Results on charmonium(-like) states from Belle

V. Zhukova Belle Collaboration

"Quarkonium Working Group", Beijing, 6-10 November 2017

<□ > < @ > < E > < E > E = 의 < 0 < 0 < 1/21</p>

New measurement and angular analysis of the $e^+e^-\to D^{(*)+}D^{*-}$ process near the open charm threshold with initial state radiation

Spectrum of charmonium

- Vector states above open-charm threshold are not fully understood
- Parameters of ψ states obtained from $\sigma_{\rm tot}(e^+e^- \rightarrow {\rm hadrons})$
 - are model-dependent
 - have large uncertainties
- Data collected should allow for coupled-channel analysis

3/21

Spectrum of charmonium

- Vector states above open-charm threshold are not fully understood
- Parameters of ψ states obtained from $\sigma_{\rm tot}(e^+e^- \rightarrow {\rm hadrons})$
 - are model-dependent
 - have large uncertainties
- Data collected should allow for coupled-channel analysis

Solution \implies Measure exclusive cross sections

Introduction and motivation

Comparison with previous results

- Belle and BaBar results agree with each other
- Statistics is too low to study the structure of the cross sections
- Sum of all measured excusive cross-section to open-charm channels saturates the total cross section

(日) (周) (日) (日) (日) (日)

4/21

Introduction and motivation

Comparison with previous results

- Belle and BaBar results agree with each other
- Statistics is too low to study the structure of the cross sections
- Sum of all measured excusive cross-section to open-charm channels saturates the total cross section

- To improve accuracy of cross section measurements
- To measure separately cross sections for all 3 possible helicity combinations (TT, LT, LL) for the $D^*\bar{D}^*$ final state

- Partial reconstruction
- Reconstruct \mathbf{D}^* , γ_{ISR}

5/21

지하는 지원에 지원에 지원에 드렸다.

- Partial reconstruction
- Reconstruct \mathbf{D}^* , γ_{ISR}

Problem: Cannot distinguish between D, D^* and D^{**} in the final state

- Partial reconstruction
- Reconstruct \mathbf{D}^* , γ_{ISR} and $\pi_{\mathbf{slow}}$

 e^+

 $\mathbf{D}^{(*)}$

 $\pi_{\rm slow}$

- Partial reconstruction
- Reconstruct \mathbf{D}^* , γ_{ISR} and $\pi_{\mathbf{slow}}$
- $\mathbf{M}(\mathbf{D}^{(*)+}\mathbf{D}^{*-}) \equiv \mathbf{M}_{\mathsf{recoil}}(\gamma_{\mathsf{ISR}})$

Refit $M_{\text{recoil}}(D^{(*)}\gamma_{\text{ISR}})$ to D^* mass to improve the $M_{\text{recoil}}(\gamma_{\text{ISR}})$ resolution

 $M_{recoil}(\gamma_{ISR})$ resolution: Before re-fit — hatched histogram After re-fit — solid line

Comparison with previous analysis

- Increased data sample: 547 $\text{fb}^{-1} \Longrightarrow 951 \text{ fb}^{-1}$
- Additional modes for D reconstruction $\implies \mathbf{D}^0$ decay channels:
- Extended signal region for $M_{\text{recoil}}(D^{(*)}\gamma_{\text{ISR}})$

$$|(M_{\mathsf{recoil}}(D^{(*)+}\gamma_{\mathsf{ISR}}) - M(D^{*-}))| < \frac{300}{200} \; \mathsf{MeV}/c^2$$

•
$$\sigma[e^+e^- \to D^{(*)+}D^{*-}] = \frac{dN/dM}{\eta_{\text{tot}}(M) \cdot dL/dM}$$

dL/dM up to second-order QED corrections (Kuraev & Fadin (1985))

1
$$K^-\pi^+$$

2 K^-K^+
3 $K^-\pi^-\pi^+\pi^+$
4 $K_S^0\pi^+\pi^-$
5 $K^-\pi^+\pi^0$
5 $K_S^0K^+K^-$
6 $K_S^0\pi^0$

- **8** $K^- K^+ \pi^- \pi^+$
- $I K^0_S \pi^+ \pi^- \pi^0$
- 8/21

Backgrounds

- Combinatorial background under the reconstructed $D^{(*)+}$ peak
- 2 Real $D^{(*)+}$ mesons and a combinatorial π_{slow}
- Source Both the $D^{(*)+}$ meson and π_{slow} are combinatorial
- Reflections from the processes $e^+e^-\to D^{(*)+}D^{*-}\pi^0\gamma_{\rm ISR}$ where the π^0 is lost
- Solution of the $e^+e^- \rightarrow D^{(*)+}D^{*-}\pi^0_{\text{fast}}$ where the hard π^0_{fast} is misidentified as γ_{ISR}

