HEE SOK CHUNG

TECHNICAL UNIVERSITY OF MUNICH

IN COLLABORATION WITH G.T.BODWIN (ANL) AND C.E.M.WAGNER (ANL & U. CHICAGO), BASED ON PHYS. REV. D95, 015013 (2017)

12TH INTERNATIONAL WORKSHOP ON HEAVY QUARKONIUM NOVEMBER 6-10, 2017, PEKING UNIVERSITY, BEIJING, CHINA

OUTLINE

- Mixing in BSM models
- Effective field theory for stop and antistop near threshold
- Effective field theory calculation of $gg \rightarrow \gamma\gamma$ near threshold
- Mixing effects in two-photon rates at LHC
- Summary

MIXING IN BSM MODELS

- Many BSM models feature
 - Heavy versions of the SM Higgs,
 - Strongly interacting scalar particles (scalar tops).
- Heavy Higgs and stop-antistop bound state (stoponium) have same quantum numbers and can mix in amplitudes.
- Heavy Higgs and stop-antistop bound states both decay into two photons. Many BSM searches focus on diphoton final states.

MIXING IN BSM MODELS

A naïve estimate :

If the heavy Higgs and stoponium have similar masses, their mixing in the amplitude will lead to large enhancement of the two-photon cross section, ranging from factors of 2–8. Djouadi and Pilaftsis, PLB765, 175 (2017) [arXiv:1605.01040]

We perform an analysis using nonrelativistic effective field theory methods to investigate how mixing effects actually impact two-photon cross sections at LHC.

QWG2017 HEE SOK CHUNG

EFFECTIVE FIELD THEORY FOR STOPONIUM

> Operators at leading order in v

EFT operators

TWO-PHOTON PRODUCTION NEAR STOP-ANTISTOP THRESHOLD

► $gg \rightarrow H \rightarrow \gamma \gamma$: tree-level diagram

TWO-PHOTON PRODUCTION NEAR STOP-ANTISTOP THRESHOLD

▶ $gg \rightarrow H \rightarrow \gamma \gamma$: tree-level diagram + corrections from $\tilde{t}\tilde{t}$

tt near threshold receives Coulomb-divergent corrections of the form (α_s/v)ⁿ. The resummation near threshold gives rise to a Green's function.

$$\bullet + \bullet = -iG/(4m_i^2)$$

STOP-ANTISTOP GREEN'S FUNCTION

Green's function can be computed by solving a Schrödinger equation.

- Green's function G is sharply peaked near bound states of $\tilde{t}\tilde{t}$ and develops imaginary parts near peaks and above threshold.
- Coulomb Green's function is a good approximation for G when stop is heavy.

TWO-PHOTON PRODUCTION NEAR STOP-ANTISTOP THRESHOLD

► $gg \rightarrow H \rightarrow \gamma \gamma$: tree-level diagram + corrections from $\tilde{t}\tilde{t}$

Corrections from *t* are greatly enhanced near threshold, must be resummed to all orders.

TWO-PHOTON PRODUCTION NEAR STOP-ANTISTOP THRESHOLD

► $gg \rightarrow H \rightarrow \gamma\gamma$: $\tilde{t}\tilde{t}$ Green's function resummed to all orders

DIAGRAMS AT LEADING ORDER + RESUMMATION

HIGGS-STOPONIUM MIXING IN TWO-PHOTON PRODUCTION

- If we ignore the modifications to the Higgs propagator, there is enhancement from the peaks of the *t* Green's function.
- Near threshold, the mixing displaces physical mass peaks away from threshold, and the enhancement becomes mostly ineffective.

 $A_{\rm tot}(gg \rightarrow \gamma\gamma) = \Big($

HIGGS-STOPONIUM MIXING IN TWO-PHOTON PRODUCTION

Total amplitude is conveniently written in matrix form.

- Diagonal elements near-vanish at mass peaks. ' When both diagonal elements are small, off-diagonal elements dominate and the mixing is maximal.
- At maximal mixing, physical peaks are displaced proportionally to the $H\tilde{t}\tilde{t}$ coupling, and widths also change.

HIGGS-STOPONIUM MIXING IN TWO-PHOTON PRODUCTION

We show the behavior of the amplitude $A_{tot}(gg \rightarrow \gamma\gamma)$ when the heavy Higgs mass is near the stoponium threshold.

