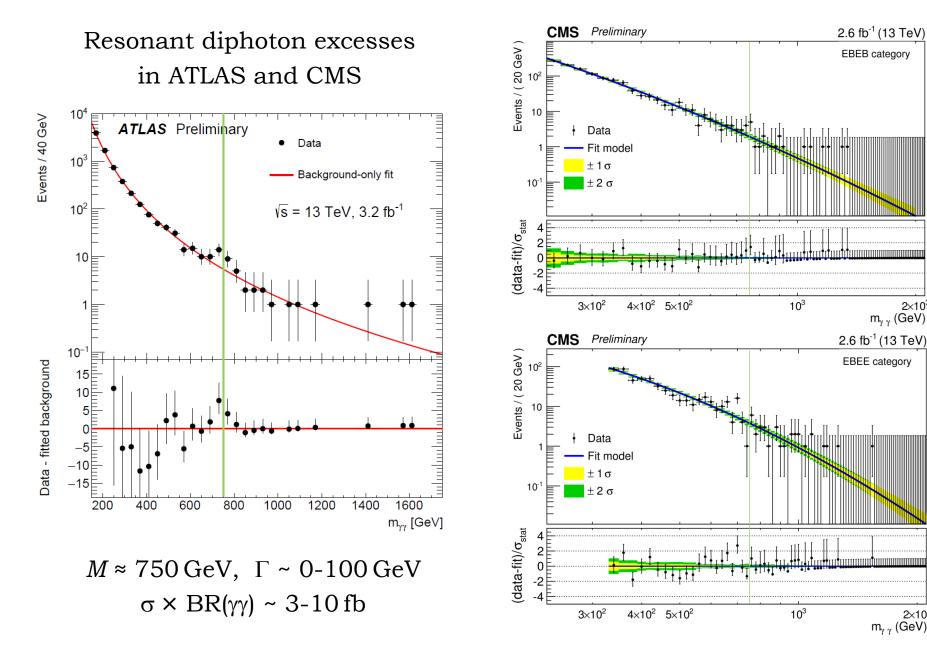
Partnerium at the LHC

Yevgeny Kats

JHEP 1004, 016 (2010) [arXiv:0912.0526] w/Schwartz
JHEP 1109, 099 (2011) [arXiv:1103.3503] w/Kahawala
JHEP 1211, 097 (2012) [arXiv:1204.1119] w/Strassler
JHEP 1605, 092 (2016) [arXiv:1602.08819] w/Strassler
JHEP 1706, 126 (2017) [arXiv:1704.03393] w/McCullough, Perez, Soreq, Thaler

Motivation and Introduction

Original motivation



 2×10^{3} m_{y y} (GeV)

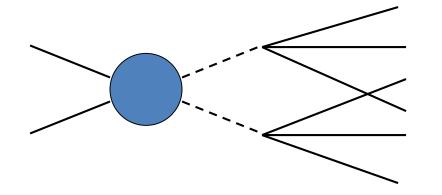
2×10³ m_{y y} (GeV)

A simple explanation

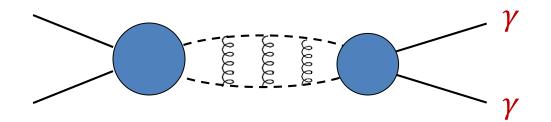
Annihilation of a near-threshold **QCD bound state** (*X*-onium) of a new colored and charged particle *X* with $m_X \approx 375$ GeV.

arXiv:1512.06670 Luo, Wang, Xu, Zhang, Zhu arXiv:1602.08100 Han, Ichikawa, Matsumoto, Nojiri, Takeuchi arXiv:1602.08819 Kats, Strassler arXiv:1604.07828 Hamaguchi, Liew

