small peak around 0.65 GeV is $\psi(3686) \rightarrow \gamma \eta_c$

Branching fraction measurements of $\psi(3686) \rightarrow \gamma \chi_{cJ}$

(Top set) Inclusive distribution fit and corresponding pulls, and (Bottom set) exclusive distribution fit and pull distribution

 Unbinned maximum simultaneous fits to the photon energy distributions of data.

$$= \frac{\mathcal{B}_{\psi(3686) \to \gamma \chi_{cJ}}}{N_{\psi(3686) \to \gamma \chi_{cJ}} \cdot N_{\psi(3686) \to \gamma \chi_{cJ}} \cdot N_{\psi(3686)}}$$

 $\mathcal{B}_{\psi(3686) \to \gamma \chi_{cJ}} \cdot \mathcal{B}_{\chi_{cJ} \to \gamma J/\psi} \\ = \frac{N_{\chi_{cJ} \to \gamma J/\psi}}{\epsilon_{\chi_{cJ} \to \gamma J/\psi} \cdot N_{\psi(3686)}}$

BRs for $\psi(3686) \rightarrow \gamma \chi_{cJ}$ and $\chi_{cJ} \rightarrow \gamma J/\psi$

Branching Fraction	This analysis (%)	Other (%)	PDG [7] (%) Average	PDG [7] (%) Fit
$ \begin{aligned} \mathcal{B}(\psi(3686) \to \gamma \chi_{c0}) \\ \mathcal{B}(\psi(3686) \to \gamma \chi_{c1}) \\ \mathcal{B}(\psi(3686) \to \gamma \chi_{c2}) \end{aligned} $	$\begin{array}{c} 9.389 \pm 0.014 \pm 0.332 \\ 9.905 \pm 0.011 \pm 0.353 \\ 9.621 \pm 0.013 \pm 0.272 \end{array}$	$\begin{array}{c} 9.22 \pm 0.11 \pm 0.46 \hspace{0.1cm} [9]\\ 9.07 \pm 0.11 \pm 0.54 \hspace{0.1cm} [9]\\ 9.33 \pm 0.14 \pm 0.61 \hspace{0.1cm} [9]\end{array}$	$\begin{array}{c} 9.2 \pm 0.4 \\ 8.9 \pm 0.5 \\ 8.8 \pm 0.5 \end{array}$	$\begin{array}{c} 9.99 \pm 0.27 \\ 9.55 \pm 0.31 \\ 9.11 \pm 0.31 \end{array}$
$\mathcal{B}(\psi(3686) \to \gamma \chi_{c0}) \times \mathcal{B}(\chi_{c0} \to \gamma J/\psi)$	$0.024 \pm 0.015 \pm 0.205$	$\begin{array}{c} 0.125 \pm 0.007 \pm 0.013 [31] \\ 0.151 \pm 0.003 \pm 0.010 [15] \\ 0.158 \pm 0.003 \pm 0.006 [16] \end{array}$	0.131 ± 0.035	0.127 ± 0.006
$\mathcal{B}(\psi(3686) \to \gamma \chi_{c1}) \times \mathcal{B}(\chi_{c1} \to \gamma J/\psi)$	$3.442 \pm 0.010 \pm 0.132$	$3.56 \pm 0.03 \pm 0.12$ [31] $3.377 \pm 0.009 \pm 0.183$ [15] $3.518 \pm 0.01 \pm 0.120$ [16]	2.93 ± 0.15	3.24 ± 0.07
$\mathcal{B}(\psi(3686) \to \gamma \chi_{c2}) \times \mathcal{B}(\chi_{c2} \to \gamma J/\psi)$	$1.793 \pm 0.008 \pm 0.163$	$\begin{array}{c} 1.95 \pm 0.02 \pm 0.07 \ \boxed{31} \\ 1.874 \pm 0.007 \pm 0.102 \ \boxed{15} \\ 1.996 \pm 0.008 \pm 0.070 \ \boxed{16} \end{array}$	1.52 ± 0.15	1.75 ± 0.04
$ \begin{array}{c} \mathcal{B}(\chi_{c0} \to \gamma J/\psi) \\ \mathcal{B}(\chi_{c1} \to \gamma J/\psi) \\ \mathcal{B}(\chi_{c2} \to \gamma J/\psi) \end{array} $	$\begin{array}{c} 0.25 \pm 0.16 \pm 2.15 \\ 34.75 \pm 0.11 \pm 1.70 \\ 18.64 \pm 0.08 \pm 1.69 \end{array}$	$\begin{array}{c} 2\pm 0.2\pm 0.2 \ \underline{32} \\ 37.9\pm 0.8\pm 2.1 \ \underline{32} \\ 19.9\pm 0.5\pm 1.2 \ \underline{32} \end{array}$		$\begin{array}{c} 1.27 \pm 0.06 \\ 33.9 \pm 1.2 \\ 19.2 \pm 0.7 \end{array}$

