Recent charmonium and bottomonium results from CMS in heavy ion collisions

Émilien Chapon on behalf of the CMS experiment

CERN

 $\mbox{QWG 2017} $12^{th}\mbox{International Workshop on Heavy Quarkonium} $$

Quarkonia in heavy ion collisions

Quarkonia are good probes of the medium evolution

- Excellent probes for the Quark Gluon Plasma
 - Color screening: melting depending on temperature and binding energy
 - Regeneration (mostly for charmonia)
 - Energy loss at high p_T

Quarkonia in heavy ion collisions

Quarkonia are good probes of the medium evolution

- Excellent probes for the Quark Gluon Plasma
 - Color screening: melting depending on temperature and binding energy
 - **Regeneration** (mostly for charmonia)
 - Energy loss at high p_T
- Also sensitive to cold nuclear matter effects
 - Nuclear PDFs, coherent energy loss, interaction with comovers?

Quarkonia in heavy ion collisions

Quarkonia are good probes of the medium evolution

- Excellent probes for the Quark Gluon Plasma
 - Color screening: melting depending on temperature and binding energy
 - Regeneration (mostly for charmonia)
 - Energy loss at high p_T
- Also sensitive to cold nuclear matter effects
 - Nuclear PDFs, coherent energy loss, interaction with comovers?

- CMS
- A family of states (J/ψ, ψ(2S), Υ(1S,2S,3S)) to explore the importance of quark flavour, mass, binding energy

Signal extraction

- Extract the different resonances (J/ ψ , ψ (2S), Υ (nS)) from a fit to $M_{\mu^+\mu^-}$
- In the case of charmonia: need to reject B meson feed-down

Prompt vs nonprompt charmonia

Two methods:

• 2D fits of dimuon mass and pseudo-proper decay length $\ell_{{
m J}/\psi}=L\cdot rac{m_{{
m J}/\psi}}{
ho_{\mu\mu}}$

	μ-
-	$J/\psi \mu^*$
В	
orimany	L_{∞} secondary
vertex	vertex

Prompt vs nonprompt charmonia

Two methods:

- 2D fits of dimuon mass and pseudo-proper decay length $\ell_{{
 m J}/\psi}=L\cdot rac{m_{{
 m J}/\psi}}{p_{\mu\mu}}$
- Rejecting nonprompt using a cut on $\ell_{J/\psi}$
 - Used for the $\psi(2S)$ because of the smaller S/B
 - Data-driven correction for the nonprompt contamination in the low $\ell_{\mathrm{J/}\psi}$ region

1 pPb collisions

Prompt J/ ψ Prompt ψ (2S)

2 PbPb collisions

Prompt J/ ψ Prompt ψ (2S) Υ (nS)

Prompt $\psi(2S)$

2 PbPb collisions

Prompt J/ ψ Prompt $\psi(2S)$ $\Upsilon(nS)$

Cross sections: prompt J/ψ in pPb (and pp)

- Available in pp and pPb at $\sqrt{s_{NN}} = 5.02 \,\mathrm{TeV}$
- Measured over a wide kinematic range (2 < $p_{\rm T}$ < 30 GeV/c, -2.87 < $|y_{CM}| < 1.93$)
- · Direct input to production models

Nuclear modification factors: prompt J/ψ

- Prompt J/ ψ R_{pA} above unity in most bins
- Suppression only in the most forward bin $(1.5 < y_{CM} < 1.93)$ for $p_{\rm T} < 7.5 \, {\rm GeV}/c$
- nPDF calculations slightly lower than data

(5.02 TeV)

Excited vs. ground state: prompt $\psi(2\mathsf{S})$ vs prompt $\mathsf{J}/\!\psi$

(5.02 TeV)

- Expecting similar effects from nPDF for J/ψ and $\psi(2S)$
- Hint for a different modification in the data (in the Pb-going direction)
- Is the more "fragile" $\psi(2S)$ affected by final state effects?

Outline

1 pPb collisions

Prompt J/ ψ Prompt ψ (2S)

2 PbPb collisions

Prompt J/ ψ Prompt ψ (2S) Υ (nS)

(2.76 TeV, 5.02 TeV)

Nuclear modification factors: prompt ${\mathsf J}/\psi$

- Similar suppresion at 5.02 TeV and 2.76 TeV
- No strong rapidity dependence
- Suppression increases towards central events: $R_{AA}(0-5\%) = 0.219 \pm 0.005(\text{stat}) \pm 0.013(\text{syst})$

Nuclear modification factors: prompt J/ψ , low p_T

- Similar p_T trend for different rapidities
- Less suppression at lowest p_T
- Less suppression at lowest p_T for most central events (> 30%): hint of regeneration?

