

Status of SuperKEKB and Belle II

Hua Ye (DESY)

On behalf of the Belle II Collaboration

Quarkonium 2017 Nov.6-10, 2017 PKU

From Belle to Belle II

Belle achieves >500 Physics Journal Publications

Expected to gain 50ab⁻¹ sample in next decade

Flavour Physics @Belle II

lacksquare

0.3

0.2

0.1

0.0

0.0

0.2

0.4

Ā

0.6

0.8

Flavour physics questions to be addressed by Belle II LFV • Rare B decays K^{*0} B^0 $\bar{u}, \bar{c}, \bar{t}$ $\bar{u}, \bar{c}, \bar{t}$ Figure 2. Possible supersymm mediating the LFV processes μ Multiple Higgs bosons? H+ W^+ W^{-1} W concept of fermion generations was devel Flavour-changing neutral currents beyond the SM? tand τ were indeed new elementary leptor analogy to the GIM mechanism, the absen to the ν_{μ} discovery in 1962 [7], to cancel H Are there new CP violating phases in the quark sector? Radiative lepton decays $\ell_1 \rightarrow \ell_2 \gamma$ proc amplitudes. The branching fraction can be $\mathbf{B}(\ell_1 \Rightarrow \ell_2 \gamma) = \frac{3\alpha}{32\pi} \left(|A_L|^2 + \frac{3\alpha}{32\pi} \right) = \frac{3\alpha}{32\pi} \left(|A_L|^2 + \frac{3\alpha}{32\pi} \right)$ ۱۷ lhh ۱S 90% C.L. upper limits for LFV au decays For generic new physics at mass scale Λ by $\mathbf{A}_L = A_R = \mathbf{1}\mathbf{4}\sqrt{2}\pi^2/G_F\Lambda^2$, where \mathbf{C} Lepton flavour violation (LFV)? The upper limit of $\mathcal{B}(\mu \to e\gamma) < 1.2$. Meson Physics Fagility in 2001 [9], thus tr beyond the LHC reach for direct detection conversion, have an additional rate suppres Belle II provides unique sensitivity to study τ decays •Figure 2 depicts example graphs for RLFV processes $\mu \rightarrow e\gamma defende \mu N \rightarrow e$ via missing energy. 10 the slepton mass main **BaBar**eter involve is also naturally presen **Belle** parity violat size of trilinear lepton newner Niolating co and quarks (λ^{\prime}) in the supersymmetric sup The MEG Experiment [13, 14] uses the provide the providet the provid the PST (Switzerland) $\pi E5$ beam line. Positive target that is surrounded by the MEG dete Precise measurements of CKM matrix elements and their phases. time structure, because the 2.2 μ s muon lif of the proton cyclotron producing the mu immersed in a gradient magnetic field th time-of-flight counter, and a 900 litre 1 $\Delta m_{\star} \& \Delta m_{\star}$ CKM neasuring the photon incidence, time and 0.6 The $\mu^+ \rightarrow e^+ \gamma$ signal events are cha ositron-photon pairs. Their measured en Belle II 50ab-1 sed to separate them from backgrounds, v sol. w/ cos 24, < 0

0.2

0.1

0.0

0.0

-0.2

0.2

0.4

Ā

0.6

0.8

- tandard $\mu^+ \rightarrow e^+ \nu \overline{\nu}$ decays and a photon nnihilation in flight. The reliance on a nuons, which would form muonium ator
 - 3

non-Flavour Physics @Belle II

- DESY
- Is there a dark sector of particle physics at the same mass scale as ordinary matter?
 - Belle II has unique sensitivity to dark matter via missing energy decays.
- What is the nature of the strong force in binding hadrons?
 - States not predicted by the conventional hadron interpretation.