Most precise measurements for ψ (3686) $\rightarrow \gamma \chi_{cJ}$

$$\begin{aligned} \mathcal{B}(\psi(3686) \to \gamma \chi_{c0}) / \mathcal{B}(\psi(3686) \to \gamma \chi_{c1}) \\ &= 0.948 \pm 0.002 \pm 0.044 \\ \mathcal{B}(\psi(3686) \to \gamma \chi_{c0}) / \mathcal{B}(\psi(3686) \to \gamma \chi_{c2}) \\ &= 0.976 \pm 0.002 \pm 0.040 \\ \mathcal{B}(\psi(3686) \to \gamma \chi_{c2}) / \mathcal{B}(\psi(3686) \to \gamma \chi_{c1}) \\ &= 0.971 \pm 0.002 \pm 0.040 \end{aligned}$$

 Common systematic uncertainties of the ratios of branching fractions are canceled

Initial	Final	Γ_{E1} (keV)			Γ_{EM} (keV)				
state	state	RQM [<u>33</u>]	$\rm NR/GI \ [\underline{34}]$	$SNR_{0/1}$ [35]	LP [8]	SP [<u>8</u>]	LP [<u>8</u>]	SP [8]	This analysis
$\psi(3686)$	χ_{c0} χ_{c1} χ_{c2}	26.3 22.9 18.2	$63/26 \\ 54/29 \\ 38/24$	74/25 62/36 43/34	$27 \\ 45 \\ 36$	$26 \\ 48 \\ 44$	22 42 38	$22 \\ 45 \\ 46$	26.9 ± 1.8 28.3 ± 1.9 27.5 ± 1.7
χ_{c0} χ_{c1} χ_{c2}	J/ψ	121 265 327	152/114 314/239 424/313	$167/117 \\ 354/244 \\ 473/309$	141 269 327	146 278 338	172 306 284	179 319 292	306 ± 23 363 ± 41

Partial widths for $\psi(3686) \rightarrow \gamma \chi_{cJ}$ and $\chi_{cJ} \rightarrow \gamma J/\psi$.

Experimental results have become accurate enough to become sensitive to fine details of the potentials, e.g. relativistic effects, screening effects, and higher partial waves.

▶ Higher-order multipole amplitudes in $\psi(3686) \rightarrow \gamma \chi_{c1,2}$ with $\chi_{c1,2} \rightarrow \gamma J/\psi$ and search for the transition $\eta_c(2S) \rightarrow \gamma J/\psi$

• Branching fraction measurements of $\psi(3686) \rightarrow \gamma \chi_{cJ}$

• Observation of ψ (3686) \rightarrow $e^+e^-\chi_{cJ}$ and $\chi_{cJ} \rightarrow e^+e^-J/\psi$

- A virtual photon is internally converted into an e⁺e⁻ pair in electromagnetic (EM) Dalitz decays
- Study of EM Dalitz decays plays an important role in revealing the structure of hadrons and the interactions between photons and hadrons
- The EM Dalitz decays in charmonium transitions have access to the EM transition form factors (TFFs) of charmonium states

Observation of $\psi(3686) \rightarrow e^+e^-\chi_{cJ}$ and $\chi_{cJ} \rightarrow e^+e^-J/\psi$

► Cascade decays $\psi(3686) \rightarrow e^+e^-\chi_{cJ} \rightarrow e^+e^-\gamma J/\psi$ and $\psi(3686) \rightarrow \gamma\chi_{cJ} \rightarrow \gamma e^+e^-J/\psi$ (447.9 M $\psi(3686)$ events)