Background contribution estimated from the data

Cross sections

10/21

Angular analysis

Angular analysis of the process $\mathrm{e^+e^-} ightarrow \mathrm{D^+D^{*-}}$

ס (nb)

- Study D^* helicity angle distribution in each bin of $M(D^+D^{*-})$
- *D*^{*} are transversely polarized
 ⇒ Check method

$$4.05 < M(D^+D^{*-}) < 4.3 \text{GeV}/c^2$$

 $F(\cos\theta) = \eta(\cos\theta) \cdot dM/dL \cdot (f_L + f_T)$

11/21

Angular analysis

Angular analysis of the process $\mathrm{e^+e^-} ightarrow \mathrm{D^{*+}D^{*-}}$

- Study of the D^{\ast} helicity angle distribution in each bin of $M(D^{\ast+}D^{\ast-})$
- Helicity composition of the $D^{*+}D^{*-}$ final state:

$$\mathbf{D}_{ ext{T}}^{*+}\mathbf{D}_{ ext{T}}^{*-}$$
 , $\mathbf{D}_{ ext{T}}^{*+}\mathbf{D}_{ ext{L}}^{*-}$ and $\mathbf{D}_{ ext{L}}^{*+}\mathbf{D}_{ ext{L}}^{*-}$

- $D_{\mathrm{T}}^* \equiv \text{transversely}$ polarized D^* meson
- $D_{\mathrm{L}}^* \equiv$ longitudinally polarized D^* meson
- Total cross section

 $\sigma = \sigma_{\rm TT} + \sigma_{\rm TL} + \sigma_{\rm LL}$

$$f = \eta(c_1, c_2) \cdot dL/dM \cdot (f_{LL} + f_{TL} + f_{TT}) + f_{bg}$$

 $c_1 \equiv \cos \theta_f$ $c_2 \equiv \cos \theta_p$ θ 's are D^* 's helicity angles

$$f_{TT} = \sigma_{TT} \cdot (1 - c_1^2) \cdot (1 - c_2^2)$$

$$f_{TL} = \sigma_{TL} \cdot ((1 - c_1^2) \cdot c_2^2 + c_1^2 \cdot (1 - c_2^2))$$

$$f_{LL} = \sigma_{LL} \cdot c_1^2 \cdot c_2^2$$

Angular analysis

୍ ୬ ୯.୦ 13 / 21

Conclusions

- We measured the exclusive cross sections of the $e^+e^- \rightarrow D^+D^{*-}$ and $e^+e^- \rightarrow D^{*+}D^{*-}$ processes
- The accuracy of the cross section measurements is increased
- The systematic uncertainties are significantly reduced
- For the $e^+e^- \rightarrow D^{*+}D^{*-}$ process we measured separately the cross sections for all three possible helicity final states (TT, LT and LL)

Observation of an alternative $\chi_{c0}(2P)$ candidate in $e^+e^- \rightarrow J/\psi D\bar{D}$

Motivation

Observed by Belle, confirmed by BaBar in $B \rightarrow (J/\psi \,\omega)K$ X(3915) PRL 94, 182002 (2005), PRD 82, 011101 (2010)

 \simeq Observed by both Belle and BaBar in $\gamma\gamma \rightarrow J/\psi \, \omega$ PRL **104**, 092001 (2010), PRD **86**, 072002 (2012)

BaBar: $J^P = 0^+ \Longrightarrow \chi_{c0}(2P)$ candidate

PRD 86, 072002(2012)

Difficulties (see, e.g., S. L. Olsen (2015), F.-K.Guo et al. (2012)):

- Too narrow: 20 MeV (measured) versus ~100 MeV (expected)
- Not seen in $D\overline{D}$ (expected as dominating mode!)
- Unnaturally small $2^{3}P_{2}$ - $2^{3}P_{1}$ mass splitting
- Strong OZI violation: large BF in OZI-suppressed $J/\psi \omega$ mode

Motivation

Observed by Belle, confirmed by BaBar in $B \rightarrow (J/\psi \,\omega)K$ X(3915) PRL 94, 182002 (2005), PRD 82, 011101 (2010)

