

CIMS Results on Upsilon Pair Production

Geng CHEN Peking University On behalf of the CMS calibration

Nov 9^{th} , 2017

QWG-2017 @ Beijing

- ✤ CMS @ LHC
- Motivation

CMS PAS BPH-14-008 JHEP 05 (2017) 013

- ✤ Analysis strategy
- Results

Summary

Public page: http://cms-results.web.cern.ch/cms-results/public-results/publications/BPH-14-008/index.html

CMS Overview

Relevant sub-detector elements for this analysis are inner tracking system and muon system.

CMS Performance

> Excellent muon/silicon detectors

for quarkonium

Muon system:

- ✓ High-purity muon identification.
- ✓ Good dimuon mass resolution $\frac{\sigma(m)}{m}$ ~(0.6%) for J/ψ.
- ✓ Strong background rejection capabilities.

Silicon tracking detector, B=3.8T

- ✓ Excellent track momentum resolution $(\frac{\Delta P_T}{P_T} \sim 1\%)$
- Excellent vertex reconstruction and impact parameter resolution

QWG-2017 @Beijing

Motivation for Double Quarkonium Production

- ➢ Production of double-quarkonium have been focus of interest since the observation of first J/ψ -pair production at NA3 in 1982. High luminosity and high center-of-mass energy at the LHC allows to probe production mechanism and test models.
- ➢Pair production quarkonium can provide important information about the production mechanism (SPS or DPS).

Motivation for Double Quarkonium Production

- >LHCb, CMS and ATLAS has measured prompt J/ψ -pair production. LHCb: Phys.Lett. B707 (2012) 52–59 ATLAS: Eur. Phys. J. C 77 (2017) 76
- > The production of Υ -pair has never been observed/searched in any experiment.

CMS: IHEP 09 (2014) 094

- New measurements in this frontier will potentially benefit other measurements:
 - i. Rare Higgs decay to pair of quarkonium
 - ii. Enhance sensitivity of matrix elements for SPS production
 - iii.Test factorization hypothesis for DPS production (σ_{eff})
 - iv. Resonance searches (four B bound states)

YY Selection

- > The data we are using is collected by CMS detector in 2012 with an integrated luminosity of $20.07 fb^{-1}$ at 8TeV.
- ➢ Require events contains four muons with zero total charge.
 ➢ Require muons are in detector coverage; $P_T^{\mu} > 3.5 \text{GeV}$, $|\eta^{\mu}| < 2.4$.
- Muons required to satisfy CMS soft muon identification criteria.
- Require four muons system and dimuon system point to the same vertex.

Selected YY Candidates

Two-dimensional scatter plot of selected YY candidates.
 Significant excess of events around 9.5GeV.

$\textbf{Acceptance} \times \textbf{Efficiency}$

- Acceptance and efficiency corrections are done on eventbases using data-embedding method.
- This method is expected to minimize model dependence of correction factors.
- Acceptance corrections are determined by simulation isotropic decay of Y mesons into pair of muons. Acceptance for each event is the number of times Y mesons are found in detector coverage divided by the total trials.
- Efficiency corrections are calculated by repeatedly substituting measured muon momenta into a CMS reconstruction chain.
- Acceptance and efficiency corrections have been validated using signal MC SPS and DPS models.

Yield Extraction and Fitting Results

 \succ Each muon pair is modeled as Signal Peak + Flat Background

- ✓ **Signal Model: Double Crystal Ball function**. Parameters are extracted from signal MC samples and fixed.
- \checkmark Background Model: 1st order Chebyshev Polynomial.

Systematic Uncertainties

Several sources of systematic uncertainties have been considered.

Component	Uncertainty (%)
Resonance shape	7.9
Simulation	4.9
Efficiency	3.7
Acceptance	2.8
Integrated luminosity	2.6
Total	10.7

 \succ Uncertainty due to polarization of Υ is studied separately for various extreme scenarios, highest variation is quoted.

$\lambda_{ heta 1}$	+1	+1	+0.5	-0.5	+0.5	-1	+1	-0.5	-0.5	-1
$\lambda_{ heta 2}$	+1	+0.5	+0.5	+0.5	-0.5	+1	-1	-0.5	-1	-1
Change (%)	+36	+26	+18	-2	-3	-9	-9	-19	-29	-38

Table 2. Relative change in percent of the acceptance-corrected $\Upsilon(1S)\Upsilon(1S)$ yield for different polarization assumptions with respect to that for $\lambda_{\theta 1} = \lambda_{\theta 2} = 0$.