Mode	Yields	$\operatorname{Efficiency}(\%)$	Branching fraction	$\frac{\mathcal{B}(\psi(3686) \rightarrow e^+e^-\chi_{cJ})}{\mathcal{B}(\psi(3686) \rightarrow \gamma\chi_{cJ})}$	$\frac{\mathcal{B}(\chi_{cJ} \rightarrow e^+e^-J/\psi)}{\mathcal{B}(\chi_{cJ} \rightarrow \gamma J/\psi)}$
$\psi(3686) \rightarrow e^+e^-\chi_{c0}$	48 ± 10	6.06	$(11.7 \pm 2.5 \pm 1.0) \times 10^{-4}$	$(9.4 \pm 1.9 \pm 0.6) \times 10^{-3}$	-
$\psi(3686) \rightarrow e^+e^-\chi_{c1}$	873 ± 30	5.61	$(8.6 \pm 0.3 \pm 0.6) \times 10^{-4}$	$(8.3 \pm 0.3 \pm 0.4) \times 10^{-3}$	_
$\psi(3686) \rightarrow e^+ e^- \chi_{c2}$	227 ± 16	3.19	$(6.9 \pm 0.5 \pm 0.6) \times 10^{-4}$	$(6.6 \pm 0.5 \pm 0.4) \times 10^{-3}$	_
$\chi_{c0} \rightarrow e^+ e^- J/\psi$	56 ± 11	6.95	$(1.51 \pm 0.30 \pm 0.13) \times 10^{-4}$		$(9.5 \pm 1.9 \pm 0.7) \times 10^{-3}$
$\chi_{c1} \rightarrow e^+ e^- J/\psi$	1969 ± 46	10.35	$(3.73 \pm 0.09 \pm 0.25) \times 10^{-3}$	_	$(10.1 \pm 0.3 \pm 0.5) \times 10^{-3}$
$\chi_{c2} \rightarrow e^+ e^- J/\psi$	1354 ± 39	11.23	$(2.48 \pm 0.08 \pm 0.16) \times 10^{-3}$	-	$(11.3\pm0.4\pm0.5)\times10^{-3}$

α values of helicity angular distributions

q^2 -dependent of charmonium EM transition form factors

- Provide additional information on the interactions between the charmonium states and the electromagnetic field
- Possibly distinguish the transition mechanisms based on the $c\bar{c}$ scenario
- \blacktriangleright Serve as a useful probe for χ_{cJ} internal structures and exotic hadron structures

Summary

- ▶ M2 contributions for $\psi(3686) \rightarrow \gamma \chi_{c1,2}$ and E3 contributions for $\psi(3686) \rightarrow \gamma \chi_{c2}$ were measured
- ▶ Branching fractions and partial widths for ψ (3686) → $\gamma \chi_{cJ}$ and $\chi_{cJ} \rightarrow \gamma J/\psi$ were determined
- Searching for $\psi(3686) \rightarrow \gamma \eta_c(2S)$ are performed with an upper limit
- ▶ Observe the decays ψ (3686) \rightarrow $e^+e^-\chi_{cJ}$ and χ_{cJ} \rightarrow e^+e^-J/ψ
- ▶ BESIII published many other interesting results (just a few of them about charmonium transitions is covered here), also many analysis are ongoing.
- With more data will be collected, more interesting and detailed studies will be performed.

Thanks for your attention

Backup

Mass distributions for $\psi(3770) \rightarrow \gamma \chi_{c0}$ PLB 753 103 (2016)

- Based on S-D mixing model, many predictions have been made.
- Largest variations in predictions for the partial width of $\psi(3770) \rightarrow \gamma \chi_{c0}$.