 \simeq Observed by both Belle and BaBar in $\gamma\gamma \rightarrow J/\psi \omega$ PRL **104**, 092001 (2010), PRD **86**, 072002 (2012)

BaBar: $J^P = 0^+ \Longrightarrow \chi_{c0}(2P)$ candidate

PRD 86, 072002(2012)

Difficulties (see, e.g., S. L. Olsen (2015), F.-K.Guo et al. (2012)):

- Too narrow: 20 MeV (measured) versus ~100 MeV (expected)
- Not seen in $D\overline{D}$ (expected as dominating mode!)
- Unnaturally small $2^{3}P_{2}$ - $2^{3}P_{1}$ mass splitting
- Strong OZI violation: large BF in OZI-suppressed $J/\psi \omega$ mode

Search for alternative $\chi_{c0}(2P)$ candidate in $e^+e^- \rightarrow J/\psi D\bar{D}$ annihilation

$$e^+e^- \rightarrow J/\psi D \bar{D}$$
, $D \equiv D^0$ or D^+
 $\mathbf{M}_{
m rec}(\mathbf{J}/\psi, \mathbf{D}) = \sqrt{(\mathbf{p}_{e^+e^-} - \mathbf{p}_{J/\psi} - \mathbf{p}_{D})^2}$

- $J/\psi \rightarrow \{e^+e^-, \mu^+\mu^-\}$
- Both D^0 and D^+ used:
 - $D^0 \to \{K^-\pi^+, K^0_s \pi^+\pi^-, K^-\pi^+\pi^0, K^-\pi^+\pi^+\pi^-\}$ (4 channels)
 - $D^+ \to \{K_s^0 \pi^+, K^- \pi^+ \pi^+, K_s^0 \pi^+ \pi^0, K^- \pi^+ \pi^+ \pi^0, K_s^0 \pi^+ \pi^+ \pi^-\}$ (5 channels)
- Signal and background separated using the MLP neural network
- Global optimization of the selection requirements: 4 variables per D channel (signal regions in $M_{J/\psi}$, M_D , $M_{\rm rec}(J/\psi,D)$ and MLP output cutoff value)

Resulting sample: 103 events with $24.9 \pm 1.1 \pm 1.6$ background events

Signal fit

Amplitude analysis in 6D phase space: $\{M_{Dar{D}}$, $heta_{
m prod}$, $heta_{
m J/\psi}$, $heta_{
m X^*}$, $\phi_{
m l^-}$, $\phi_{
m D}\}$

$$S(\Phi) = \sum_{\substack{\lambda_{\text{beam}} = -1, 1\\\lambda_{\ell\ell} = -1, 1}} \left| \sum_{X^*} A_{\lambda_{\text{beam}} \lambda_{\ell\ell}}(\Phi) A_{X^*}(M_{D\bar{D}}) \right|^2$$

J^{PC}	Mass, MeV/c^2	Width, MeV	Significance
$^{0++}$	3862^{+26}_{-32}	201^{+154}_{-67}	9.1σ
2^{++}	3879^{+20}_{-17}	171^{+129}_{-62}	8.0σ
2^{++}	$3879 + 17 \\ -17 $	148^{+108}_{-50}	8.0σ
2^{++}	3883^{+26}_{-24}	227^{+201}_{-125}	8.0σ

$J^{PC} = 0^{++}$ versus $J^{PC} = 2^{++}$

Approach: Toy MC pseudoexperiments generated in accordance with fit results for $J^{PC} = 0^{++}$ and 2^{++} and fitted for both hypotheses

Result:

- $J^{PC} = 2^{++}$ excluded at the level 2.5σ including systematics
- $J^{PC} = 0^{++}$ with CL=77% (default model)

er ver ele

 $X^*(3860)$ versus X(3915) — the fight for $\chi_{c0}(2P)$

	Theory	X(3915)	$X^{*}(3860)$
J^{PC}	0^{++}	±	+
Mass	$ m 3854~MeV/c^2$ (Ebert et al.) $ m 3916~MeV/c^2$ (Godfrey et al.)	±	+
Width	Broad ($\Gamma \sim 100$ MeV)	—	+
$\frac{m_{\chi_{c2}(2P)} - m_{\chi_{c0}(2P)}}{m_{\chi_{c2}(1P)} - m_{\chi_{c0}(1P)}}$	0.60.9	_	+
$BF(D\bar{D})$	Large	—	+
${\sf BF}(J/\psi\omega)$	Small	—	+

