

Quarkonium results in *p*Pb and PbPb collisions

Jiayin Sun (Tsinghua University) on behalf of the LHCb collaboration

Quarkonium 2017

The 12th International Workshop on Heavy Quarkonium

November 6-10, 2017, Peking University, Beijing, China

11/8/2017

QWG2017

Outline

- Quarkonium in heavy-ion collisions
- The LHCb detector
- *p*Pb collisions: recent results
 - J/ψ at 5.02, 8.16 TeV
 - $\psi(2S)$ at 5.02 TeV
 - Y at 5.02 TeV
- PbPb collisions: work in progress

Quarkonia in PbPb Collisions

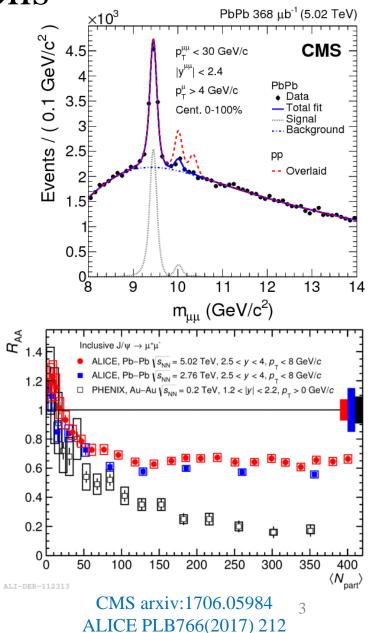
- Color screening: $Q\overline{Q}$ potential is screened by surrounding color charge, leading to dissociation
 - J/ψ suppression a signature of deconfinement

 T/T_c 1/ $\langle r \rangle$ [fm⁻¹]

Y(15)

χ_b(1P)

(1P)

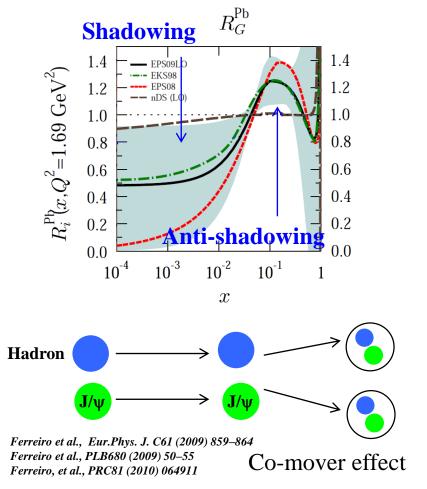

J/ψ(15) Υ'(25)

_χ, (2P) Υ"(3S)

Ψ(25)

- Sequential melting: quarkonia states (e.g. Y family) dissociate at different temperatures
 - QGP thermometer

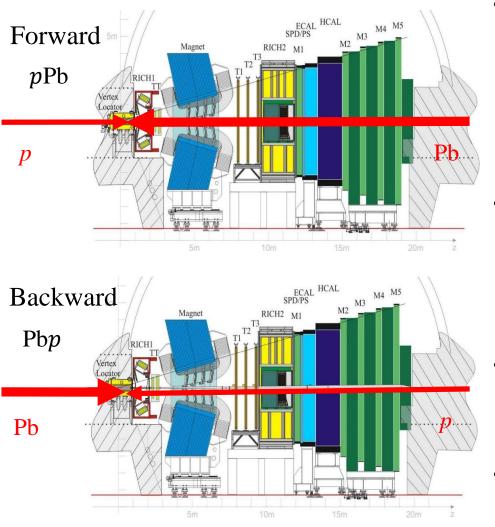
- Hot medium effects:
 - Suppression by color screening
 - Regeneration via statistical recombination
 - Medium induced energy loss
- Cold nuclear matter (CNM) effects
 - Studied via proton-nucleus collisions
 - Crucial for the interpretation of AA results
 11/8/2017 QWG2017



Quarkonia in *p*Pb Collisions

Ferreiro et al., PRC 81(2010) 064911 Eskola et al., Eur.Phys.J. C9 (1999) 61-68 Eskola. et al., JHEP 0807 (2008) 102 Eskola et al., JHEP 0904 (2009) 065 De Florian et al., PRD69 (2004) 074028

- Cold Nuclear Matter effects
 - Initial state:
 - Modification of nuclear PDF
 - Gluon saturation
 - Multiple scattering of partons in the nucleus
 - Final state:
 - nuclear absorption (negligible at LHC energy)
 - Co-mover effect
 - Break-up of quarkonium by comoving hadrons outside of nuclear remnant
 - study via $\psi(2S)$