Ratios of BFs between $\psi(3770)$ and $\psi(3686)$ to $\gamma\chi_{cJ}$

$\chi_{cJ} \rightarrow LH$		J = 0	J = 1	
	$N_{\psi(3770)}$	756 ± 51	80 ± 26	
	$\epsilon_{\psi(3770)}$	24.1 ± 0.2	25.7 ± 0.2	Function
$2(\pi^{+}\pi^{-})$	$N_{\psi(3686)}$	59976 ± 318	19712 ± 175	PRESILC 10
	$\epsilon_{\psi(3686)}$	24.9 ± 0.2	26.5 ± 0.2	BBESIII (×10
	\hat{R}_{cJ}	6.64 ± 0.45	2.13 ± 0.69	BBESHI
	$N_{\psi(3770)}$	716 ± 54	46 ± 24	DESIL GOL
	$\epsilon_{\psi(3770)}$	24.0 ± 0.2	25.4 ± 0.2	T DESIT [10]
$K^{+}K^{-}\pi^{+}\pi^{-}$	$N_{\psi(3686)}$	46929 ± 240	11576 ± 115	TCLEO [7, 8
	$\epsilon_{\psi(3686)}$	23.3 ± 0.2	24.9 ± 0.2	Γ _{corrected}
	R_{cJ}	7.56 ± 0.57	2.00 ± 1.04	Theories
	$N_{\psi(3770)}$	502 ± 54	76 ± 27	Rosner [2] (
	$\epsilon_{\psi(3770)}$	18.5 ± 0.2	20.0 ± 0.2	Ding-Qing-
$3(\pi^+\pi^-)$	$N_{\psi(3686)}$	36536 ± 237	19593 ± 153	non-relativi
	$\epsilon_{\psi(3686)}$	18.1 ± 0.2	19.6 ± 0.2	relativistic
	R_{cJ}	6.86 ± 0.74	1.94 ± 0.69	Eichten-Lar
	$N_{\psi(3770)}$	283 ± 24	-	non-relativi:
K^+K^-	$\epsilon_{\psi(3770)}$	32.5 ± 0.2	-	with couple
	$N_{\psi(3686)}$	21452 ± 154	-	Barnes-God
	$\epsilon_{\psi(3686)}$	32.1 ± 0.2	-	non-relativi
	R_{cJ}	6.65 ± 0.57	-	relativistic
Averaged	R_{cJ}	6.89 ± 0.28	2.03 ± 0.44	NRCQM [6
-				

Experiments	J = 0	J = 1
$B^{BESIII}(\times 10^{-3})$	$6.88 \pm 0.28 \pm 0.67$	$1.94 \pm 0.42 \pm 0.64$
$B^{BESIII}(\times 10^{-3})$ [10]	-	$2.48 \pm 0.15 \pm 0.23$
Γ ^{BESIII}	$187\pm8\pm19$	$53 \pm 12 \pm 18$
Γ^{BESIII} [10]	-	$67.5 \pm 4.1 \pm 6.7$
Γ^{CLEO} [7, 8]	172 ± 30	70 ± 17
Γ ^{CLEO} _{corrected}	192 ± 24	72 ± 16
Theories		
Rosner [2] (non-relativistic)	523 ± 12	73 ± 9
Ding-Qing-Chao [3]		
non-relativistic	312	95
relativistic	199	72
Eichten-Lane-Quigg [4]		
non-relativistic	254	183
with coupled channels corrections	225	59
Barnes-Godfrey-Swanson [5]		
non-relativistic	403	125
relativistic	213	77
NRCQM [6]	218	70

$$R_{cJ} = \frac{B_{\psi(3770) \to \gamma \chi_{cJ}}}{B_{\psi(3686) \to \gamma \chi_{cJ}}} \ (\sigma_{sys.} = 0.66\%)$$

Comparisons of partial widths for $\psi({\rm 3770}) \rightarrow \gamma \chi_{cJ}$ (keV)

25 / 28

- A relativistic assumption or a coupled-channel correction agree quantitatively better with the experimental data
- ▶ Non-relativistic calculations overestimate the partial width of ψ (3770) $\rightarrow \gamma \chi_{cJ}$
- Contribute to a deeper understanding of the dynamics of charmonium decays above the open-charm threshold.

