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Quarkonia in the Quark-Gluon Plasma

QGP fireball in heavy-ion collisions
▶ LHC: Pb+Pb

√
sNN = 5.5 TeV, RHIC: Au+Au

√
sNN = 0.2 TeV

▶ Number of produced particles ∼ 20000, Temperature ∼ 0.5 GeV

Heavy quark production mostly in initial hard collisions (Mc,b ≫ T )

√
sNN [TeV] Ncc̄ Nbb̄ T [GeV]

RHIC 0.2 10 - 0.4
LHC 5.5 100 3 0.8

Quarkonia are impurity probes for QGP
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Quarkonium production out of hot QGP

p
n

K
π

D
B

J/ψ

Y

Classic scenarios for quarkonium production in heavy-ion collisions

1. Suppression due to Debye screened potential in QGP [Matsui-Satz (86)]

V (r) = −α
r
e−mDr

2. Enhanced statistical production from initially uncorrelated pairs
[BraunMunzinger-Stachel (00), Thews-Schroedter-Rafelski (01)]

▶ Important for J/ψ at the LHC? (Ncc̄ ∼ 100)

How do quarkonia and heavy quarks propagate in QGP?
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Why open quantum systems?

Production rate is calculated with reduced density matrix of a quarkonium

NΥ(tF ) =

∫
x,y
ρbb̄(x, y, tF )PΥ(y, x)︸ ︷︷ ︸

projection

Open quantum system (quarkonium + QGP)

system
(!!")

environment
(QGP)Hint

1. Total density matrix & von Neumann equation:

ρtot(t) =
∑

Ψ∈Htot

wΨ|Ψ(t)⟩⟨Ψ(t)|, i
d

dt
ρtot = [Htot, ρtot]

2. Reduced density matrix & Master equation:

ρ
QQ̄

(t) ≡ Tr
QGP
ρtot(t), i

d

dt
ρ
QQ̄

= [potential + fluctuation + dissipation]

Quarkonia probe in-medium forces in the QGP
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Stochastic Potential Model
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Stochastic potential model [Akamatsu-Rothkopf (12)]

Energy of a quarkonium in a thermal bath r/2-r/2

H = −∇2

M
+ V (r)︸︷︷︸

screening

+ θ(t, r/2)︸ ︷︷ ︸
noise for Q

− θ(t,−r/2)︸ ︷︷ ︸
noise for Q̄

⟨θ(t1, x1)θ(t2, x2)⟩ = δ(t1 − t2)D(x1 − x2)

Debye screened potential and noise with finite correlation length

V (r) = −αeff

r
e−mDr, D(r) = γ exp[−r2/l2corr]

αeff ∼ αs, mD ∼ gT, γ ∼ αsT, lcorr ∼ 1/gT
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lcorr controls the effectiveness of wavefunction decoherence
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Relation to the complex potential

Real-time quarkonium propagator with M = ∞
▶ Averaged wave function in the stochastic potential model

G>(t, 0; r) = ⟨Ψ(t, r)⟩θ = exp[−it {V (r)− i(D(0)−D(r))}︸ ︷︷ ︸
complex potential VRe + iVIm

]

▶ Perturbation theory for r ∼ 1/gT (Landau damping)
[Laine et al (07), Beraudo et al (08), Brambilla et al (08)]

VIm(r) = −g
2TCF

4π
ϕ(mDr), ϕ(x) = 2

∫ ∞

0

dz z

(z2 + 1)2

[
1− sin(zx)

zx

]
,

▶ Lattice QCD simulation [Rothkopf et al (17,. . .,12)]

position and width yield the values of the in-medium
potential, which are plotted as colored points in Fig. 8.
We have shifted the values of Re½V" by hand for better

readability in the top panel of Fig. 8, as indicated by the
gray arrow, and plot the statistical errors as colored bars.
The systematic errors denoted by the gray error bands have
been determined only for part of the ensembles, in
particular, however, among the newly generated ones
Nτ ¼ 60, 64, and 68. We use the variation from changing
the default model amplitude by 2 orders of magnitude as
well as discarding 10% of the small τ and/or 10% of the
large τ ≈ β data points as an estimate.
Just as in the previous analysiswe find that there appears to

exist only a gradual change in behavior of Re½V" with
increasing temperature. Due to limited statistics in the older
analysis, Nτ ¼ 64 had seemed to exhibit an anomalously
strong linear rise. This effect vanishes after increasing
statistics, and the slope at Nτ ¼ 64 now lies within the trend
of the neighboringNτ ¼ 60 andNτ ¼ 72. On the other hand,
it is now Nτ ¼ 68, which is found to show an almost a
vacuumlike linear rise. The reason for this outlier, however,
lies in the fact that the Nτ ¼ 68 simulations show extremely
long autocorrelation times inMonte Carlo time. In turn, even
after collecting more than 2100 measurements on individual
configuration, the actual statistics are reduced by around
a factor 10 to 100, making this result rather unreliable.
Interestingly this issue does not lead to an increase in the
systematic error bars compared to e.g. Nτ ¼ 64.
For the sake of completeness we continue toward

performing the Gauss-law fit by determining first the
vacuum parameters that enter into this Ansatz from the
lowest temperature result at Nτ ¼ 192. Restricting to
the region of r < 0.3 fm, we obtain