LHCb detector

- A single arm forward spectrometer designed for the study of particles containing *c* or *b* quark.
- Acceptance: $2 < \eta < 5$
- Vertex detector
 - IP resolution ~ $20 \ \mu m$
- Tracking system
 - $\frac{\Delta p}{p} = 0.5\% 1\%$ (5-200 GeV/c)
- RICH
 - K/ π /p separation
- Electromagnetic
 - + hadronic
 - Calorimeters
- Muon systems

pPb datasets and recent results

- Rapidity Coverage
 - *y**: rapidity in nucleon-nucleon cms
 - $y_{\rm cms} = \pm 0.465$
 - Forward: $1.5 < y^* < 4.0$
 - Backward: $-5.0 < y^* < -2.5$
 - Common region: $2.5 < |y^*| < 4.0$

$$\sqrt{s_{NN}} = 5 \text{ TeV} (2013)$$

• pPb (1.06 nb⁻¹) + Pbp (0.52 nb⁻¹)

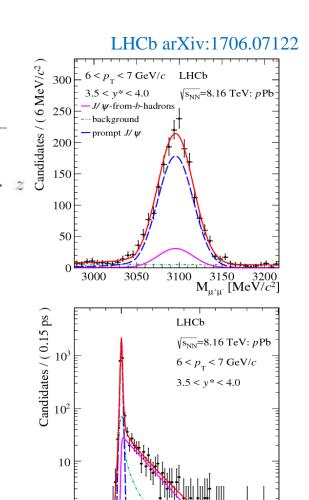
- J/ψ
- $\psi(2S)$
- Ϋ́

•
$$\sqrt{s_{NN}} = 8 \text{ TeV} (2016)$$

• $p \text{Pb} (13.6 \text{ nb}^{-1}) + \text{Pb}p (21.8 \text{ nb}^{-1})$

- J/ψ
- Separate prompt/from- $b J/\psi$ and $\psi(2S)$

Prompt and nonprompt J/ψ in *p*Pb at 8 TeV



- Sources
 - Prompt: direct production, feed down from heavier states $\psi(2S)$, χ_c
 - Nonprompt: from-*b*-hadrons decays

- First Run2 result in heavy ion collisions
- Reconstructed through $J/\psi \to \mu^+ \mu^-$
- Prompt and nonprompt (from-*b*-hadrons) separated: the pseudo proper decay time

$$t_z \equiv \frac{(z_{J/\psi} - z_{PV}) \times M_{J/\psi}}{p_z}$$

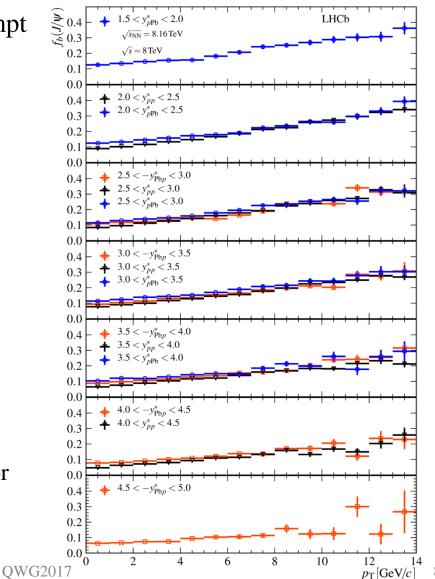
• Signal extraction with 2D simultaneous fit to mass and the pseudo proper decay time

0

5

 $t_{\rm z}$ [ps]

Prompt and nonprompt J/ψ in pPb at 8 TeV

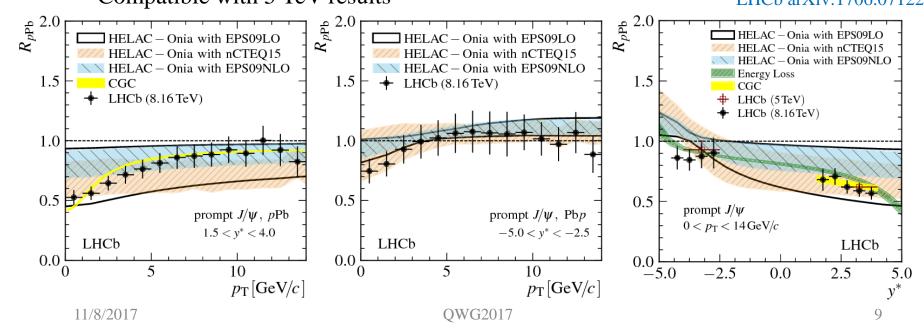


LHCb arXiv:1706.07122

- Separation of prompt and nonprompt J/ψ with $p_{\rm T}$ down to 0
- Fraction from *b* hadrons:

$$f_b = \frac{\frac{\mathrm{d}^2 \sigma_{J/\psi\text{-from-}b}}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y^*}}{\frac{\mathrm{d}^2 \sigma_{\mathrm{Prompt}J/\psi}}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y^*} + \frac{\mathrm{d}^2 \sigma_{J/\psi\text{-from-}b}}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y^*}}$$

- *pp*, forward, backward compared:
 - similar trends ٠
 - Increasing with $p_{\rm T}$
 - Small differences at low $p_{\rm T}$: cold nuclear matter effects different for the prompt and nonprompt



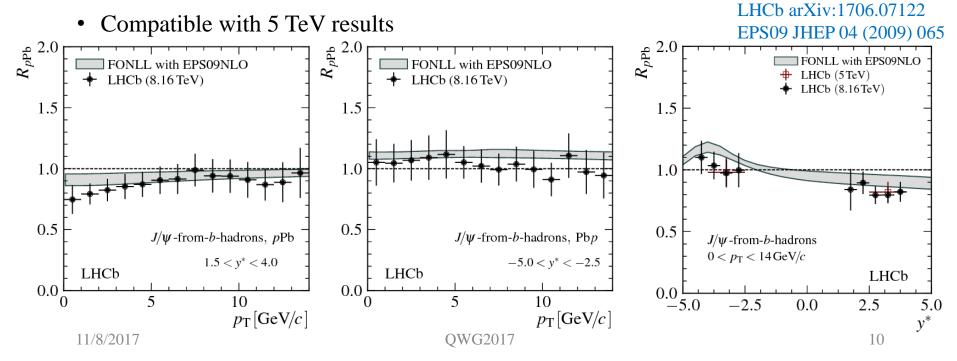
8

Prompt J/ψ at 8 TeV nuclear modification factor in *p*Pb

 $R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\mathrm{d}\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}{\mathrm{d}\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}, \ A=208$

- pp reference: interpolation of LHCb measurements at 7, 8 and 13 TeV
- Forward rapidity: suppression up to 50% at low $p_{\rm T}$, decreasing with increasing $p_{\rm T}$
- Backward rapidity: closer to unity
- Overall agreement with models with large uncertainties on the gluon PDFs at low x
- Compatible with 5 TeV results

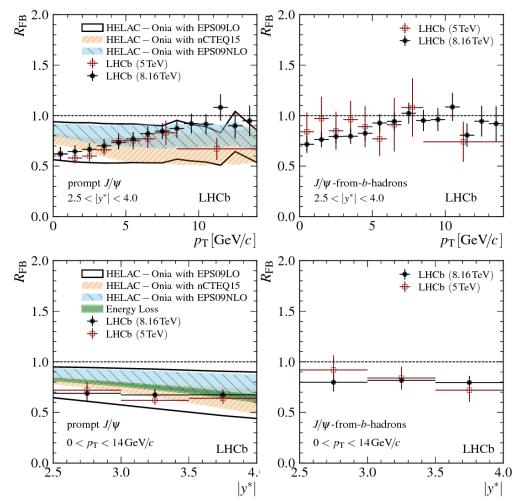
LHCb arXiv:1706.07122



J/ψ -from-*b*-hadrons at 8 TeV nuclear modification factor in *p*Pb

 $R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\mathrm{d}\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}{\mathrm{d}\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}, A=208$

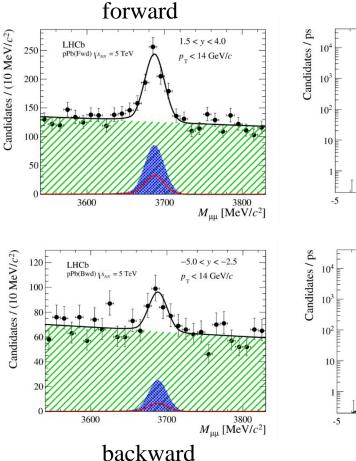
- pp reference: interpolation of LHCb measurements at 7, 8 and 13 TeV
- Forward rapidity: smaller suppression up to 30% at low $p_{\rm T}$, reach unity at higher $p_{\rm T}$
- Backward: compatible with unity
- FONLL with EPS09NLO consistent with data