Most of the time



Sometimes, near the production threshold

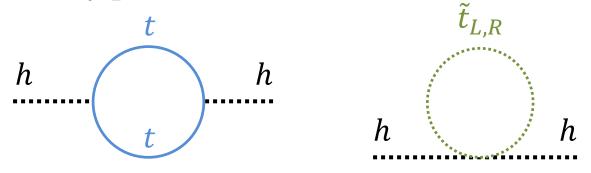


A simple explanation

Annihilation of a near-threshold **QCD bound state** (*X*-onium) of a new colored and charged particle *X* with $m_X \approx 375$ GeV.

arXiv:1512.06670 Luo, Wang, Xu, Zhang, Zhu arXiv:1602.08100 Han, Ichikawa, Matsumoto, Nojiri, Takeuchi arXiv:1602.08819 Kats, Strassler arXiv:1604.07828 Hamaguchi, Liew

Long-anticipated colored and charged particles are the **stops** (top-quark superpartners). "The 750" is part of the solution to the **hierarchy problem**?!

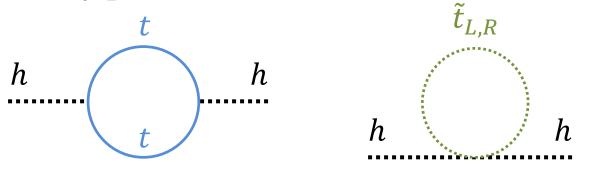


A simple explanation

Annihilation of a near-threshold **QCD bound state** (*X*-onium) of a new colored and charged particle *X* with $m_X \approx 375$ GeV.

arXiv:1512.06670 Luo, Wang, Xu, Zhang, Zhu arXiv:1602.08100 Han, Ichikawa, Matsumoto, Nojiri, Takeuchi arXiv:1602.08819 Kats, Strassler arXiv:1604.07828 Hamaguchi, Liew

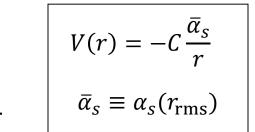
Long-anticipated colored and charged particles are the **stops** (top-quark superpartners). "The 750" is part of the solution to the **hierarchy problem**?!



However, **larger electric charge** was needed to account for the "signal".

Bound state physics

Coulomb approximation:



For particles in *R* forming a bound state in $\mathcal{R} \subset R \otimes \overline{R}$: $C = C_R - \frac{1}{2}C_R$

Assumptions: $r_{\rm rms} \ll \Lambda_{\rm QCD}^{-1}$, $\bar{\alpha}_s \ll 1$, $v^2 = C^2 \bar{\alpha}_s^2 \ll 1$

Similar to the hydrogen atom, for S-wave ground states:

$$r_{\rm rms} = \frac{2\sqrt{3}}{C\overline{\alpha}_s m} \qquad E_b = -\frac{C^2\overline{\alpha}_s^2}{4}m \qquad |\psi(\mathbf{0})|^2 = \frac{C^3\overline{\alpha}_s^3m^3}{8\pi}$$

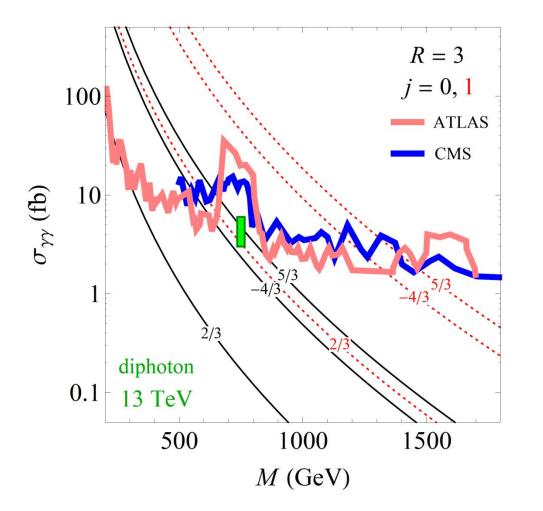
More detailed potential model: $|\psi(0)|^2$ smaller by a factor of ~2. Hagiwara, Kato, Martin, Ng, NPB 344 (1990) 1

Lattice QCD: $|\psi(\mathbf{0})|^2$ bigger by a factor of ~2.

