Polyakov loop correlators	The vacuum-like regime	The electric screening regime	

Color screening in 2+1 flavor QCD

J. H. Weber¹ in collaboration with A. Bazavov², N. Brambilla¹, P. Petreczky³ and A. Vairo¹ (**TUMQCD** collaboration)

¹Technische Universität München ²Michigan State University ³Brookhaven National Lab

Quarkonium Working Group meeting 2017, PKU, 08/11/2017

TUM-EFT 81/16; PRD 93 114502 (2016); arXiv:1601:08001 (2016)

Overview	Polyakov loop correlators	The vacuum-like regime	The electric screening regime	
00000				
Introduction				

First principle description of in-medium quarkonia

- Ingredients: QCD, no models
- Analytic approach: non-relativistic EFTs, dimensionally reduced EFTs
 - Need weak coupling (expansion in $g = \sqrt{4\pi\alpha_s}$)
 - Assume hierarchies between NR and thermal scales $p \sim T, p \sim gT, \ldots$
- For $T < 1 \,\mathrm{GeV}$: $\alpha_s \approx 0.4, g \sim 2$
 - Is weak coupling appropriate for realistic temperatures $(g \gtrsim 1)$?
 - Are hierarchies actually realized (for $g\sim 2)$ and distinguishable?
- We test weak coupling/hierarchies/regimes using realistic lattice QCD simulations and heavy quarks in the static limit
 - We aim at establishing whether the mechanisms described in EFTs are realized in QCD at the (experimentally) relevant temperatures

Overview	Polyakov loop correlators	The vacuum-like regime	The electric screening regime	
00000				
Overview				

Color screening in 2+1 flavor QCD

- Overview & Introduction
- Correlators of Polyakov loops
- Comparison to weak coupling
- Summary

Overview	Polyakov loop correlators	The vacuum-like regime	The electric screening regime	
00000				
Overview				

What is new about the TUMQCD lattices?

$$f_Q^{\rm bare} = -\log{\langle P \rangle_T}$$

Two different volumes and two quark masses:

Controlled finite volume and quark mass dependence

Continuum limit with **realistic** quark masses

$$N_{ au} a(eta) = 1/T(N_{ au},eta)$$

 $T \in [135, 2325] \, \mathrm{MeV}$ with at least four N_τ

6 6.4 6.8 7.2 7.6 8 8.4 8.8 9.2 9.6 TUMQCD collaboration, **TUM-EFT 81/16**

- $N_{\tau} = 4 16$: 12 30 + ens. each, $5.9 \le \beta \le 9.67$, a = 0.0085 0.25 fm.
- **HISQ/Tree** action, errors: $\mathcal{O}(\alpha_s a^2, a^4)$; lattice artefacts are reduced.
- Ensembles: $\frac{N_{\sigma}}{N_{\tau}} = 4$, $m_l = \frac{m_s}{20} \Leftrightarrow m_{\pi} = 161 \text{ MeV}$; $\beta \le 7.825$, $a \ge 0.04 \text{ fm}$ most from A. Bazavov et al., PRD 85 054503 (2012), PRD 90 094503 (2014) [HotQCD]
- All $N_{\tau} < 16$, $m_l = \frac{m_s}{5}$: 3 5 ensembles each, 3 10 × 10⁴ TU each, 7.03 $\leq \beta \leq 8.4$, a = 0.025 - 0.083 fm; T = 0 lattices available.

• r_1 scale for $\beta > 8.4$ from non-perturbative β function PRD 90 094503 (2014)

Overview	Polyakov loop correlators	The vacuum-like regime	The electric screening regime	
00000				
Free energies				