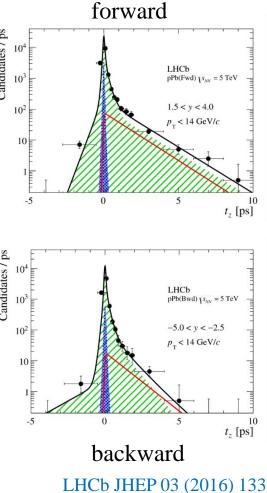


LHCb arXiv:1706.07122

Prompt J/ψ at 8 TeV forward-backward production ratio

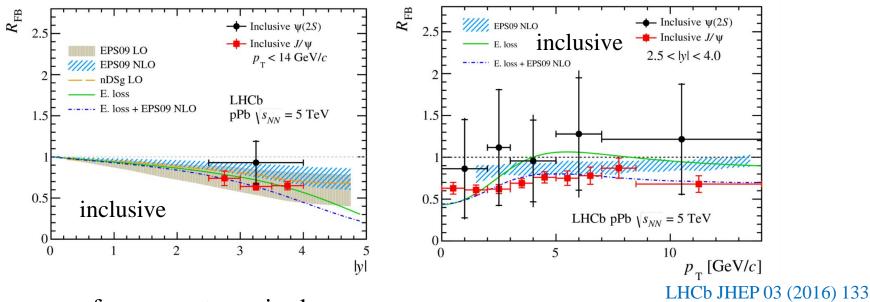
- $R_{\text{FB}} = \frac{\mathrm{d}\sigma(+|y^*|,p_{\mathrm{T}})/\mathrm{d}x}{\mathrm{d}\sigma(-|y^*|,p_{\mathrm{T}})/\mathrm{d}x}$
- *R*_{FB} does not need inputs from *pp* collisions.
- Prompt J/ψ :
 - Clear forward-backward asymmetry
 - Increasing trend with increasing $p_{\rm T}$
- Nonprompt J/ψ :
 - Closer to unity
- Models for prompt J/ψ only
- Consistent with 5 TeV results

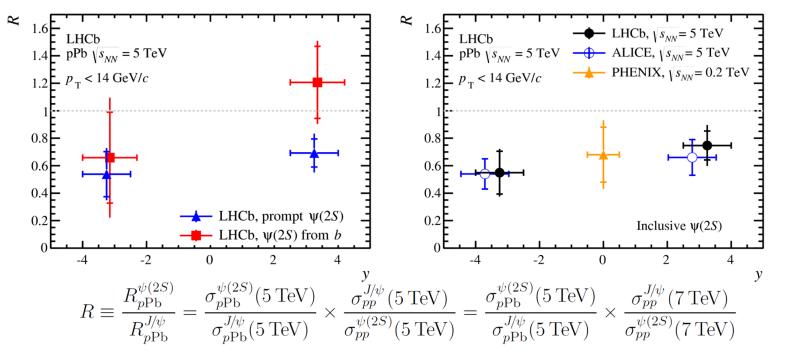



$\psi(2S)$ results at 5 TeV

- Very low binding energy
- Reconstructed through $\psi(2S) \rightarrow \mu^+ \mu^-$
- Signal extraction with 2D simultaneous fit to mass and the pseudo proper decay time

