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Probing gluon saturation
J ‘\
O Q) T ke

Inl/z

Y=

Non-perturbative region
2
kr d(x, kr)

max. density

H
i
[ BFKL eq. I n 1 knowhowto
£ 1 dophysics here
DGLAP eq. @ ]
—_— - >
<1 2, as~1 Agco Qs g =<1
s
In Adop nQ?* o

@ Gluon recombination at small-x — Glauon Saturation [Gribov, Levin, Ryskin
(1983)][Mueller, Qiu(1986)]

NONLINEAR Balitsky-Kovchegov equation descries x-evolution of gluon distribution.
[Balitsky(1996), Kovchegov(1996)]

@ A def of Saturation scale

2 dg NC 1/3 1 0.3
05 A(X) = Sal xG4a(x) ~ A (;)
@ O > Qy : the dilute regime in which collinear factorization is applicable.
@ O < Qg : the dense regime = the Color-Glass-Condensate (CGC) framework

anabe (ODU) Onium production in pA collisions and gluon saturation



Forward onium production in p+A collisions

@ Onium (J/¢, ¥ (25)) production in p+A collisions at RHIC and the LHC provides unique
playground to study gluon saturation or test the CGC framework.

V' ¢ is largely produced via initial gluon fusion.
v/ The largest saturation scale for nuclei at the energy frontier : m. < Qsa

@ The CGC can be helpful in understanding of Onium production mechanism at low-P .
@ Gluon saturation is Cold Nuclear Matter (CNM) effect. — Baseline for A+A collisions

@ e+A at JLab or BNL : Not yet, but promising! p+A can be complementary to e+A.
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J/¥ production in the CGC + NRQCD

[Kang, Ma, Venugopalan (2013)][Ma, Venugopalan (2014)][Ma, Venugopalan, Zhang (2015)]
@ The CGC cross sections at short distance are matched to NRQCD LDMEs.
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@ Opverlap region between the CGC and the NLO collinear factorization : P; ~ 5 GeV.
@ The contribution of CS channel is relatively small. (10% in pp, 15% — 20% in pA at
small-P, ) = CEM works qualitatively.
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Y (2S) production : A puzzle
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@ ¢ produced at short distance 7. > 1/2m ~ 0.07 fm does not know yet long distance
information.
@ The saturation effect is short distance physics at t and My, ~ My 25y = The CGC

frameowork predicts RJ 1y Rl// (2S).

@ The large suppression of v(29) production in p+A at both RHIC and the LHC has widely
been interpreted as arising from final state interactions with hadron comovers. see
[Ferreiro (2015)]

@ We shall argue this from an aspect of factorization breaking effect in the Onium formation.
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Factorization breaking effect

o In the very forward rapidity region,bound state formation can happen far outside of
nucleus. [Sun, Qiu, Xiao, Yuan (2013)]

@ However, must be careful at low P, because soft color exchanges between spectators and
c¢ pair is indispensable. = Breaking of factorization [Brodsky, Mueller (1988)]
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o Indeed, soft color exchanges between partonic comovers and the ¢¢ can affect greatly
¥ (28) production. = The strong nuclear suppression of (25) at the LHC. (Later)

Next : We examine how the factorization breaking effect with soft color exchange affects
J/¥ and ¥ (2S) production. J
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Onia production in the CGC + Improved CEM

@ Description of ¥(2S) production is not clear in the CGC+NRQCD. Large uncertainties in
association with charm mass and LDMEs. See [Ma, Venugopalan (2014)]
@ We employ an Improved version of CEM (ICEM). [Ma, Vogt (2016)], See also Vogt’s talk
(Wed.)
o The CGC+CEM is consistent with the CGC+NRQCD in the sense that color octet ¢ ¢ is mainly
considered.
o ICEM can reproduce different P distributions of J /¢ and ¢ (2S) correctly.
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Rapidity dependence of the dipole amplltude F follows the running coupling BK eq.
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Setup of our approach

o m = 1.3 GeV, fixed coupling a(Qy)
@ Matching between ¢ and CTEQ6M at x = 0.01 gives Rp ~ 0.43 fm, Q¢ ~ 8.1 GeV. Ry is
chosen to reproduce R, 4 = 1 when p; — co.

2

e : .2 : 2 —
o Initial saturation scales : Qsp’0 is chosen as MV model, QSA’0 =(1.5- 2)Qsp,0.

@ ¢ at large-x (forward rapidity) : matching to collinear PDF xG and switch from ¢ to xG at
X = X(.

@ In p+p collisions, Fy g5y is fitted and should include the effect of soft color exchanges at
final stage.

o Important assumption : the role of soft color exchanges should be enhanced in p+A
collisions. — A is responsible for the nuclear enhancement effect.

doy 2mg-A M\? dogg
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where A denotes the average momentum kick given by additional nuclear parton comovers.

r _ M
Pi=lLP,

o For simplicity, we assume that A is independent of P, and y.
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P, spectra of J/y and ¢ (2S) in p+p/p+A
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Why does A so affect ¢/(25) yield?
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o The fact that y(2S5) is more massive object is not important.

o The phase space of the produced c¢ pair is limited to lie within the narrow range for
¥ (2S). For J/y production, the c¢ pair has a significantly larger phase space.

o Indeed, AEy 25y = 2mp — my2s) ~ 50 MeV, AEy ;y, = 2mp —myy ~ 650 MeV.

@ Additional soft color exchanges in p+A collisions can break up the ¢ (2S5) by providing the
energy to push the bound Onia over the DD decay threshold.
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Nuclear modification factors for J/y and ¥ (25)

[Ma, Venugopalan, KW, Zhang (2017)]
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o The factorization breaking effect clearly leads to a stronger ¥ (2S) suppression while it is
negligible for J/iy.

o The enhanced soft color exchanges in p+A are sufficient to explain the data.
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Double ratio

[Ma, Venugopalan, KW, Zhang (2017)]
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o Advantage of the double ratio : many systematic uncertainties including Q? 4 can cancel.
@ The suppression of the double ratio can be controlled by A alone clearly.

o The relative factorization breaking effect is seen at the LHC but it is ambiguous at RHIC.
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Summary

@ Onium production in p+A collisions provides unique opportunity to study gluon saturation
phenomena inside high energy hadron/nucleus.

@ We need careful calculations since there are soft color exchanges between partonic
comover spectator and cc.

@ The CGC+ICEM can provide a systematic description of J/¢ and ¢ (2S) production in
p+p collisions.

@ Recent data of Rj, 4 for Onia production at the LHC suggest that factorization breaking
effect associated with nuclear enhanced soft color exchanges is significant for (25) but
not so much striking for J/y.

Thank you!
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P, spectra

K
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Predictions at RHIC
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