In addition, $X^*(3860)$

- is produced similarly to $\chi_{c0}(1P)$ (Belle (2004))
- agrees with the peak in $\gamma\gamma$ data with $M = 3837.6 \pm 11.5 \text{ MeV}/c^2$ and $\Gamma = 221 \pm 19 \text{ MeV}$

 $X^*(3860)$ versus X(3915) — the fight for $\chi_{c0}(2P)$

	Theory	X(3915)	$X^{*}(3860)$
J^{PC}	0^{++}	Ŧ	+
	$3854{ m MeV}/c^2$ (Ebert et al.)		

Conclusion: $X^*(3860)$ wins!

BF(DD)	Large	_	+
$BF(J/\psi\omega)$	Small	_	+

In addition, $X^*(3860)$

- is produced similarly to $\chi_{c0}(1P)$ (Belle (2004))
- agrees with the peak in $\gamma\gamma$ data with $M = 3837.6 \pm 11.5 \text{ MeV}/c^2$ and $\Gamma = 221 \pm 19 \text{ MeV}$

Conclusions

• A new charmoniumlike state X(3860) is observed

•
$$M = 3862^{+26}_{-32} \, {}^{+40}_{-13} \, {\rm MeV}/c^2$$

• $\Gamma = 201^{+154}_{-67} \, {}^{+88}_{-82} \, {\rm MeV}$

• $J^{PC} = 0^{++}$ favoured

 $X(3860) \Longrightarrow good \chi_{c0}(2P)$ candidate

Conclusions

- A new charmoniumlike state X(3860) is observed
- $M = 3862^{+26}_{-32} \, {}^{+40}_{-13} \, {\rm MeV}/c^2$
- $\Gamma = 201^{+154}_{-67} \, {}^{+88}_{-82} \, {\rm MeV}$
- $J^{PC} = 0^{++}$ favoured

 $X(3860) \Longrightarrow good \chi_{c0}(2P)$ candidate

Thank you for your attention!

Criteria

- $|dr| < 2 \,\mathrm{cm}$ and $|dz| < 4 \,\mathrm{cm}$
- $\mathcal{P}_{K/\pi} = \mathcal{L}_K / (\mathcal{L}_K + \mathcal{L}_\pi) > 0.6$ K_S candidates:
- $|M_{inv}(\pi^+\pi^-) M_{K^0_S}| < 15 \text{ MeV/c}^2$
- the distance between the two pion tracks $< 1\,{\rm cm}$
- $\bullet~$ the transverse flight distance from IP $> 0.1\,{\rm cm}$
- the angle between the K_S momentum direction and decay path in x-y plane $< 0.1 \, \mathrm{rad}$

 π_0 candidates:

• $|M_{inv}(\gamma\gamma) - M_{\pi_0}| < 15 \text{ MeV/c}^2$

D⁰ decay \mathbf{D}^+ decay channels: channels: **1** $K^{-}\pi^{+}$ (1) $K^+\pi^-\pi^-$ 2 $K_{S}^{0}\pi^{-}$ **2** K^-K^+ (a) $K^{-}\pi^{-}\pi^{+}\pi^{+}$ **3** $K^0_S K^+$ • $K^0_S \pi^+ \pi^-$ **6** $K^{-}\pi^{+}\pi^{0}$ **6** $K^0_S K^+ K^-$ **D**^{*} decay $V K_{S}^{0}\pi^{0}$ channels: **8** $K^-K^+\pi^-\pi^+$ 1 $D^0 \pi^+$ $K_{s}^{0}\pi^{+}\pi^{-}\pi^{0}$

Analysis of the process $e^+e^- \rightarrow D^{(*)+}D^{*-}$

Method:

- partial reconstruction;
- reconstruction \mathbf{D}^* , π_{slow} and γ_{ISR} ;

$$\begin{split} M_{\text{recoil}}(D^{(*)}\gamma) &= \sqrt{(E_{c.m.} - E_{D^{(*)}\gamma})^2 - p_{D^{(*)}\gamma}^2} \\ \Delta M_{\text{recoil}} &= M_{\text{recoil}}(D^{(*)}\gamma_{\text{ISR}}) - M_{\text{recoil}}(D^{(*)}\pi_{slow}\gamma_{\text{ISR}}) \end{split}$$