Kim, PRD 92, 094505 (2015) [arXiv:1508.07080]

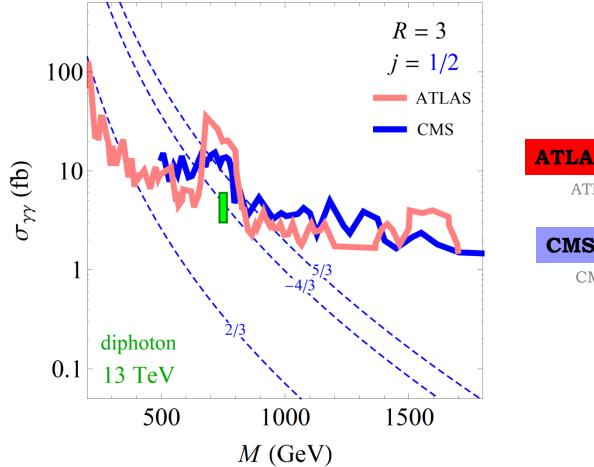
We use the Coulomb approximation; keep factor-of-2 uncertainty in mind.

Annihilation to photons



Color-triplet scalars with Q = -4/3 or 5/3 were candidates. (In principle, also a vector with Q = 2/3.)

Annihilation to photons



ATLAS (13 TeV, 3.2/fb) ATLAS-CONF-2015-081 CMS (13 TeV, 2.6/fb) CMS PAS EXO-15-004

Color-triplet fermion with Q = -4/3 was a candidate.

Example scenario

BSM particle content

scalar $X(3,1)_{-4/3}$ $m_X \approx 375 \text{ GeV}$

BSM interactions

$$\mathcal{L}_{\text{int}} = -\frac{c_{ij}}{2} \epsilon_{\alpha\beta\gamma} X^{*\alpha} \overline{u}_i^{\beta} \overline{u}_j^{\gamma} + \text{h.c.}$$

Main LHC phenomenology

 $gg, q\bar{q} \to XX^*, \quad X \to \bar{u}\bar{c}, \bar{t}\bar{u}, \bar{t}\bar{c}$ unconstrained

$$gg \rightarrow (XX^*) \rightarrow gg, ZZ, Z\gamma, \gamma\gamma$$

unconstrained

But why would there be such a particle? Wouldn't the scalar even introduce a new hierarchy problem?

Example scenario

BSM particle content

scalar $X(3,1)_{-4/3}$ $m_X \approx 375 \text{ GeV}$

BSM interactions

 $\mathcal{L}_{\text{int}} = -\frac{c_{ij}}{2} \epsilon_{\alpha\beta\gamma} X^{*\alpha} \overline{u}_i^{\beta} \overline{u}_j^{\gamma} + \text{h.c.}$

Main LHC phenomenology

 $gg, q\bar{q} \to XX^*, \quad X \to \bar{u}\bar{c}, \bar{t}\bar{u}, \bar{t}\bar{c}$ unconstrained

$$gg \rightarrow (XX^*) \rightarrow gg, ZZ, Z\gamma, \gamma\gamma$$

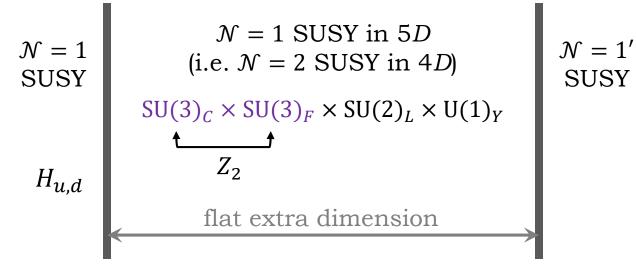
unconstrained

But why would there be such a particle? Maybe it is actually a top partner ;)

