

BSM searches with Charmonium at BESIII

Fengyun Li Peking University

(On behalf of the BESIII collaboration)

The 12th International Workshop on Heavy Quarkonium Nov. 6-10, 2017, Peking University, Beijing, China

Beyond the Standard Model (BSM) new physics

- Unification of forces...
- Anomalous physical observations...
- Neutrino mass and oscillation...
- Dark sectors...

High luminosity

- Huge on-resonance charmouium data samples
 - ~1.3 B J/ψ events
 - ~0.5 B ψ (3686) events
 - ~2.9 fb⁻¹ $\psi(3770)$ data

High precision

Good detector performance

BSM Search with charmonium at BESIII

- Exotic particle
 - \checkmark Dark photon (γ')

•
$$J/\psi \to \eta' \gamma$$

•
$$e^+e^- \rightarrow \gamma \gamma' @ \psi(3770)$$

- $\checkmark \qquad \text{Light exotic particle } (A^0)$
 - $\psi(3686) \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \gamma A^0$
 - $J/\psi \rightarrow \gamma A^0$

Preliminary arXiv: 1705.04265, accepted by PLB

PRD 85,092012(2012) PRD 93,052005(2016)

- FCNC process search
 - J/ψ and $\psi(3686) \rightarrow D^0 e^+ e^- + c.c.$

arXiv:1710.02278

Dark photon

Portal	Particles	Operator(s)	Standard Model	Dark Sector
"Vector" <	Dark photons	$-rac{\epsilon}{2\cos heta_W}B_{\mu u}F'^{\mu u}$	$\begin{bmatrix} g & W^{\pm}, Z & \gamma \end{bmatrix}$	γ'
"Axion"	Pseudoscalars	$\frac{a}{f_a}F_{\mu\nu}\widetilde{F}^{\mu\nu}, \frac{a}{f_a}G_{i\mu\nu}\widetilde{G}_i^{\mu\nu}, \frac{\partial_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma^5\psi$		
"Higgs"	Dark scalars	$(\mu S + \lambda S^2) H^{\dagger} H$	ordinary photon & γ' can mix	
"Neutrino"	Sterile neutrinos	$y_N LHN$	E v .	
			$\Delta \mathcal{L} = \frac{1}{2} F^{Y,\mu\nu} F'_{\mu\nu}$	"Kinetic Mixing"

- Dark photon, dubbed as γ ', A', U
- Mixing strength: ε: 10⁻²-10⁻⁵, Mass: O(MeV~GeV) PRD 79,015014 (2009)
- Explain many astrophysical anomalies *PRD 79, 015014 (2009), arXiv:1008.4519*
- Promising way:

$$\checkmark \gamma' \rightarrow e^+ e^- / \mu^+ \mu^-$$

JHEP 08, 050 (2015); 1412.1485

Dark photon search (I): $J/\psi \rightarrow \eta' \gamma'$

- $(1310\pm7.0) \times 10^6 J/\psi$ events
- Topology:

$$J/\psi \to \eta' + \gamma', \ \gamma' \to e^+e^-$$

1.
$$\eta' \to \gamma \pi^+ \pi^-$$

2.
$$\eta' \to \pi^+ \pi^- \eta(\gamma \gamma)$$

• Candidates selection: $J/\psi \rightarrow \eta' e^+ e^-$

- η' signal
- Non-peaking background
- Peaking background: γ conversion/ $J/\psi \rightarrow \Phi \eta$

• Update the branching fraction:

 $B(J/\psi \rightarrow \eta' e^+ e^-) = (5.83 \pm 0.07(stat) \pm 0.30(syst)) \times 10^{-5}$

Consistent with previous measurement with improved uncertainty.

◆ Signal Shape: A sum of two-crystal ball function

 $y = CB_1(x; \mu, \sigma_1, n_1, \alpha_1) + f * CB_2(x; \mu, \sigma_2, n_2, \alpha_2)$

- The resolution σ_m of dark photon signal and selection efficiency depend on dark photon mass m_{γ^2}
- The efficiency and PDF parameters are interpolated between the known mass points.

- ω and ϕ are excluded due to low sensitivity and vector meson decay contamination
- M(ee) continuum background description:

$$f(m_{e^+e^-}) = c_2 \cdot m_{e^+e^-}^2 + c_1 \cdot m_{e^+e^-} + c_0 + e^{c_3 \cdot m_{e^+e^-}}$$

- 100 MeV~ 2.1 GeV,Look for a narrow peak signal on M(e+e-) by a step of 2 MeV.
- Significance $S = \operatorname{sign}(N_{\operatorname{sig}})\sqrt{-2\ln(\mathcal{L}_0/\mathcal{L}_{\max})}$

Dark photon search (I): $J/\psi \rightarrow \eta' \gamma'$

- Firstly search for γ ' through charmonium decay $J/\psi \rightarrow \eta' \gamma'$, $\gamma' \rightarrow e^+e^-$.
- No significant dark photon signal is observed.
- Set upper limit on the branching fractions and mixing strength.