αS ¼ 0.201$ 0.004;

σ ¼ 0.186$ 0.008 GeV2

c ¼ 2.58$ 0.01 GeV; ð17Þ

where the errors are again estimated from a variation of the
upper and lower ends of the fitting range by six steps each.
These agree within errors with our previous values pub-
lished in Ref. [18]. The Debye mass parameter we find to fit
the in-medium values of Re½V" at β ¼ 7 best are compiled
in Table IV and plotted in Fig. 9. In addition we also
perform a fit to the extracted values based on Eq. (15),
which yields as best fit parameters

κ1 ¼ −0.67$ 0.06; κ2 ¼ 0.34$ 0.06 ð18Þ

and which is plotted as a solid line in Fig. 9. The
uncertainties in the κ values arise from the error in
estimating mD itself.
Let us discuss in detail the temperature dependence of

the Debye mass parameter in Fig. 9. It significantly differs

FIG. 8. Extracted values of the real (top) and imaginary parts
(bottom) of the in-medium potential (colored points) at β ¼ 7.
The values of Re½V" are shifted manually in the y direction for
better readability as indicated by the gray arrow. The values of
Im½V" are plotted individually as a grid from lowest temperature
(top left box) to highest temperature (bottom right box). The
colored error bars denote statistical uncertainty, while the gray
error band denotes systematic uncertainty.

YANNIS BURNIER and ALEXANDER ROTHKOPF PHYSICAL REVIEW D 95, 054511 (2017)

054511-10

→ VIm(r) ∼ −γ
[
1− e−r2/l2corr

]
Noise correlation function is extracted from the imaginary potential
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1-dim simulation of quarkonia in a Bjorken-expanding medium

1. Temperature in a Bjorken expansion

T (t) = T0

(
t0

t0 + t

)1/3

, T0 = 0.4 GeV, t0 = 1 fm

2. Temperature dependent parametrization

V (r) = −αeff

r
e−mDr, D(r) = γ exp[−r2/l2corr]

m [GeV] αeff mD γ lcorr
4.8 / 1.18 0.3 T 0.3T 1/T

3. Start from vacuum eigenstates and calculate their survival probability

Vvac(r) = −αeff

r
+ σr, σ = 1 GeV/fm, NΥ(t) = ⟨∥Ψ∗

Υ ·Ψbb̄(t)∥2⟩
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Quarkonia in a Bjorken-expanding QGP [Kajimoto et al (17)]
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▶ Decoherence more effective for larger radius lΨ

lbb̄Ψ < lcc̄Ψ , l
ground
Ψ < lexcitedΨ → Rbb̄

AA > Rcc̄
AA, R

ground
AA > Rexcited

AA

▶ Noise enhances quarkonium dissociation rate

(Rcomplex
AA <)Rstochastic

AA < RDebye
AA

Decoherence gives an additional dynamical dissociation mechanism
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Theoretical Developments
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Stochastic potential and Lindblad master equation

Stochastic potential does not describe dissipation and overheats quarkonia

i
d

dt
ρ
QQ̄

= [potential + fluctuation + dissipation]

Lindblad form master equation [Lindblad (76)]

1. General form ensuring positivity of the density matrix

d

dt
ρ
QQ̄

(t) = −i[H, ρ
QQ̄

] +
N∑
i=1

(
LiρQQ̄

L†
i −

1

2
L†
iLiρQQ̄

− 1

2
ρ
QQ̄
L†
iLi

)
2. Lindblad operators for stochastic potential and dissipation [Akamatsu (15)]

Lk =
√
D(k)eikx︸ ︷︷ ︸
∆pQ = k

×(1 or ta)︸ ︷︷ ︸
U(1) or SU(Nc)

→
√
D(k)eikx/2

[
1+

ik · ∇x

4MT︸ ︷︷ ︸
∆xQ ∼ k/MT

]
eikx/2

▶ Dissipation is given by introducing recoil of heavy quark in a collision

Quantum dissipation will become important in phenomenological studies
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Recent developments of open quantum systems for quarkonia

Color singlet-octet transitions in QGP in the Lindblad form [Brambilla et al (17)]

▶ Based on potential NRQCD effective field theory (visit Antonio’s talk)

L0
i =

√
κ

N2
c − 1

ri
(

0 1√
N2

c − 1 0

)
, L1

i =

√
(N2

c − 4)κ

2(N2
c − 1)

ri
(
0 0
0 1

)
▶ Same structure found in SU(Nc) stochastic potential at short distance

Generalized Langevin dynamics for a heavy quark pair [Blaizot et al (16)]