Scalar top partners with arbitrary electric charges

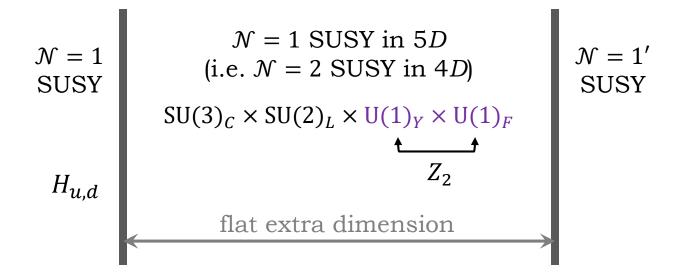
Reminder of Folded SUSY

Burdman, Chacko, Goh, Harnik, JHEP 02 (2007) 009 [hep-ph/0609152]



Members of $\mathcal{N} = 2$ supermultiplets and their boundary conditions

Divergences from top (ψ) are canceled by (colorless) "folded stops" (ϕ_F).



Members of $\mathcal{N} = 2$ supermultiplets and their boundary conditions

Quarks (SM, SM, Y_{SM}, Y_F) $\psi(++) \psi^c(--) \phi(+-) \phi^c(-+)$ Folded quarks (SM, SM, Y_F, Y_{SM}) $\psi_F(+-) \psi_F^c(-+) \phi_F(++) \phi_F^c(--)$

 Z_2

Importantly, the Z_2 is preserved on the Higgs brane.

Divergences from top (ψ) are canceled by **colored** "folded stops" (ϕ_F) with **unconventional hypercharges**.

	$SU(3)_C$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_F$	
H_u	1	2	1/2	1/2	-
H_d	1	2	-1/2	-1/2	
$oldsymbol{Q},oldsymbol{Q}_{oldsymbol{F}}$	3	2	$\frac{1}{6}(1, 6q - 3)$	$\frac{1}{6}(6q-3,1)$	-
$oldsymbol{U^c}, oldsymbol{U^c_F}_{oldsymbol{F}}$	$\overline{3}$	1	$rac{1}{3}(-2,-3q)$	$\frac{1}{3}(-3q,-2)$	
$D^{oldsymbol{c}}, D^{oldsymbol{c}}_{F}$	$\overline{3}$	1	$\frac{1}{3}(1,3-3q)$	$\tfrac{1}{3}(3-3q,1)$	
$oldsymbol{L},oldsymbol{L}_{oldsymbol{F}}$	1	2	$\frac{1}{2}(-1, 3-6q)$	$\frac{1}{2}(3-6q,-1)$	
$oldsymbol{E^c}, oldsymbol{E^c}_{oldsymbol{F}}$	1	1	(1, 3q-1)	(3q-1,1)	
$N^{oldsymbol{c}}, N^{oldsymbol{c}}_{oldsymbol{F}}$	1	1	(0, 3q-2)	$(3q-2,0) \leftarrow$	to avoid gauge anomaly
$oldsymbol{S},oldsymbol{S}_{oldsymbol{F}}$	1	1	$(q_S,0)$	$(0,q_S)$	- to break II(1)
$oldsymbol{S^c}, oldsymbol{S^c_F}_F$	1	1	$(-q_S,0)$	$(0,-q_S)$	- to break $U(1)_F$

- Folded stops with any charge can be obtained by varying q.
 Gauge-invariant Yukawas and anomaly cancellation fix the charges of the other fields.
- The charge q_S determines the U(1)_F-allowed operators for **decays**:
 W ∝ S_FO_F, where the operator O_F respects the SM gauge symmetries but not U(1)_F.

Interesting decay examples

For a folded RH stop with Q = -4/3:

$$W \supset U_F^c U^c U^c$$

allows the decays

$$X \rightarrow \overline{u}\overline{c}, \overline{t}\overline{u}, \overline{t}\overline{c}$$

top+jet decays are almost unconstrained Now studying further with Giammanco, Schlaffer, Shlomi

Interesting decay examples

For a folded RH stop with Q = -4/3:

$$W \supset U_F^c U^c U^c$$

allows the decays

$$X \rightarrow \overline{u}\overline{c}, \overline{t}\overline{u}, \overline{t}\overline{c}$$

top+jet decays are almost unconstrained Now studying further with Giammanco, Schlaffer, Shlomi

Same is possible for LH sbottom with Q = -4/3 via

 $W \supset D_F^c U^c U^c$

in the presence of mixing.

