

Measurement of the J/ψ pair production cross-section in pp collisions at $\sqrt{s} = 13$ TeV

Liupan An On behalf of the LHCb collaboration

Tsinghua University

QWG 2017, Nov 9th 2017 @ Beijing, China

Motivation

Quarkonium pair production

Single-parton scattering (SPS)

 Probe the quarkonium production mechanism puzzle;

*color-singlet process in leadingorder NRQCD forbids feed-down from excited C-even states

 Access internal dynamics of protons, e.g. pin down the linearly-polarized gluons inside unpolarized protons [arXiv:1710.01684]

Double-parton scattering (DPS)

- Provide information on parton transverse profile & correlations in proton
- ✓ Help better understand background (Z + bb, W⁺W⁺ etc.) in searches for NP

Double parton scattering

> The most popular model due to **limited knowledge**:

$$\sigma_{Q_1Q_2} = \frac{1}{1 + \delta_{Q_1Q_2}} \sum_{i,j,k,l} \int dx_1 dx_2 dx_1' dx_2' d^2 \mathbf{b_1} d^2 \mathbf{b_2} d^2 \mathbf{b_2} d^2 \mathbf{b_1} d^2 \mathbf{b_2} d^2 \mathbf$$

 $\times \Gamma_{ij}(x_1, x_2, \mathbf{b_1}, \mathbf{b_2}) \times \hat{\sigma}_{ik}^{Q_1}(x_1, x_1') \hat{\sigma}_{jl}^{Q_2}(x_2, x_2') \times \Gamma_{kl}(x_1', x_2', \mathbf{b_1} - \mathbf{b}, \mathbf{b_2} - \mathbf{b})$

Generalized double parton PDF SPS parton-level cross-section

✓ Assumption 1: factorization of transverse & longitudinal components

$$\Gamma_{ij}(x_1, x_2, \boldsymbol{b}_1, \boldsymbol{b}_2) = D_{ij}(x_1, x_2)T_{ij}(\boldsymbol{b}_1, \boldsymbol{b}_2)$$

✓ Assumption 2: no correlation

$$D_{ij}(x_1, x_2) = f_i(x_1)f_j(x_2), \qquad T_{ij}(\boldsymbol{b}_1, \boldsymbol{b}_2) = T_i(\boldsymbol{b}_1)T_j(\boldsymbol{b}_2)$$

 \Rightarrow Pocket formula

$$\sigma_{Q_1Q_2} = \frac{1}{1 + \delta_{Q_1Q_2}} \frac{\sigma_{Q_1}\sigma_{Q_2}}{\sigma_{\text{eff}}}$$

✓ $\sigma_{\text{eff}} = \left[\int d^2 \boldsymbol{b} F(\boldsymbol{b})^2 \right], F(\boldsymbol{b}) = \int T(\boldsymbol{b}_i) T(\boldsymbol{b}_i - \boldsymbol{b}) d^2 \boldsymbol{b}_i$: should be universal! 11/9/17 Liupan An 3/15

- \succ General purpose of DPS measurements: measure $\sigma_{\rm eff}$
 - \checkmark validate its universality or probe the dependence on process and energy

 \succ J/ψ pair production at LHCb will be an important input

The LHCb detector

> A single-arm forward region spectrometer covering $2 < \eta < 5$

 \blacktriangleright RunI (2011-2012): $\mathcal{L}_{int} = 3 \text{ fb}^{-1} @ 7 \& 8 \text{ TeV}; \sigma(b\bar{b}) \approx 250 \text{ }\mu\text{b}^{-1} @ 7 \text{ TeV}$ [EPJC 71 (2011) 1645]

 \succ RunII (2015-2018): $\mathcal{L}_{int} = 5 \text{ fb}^{-1} @ 13 \& 14 \text{ TeV}$; $\sigma(b\bar{b}) \approx 500 \ \mu b^{-1} @ 13 \text{ TeV} [JHEP 10 (2015) 172]$

✓ Vertex Locator: $\sigma_{PV,x/y}$ ~10 µm, $\sigma_{PV,z}$ ~60 µm

[JINST 3 (2008) S08005]

- ✓ Tracking (TT, T1-T3): $\Delta p/p = 0.5 0.6\%$ for 5 GeV/*c*
- ✓ **RICHs:** $\varepsilon(K \to K) \sim 95\%$ @ misID rate $(\pi \to K) \sim 5\%$
- ✓ Muon system (M1-M5): $\varepsilon(\mu \rightarrow \mu)$ ~97% @ misID rate ($\pi \rightarrow \mu$)~1 − 3%
- ✓ ECAL: $\sigma_E / E \sim 10\% / \sqrt{E} \otimes 1\%$ (*E* in GeV)
- ✓ HCAL: $\sigma_E / E \sim 70\% / \sqrt{E} \otimes 10\%$ (*E* in GeV)

J/ψ pair @ 13 TeV [JHEP 06 (2017) 047]

 \blacktriangleright Data sample: pp collision data collected by LHCb at $\sqrt{s}=13~{\rm TeV}$ corresponding to 279 ${\rm pb}^{-1}$

hloor Fiducial region: both J/ψ mesons $p_{
m T} < 10~{
m GeV}/c$, 2.0 < y < 4.5

➤The master relation

$$\sigma = \frac{N^{cor}}{L_{int} \times \mathcal{B}^2(J/\psi \to \mu^+ \mu^-)}$$

N^{cor}: signal yield after per-event efficiency correction
 Efficiencies estimated using data & simulation

Trigger targeted at selecting high quality muons; require either J/ψ to be triggered