$$t_z \equiv \frac{\left(z_{J/\psi} - z_{PV}\right) \times M_{J/\psi}}{p_z}$$

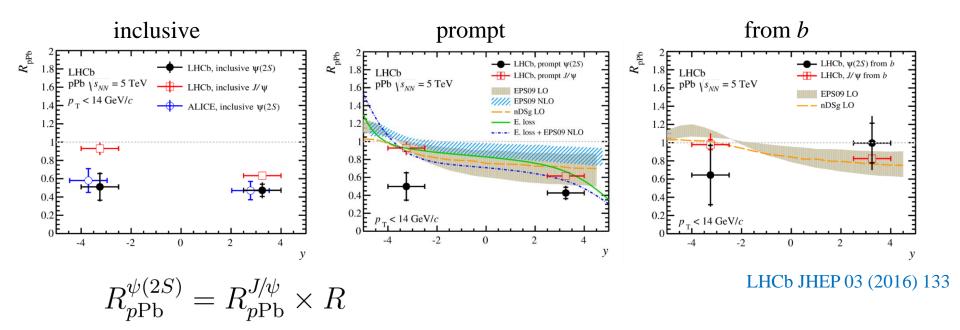

• Prompt and nonprompt (from-*b*-hadrons) separated down to $p_{\rm T} \sim 0$


$\psi(2S)$ results at 5 TeV forward-backward production ratio

- *pp* reference not required
- Large experimental uncertainties
- Compatible with both unity and inclusive $J/\psi R_{\rm FB}$
- Trend towards smaller asymmetry for $\psi(2S)$
- Expect to resolve with 2016 *p*Pb data (20x more than 2013)

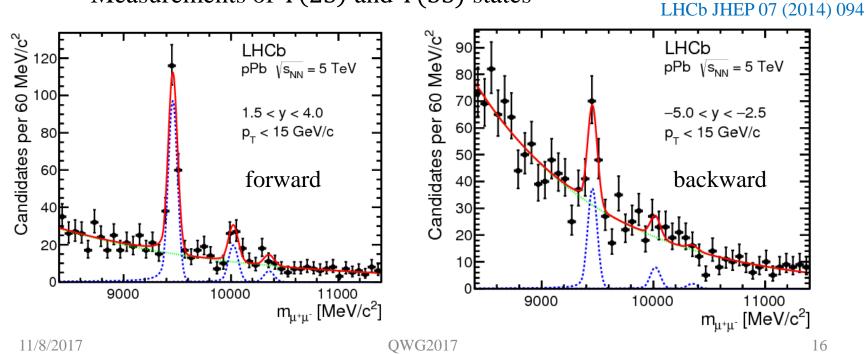
$\psi(2S)$ results at 5 TeV Relative suppression with respect to J/ψ

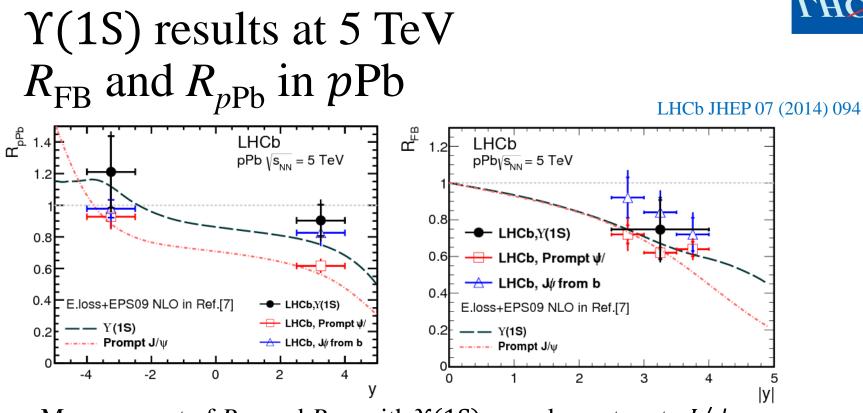
- Intriguing stronger suppression for prompt $\psi(2S)$ than for prompt J/ψ
- $\psi(2S)$ from b compatible with unity within large uncertainties
 - Expect similar suppression for $\psi(2S)$ from b and J/ψ from b
- Results for inclusive $\psi(2S)$ consistent with ALICE measurement


 $\frac{\sigma_{pp}^{J/\psi}(5 \text{ TeV})}{\psi(2S)(5 \text{ TeV})} = \frac{\sigma_{pp}^{J/\psi}(7 \text{ TeV})}{\psi(2S)(5 \text{ TeV})}$