Dark photon search (II): $e^+e^- \rightarrow \gamma \gamma'$

APS/Alan Stonebreaker

arXiv:1705.04265, accepted by PLB

- 2.9 fb⁻¹ ψ (3770) data
- Initial State Radiation process:

$$e^+e^- \rightarrow \gamma_{ISR}\gamma' \rightarrow \gamma_{ISR}\mu^+\mu^-$$

$$e^+e^- \rightarrow \gamma_{ISR}\gamma' \rightarrow \gamma_{ISR}e^+e^-$$

Cover mass region: 1.5 GeV/c² ~ 3.4 GeV/c²

- <1.5 GeV/c²: π⁺π⁻ background dominates
- >3.4 GeV/c²: hadronic qq-bar process

Dark photon search (II): $e^+e^- \rightarrow \gamma \gamma'$

• Mass region 1.5~3.4 GeV

arXiv:1705.04265, accepted by PLB

• No significant dark photon signal greater 3σ is found.

- Using an untagged ISR method
- Independent of radiator function
- The exclusion limit between 10⁻³~ 10⁻⁴ is compatible with Babar2014 and give slightly better results at some of the bins.

Light exotic particle search

BR(J/ψ→γa₁)

- NMSSM Higgs boson family: 3 CP-even, 2 CP-odd, 2 charged
- The lightest CP-odd higgs boson (A⁰) could have a mass smaller than twice the mass of c-quark.

$$L_{\text{int}}^{f\bar{f}} = -\cos\theta_A \tan\beta \frac{m_f}{v} A^0 \overline{d}(i\gamma_5) d, \quad d = d, \ s, \ b, \ e, \ \mu, \ \tau$$

$$L_{\text{int}}^{f\bar{f}} = -\cos\theta_A \cot\beta \frac{m_f}{v} A^0 \bar{u}(i\gamma_5)u, \ u = u, \ c, \ t, \ v_e, \ v_{\mu}, \ v_{\tau}$$

$$\tan \beta = \frac{v_u}{v_d}$$
E. Fullana et. al,
Phys. Lett. B 653, 67 (2007)
$$A^0 = \cos\theta_A A_{MSSM} + \sin\theta_A A_s$$
Non-singlet
Singlet

• Coupling of c-quark to the A⁰ :BF~ (10⁻⁷-10⁻⁹) *PRD 76, 051105 (2007)*

- No significant signals are observed.
- Upper limit for $B(J/\psi \to \gamma A^0) \times B(A^0 \to \mu^+ \mu^-) @ 90\%$ C.L. $4 \times 10^{-7} \sim 2.1 \times 10^{-5}$
- 12

Search (II): $J/\psi \rightarrow \gamma A^0$

PRD 93,052005(2016)

- Range : $0.212 \sim 3.0 \text{ GeV/c}^2$
- Search for light exotic particle with a step of 1 MeV

Search (II): $J/\psi \rightarrow \gamma A^0$

PRD 93,052005(2016)

• Upper limit on $B(J/\psi \rightarrow \gamma A^0) \times B(A^0 \rightarrow \mu^+ \mu^-)$ 2.8×10⁻⁸ - 4.95× 10⁻⁶

A factor of five times better than previous [2012, $\psi(3686)$]

• Combined with Babar result, A⁰ is constrained to be mostly a singlet particle

J/ψ and $\psi(3686) \rightarrow D^0 e^+ e^- + c.c.$

• Flavor-changing neutral currents (FCNC): $c \rightarrow u$

Z. Phys. C 62, 271 (1994), Eur. Phys. J. C 54, 107 (2008)

- New physics models: Enhanced by two or three orders of magnitude *PLB 345, 483 (1995), PLB119, 136 (1982), PRD 15, 1858 (1977)*
- Present experimental result of by BESII PLB 639, 418 (2006)

$$\mathsf{B}(J/\psi \to \overline{D^0}e^+e^- + \text{c.c.}) < 1.1 \times 10^{-5}$$

• Study non-perturbative QCD effects and their underlying dynamics; a probe to search for new physics beyond the SM

HEP&NP, 25, 461 (2001), PRD 60, 014011 (1999).

J/ψ and $\psi(3686) \rightarrow D^0 e^+ e^- + c.c.$

- 1.31 billion J/ψ and 448.1 million $\psi(3686)$ events
- Three channels: $D^0 \to K^- \pi^+$, $K^- \pi^+ \pi^0$, $K^- \pi^+ \pi^+ \pi^-$
- Low background, simultaneous fit for three channels.
- No significant D^0 signals are observed

arXiv: 1710.02278

J/ψ and $\psi(3686) \rightarrow D^0 e^+ e^- + c.c.$

- Overall Likelihood: the product of likelihoods of three channels
- Set upper limit @ 90% C.L. using a Bayesian method

- No significant FCNC signals are observed.
- The upper limit result
 - J/ψ : Improved by about two orders in magnitude
 - ψ (3686): Firstly set

arXiv: 1710.02278

Summary

- With huge charmonium data samples and good detector performance, BESIII is an ideal place to search for BSM new physics at high precision.
- BESIII has performed searches for BSM new physics with charmonium data, no significant new physics signals are observed and a series of upper limits are set, helpful for constraining the BSM model parameters.
 - Dark photon
 - $J/\psi \to \eta' \gamma'$
 - $e^+e^- \rightarrow \gamma \gamma' @ \psi(3770)$
 - Light exotic particle
 - $\psi(3686) \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \gamma A^0$
 - $J/\psi \rightarrow \gamma A^0$

- UL on BFs and ε UL on ε
- UL on BFs UL on BFs and constrain A⁰

- FCNC
 - J/ψ and $\psi(3686) \rightarrow D^0 e^+ e^- + c.c.$ UL on BFs
- With the plan to take more charmouium data in the future, BESIII is promising to study more new physics topics with higher precision.

Thanks !