More info: Yiming Li's talk "Perspectives on spectroscopy study at Belle II"

SuperKEKB

Nano-Beam scheme (P. Raimondi, DA Φ NE): Squeeze vertical beta function at the IP (β_y^*) and minimize longitudinal size of overlap region to avoid penalty from hourglass effect.

overlap region (≠ bunch length)

Strong focusing of beams down to vertical size of ~ **50nm** requires **low emittance beams**, very **sophisticated final focus** quadrupoles (QCS) and a **large crossing angle**.

beam current x2 beam-beam param. x1

vertical beta function x20

Belle II Detector

40x instantaneous luminosity is expected to represent significantly higher background levels in all Belle II subdetectors. K_L and muon detector (KLM): Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers) EM Calorimeter (ECL): CsI(TI), waveform sampling (barrel) Particle Identification Pure Csl, waveform sampling (endcaps) Time-of-Propagation counter (barrel) Prox.focusing Aerogel RICH (fwd) electron (7 GeV) Beryllium beam pipe: 2cm diameter Vertex detector (VXD): positron (4 GeV) 2 layers DEPFET pixels 4 layers Double-sided silicon strip detectors Readout (TRG, DAQ): Max. 30kHz L1 trigger Central Drift Chamber (CDC) ~100% efficient for hadronic events. He(50%):C2H6(50%), Small cells, long 1MB (PXD) + 100kB (others) per event over 30GB/sec to record lever arm, fast electronics. Offline computing: Distributed over the world via the GRID

Challenges for vertex reconstruction:

- Higher backgrounds (lumi. increase, nano-beam) => higher occupancy
- Boost reduced from $\beta\gamma=0.42$ to 0.28 => B-meson flight length of 125 μm

Belle II VXD

Pixel Detector (PXD)

- 40 DEPFET modules
- Pixel size: 50 x 55-85 µm²
- Occupancy: 0.4 hits/µm²/s (3% max)
- Integration time: 20 µs (rolling shutter)
- Thickness: 75 µm, 0.21% X₀ per layer

Silicon Vertex Detector(SVD)

material budget: 0.7% X₀ per layer

Slant shapes in FWD region for the material budget reduction.

Belle II VXD

Challenges for vertex reconstruction:

- Higher backgrounds (lumi. increase, nano-beam)
 => higher occupancy
- Boost reduced from $\beta\gamma$ =0.42 to 0.28 => B-meson flight length of 125 µm

hua.ye@desy.de

SuperKEKB&Belle II Commissioning

BEAST II Phase I

BEAST II Phase I

PID:iTOP

Drift Chamber integration

Final focus magnets

Belle II rolled in in April.2017

PID: ARICH

BEAST II Phase II

BEAST II Phase II

VXD Commissioning

Physics data taking

Summary

- Belle II has a rich physics program.
- SuperKEKB upgrades are on-target, Belle II detector construction is on going.
- BEAST2 Phase2 will start in Feb.2018, to further investigate the beam background, and probably first data for physics studies.
- Physics data taking with full Belle II detector will start in the beginning of 2019!

Backup

Early Physics of Bottomonium Spectroscopy

Existing e+e- datasets collected near Y resonances.

Experiment	Scans/Off. Res.	$\Upsilon(5S)$		$\Upsilon(4S)$		$\Upsilon(3S)$		$\Upsilon(2S)$		$\Upsilon(1S)$	
		10876	${\rm MeV}$	10580	MeV	10355	MeV	10023	MeV	9460	MeV
	$\rm fb^{-1}$	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}
CLEO	17.1	0.4	0.1	16	17.1	1.2	5	1.2	10	1.2	21
BaBar	54	R_b scan		433	471	30	122	14	99	—	
Belle	100	121	36	711	772	3	12	25	158	6	102

Potential impact above $\Upsilon(5S)$ and below $\Upsilon(4S)$ with O(10-100) fb⁻¹

Base on the 6fb⁻¹ $\Upsilon(6S)$ data of Belle Zb is favored by 3.4 σ and 4.7 σ for the hb(1P) and hb(2P) $\Upsilon(6S) \rightarrow \pi\pi\Upsilon(nS)$ decays are not fully studied.

The **Y(3S)** offers greatest access to lower bottomonium states

- $\eta_b(1S,2S)$, $h_b(1P)$ and $\Upsilon(n^3D_1)$ Studies
- Hadronic/Radiative transitions.