LHCb JHEP 1603 (2016) 133 ALICE JHEP 12 (2014) 073 PHENIX PRL 111 (2013) 202301

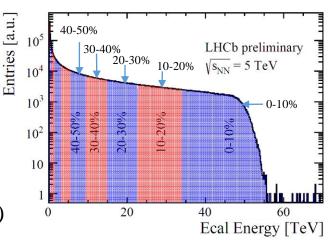
QWG2017

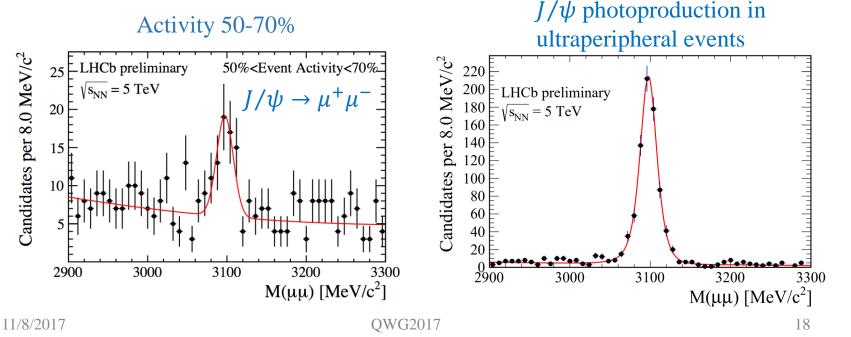

$\psi(2S)$ results at 5 TeV nuclear modification factor in *p*Pb


- $R_{pPb}(\psi(2S))$ calculated from $R_{pPb}(J/\psi)$
 - pp reference for J/ψ at 5 TeV is interpolated from measurements at 2.76, 7 and 8 TeV
- Inclusive $\psi(2S)$: consistent with ALICE results
- Prompt $\psi(2S)$: more suppressed than prompt J/ψ
 - E. loss + shadowing cannot explain prompt $\psi(2S)$ suppression in the backward region
 - Other mechanism: comover effects?
- $\psi(2S)$ from b: consistent with J/ψ from b

Υ results at 5 TeV

- Reconstructed through dimuon decay channel
- Clear separation between Y states
- Statistics limited for
 - Differential measurement
 - Measurements of $\Upsilon(2S)$ and $\Upsilon(3S)$ states

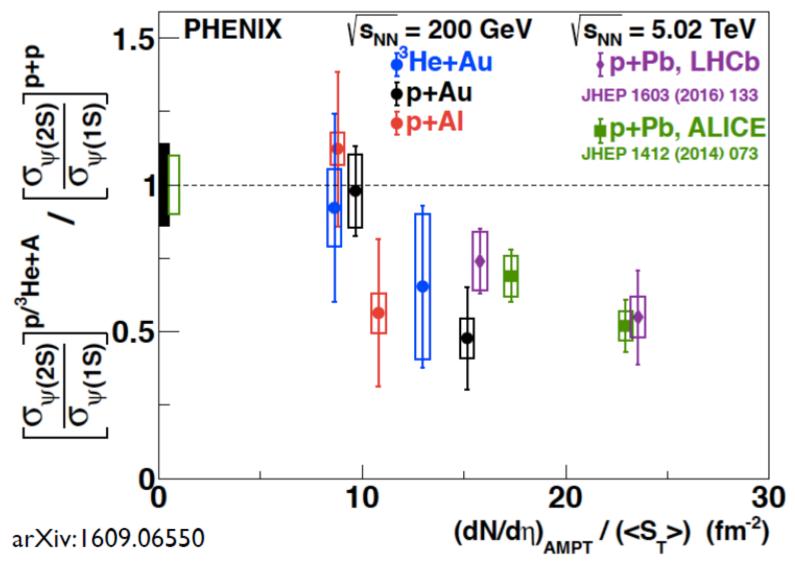



- Measurement of $R_{\rm FB}$ and $R_{p\rm Pb}$ with $\Upsilon(1S)$ complementary to J/ψ
- Suppression in forward region smaller than J/ψ
- Suppression in forward region close to J/ψ from b (CNM effects on b hadrons)
- Possible enhancement in backward region due to anti-shadowing
- Energy loss + shadowing describes data well

PbPb collisions

- December 2015: first LHCb PbPb data taken
- $\sqrt{s_{NN}} = 5 \text{ TeV} (3-5 \ \mu \text{b}^{-1})$
- Event classification: total energy in the calorimeters (Ecal)
- Analyses limited by saturation in Vertex Locator (VELO)
- Track reconstruction: 50-100% event activity (~15k clusters)

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015


Conclusion

- LHCb successfully participated in proton-lead data-taking in 2013 and 2016
 - Precision measurement of J/ψ performed with $p_{\rm T}$ down to 0
 - Measurements of $\psi(2S)$ and $\Upsilon(1S)$ show visible cold nuclear matter effects
 - Preferential suppression of prompt $\psi(2S)$ at backward rapidity
- 2016 *p*Pb dataset with 20x more statistics expected to bring significant improvements
- A small sample of PbPb collisions collected in 2015
 - Ongoing analyses on semi-central to peripheral collisions

backup

