BSM Higgs decays with quarkonia

Blaženka Melić

Institut Ruđer Bošković, Zagreb

work done in collaboration with D.Becirevic,O.Sumensari (LPT Orsay) and M. Patra (IRB) arXiv: 1705.01112

Quarkonium 2017, Beijing, China, November 6-10, 2017

BSM Higgs decays with quarkonia

Outline

• Rare exclusive Higgs decays to a quarkonium and γ/Z and $\ell^+\ell^-$ final states

Introduction

2
$$h \rightarrow V\gamma/Z (V = J/\Psi, \Upsilon(nS))$$

[Konig et.al. (1505.03870, 1609.06310), Bodwin et.al. 1306.5770]

(4) $h o V \ell^+ \ell^-$ ($V = J/\Psi, \Upsilon(nS)$) [Colangelo et.al. (1602.01372)]

(5) $h \to P \ell^+ \ell^-$ [Becirevic, BM, Patra, Sumensari (1705.01112)]

- Higgs is established as a SM particle of a mass 125 GeV
- activities in the precision measurements of its couplings to SM particles:

Comparison of the capabilities of LHC and ILC for model-independent measurements of Higgs Boson couplings. 14 TeV, 300 fb⁻¹/250 GeV, 250 fb⁻¹/500 GeV, 500 fb⁻¹/1 TeV, 1000 fb⁻¹ [Peskin, arXiv:1207.2516]

How to access light quark couplings ? - HIGGS DECAYS TO QUARKONIA

BSM Higgs decays with quarkonia

Exclusive Higgs Decays

- Difficult to obtain a direct measurement of the Higgs couplings to light fermions
 - Yukawa coupling $\propto m_q$, SM branching ratios very small
 - Huge QCD background and requires tagging to identify the flavour of the final state quark

Exclusive Higgs Decays

- Difficult to obtain a direct measurement of the Higgs couplings to light fermions
 - Yukawa coupling $\propto m_q$, SM branching ratios very small
 - Huge QCD background and requires tagging to identify the flavour of the final state quark
- The access to the light Yukawa couplings can be gained through EXCLUSIVE HIGGS DECAYS:
 - $h \rightarrow QZ/\gamma$ (Q: vector meson, or pseudoscalar meson; Q = quarkonia)
 - possible for *u*, *d*, *c*, *s*, *b* quarks

- destructive interference between different diagram topologies makes some of these decays sensitive to the quark Yukawa couplings

• $h \rightarrow Q\ell^+\ell^-$ (Q = quarkonia) decays can serve as a complementary channel to "direct" searches of new physics at the LHC

Leading-order diagrams contributing to the decays $h \rightarrow VZ/\gamma$. Last graph contributes to one loop SM diagrams, $h \rightarrow Z\gamma$, $\gamma\gamma$

• "DIRECT" contribution : Higgs boson couples directly to the quark and the anti-quark pair from which the meson is formed, $\propto \kappa_q \frac{m_q}{v}$, $\kappa_q = 1$ in SM

Leading-order diagrams contributing to the decays $h \rightarrow VZ/\gamma$. Last graph contributes to one loop SM diagrams, $h \rightarrow Z\gamma$, $\gamma\gamma$

- "DIRECT" contribution : Higgs boson couples directly to the quark and the anti-quark pair from which the meson is formed, $\propto \kappa_q \frac{m_q}{v}$, $\kappa_q = 1$ in SM
- Calculated using the QCD factorization approach: separation between hard interactions and non-perturbative physics
- Large scale separation: convolution of the calculated hard scattering amplitude with the Light Cone Distribution Amplitudes of V

Leading-order diagrams contributing to the decays $h \rightarrow VZ/\gamma$. Last graph contributes to one loop SM diagrams, $h \rightarrow Z\gamma$, $\gamma\gamma$

- "DIRECT" contribution : Higgs boson couples directly to the quark and the anti-quark pair from which the meson is formed, $\propto \kappa_q \frac{m_q}{v}$, $\kappa_q = 1$ in SM
- "INDIRECT" contribution: meson is formed from an off-shell γ/Z through a local matrix element ∝ ⟨V|q̄Γq|0⟩ ~ f_M (decay constant)

Leading-order diagrams contributing to the decays $h \rightarrow VZ/\gamma$. Last graph contributes to one loop SM diagrams, $h \rightarrow Z\gamma$, $\gamma\gamma$