 $D^{(*)}$

Correction of $\gamma_{\rm ISR}$ energy

reference channel

Conclusions:

phokhara generator describes the second radiation correction correctly

The same process on the other side

3/14

The recoil mass $M_{\text{recoil}}(D^*\gamma_{\text{ISR}})$

before correction γ_{ISR} energy

after correction $\gamma_{\rm ISR}$ energy

 $|M_{\rm recoil}(D^*\gamma_{\rm ISR}) - M(D^*)| < 300 MeV/c^2$

4/14

(승규) 문화

Backgrounds

- Combinatorial background under the reconstructed $D^{(*)+}$ peak
- 2 Real $D^{(*)+}$ mesons and a combinatorial π_{slow}
- **Solution** Both the $D^{(*)+}$ meson and π_{slow} are combinatorial
- Reflections from the processes $e^+e^- \rightarrow D^{(*)+}D^{*-}\pi^0\gamma_{\rm ISR}$ where the π^0 is lost
- Solution of the $e^+e^- \rightarrow D^{(*)+}D^{*-}\pi^0_{fast}$ where the hard π^0_{fast} is misidentified as γ_{ISR}

Mass spectra

Reflection from the processes $e^+e^- ightarrow D^{(*)+}D^{*-}\pi^0\gamma_{ISR}$

Background (blue points) from

$$e^+e^-
ightarrow D^{(*)+}D^{*-}\pi^0_{miss}\gamma_{\rm ISR}$$

is evaluated from the isospin-conjugated process

$$e^+e^- \rightarrow D^{(*)0}D^{*-}\pi^+_{\rm miss}\gamma_{\rm ISR}$$

Backgrounds

Backgrounds

Cross sections calculation

10/14

 $4.0 < M(D^{*+}D^{*-}) < 4.1 \text{GeV}/c^2$

 $4.25 < M(D^{*+}D^{*-}) < 4.6 \text{GeV}/c^2$

$$4.1 < M(D^{*+}D^{*-}) < 4.25 \text{GeV}/c^2$$

Т	he summary o	f the	systematic	errors in	the cross	s section	calculation.
			5				

Source	D D	$D^{++}D^{+-}$
Background subtraction	2%	2%
Reconstruction	3%	4%
Selection	1%	1%
Angular distribution	—	2%
Cross section calculation	1.5%	1.5%
$\mathcal{B}(D^{(*)})$	2%	3%
MC statistics	1%	2%
Total	5%	7%

Signal fit

$$S(\Phi) = \sum_{\substack{\lambda_{\text{beam}} = -1, 1 \\ \lambda_{\ell\ell} = -1, 1}} \left| \sum_{X^*} A_{\lambda_{\text{beam}} \lambda_{\ell\ell}}(\Phi) A_{X^*}(M_{D\bar{D}}) \right|^2,$$
(1)

Here, $A_{\lambda_{\text{beam}}} \lambda_{\ell\ell}(\Phi)$ is the signal amplitude calculated using the helicity formalizm (the phase space Φ is 6-dimensional). For resonance, $A_{X^*} = \text{relativistic}$ Breit-Wigner. For nonresonant amplitude, $A_{X^*} = \sqrt{F_{D\bar{D}}(M_{D\bar{D}})}$, where $F_{D\bar{D}}(M_{D\bar{D}})$ is the nonresonant amplitude form factor ($F_{D\bar{D}} = 1$ by default). Alternatives: mass dependence of NRQCD prediction for $e^+e^- \rightarrow \psi\chi_c$ [PRD **77**, 014002 (2008)], $F_{D\bar{D}} = M_{D\bar{D}}^{-4}$ [Victor Chernyak, based on PLB **612**, 215 (2005)].

Signal fit results

Fit results in the default model. For the 2^{++} hypothesis, there are three solutions (fit is started 1000 times from random initial values in order to check for that).

J^{PC}	Mass, ${ m MeV}/c^2$	Width, MeV	Significance
0^{++}	3862^{+26}_{-32}	201^{+154}_{-67}	9.1σ
2^{++}	3879^{+20}_{-17}	171^{+129}_{-62}	8.0σ
2^{++}	3879^{+17}_{-17}	148^{+108}_{-50}	8.0σ
2^{++}	3883^{+26}_{-24}	227^{+201}_{-125}	8.0σ

Red dashed line - only background and nonresonant amplitudes, blue solid line - $X^{\ast},\,J^{PC}=0^{++}.$