 \succ Uncertainty due to BR is quoted separately.

Cross Section σ_{fid}

Assuming both $\Upsilon(1S)$ mesons decay isotropically, the total cross section of $\Upsilon(1S)$ pair production within $|y^{\Upsilon}| < 2.0$ and $P_T^{\Upsilon} < 50 \text{GeV}$

 $\sigma_{\text{fid}}(\text{pp} \rightarrow \Upsilon(1S)\Upsilon(1S)) = 68.8 \pm 12.7(\text{stat.}) \pm 7.4(\text{syst.}) \pm 2.8(\mathcal{B})\text{pb}$

- ✓ Different assumptions of $\Upsilon(1S)$ polarization imply modifications to the cross section ranging from -38% to 36%.
- ✓ Uncertainty of cross section is dominated by statistics (~20%). Both individual and total systematic uncertainty are below the statistical precision.
 IHEP 05 (2017) 013

Cross Section σ_{eff}

$$\sigma_{\text{eff}} = \frac{[\sigma(\Upsilon)]^2}{2 f_{\text{DPS}} \sigma_{\text{fid}} \left[\mathcal{B}(\Upsilon(1\text{S}) \to \mu^+ \mu^-) \right]^2}$$

An effective cross section is also estimated using our result:

$$\begin{split} f_{DPS} &\approx 10\%, \qquad \sigma_{eff} \approx 6.6 mb \\ & \text{or} \\ f_{DPS} &\approx 30\%, \qquad \sigma_{eff} \approx 2.2 mb \end{split}$$
 Consistent with the range of values from heavy-quarkonium measurements (2-8mb), smaller than that from multi-jet studies (12-20mb).

σ_{eff} for Double Parton Scattering

- ✓ Data largely in agreement with NLO* SPS + LO DPS, contributions from feed-down and/or intrinsic parton transverse momentum may be needed.
- σ_{eff} measured from prompt di-J/ψ and di-Y(1S) generally lower than from other final states.
- ✓ Theoretical predictions of the dependence of σ_{eff} on the process and the centre-ofmass energy are needed. Expect a lot more $\sqrt{s} = 13$ TeV results.

Summary

- Observed simultaneous YY events for the first time.
- Cross section of simultaneous production of two Y(1S) mesons is measured for the first time. No enough statistics to separate SPS and DPS fractions.
- Provide a benchmark for terra-b quark state at LHC.
- Planning to extend study on differential cross section with the new data.

Additional Materials

References

- [1] NA3 Collaboration Collaboration, "Evidence for $\psi\psi$ Production in π Interactions at 150-GeV/c and 280-GeV/c", Phys.Lett. B114 (1982) 457
- [2] CMS Collaboration, "Measurement of the Y(1S), Y(2S), and Y(3S) cross sections in pp collisions at sqrt(s) = 7 TeV", Phys. Lett. B727 (2013) 101-125
- [3] LHCb Collaboration, "Measurement of Upsilon production in pp collisions sqrt(s) = 7 TeV", Eur. Phys. J. C72 (2012) 2025
- [4] LHCb Collaboration Collaboration, "Observation of J/ ψ pair production in pp collisions at s = 7TeV", Phys.Lett. B707 (2012) 52–59
- [5] CMS Collaboration, "Measurement of prompt J/ ψ pair production in pp collisions at s= 7 TeV", JHEP 09 (2014) 094
- [6] ALTAS Collaboration, "Measurement of the prompt J/ ψ pair production cross-section in pp collisions ar s = 8 TeV with the ATLAS detector", Eur. Phys. J. C 77 (2017) 76 [7] CMS Collaboration, "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC", Phys. Lett. B716 (2012) 30
- [8] CMS Collaboration, "Description and performance of track and primary-vertex reconstruction with the CMS tracker", JINST 9 (2014), no. 10, P10009
- [9] CMS Collaboration, "Performance of CMS muon reconstruction in pp collision events at s = 7 TeV", JINST 7 (2012) P10002
- [10] Technical Report CMS-PAS-LUM-13-001, CERN, Geneva, 2013
- [11] "Upsilon-meson pair production at LHC", Phys. Rev. D87 (2013) 054023