- "DIRECT" contribution : Higgs boson couples directly to the quark and the anti-quark pair from which the meson is formed, $\propto \kappa_q \frac{m_q}{v}$, $\kappa_q = 1$ in SM
- "INDIRECT" contribution: meson is formed from an off-shell γ/Z through a local matrix element ∝ ⟨V|q̄Γq|0⟩ ~ f_M (decay constant)
- Interplay between direct and indirect contributions, leads to a strong sensitivity on the quark Yukawa couplings

$$h \rightarrow V\gamma (V = J/\Psi, \Upsilon(nS))$$

Leading-order diagrams contributing to the decays $h \rightarrow VZ/\gamma$. Last graph contributes to one loop SM diagrams, $h \rightarrow Z\gamma$, $\gamma\gamma$

• The decay amplitude of the Higgs into V and γ is

$$\mathcal{M}(h \to V\gamma) = e \frac{m_V}{v} \left(\epsilon_V^{\perp *} \cdot \epsilon_\gamma^{\perp *} \right) F_{\perp}^{V\gamma} \\ = \frac{e}{v} \left(\epsilon_V \cdot \epsilon_\gamma - \frac{1}{p_V \cdot p_\gamma} (p_V \cdot \epsilon_\gamma) (p_\gamma \cdot \epsilon_V) \right) F_{\perp}^{V\gamma}$$

 $F_{\perp}^{V\gamma} = F_{\perp(D)}^{V\gamma} + F_{\perp(ID)}^{V\gamma}$

BSM Higgs decays with quarkonia

$$\begin{split} \Gamma(h \to V\gamma) &= \frac{\alpha}{2} \frac{m_h}{v^2} r_v (1 - r_V) |F_{\perp}^{V\gamma}|^2, \quad F_{\perp}^{V\gamma} = F_{\perp(D)}^{V\gamma} + F_{\perp(D)}^{V\gamma} \\ F_{\perp(D)}^{V\gamma} &= \frac{3Q_q \kappa_q \left[\frac{m_q}{m_V} r_V^{\perp} \left(1 + \frac{2}{3} r_V\right)\right]}{0.366 \kappa_c |_{J/\psi} - 1.598 \kappa_b|_{\Upsilon(1S)}} \\ F_{\perp(D)}^{V\gamma} &= \frac{\alpha}{\pi} \frac{1 - r_V}{2r_V} f_V^{\perp} \left[Q_q C_{\gamma\gamma}(p_{\gamma^*}^2) - \frac{g_V^q}{2s_W c_W} \frac{r_V}{r_Z - r_V} C_{\gamma Z}(p_{Z^*}^2)\right]}{-5.171|_{J/\psi} - 1.416|_{\Upsilon(1S)}} \end{split}$$

$$\begin{split} \Gamma(h \to V\gamma) &= \frac{\alpha}{2} \frac{m_h}{v^2} r_v (1 - r_V) |F_{\perp}^{V\gamma}|^2, \quad F_{\perp}^{V\gamma} = F_{\perp(D)}^{V\gamma} + F_{\perp(D)}^{V\gamma} \\ F_{\perp(D)}^{V\gamma} &= \begin{bmatrix} 3Q_q \kappa_q \left[\frac{m_q}{m_V} f_V^{\perp} \left(1 + \frac{2}{3} r_V \right) \right] \\ 0.366 \kappa_c |_{J/\psi} &- 1.598 \kappa_b |_{\Upsilon(1S)} \\ F_{\perp(D)}^{V\gamma} &= \begin{bmatrix} \frac{\alpha}{\pi} \frac{1 - r_V}{2r_V} f_V^{\perp} \left[Q_q C_{\gamma\gamma} (p_{\gamma^*}^2) - \frac{g_V^q}{2s_W c_W} \frac{r_V}{r_Z - r_V} C_{\gamma Z} (p_{Z^*}^2) \right] \\ -5.171 |_{J/\psi} & 1.416 |_{\Upsilon(1S)} \end{split}$$

- The indirect contributions are usually the dominant ones, but for Υ, the direct contribution is comparable, leading to a cancellation between the two
- The direct and the indirect contributions to $h \rightarrow V\gamma$ decay amplitude interfere destructively in the SM [Konig, Neubert, arXiv:1505.03870]

 $\begin{array}{l} \mathcal{B}(h \to J/\Psi,\gamma)|_{\mathrm{SM}} = (2.8 \pm 0.2) \times 10^{-6} \\ \mathcal{B}(h \to \Upsilon(nS),\gamma)|_{\mathrm{SM}} = (6.1^{+17.4}_{-6.1},\ 2.0^{+1.9}_{-1.3},\ 2.4^{+1.8}_{-1.3}) \times 10^{-10} \end{array} (\texttt{n=1,2,3})$

Figure: Branching ratios of $h \to (J/\psi, \Upsilon)\gamma$ as a function of κ_q ($\kappa_q = 1$ in SM case).