Polyakov loops and free energies of static (heavy) quark states

- The Polyakov loop L is the gauge-invariant expectation value of the traced propagator of a static quark (P) and related to its **free energy**: $L(T) = \langle P \rangle_T = \langle \operatorname{Tr} S_Q(x, x) \rangle_T = e^{-F_Q^{\rm b}/T}$. L needs renormalization.
 - A. M. Polyakov, PL 72B (1978); L. McLerran, B. Svetitsky, PRD 24 (1981)
- The Polyakov loop correlator is related to singlet & octet free energies $C_P(r, T) = e^{-F_{Q\bar{Q}}^{\rm b}(r, T)} = \frac{1}{9}e^{-F_S^{\rm b}/T} + \frac{8}{9}e^{-F_A^{\rm b}/T} = \frac{1}{9}C_S(r, T) + \frac{8}{9}C_A(r, T).$ S. Nadkarni, PRD 33, 34 (1986)
- Meaning of **gauge-dependent** singlet & octet free energies is unclear. • C_P is also related to the **gauge-invariant potentials** $V_{S,A}$ of **pNRQCD** $C_P(r, T) = e^{-F_{Q\bar{Q}}^{\rm b}(r,T)} = \frac{1}{9}e^{-V_S^{\rm b}/T} + \frac{8}{9}L_A^{\rm b}e^{-V_A^{\rm b}/T} + \mathcal{O}(g^6)$ for $rT \ll 1$. N. Brambilla et al., **PRD 82** (2010)

Overview	Polyakov loop correlators	The vacuum-like regime	The electric screening regime	
00000				
Free energies				

Renormalization of free energies

• Singlet free energy and potential appear to be related for $rm_D \sim 1$: $F_S(r, T) = -C_F \alpha_s \left[\frac{e^{-r m_D}}{r} + m_D \right] + \mathcal{O}(g^4) = V_S(r) + \mathcal{O}(g^3).$ N. Brambilla et al., PRD 82 (2010) $\Rightarrow F_S$ and V_S share the same renormalization $2C_Q$, which depends on Tonly through the lattice spacing: $V_S = V_S^b + 2C_Q \Rightarrow F_S = F_S^b + 2C_Q.$ • Use V_S at T = 0: fix r_1 scale & determine $2C_Q$ using static energy. A. Bazavov et al., PRD 85 054503 (2012), PRD 90 094503 (2014) [HotQCD] • Cluster decomposition theorem: $F_{Q\bar{Q}} = F_S = 2F_Q$ for $r \gg 1/T$. \Rightarrow renormalize as $F_{Q\bar{Q}} = F_{Q\bar{Q}}^b + 2C_Q$ and $F_Q = F_Q^b + C_Q. \rightarrow PRD 93$ 114502 (2016)

Beyond $C_Q(\beta)$ from T = 0 lattices – use **direct renormalization** of F_Q \Rightarrow Infer unknown $C_Q(\beta)$ from known $C_Q(\beta^{\text{ref}})$ using different $N_{\tau}, N_{\tau}^{\text{ref}}$ $C_Q(\beta) = \left\{ C_Q(\beta^{\text{ref}}) + F_Q^{\text{b}}(\beta^{\text{ref}}, N_{\tau}^{\text{ref}}) - F_Q^{\text{b}}(\beta, N_{\tau}) \right\} \rightarrow \Pr_{\text{PRD T 034503 (2008)}}^{\text{S. Gupta et al.}}$

Overview	Polyakov loop correlators	The vacuum-like regime	The electric screening regime	
00000				
Free energies				

Renormalization of free energies

• Singlet free energy and potential appear to be related for $rm_D \sim 1$: $F_S(r, T) = -C_F \alpha_s \left[\frac{e^{-r m_D}}{r} + m_D \right] + \mathcal{O}(g^4) = V_S(r) + \mathcal{O}(g^3).$ N. Brambilla et al., PRD 82 (2010) $\Rightarrow F_S$ and V_S share the same renormalization $2C_Q$, which depends on Tonly through the lattice spacing: $V_S = V_S^b + 2C_Q \Rightarrow F_S = F_S^b + 2C_Q.$ • Use V_S at T = 0: fix r_1 scale & determine $2C_Q$ using static energy. A. Bazavov et al., PRD 85 054503 (2012), PRD 90 094503 (2014) [HotQCD] • Cluster decomposition theorem: $F_{Q\bar{Q}} = F_S = 2F_Q$ for $r \gg 1/T$. \Rightarrow renormalize as $F_{Q\bar{Q}} = F_{Q\bar{Q}}^b + 2C_Q$ and $F_Q = F_Q^b + C_Q. \rightarrow PRD 93$ 114502 (2016)