Interesting decay examples

For a folded RH stop with Q = -4/3:

$$W \supset U_F^c U^c U^c$$

allows the decays

 $X \rightarrow \overline{u}\overline{c}, \overline{t}\overline{u}, \overline{t}\overline{c}$

top+jet decays are almost unconstrained Now studying further with Giammanco, Schlaffer, Shlomi

Same is possible for LH sbottom with Q = -4/3 via

 $W \supset D_F^c U^c U^c$

in the presence of mixing.

The sbottom may also decay via

$$W \supset (H_u Q_F)(QQ)$$

as

$$X \to W^- \bar{u} \bar{d}$$

Wjj decays are unconstrained Blum, Efrati, Frugiuele, Nir JHEP 1702, 104 (2017) [arXiv:1610.06582]

Fermionic top partners with arbitrary electric charges

- To be skipped -

Symmetry breaking pattern:

 $\mathrm{SU}(3)_G \times \mathrm{SU}(2)_X \times \mathrm{U}(1)_Z \to \mathrm{SU}(2)_L \times \mathrm{SU}(2)_X \times \mathrm{U}(1)_Y$

$$\Phi \sim (\bar{3}, 1)_{\frac{1}{3}} = \exp\left(-i\frac{\pi^a T_G^a}{f}\right) \begin{pmatrix} 0\\ 0\\ f \end{pmatrix} \supset \begin{pmatrix} H\\ f - \frac{H^{\dagger}H}{2f} \end{pmatrix}$$

SM electroweak group generators:

$$T_L^{1,2,3} = T_G^{1,2,3}$$
 $Y = Z - \frac{T_G^8}{\sqrt{3}} + \begin{pmatrix} \frac{2}{3} - Y_T \\ & & \end{pmatrix} T_X^3$ free parameter, to become the top-partner hypercharge

An analogous model with custodial protection can be obtained with $SO(5)_G \times SU(2)_X \times U(1)_Z \rightarrow SO(4) \times SU(2)_X \times U(1)_Z$. See appendix of our paper for details.

Symmetry breaking pattern:

 $\mathrm{SU}(3)_G \times \mathrm{SU}(2)_X \times \mathrm{U}(1)_Z \to \mathrm{SU}(2)_L \times \mathrm{SU}(2)_X \times \mathrm{U}(1)_Y$

$$\Phi \sim (\bar{3}, 1)_{\frac{1}{3}} = \exp\left(-i\frac{\pi^a T_G^a}{f}\right) \begin{pmatrix} 0\\ 0\\ f \end{pmatrix} \supset \begin{pmatrix} H\\ f - \frac{H^{\dagger}H}{2f} \end{pmatrix}$$

SM electroweak group generators:

$$T_L^{1,2,3} = T_G^{1,2,3}$$
 $Y = Z - \frac{T_G^8}{\sqrt{3}} + \left(\frac{2}{3} - Y_T\right)T_X^3$ free particular to the second secon

free parameter, to become the top-partner hypercharge

The top sector:

The Yukawa coupling $\mathcal{L}_Y = \lambda_t Q \Phi Q^c + h.c.$ expands as

$$\mathcal{L}_Y \supset -\lambda_t q H t^c - \lambda_t \left(f - \frac{H^{\dagger} H}{2f} \right) T T^c + \lambda_t q' H T^c + \lambda_t \left(f - \frac{H^{\dagger} H}{2f} \right) t' t^c + \mathcal{O}(1/f^2)$$

i.e., divergences due to the top are canceled by the charge- Y_T partner.