• $h \rightarrow J/\psi\gamma$ can probe Yukawa couplings of Higgs with a c-quark !

 h → (J/ψ, Υ)Z is interesting too, as the massive final state gauge boson can be also in a longitudinal polarization state / but is not sensitive to the Yukawa couplings

BSM Higgs decays with quarkonia

Two Higgs Doublet Model and Light CP-odd A-boson

Most general $SU(2) \times U(1)$ potential

$$\begin{split} V(\Phi_1, \Phi_2) &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 + m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 \\ &+ \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \frac{\lambda_5}{2} \left[(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2 \right] \\ &+ \left[\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) \right] \left[(\Phi_1^{\dagger} \Phi_2) + (\Phi_2^{\dagger} \Phi_1) \right], \end{split}$$

 m_{12}^2 , λ_5 , λ_6 , λ_7 , in general complex \implies 14 real parameters

Most frequently studied model : softly broken with a discrete Z₂ symmetry and without CP violation (Φ₁ ↔ Φ₁, Φ₂ ↔ -Φ₂) ⇒ λ₅, λ₆, λ₇ = 0
 Φ_a is parametrized as

$$\Phi_a(x) = \begin{pmatrix} \phi_a^+(x) \\ \frac{1}{\sqrt{2}}(v_a + \rho_a(x) + i\eta_a(x)) \end{pmatrix}, \quad (a = 1, 2),$$

with $v = \sqrt{v_1^2 + v_2^2} = 246.22$ GeV.

BSM Higgs decays with quarkonia

 \bullet The mass matrices of the Higgs bosons are diagonalized by introducing the mixing angles α and β

$$\begin{pmatrix} \phi_1^+ \\ \phi_2^+ \end{pmatrix} = \begin{pmatrix} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} G^+ \\ H^+ \end{pmatrix}, \qquad \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} G^0 \\ A \end{pmatrix},$$

$$\begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} H \\ h \end{pmatrix}, \quad \tan \beta = \frac{v_2}{v_1}$$

scalar sector of the 2HDM is rich:

- 2 CP-even Higgs particles: h, H
- 1 CP-odd Higgs particle: A
- a pair of charged Higgs particles: H[±]

The Yukawa Sector

$$\mathcal{L}_{Y} = -\frac{\sqrt{2}}{v}H^{+}\left\{\bar{u}\left[\zeta^{d} V_{CKM}m_{d}P_{R} - \zeta^{u}m_{u}V_{CKM}P_{L}\right]d + \zeta^{\ell}\bar{\nu}m_{\ell}P_{R}\ell\right\}$$
$$-\frac{1}{v}\sum_{f,\varphi_{i}^{0}\in\{h,H,A\}}\xi_{\varphi_{i}^{0}}^{f}\varphi_{i}^{0}\left[\bar{f}m_{f}P_{R}f\right] + \text{h.c.},\qquad \xi_{A}^{u} = -i\zeta^{u},\,\xi_{A}^{d,\ell} = i\zeta^{d,\ell}$$

- Type I : All the fermions couple to only Φ₂
- Type II : u, c, t couple to Φ_2 , whereas d, s, b and ℓ couple to Φ_1
- Type X : q couple to Φ₂, whereas ℓ couple to Φ₁ ('lepton specific')
- Type Z : u, c, t and ℓ couple to Φ_2 , whereas d, s, b couple to Φ_1 ('flipped')

Model	ζ^d	ζ^{u}	ζ^{ℓ}
Туре І	$\cot \beta$	$\cot \beta$	$\cot \beta$
Type II	$-\tan\beta$	$\cot \beta$	$-\tan\beta$
Type X (lepton specific)	cot β	$\cot \beta$	$-\tan\beta$
Type Z (flipped)	$-\tan\beta$	$\cot \beta$	$\cot \beta$

BSM Higgs decays with quarkonia

Scanning the 2HDM parameter space

 $\begin{aligned} &\tan\beta\in(0.2,50), \qquad \alpha\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right), \qquad \left|M^2\right|\leq(1.2\ \mathrm{TeV})^2, \\ &m_{H^{\pm}}\in(m_W,1.2\ \mathrm{TeV}), \qquad m_H\in(m_h,1.2\ \mathrm{TeV}), \qquad m_A\in(20\ \mathrm{GeV},1.2\ \mathrm{TeV}) \end{aligned}$

- Theoretical Constraints :
 - Stability of the scalar potential and the electroweak vacuum
 - Perturbative unitarity of the elastic scattering of the longitudinally polarized gauge bosons and the scalar bosons,