Simple cuts applied

✓ Identified muons with good track quality; $p_{\rm T} > 0.65 \text{ GeV}/c$; 6 ; $<math>2 < \eta < 5$; good quality dimuon vertex

 \checkmark Four muons to come from the same PV

 \checkmark Duplicate tracks and multiple candidates removed

Cross-section

Signal yield obtained from simultaneous fit to the efficiency-corrected 2D $(M(\mu_1^+\mu_1^-), M(\mu_2^+\mu_2^-)))$ distribution

➢ Residual from-b component subtracted afterwards

✓ The contribution determined using simulation together with $\sigma(pp \rightarrow b\bar{b})$ and $\sigma(\text{prompt } J/\psi)$ from J/ψ production measurement [JHEP 10 (2015) 172]

≻Result:

$$\sigma(J/\psi J/\psi) = 15.2 \pm 1.0(\text{stat}) \pm 0.9(\text{syst}) \text{ nb}$$

11/9/17

Liupan An

Comparison to theory

			$\sigma(J/\psi J/\psi)$ [nb]	[JHEP 06 (2017) 047]
		no $p_{\rm T}$ cut	$p_{\rm T} > 1 {\rm GeV}/c$	$p_{\rm T} > 3 {\rm GeV}/c$
SPS -	LOCS	$1.3 \pm 0.1^{+3.2}_{-0.1}$		
	LOCO	$0.45 \pm 0.09^{+1.42+0.25}_{-0.36-0.34}$		
	$LO k_T$	$6.3^{+3.8+3.8}_{-1.6-2.6}$	$5.7^{+3.4+3.2}_{-1.5-2.1}$	$2.7^{+1.6+1.6}_{-0.7-1.0}$
	$\rm NLO^*CS'$		$4.3 \pm 0.1^{+9.9}_{-0.9}$	$1.6 \pm 0.1^{+3.3}_{-0.3}$
	$\rm NLO^*CS''$	$15.4 \pm 2.2^{+51}_{-12}$	$14.8 \pm 1.7^{+53}_{-12}$	$6.8 \pm 0.6^{+22}_{-5}$
	NLO CS	$11.9^{+4.6}_{-3.2}$		
	DPS	$8.1 \pm 0.9^{+1.6}_{-1.3}$	$7.5 \pm 0.8^{+1.5}_{-1.2}$	$4.9 \pm 0.5^{+1.0}_{-0.8}$
	LHCb result	$15.2 \pm 1.0 \pm 0.9$	$13.5 \pm 0.9 \pm 0.9$	$8.3 \pm 0.6 \pm 0.5$

DPS: assuming $\sigma_{\rm eff} = 14.5 \pm 1.7^{+1.7}_{-2.3} \, {\rm mb}$ [PRD 56 (1997) 3811]

≻LO CO : contribution very small

 \succ LO CS/ NLO* CS' and LO $k_{\rm T}$: need DPS contribution

NLO* CS'' and NLO CS : consistent with our measurement by itself; overestimated if there is DPS contribution

Differential cross-sections (I)

9/15

Differential cross-sections (II)

Comparison to theory

- > Differential cross-sections of different variables compared to theory predictions
 - ✓ Most significant indication of DPS comes from $|\Delta y|$
 - ✓ DPS contribution essential for the region $|\Delta y| > 1.5$
 - ✓ Also clear indication from $m(J/\psi J/\psi)$

[JHEP 06 (2017) 047]

DPS+SPS fits

12/15

Effective cross-section

> Determined using $\sigma_{\text{eff}} = \frac{1}{2} \frac{\sigma (J/\psi)^2}{\sigma_{\text{DPS}}}$; lying between 8.8~12.5 mb

One theoretical application

- With the differential production cross-sections measured, our measurement contains a wealth of information!
- It helps to measure the momentum-distribution of linearlypolarized gluons inside unpolarized protons

Liupan An

Summary

- $Figure J/\psi$ pair production at $\sqrt{s} = 13$ TeV measured at LHCb
 - ✓ Differential cross-sections as functions of various variables are given
 - ✓ Results show evidence for DPS contribution
 - $\checkmark \sigma_{\rm eff}$ determined using SPS+DPS template fits
 - ✓ HepData record available <u>http://dx.doi.org/10.17182/hepdata.79484</u>

Thank you!

Back up

Efficiency estimation

$\succ \varepsilon_{\text{tot}} = \varepsilon_{\text{acc}} \times \varepsilon_{\text{GEC}} \times \varepsilon_{\text{rec&sel}} \times \varepsilon_{\text{PID}} \times \varepsilon_{\text{trig}}$

$\checkmark \varepsilon_{\rm acc} \& \varepsilon_{\rm rec\&sel} \& \varepsilon_{\rm PID}$

- Factorization: $\varepsilon(J/\psi J/\psi) = \varepsilon(J/\psi 1) \times \varepsilon (J/\psi 2)$
- + $\varepsilon(J/\psi)$ estimated using simulated J/ψ sample; in bins of $J/\psi \, p_{\mathrm{T}}$ and y
- Track detection efficiency corrected using data-driven method
- $\varepsilon_{\rm PID}$ calibrated using data sample
- $\checkmark \varepsilon_{\text{GEC}}$: global event cut efficiency
 - Estimated from data

√ε_{trig}

- Factorization: $\varepsilon_{\text{trig}}(J/\psi J/\psi) = 1 (1 \varepsilon_{\text{trig}}(J/\psi 1)) \times (1 \varepsilon_{\text{trig}}(J/\psi 2))$
- $\varepsilon_{
 m trig}(J/\psi)$ estimated using simulated J/ψ sample; in bins of $J/\psi \, p_{
 m T}$ and y
- Validated using data sample