Mass distributions for $\psi(3770) \rightarrow \gamma \chi_{cJ}$ PRD 91 092009 (2015)

Mass distribution from $\psi(3770)$ data

► Clear peaks on *χ*_{c1,2}

▶ Green long-dashed line is sum of the smooth background and the contribution $e^+e^- \rightarrow (\gamma_{ISR})\psi(3686)$ production

Backgrounds from $\psi(3686)$ have been estimated

Results

•
$$\psi(3770) \to \gamma \chi_{c1}$$
:
 $\mathcal{B} = (2.48 \pm 0.15 \pm 0.23) \times 10^{-3}$
 $\sigma = (24.6 \pm 1.5 \pm 3.0) \text{ pb}$

• $\psi(3770) \rightarrow \gamma \chi_{c2}$: $\mathcal{B} < 0.64 \times 10^{-3}$ $\sigma < 6.4 \text{ pb}$

Experiment/theory	$\Gamma(\psi(3770) \to \gamma \chi)$ $J = 1$	$_{cJ}^{cJ}$ (keV) J=2
This work	$67.5 \pm 4.1 \pm 6.7$	< 17.4
Ding-Qin-Chao [12]		
nonrelativistic	95	3.6
relativistic	72	3.0
Rosner S-D mixing [13]		
$\phi = 12^{\circ} \ [13]$	73 ± 9	24 ± 4
$\phi = (10.6 \pm 1.3)^{\circ}$ [32]	79 ± 6	21 ± 3
$\phi = 0^{\circ} \text{ (pure } 1^{3}D_{1} \text{ state) } [32]$	133	4.8
Eichten-Lane-Quigg [14]		
nonrelativistic	183	3.2
with coupled-channel corr.	59	3.9
Barnes-Godfrey-Swanson [15]		
nonrelativistic	125	4.9
relativistic	77	3.3

 ϕ is the mixing angle of S-D mixing model

Consistent with CLEO-c's results within error

More precise

Mass distribution and results for $\psi(3770) \rightarrow \gamma \eta_c(\eta_c(2S))$ PRD 89 112005 (2014)

$$\begin{split} & \mathcal{B}(\psi(3770) \to \gamma \eta_{c}(\eta_{c}(2S)) \to \gamma K_{S}^{c} K^{\pm} \pi^{\mp}) \\ &< \frac{N_{\rm up}/(1 - \sigma_{\rm syst.})}{\epsilon \cdot \mathcal{L} \cdot \sigma_{\psi(3770)}^{0} \cdot (1 + \delta) \cdot \mathcal{B}(K_{S}^{0} \to \pi^{+} \pi^{-})}, \end{split}$$

$$\begin{split} & \mathcal{B}(\psi(3770) \to \gamma \chi_{c1} \to \gamma K_S^0 K^{\pm} \pi^{\mp}) = \\ & \frac{N_{\rm obs}}{\epsilon \cdot \mathcal{L} \cdot \sigma_{\psi(3770)}^0 \cdot (1 + \delta) \cdot \mathcal{B}(K_S^0 \to \pi^+ \pi^-)}, \end{split}$$

 $(1 + \delta) = 0.718$

2.92 fb $^{-1}$ ψ (3770) data

Quantity	η_c	$\eta_c(2S)$	χ_{c1}
Nobs	29.3 ± 18.2	0.4 ± 8.5	34.9 ± 9.8
Nup	56.8	16.1	
ϵ (%)	27.87	25.24	28.46
$\mathcal{B}(\psi(3770) \to \gamma X \to \gamma K_S^0 K^{\pm} \pi^{\mp}) \ (\times 10^{-6})$	< 16	< 5.6	$8.51 \pm 2.39 \pm 1.42$
$\mathcal{B}(\psi(3770) \to \gamma X) \ (\times 10^{-3})$	< 0.68	< 2.0	$2.33 \pm 0.65 \pm 0.43$
$\mathcal{B}_{\text{CLEO}}(\psi(3770) \to \gamma X) \ (\times 10^{-3})$			$2.9\pm0.5\pm0.4$
$\Gamma(\psi(3770) \rightarrow \gamma X) \text{ (keV)}$	< 19	< 55	
Γ_{IML} (keV)	$17.14^{+22.93}_{-12.03}$	$1.82^{+1.95}_{-1.19}$	
Γ_{LQCD} (keV)	10 ± 11		

• Measured $\mathcal{B}_{\psi(3770) \rightarrow \gamma \eta_c}$ is just within the error range of theoretical predictions

▶ Measured $\mathcal{B}_{\psi(3770) \to \gamma \eta_c(2S)}$ is larger than the prediction based on intermediate relation between the prediction based on the predicting on the prediction based