The Yukawa coupling $\mathcal{L}_Y = \lambda_t Q \Phi Q^c + h.c.$ expands as

$$\mathcal{L}_Y \supset -\lambda_t q H t^c - \lambda_t \left(f - \frac{H^{\dagger} H}{2f} \right) T T^c + \lambda_t q' H T^c + \lambda_t \left(f - \frac{H^{\dagger} H}{2f} \right) t' t^c + \mathcal{O}(1/f^2)$$

i.e., divergences due to the top are canceled by the charge- Y_T partner. The q' and t' fields can be given a vectorlike mass (which breaks the symmetry only softly): $\mathcal{L}_{soft} = -M' \left(t't'^c + q'q'^c \right)$

The Yukawa coupling $\mathcal{L}_Y = \lambda_t Q \Phi Q^c + h.c.$ expands as

$$\mathcal{L}_Y \supset -\lambda_t q H t^c - \lambda_t \left(f - \frac{H^{\dagger} H}{2f} \right) T T^c + \lambda_t q' H T^c + \lambda_t \left(f - \frac{H^{\dagger} H}{2f} \right) t' t^c + \mathcal{O}(1/f^2)$$

i.e., divergences due to the top are canceled by the charge- Y_T partner. The q' and t' fields can be given a vectorlike mass (which breaks the symmetry only softly): $\mathcal{L}_{\text{soft}} = -M' \left(t't'^c + q'q'^c \right)$

	$\mathrm{SU}(3)_C$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$Q_{ m EM}$	
H	1	2	1/2		-
q	3	2	1/6	$ \begin{array}{r} 2/3, -1/3 \\ -2/3 \end{array} $	- SM
t^c	$\bar{3}$	1	-2/3	-2/3	
T	3	1	Y_T	Y_T] Top partner X with
T^{c}	$\bar{3}$	1	$-Y_T$	$-Y_T$	arbitrary charge
q'	3	2	$Y_T - 1/2$	$Y_T, Y_T - 1$	
q'^c	$\bar{3}$	2	$-(Y_T - 1/2)$	$-Y_T, -(Y_T-1)$	
t'	3	1	2/3	2/3	Heavy extra states
t'^c	$\bar{3}$	1	-2/3	-2/3	ſ

The Yukawa coupling $\mathcal{L}_Y = \lambda_t Q \Phi Q^c + h.c.$ expands as

$$\mathcal{L}_Y \supset -\lambda_t q H t^c - \lambda_t \left(f - \frac{H^{\dagger} H}{2f} \right) T T^c + \lambda_t q' H T^c + \lambda_t \left(f - \frac{H^{\dagger} H}{2f} \right) t' t^c + \mathcal{O}(1/f^2)$$

i.e., divergences due to the top are canceled by the charge- Y_T partner.

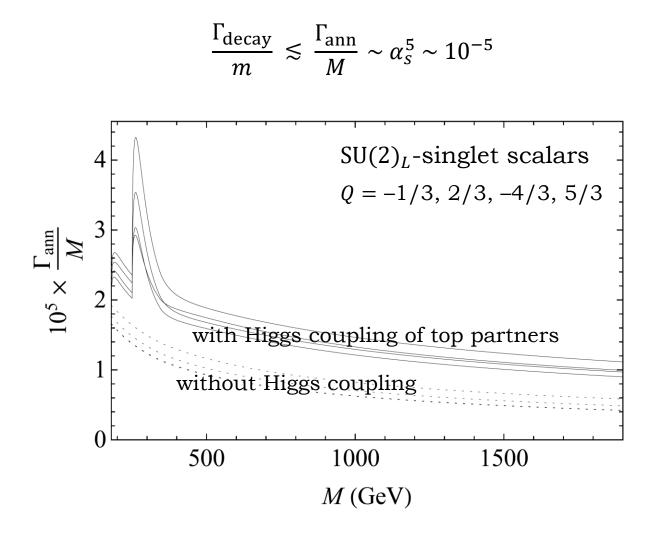
Top partner decays

Since *T* does not mix with quarks, the **usual decays** to W / Z / h + quark (which have strong limits) **are absent!** Instead, the decay may proceed via a high-dimension operator. For example, $\mathcal{L} \propto T^{c \dagger} u_i^{c \dagger} d_i^c d_k^c + \text{h.c.}$

$$T \rightarrow jjj, tjj$$

Importantly, **decay rates are suppressed**, so partnerium annihilation signals are a generic feature.