 $W_L^+W_L^-$, Z_LZ_L , hh, Z_Lh , Ah, hH, Z_LH , AH, Z_LA , AA, HH, $W_L^+H^-$, $H^+W_L^-$, H^+H^-

Electroweak Precision Tests

Scanning the 2HDM parameter space

$$\begin{split} & \tan \beta \in (0.2, 50), \qquad \qquad \alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \qquad \qquad \left|M^2\right| \leq (1.2 \text{ TeV})^2, \\ & m_{H^{\pm}} \in (m_W, 1.2 \text{ TeV}), \qquad m_H \in (m_h, 1.2 \text{ TeV}), \qquad m_A \in (20 \text{ GeV}, 1.2 \text{ TeV}) \end{split}$$

- Theoretical Constraints :
 - Stability of the scalar potential and the electroweak vacuum
 - Perturbative unitarity of the elastic scattering of the longitudinally polarized gauge bosons and the scalar bosons,

 $W_{L}^{+}W_{L}^{-}$, $Z_{L}Z_{L}$, hh, $Z_{L}h$, Ah, hH, $Z_{L}H$, AH, $Z_{L}A$, AA, HH, $W_{L}^{+}H^{-}$, $H^{+}W_{L}^{-}$, $H^{+}H^{-}$

- Electroweak Precision Tests
- Experimental Constraints : identifying the lightest CP-even state h as SM-like
 - Concentrating on the alignment limit, $|\cos(\beta \alpha)| \le 0.3$
 - Constraint from $\Gamma_h/\Gamma_h^{SM} \le 1.42$ due to the additional decay channel provided $m_A \le m_h/2$

$$\begin{split} \Gamma(h \to AA) &= \frac{|\lambda_{hAA}|^2}{32\pi} \frac{v^2}{m_h} \sqrt{1 - \frac{4m_A^2}{m_h^2}} \\ \Gamma(h \to ZA) &= \frac{1}{16\pi} \frac{\cos^2(\beta - \alpha)}{m_h^3 v^2} \lambda^{3/2}(m_h, m_Z, m_A) \,. \end{split}$$

BSM Higgs decays with quarkonia

Results of the scan of parameters after imposing theoretical and experimental constraints. Darker/lighter points correspond to the *free/fine-tuned* scan. Red points are forbidden by the flavor bounds

- fine tuned scans (light blue) with $m_H \approx |M|$ designed to focus on "hard to reach" regions
- strong constrains by measurements of the inclusive radiative *B*-meson decay branching ratio ($B \rightarrow X_s \gamma$, $b \rightarrow s \mu^+ \mu^-$) [Arman et.al. arXiv:1703.03426]
- In Type I models prefer $\tan \beta \ge 4$
- In Type II models bounds are tan β independent and constrains $m_H^{\pm} \ge 439$ GeV

Results of the scan of parameters after imposing theoretical and experimental constraints. Darker/lighter points correspond to the *free/fine-tuned* scan. Red points are forbidden by the flavor bounds

- fine tuned scans (light blue) with $m_H \approx |M|$ designed to focus on "hard to reach" regions
- strong constrains by measurements of the inclusive radiative *B*-meson decay branching ratio ($B \rightarrow X_s \gamma$, $b \rightarrow s \mu^+ \mu^-$) [Arman et.al. arXiv:1703.03426]
- In Type I models prefer $\tan \beta \ge 4$
- In Type II models bounds are tan β independent and constrains $m_H^{\pm} \ge 439$ GeV

Results of the scan of parameters after imposing theoretical and experimental constraints. Darker/lighter points correspond to the *free/fine-tuned* scan. Red points are forbidden by the flavor bounds

Impact from the direct searches of extra Higgs states - LHC and LEP -> strong constraints on TYPE II model:

Exclusive $h \rightarrow PZ$ ($P = \eta_c, \eta_b$) decay with the light CP-odd A-boson

strong suppression of the direct contributions sensitive to Y_c , Y_b , makes $\mathbf{h} \to \eta_{\mathbf{b},\mathbf{c}} \mathbf{Z}$ unsuitable for searches for new-physics effects on light quark Yukawa couplings

$$(b)|_{\rm SM} + (c)|_{\rm 2HDM} \qquad F_{\rm ID}^{PZ} = \frac{m_Z^2}{m_Z^2 - m_P^2} f_P g_A^q - \frac{f_P}{m_A^2 - m_P^2 + im_A \Gamma_A} \frac{m_P^2}{2} \xi_A^q \cos(\beta - \alpha)$$