Beyond $C_Q(\beta)$ from T = 0 lattices – use **direct renormalization** of F_Q \Rightarrow Infer unknown $C_Q(\beta)$ from known $C_Q(\beta^{\text{ref}})$ using different $N_{\tau}, N_{\tau}^{\text{ref}}$ $C_Q(\beta) = \left\{ C_Q(\beta^{\text{ref}}) + F_Q^{\text{b}}(\beta^{\text{ref}}, N_{\tau}^{\text{ref}}) - F_Q^{\text{b}}(\beta, N_{\tau}) + \Delta_{N_{\tau}, N_{\tau}^{\text{ref}}} \right\} \rightarrow \text{PRD 93 114502 (2016)}$

Overview	Polyakov loop correlators	The vacuum-like regime	The electric screening regime	Summary
00000	000	0000	00	

Color screening for a static quark-antiquark pair

Free energy of a QQ̄ pair, F_{QQ̄}, is also called *color-averaged potential*: C_P^{ren}(r, T) = ⟨P(0)P[†](r)⟩^{ren}_T = e^{-^FQQ̄(r,T)}/_T = ¹/₉e^{-^FS(r,T)}/_T + ⁸/₉e^{-^FA(r,T)}/_T.
F_{QQ̄} - T log 9 is close to the T=0 static energy V_S for very small rT.

	Polyakov loop correlators	The vacuum-like regime	The electric screening regime	
	000			
Polyakov loop co	rrelators			

Singlet free energy in Coulomb gauge

- Singlet free energy: $C_{S}^{\text{ren}}(r,T) = \frac{1}{3} \left\langle \sum_{a=1}^{3} W_{a}(0) W_{a}^{\dagger}(r) \right\rangle_{T}^{\text{ren}} = e^{-F_{S}(r,T)/T}$
- Wilson line correlator requires explicit gauge fixing (Coulomb gauge)
- F_5 is numerically close to the T = 0 static energy V_5 for $rT \leq 0.3$.

Effective coupling: vacuum-like and screening regimes

• Effective coupling $\alpha_{Q\bar{Q}}(r, T)$ is a proxy for the force between Q and \bar{Q} . $\alpha_{Q\bar{Q}}(r, T) = \frac{r^2}{C_F} \frac{\partial E(r, T)}{\partial r}, E = \{F_S(r, T), V_S(r)\}$

• $\alpha_{Q\bar{Q}}$ clearly distinguishes different regimes at small and large r.

• Is weak coupling appropriate for $\alpha_{Q\bar{Q}} \ll 1? \Rightarrow$ test quantitatively.

	Polyakov loop correlators	The vacuum-like regime	The electric screening regime		
	000				
Polyakov loop correlators					

Effective coupling: vacuum-like and screening regimes

Vacuum-like regime	Color-octet contribution	Screening regime
$rT \lesssim 0.1$	$rT\lesssim 0.3$	$rT\gtrsim 0.3$

- Coulomb-like regime dominated by color singlet: very small rT.
- Much stronger *T* dependence due to **color-octet contribution**.

	Polyakov loop correlators	The vacuum-like regime	The electric screening regime		
		0000			
pNRQCD and the vacuum-like regime					

Static energy and singlet free energy (I) - global features

- $V_{S}(T=0) F_{S}(T>0)$ up to $\mathcal{O}(\alpha_{s}^{3})$
- M. Berwein et al., PRD 96 014025 (2017)
- Cancellations in $V_S F_S$ smoother for r/a < 3, no renormalization.
- For $rT \lesssim 0.1$ & T > 300 MeV: $V_S F_S \sim 0.02 T$, mild N_τ dependence.
- Mild *T* dependence for $rT \lesssim 0.25$, sudden onset of medium effects.