For annihilation signals to be observable, intrinsic decays need to be somewhat suppressed:



For annihilation signals to be observable, intrinsic decays need to be somewhat suppressed:

$$\frac{\Gamma_{\rm decay}}{m} \lesssim \frac{\Gamma_{\rm ann}}{M} \sim \alpha_s^5 \sim 10^{-5}$$

For example, the $\gamma\gamma$ signal of toponium is tiny because

$$\frac{\Gamma_{\rm decay}}{m} \approx 8 \times 10^{-3}$$

For annihilation signals to be observable, intrinsic decays need to be somewhat suppressed:

$$\frac{\Gamma_{\rm decay}}{m} \lesssim \frac{\Gamma_{\rm ann}}{M} \sim \alpha_s^5 \sim 10^{-5}$$

For example, the $\gamma\gamma$ signal of toponium is tiny because

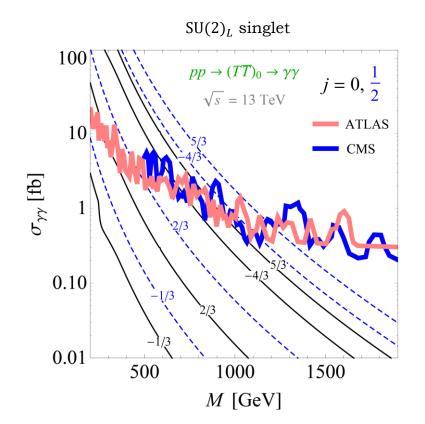
$$\frac{\Gamma_{\rm decay}}{m} \approx 8 \times 10^{-3}$$

Exotic top partners typically do not have unsuppressed 2-body decays. (Even the naively renormalizable $X \rightarrow \overline{u}\overline{c}$, $\overline{t}\overline{u}$, $\overline{t}\overline{c}$ decays of scalars required U(1)_F breaking).

Thus, resonance searches constrain such scenarios in a rather model-independent fashion!

Scalar partners: Higgs coupling induces sizable *WW*, *ZZ*, *hh* rates, leading to a reduction (e.g., factor of \sim 2) in the $\gamma\gamma$ rate.

Fermionic partners: the spin-0 bound state is a pseudoscalar, rates are unaffected by the Higgs coupling.

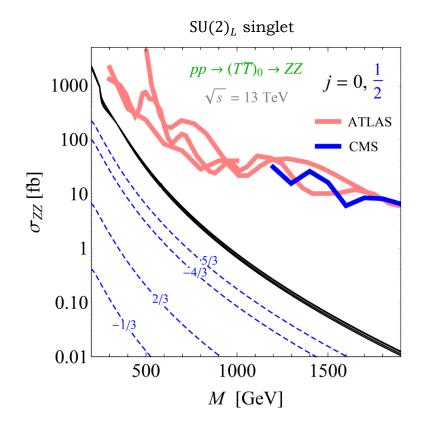


Limits from:

ATLAS-CONF-2016-059 (15/fb) CMS-PAS-EXO-16-027 (13/fb)

Scalar partners: Higgs coupling induces sizable *WW*, *ZZ*, *hh* rates, leading to a reduction (e.g., factor of \sim 2) in the $\gamma\gamma$ rate.

Fermionic partners: the spin-0 bound state is a pseudoscalar, rates are unaffected by the Higgs coupling.