▶ Correlation not only the potential but also drag and random forces
▶ Interference between Q+ g → Q+ g and Q̄+ g → Q̄+ g

Mr̈ +
βg2

2
(H(0)ṙ −H(s) ˙̄r)− g2∇V (s) = ξ(s, t)

M ¨̄r +
βg2

2
(H(0) ˙̄r −H(s)ṙ) + g2∇V (s) = ξ̄(s, t)

⟨ξ(s, t)ξ(s, t′)⟩ = g2H(0)δ(t− t′), ⟨ξ(s, t)ξ̄(s, t′)⟩ = −g2H(s)δ(t− t′)
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First simulation of quantum dissipation of quarkonia

1-dim simulation of quantum master equation [DeBoni (17)]

▶ Time evolution of the density matrix
J
H
E
P
0
8
(
2
0
1
7
)
0
6
4

Figure 7. Time evolution of the real part of the density matrix for the thermal scattering state
defined before, propagating through a bath with lenv = 0.25 fm. Top: the medium disturbs the
system at the very early times. Centre: quantum decoherence appears as a suppression of the
off-diagonal elements of the density matrix. Bottom: the state is squeezed around y = 0 . Notice
the different scale in the y direction.

In order to see how the dissociation and recombination mechanisms depend on the mass

of the heavy quarks, one can find the numerical results for the bound-state probabilities

for a heavier quark with mass (m = 4.7GeV) in appendix D.

8 Summary and outlook

It has been shown how to derive a Lindblad equation for non relativistic heavy quarks and

antiquarks propagating out of equilibrium in a thermalised quark gluon plasma, within

the framework of open quantum systems and starting from the underlying gauge theory.

To achieve this, an abelian model for the plasma has been used, together with some well-

defined approximations, including the perturbative expansion and the Markovian limit. All

– 34 –
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Conclusion and outlook

▶ Quarkonium in QGP is described as open quantum system

1. Stochastic potential is simulated for a Bjorken expanding background
2. Developments in the Lindblad master equation

▶ Sophisticate modeling and numerics toward realistic phenomenology
1. Simulation of master equation in 1→3 dimensions with quantum

dissipation and colors
▶ Numerical simulation with an extended stochastic Schrödinger equation

[Akamatsu et al, in progress]

2. Classicalization: Matching the overlapping regimes of decoherence and
classical dissipation
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Backup sildes
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Open quantum system from microscopic theory

1. Path integral formula

ρtot(t, x, y︸︷︷︸
∈ QQ̄

, X, Y︸ ︷︷ ︸
∈ QGP

) =

∫
dx0dy0dX0dY0

∫ x,y,X,Y

x0,y0,X0,Y0

D[x̄, ȳ, X̄, Ȳ ]

× ρtot(0, x0, y0, X0, Y0)︸ ︷︷ ︸
factorizable ρ

QQ̄
(0)⊗ ρeqQGP

eiStot[x̄,X̄]−iStot[ȳ,Ȳ ]

2. Influence functional SIF [Feynman-Vernon (63)]

▶ Average over the QGP environment by tracing out ρtot

ρ
QQ̄

(t, x, y) =

∫
dXdY δ(X − Y )︸ ︷︷ ︸

trace out QGP = path closed at t

ρtot(t, x, y,X, Y )

=

∫
dx0dy0ρQQ̄

(0, x0, y0)

∫ x,y

x0,y0

D[x̄, ȳ]eiSQQ̄[x̄]−iSQQ̄[ȳ]+iSIF[x̄,ȳ]

Influence functional contains all the information of the open system
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Coarse graining in the influence functional

1. Influence functional up to quadratic order:

iSIF[x, y] =− 1

2

∫ t

0
dt′dt′′(x, y)(t′)

(
G11 −G12

−G21 G22

)
(t′,t′′)︸ ︷︷ ︸

correlation functions of X,Y

(
x
y

)
(t′′)

+ . . .

2. Time coarse graining by derivative expansion [Diosi (93), Akamatsu (15)]

iSIF = iSfluct︸ ︷︷ ︸
∝ xx

+ iSdiss︸ ︷︷ ︸
∝ xẋ

+ iSL︸︷︷︸
∝ ẋẋ

3. Lindblad operators for heavy quarks for r ∼ 1/gT [Akamatsu (15)]

▶ Recoil of heavy quark in a collision

Lk =
√
D(k)eikx︸ ︷︷ ︸
Sfluct only

+Sdiss+SL−−−−−−→
√
D(k)eikx/2

[
1 +

ik · ∇x

4MT︸ ︷︷ ︸
∆xQ ∼ k/MT

]
eikx/2

Dissipation is introduced by time coarse graining the influence functional
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