Naïve prediction for Higgs contribution

Contribution from stoponium only

 $A_{\tilde{t}\tilde{t}} \operatorname{Bare}(gg \to \gamma\gamma) =$

17

²²

²³

²⁴

²⁷

32

33

³⁴

³⁶

³⁷

⁵³

⁵⁴

⁵⁶

⁵⁷

⁶⁴

⁶⁶

⁶⁷

HIGGS-STOPONIUM MIXING IN TWO-PHOTON PRODUCTION Cross sections for small stop decay rate ($\Gamma_{\tilde{t}} = 1 \text{ MeV}$) @ 13 TeV LHC Stop mass $m_{\tilde{t}} = 375$ GeV. Heavy Higgs mass varied from 720 to 780 GeV. Heavy Higgs width = 1.2 GeV

Considered different approximations for the Coulomb Green's function G with

1 bound state
3 bound states
All bound states

HIGGS-STOPONIUM MIXING IN TWO-PHOTON PRODUCTION

• Cross sections for large stop decay rate ($\Gamma_{\tilde{t}} = 1 \text{ GeV}$) @ 13 TeV LHC

Stop mass $m_{\tilde{t}} = 375$ GeV. Heavy Higgs mass varied from 720 to 780 GeV. Heavy Higgs width = 1.2 GeV Peak-like structure arises from interference in mixing

Considered different approximations for the Coulomb Green's function G with

1 bound state
3 bound states
All bound states

HIGGS-STOPONIUM MIXING IN TWO-PHOTON PRODUCTION

The mixing effects we find are not accidental cancellations. We obtain qualitatively same results using two Breit-Wigner resonances, and we understand them very well in terms of mixing, interference and changes in widths.

- Contribution from higher peak Contribution from lower peak Total cross section computed in narrow width approximation Total cross section ----- Total cross section wi
 - Total cross section without mixing

SUMMARY

- We investigated mixing effects of stoponium and heavy Higgs in the two-photon cross section at the LHC.
- We used effective field theory techniques to resum large perturbative corrections that give rise to bound states.
- Mixing between heavy Higgs and stoponium displaces physical peaks away from threshold, and enhancement from bound states becomes inoperative.
- Good example where effective field theory methods developed for SM physics can prove useful for BSM phenomenology
BACKUP

EFFECTIVE FIELD THEORY FOR STOPONIUM

 \blacktriangleright Lagrangian for stops at leading order in v

$$\begin{split} \mathcal{L}_{\tilde{t}\tilde{t}} &= \psi^{\dagger} \bigg(2im_{\tilde{t}} D_0 + \mathbf{D}^2 \bigg) \psi + \chi^{\dagger} \bigg(2im_{\tilde{t}} D_0 + \mathbf{D}^2 \bigg) \chi - iC_{H\tilde{t}\tilde{t}} H(\psi^{\dagger}\chi + \chi^{\dagger}\psi) \\ &+ (i/2) C_{gg\tilde{t}\tilde{t}} \frac{1}{N_c^2 - 1} (\psi^{\dagger}\chi + \chi^{\dagger}\psi) G^a_{\mu\nu} G^{a\mu\nu} + (i/2) C_{\gamma\gamma\tilde{t}\tilde{t}} (\psi^{\dagger}\chi + \chi^{\dagger}\psi) F_{\mu\nu} F^{\mu\nu} \\ &+ (i/2) C_{ggH} \frac{1}{N_c^2 - 1} H G^a_{\mu\nu} G^{a\mu\nu} + (i/2) C_{\gamma\gamma H} H F_{\mu\nu} F^{\mu\nu} \\ &- iC_{\tilde{t}\tilde{t}H\tilde{t}\tilde{t}} \frac{1}{N_c} \psi^{\dagger}\chi \chi^{\dagger}\psi + i \operatorname{Im} T_{\tilde{t}\tilde{t} \to gg \to \tilde{t}\tilde{t}} \frac{1}{N_c} \psi^{\dagger}\chi \chi^{\dagger}\psi, \end{split}$$

▶ ψ , χ : stop and antistop fields *H*: heavy Higgs *D*: covariant derivative *G*, *F*: gluon and photon field-strength tensors

HIGGS-STOPONIUM MIXING IN TWO-PHOTON PRODUCTION

Total amplitude is conveniently written in matrix form

HIGGS-STOPONIUM MIXING IN TWO-PHOTON PRODUCTION Large stop decay rate ($\Gamma_{\tilde{t}} = 1 \text{ GeV}$ **),** $H\tilde{t}\tilde{t}$ **coupling =** $m_{\tilde{t}}$ **Stop mass** $m_{\tilde{t}} = 375$ GeV. Heavy Higgs mass varied from 720 to 780 GeV.

Peak-like structure arises from interference in mixing, and not from enhancement from stoponium peak