Nuclear modification factors: prompt J/ψ , high p_T

(2.76 TeV, 5.02 TeV)

- Less suppression at high p_T: contribution of energy loss?
- Similar p_T trend vs centrality, with similar increase at high p_T

Prompt J/ψ

Nuclear modification factors: prompt J/ψ , high p_T

(2.76 TeV, 5.02 TeV)

- Less suppression at high p_T: contribution of energy loss?
 - same as D mesons and charged hadrons?
- Similar $p_{\rm T}$ trend vs centrality, with similar increase at high $p_{\rm T}$

Nonprompt J/ ψ (open beauty)

(2.76 TeV, 5.02 TeV)

Also available: nonprompt J/ ψ results (including B fractions)

- Probing **open beauty** (energy loss of b quarks, etc.) rather than **hidden charm**
- Similar suppression at 2.76 TeV and 5.02 TeV
- Hint for less suppression at low p_T

Prompt J/ ψ , prompt $\psi(2S)$: excited vs ground state

PRL 118 (2017) no.16. 162301

Cent

0-100%

Ŷ

(2.76 TeV, 5.02 TeV)

- Larger $\psi(2S)$ suppression: sequential ordering?
- No clear $p_{\rm T}$ dependence
- Hint for a different behaviour with energy

Prompt J/ ψ , prompt $\psi(2S)$: excited vs ground state

(2.76 TeV, 5.02 TeV)

PRL 118 (2017) no.16. 162301

• X. Du and R. Rapp: $\psi(2S)$ regenerated later than J/ψ in the fireball evolution

(2.76 TeV, 5.02 TeV)

$\Upsilon(nS)$: cross sections in PbPb (and pp)

Bottomonia in pp and PbPb

• Differential cross sections, at 2.76 TeV and 5.02 TeV, in pp and PbPb

$\Upsilon(nS)$ double ratios

arXiv:1706.05984

- Increasing suppression of the $\Upsilon(2S)$ compared to the $\Upsilon(1S)$ with centrality
 - 95% CL upper limit in the most central 0-5% bin
- Strong suppression of the $\Upsilon(3S)$ relative to the $\Upsilon(1S)$ in all studied centralities

Nuclear modification factors: $\Upsilon(nS)$

- Clear ordering : $R_{AA}(\Upsilon(3S)) < R_{AA}(\Upsilon(2S)) < R_{AA}(\Upsilon(1S))$
- Increasing suppression with centrality
- · More weakly bound states melt more easily
- $\Upsilon(3S)$ still unobserved in PbPb collisions

Nuclear modification factors: $\Upsilon(nS)$

- Clear ordering : $R_{AA}(\Upsilon(3S)) < R_{AA}(\Upsilon(2S)) < R_{AA}(\Upsilon(1S))$
- Increasing suppression with centrality
- · More weakly bound states melt more easily
- $\Upsilon(3S)$ still unobserved in PbPb collisions
- Comparison with an hydrodynamic model (Krouppa et al.)

(5.02 TeV)

Nuclear modification factors: $\Upsilon(nS)$

- Hint for an increasing $\Upsilon(1S) R_{AA}$?
- No significant y dependence

(2.76 TeV, 5.02 TeV)

Collision energy dependence: $\Upsilon(1S)$

- Higher $p_{\rm T}$ reach at 5.02 TeV
- Consistently lower R_{AA} at 5.02 TeV: indication of a collision energy dependence?

Quarkonia in heavy ion collisions: a large toolbox for studying nuclear effects

- Measuring cross sections and ratios: production mechanism
- pPb collisions: is there more than nPDFs? (cf $\psi(2S)$)
- PbPb collisions: sequential melting? Hints of regeneration at low p_T, energy loss at high p_T?

All CMS results in https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN

JHEP 04 (2014) 103

Event activity dependence of $\Upsilon(nS)$ polarisation in pp

Event activity dependence of $\Upsilon(nS)$ production in pp

CMS-PAS-BPH-14-009

7 TeV

(a)

EPJC 77 (2017) 252

Comparing hidden charm (prompt J/ ψ , CMS) to open charm (D, ALICE):

- Smaller v_2 at low p_T , similar at high p_T ?
- Flavour independence of energy-loss path-length dependence?