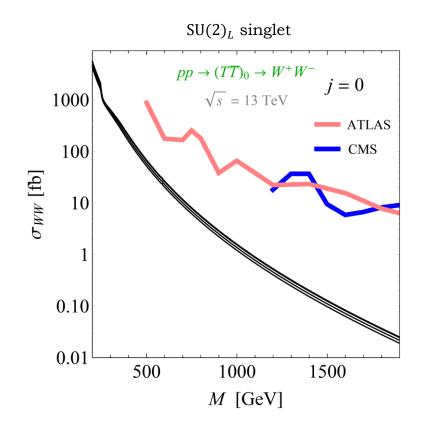
Limits from:

ATLAS-CONF-2016-056 (*llvv*, 13/fb) ATLAS-CONF-2016-082 (*llqq*, 13/fb) *vvqq*, 13/fb)

CMS-PAS-B2G-17-001 (JJ, 36/fb)

Scalar partners: Higgs coupling induces sizable *WW*, *ZZ*, *hh* rates, leading to a reduction (e.g., factor of \sim 2) in the $\gamma\gamma$ rate.

Fermionic partners: the spin-0 bound state is a pseudoscalar, rates are unaffected by the Higgs coupling.

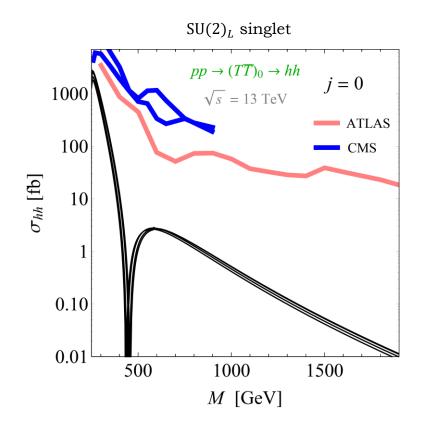


Limits from:

ATLAS-CONF-2016-062 (*lvqq*, 13/fb) CMS-PAS-B2G-17-001 (JJ, 36/fb)

Scalar partners: Higgs coupling induces sizable *WW*, *ZZ*, *hh* rates, leading to a reduction (e.g., factor of \sim 2) in the $\gamma\gamma$ rate.

Fermionic partners: the spin-0 bound state is a pseudoscalar, rates are unaffected by the Higgs coupling.



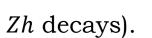
Limits from:

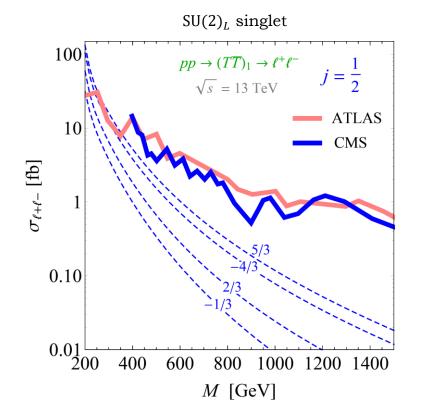
ATLAS-CONF-2016-049 (*bbbb*, 13/fb) CMS-PAS-HIG-17-002 (*bbττ*, 36/fb) CMS-PAS-HIG-17-006 (*bblvlv*, 36/fb)

For fermionic partners, spin-1 S-wave bound states are possible.

- Production from gg in association with a g, γ or Z.
- Electroweak production from $q\bar{q}$.
- Deexcitation of gg-produced P waves.

Interesting signature: dilepton (somewhat suppressed by enhanced





Limits from: ATLAS-CONF-2016-045 (13/fb) CMS-PAS-EXO-16-031 (13/fb)

Conclusions

- Can construct (somewhat complex) models with scalar or fermionic top partners with arbitrary electric charges.
- Partner decays are very model-dependent, not always covered by existing searches.
- Resonant signals from partnerium annihilation are a generic and largely model-independent feature.
- Can be relevant also in other scenarios with new colored particles (outside the context of top partners).
- > It would be useful to resolve the discrepancy between the potential model and lattice estimates for $|\psi(\mathbf{0})|^2$.

Thank You!