Overview	Polyakov loop correlators	The vacuum-like regime	The electric screening regime	Summary
		0000		
pNRQCD and the	e vacuum-like regime			

Static energy and singlet free energy (II) – weak coupling

Brambilla et al., PRD 78 014017 (2008)

Color octet contribution in the Polyakov loop correlator (I)

- pNRQCD: C_P is given in terms of **potentials** V_S and V_A at T = 0 and of the *adjoint Polyakov loop* L_A at T > 0 N. Brambilla et al., PRD 82 (2010) $C_P(r, T) = e^{-F_Q\bar{Q}(r,T)} = \frac{1}{9}e^{-V_S/T} + \frac{8}{9}L_A e^{-V_A/T} + \mathcal{O}(g^6)$ for $rT \ll 1$.
- *Gauge-invariant* decomposition of *C_P* into **color singlet and octet** is defined assuming *weak coupling* test if it works for lattice as well.

• Color octet contribution: define $e^{-F_O/T} \sim \frac{9}{8} \left(e^{-F_Q \bar{Q}(r,T)} - \frac{1}{9} e^{-V_S/T} \right)$

• As F_O rapidly decreases for higher T, the **octet** becomes important.

Color octet contribution in the Polyakov loop correlator (II)

- Low T = 172 MeV: color singlet V_S is enough for reconstructing C_P (no sensitivity to color octet due to large statistical errors).
- High T = 666 MeV: cancellation between **color singlet and octet** leads to $1/r^2$ behavior in $F_{Q\bar{Q}}$. We use pNRQCD, i.e. $\frac{1}{9}e^{-V_S/T} + \frac{8}{9}L_A e^{-V_A/T}$.
- We include **Casimir scaling violation**: $8V_A + V_S = 3\frac{\alpha_s^3}{r} [\frac{\pi^2}{4} 3] + \mathcal{O}(\alpha_s^4)$.
- $F_{Q\bar{Q}}$ for $rT \lesssim 0.4$ can be understood in terms of **vacuum physics** only.

- F_S^{sub} on the lattice is **compatible with EQCD@NLO** up to $rT \sim 0.6$.
- \Rightarrow Weakly-coupled EQCD is reasonable in electric screening regime of F_5 .
 - For rT>0.8: asymptotic screening is inherently non-perturbative.

• Singlet and octet cancel at LO in $F_{Q\bar{Q}}(r,T) = -\frac{\alpha_s^2}{9} \frac{e^{-2rm_D}}{r^2} + C_F \alpha_s m_D.$ • $F_{Q\bar{Q}}^{\text{sub}} = -\frac{\alpha_s^2}{9} \frac{e^{-2rm_D}}{r^2} (1 + \alpha_s [\delta Z_1(\mu) + rT f_1(rm_D)])$ S. Nadkarni, PRD 33 (1986)

- Continuum limit of $F_{Q\bar{Q}}^{\text{sub}}$ agrees with EQCD@NLO up to $r \sim 1/m_D$.
- $\Rightarrow \textbf{Weakly-coupled EQCD} is reasonable in the electric screening regime of <math>F_{Q\bar{Q}}$, but non-perturbative (*chromo-magnetic*) effects are stronger.

	Polyakov loop correlators	The vacuum-like regime	The electric screening regime	Summary
				•
Summary				

- We study color screening and deconfinement using the renormalized Polyakov loop correlator and related observables.
- Continuum limit of static quark correlators in $N_f = 2+1$ QCD up to $T \sim 2.0$ GeV and down to $r \sim 0.01$ fm.
- Color-singlet correlators are vacuum-like up to $rT \ll 0.3$, exhibit color-electric screening for $rm_D \sim 1 \Leftrightarrow 0.3 \leq rT \leq 0.6$ compatible with weak coupling and change to asymptotic screening for $rT \gg 0.7$.
- The Polyakov loop correlator C_P has a substantial color adjoint contribution for $T \gtrsim 200$ MeV. For $rT \lesssim 0.4$ weakly-coupled *pNRQCD* describes C_P well in terms of T = 0 potentials and the adjoint Polyakov loop L_A .
- C_P has a color-electric screening regime $rm_D \sim 1$. Non-perturbative effects (i.e. the chromo-magnetic sector) are much larger.