 ${\cal B}(h o \eta_c Z)|_{
m SM} pprox (1.08 \pm 0.01) imes 10^{-5}, \quad {\cal B}(h o \eta_b Z)|_{
m SM} pprox (2.97 \pm 0.05) imes 10^{-5}$

BSM Higgs decays with quarkonia

Exclusive $h \rightarrow PZ$ ($P = \eta_c, \eta_b$) decay with the light CP-odd A-boson

$$F^{PZ} = \frac{m_Z^2}{m_Z^2 - m_P^2} f_P g_A^q - \frac{f_P}{m_A^2 - m_P^2 + im_A \Gamma_A} \frac{m_P^2}{2} \xi_A^q \cos(\beta - \alpha)$$
$$R_{\eta_{cb}}^Z = \frac{\mathcal{B}(h \to \eta_{cb} Z)^{2\text{HDM}}}{\mathcal{B}(h \to \eta_{cb} Z)^{\text{SM}}} = \frac{\Gamma(h \to \eta_{cb} Z)^{2\text{HDM}}}{\Gamma(h \to \eta_{cb} Z)^{\text{SM}}} \boxed{\frac{\Gamma_{\text{tot}}^{\text{SM}}}{\Gamma_{\text{tot}}^{2\text{HDM}}}}{0.7}$$

Exclusive $h \rightarrow PZ$ ($P = \eta_c, \eta_b$) decay with the light CP-odd A-boson

$$F^{PZ} = \frac{m_Z^2}{m_Z^2 - m_P^2} f_P g_A^q - \frac{f_P}{m_A^2 - m_P^2 + im_A \Gamma_A} \frac{m_P^2}{2} \xi_A^q \cos(\beta - \alpha)$$

$$R_{\eta_{cb}}^Z = \frac{\mathcal{B}(h \to \eta_{cb} Z)^{2\text{HDM}}}{\mathcal{B}(h \to \eta_{cb} Z)^{\text{SM}}} = \frac{\Gamma(h \to \eta_{cb} Z)^{2\text{HDM}}}{\Gamma(h \to \eta_{cb} Z)^{\text{SM}}} \boxed{\frac{\Gamma_{\text{tot}}^{\text{SM}}}{\Gamma_{\text{tot}}^{2\text{HDM}}}}_{0.7}$$

Ratio	$R^Z_{\eta c}$	$R^Z_{\eta_b}$
Type I	(0.7, 1.0)	(0.6, 1.0)
Type II	(0.7, 1.0)	(0.7, 1.7)
Туре Х	(0.7, 1.0)	(0.7, 1.0)
Type Z	(0.7, 1.0)	(0.6, 1.7)

Table: Resulting intervals for the ratios obtained from the scans in various types of 2HDM.

 $h
ightarrow (\eta_c, \eta_b) Z$ is insensitive to 2HDM scenarios

BSM Higgs decays with quarkonia

Exclusive $h \rightarrow P \ell^+ \ell^-$ decay with the light CP-odd A-boson

 $\Gamma(h \to P\ell^+\ell^-) \simeq \Gamma(h \to PZ^* \to P\ell^+\ell^-) + \Gamma(h \to PA^* \to P\ell^+\ell^-).$

Exclusive $h \rightarrow P\ell^+\ell^-$ decay with the light CP-odd A-boson

 $\Gamma(h \to P\ell^+\ell^-) \simeq \Gamma(h \to PZ^* \to P\ell^+\ell^-) + \Gamma(h \to PA^* \to P\ell^+\ell^-).$

BSM Higgs decays with quarkonia

$$\begin{split} R_{\eta_{cb}}^{\tau\tau} &= \frac{\mathcal{B}(h \to \eta_{cb} \tau^+ \tau^-)^{2\text{HDM}}}{\mathcal{B}(h \to \eta_{cb} \tau^+ \tau^-)^{\text{SM}}} \;, \\ R_{\eta_{cb}}^{\mu\mu} &= \frac{\mathcal{B}(h \to \eta_{cb} \mu^+ \mu^-)^{2\text{HDM}}}{\mathcal{B}(h \to \eta_{cb} \mu^+ \mu^-)^{\text{SM}}} \;, \end{split}$$

Ratio	$R^{\mu\mu}_{\eta c}$	$R^{\mu\mu}_{\eta_b}$	$R_{\eta_c}^{ au au}$	$R_{\eta_b}^{ au au}$
Туре І	(0.7, 1.0)	(0.7, 1.0)	(0.7, 3.3)	(0.7, 3.6)
Type II	(0.7, 1.0)	(0.7, 1.3)	(0.8, 3.2)	(0.9, 58)
Туре Х	(0.7, 1.1)	(0.7, 1.1)	(0.7,21)	(0.7, 23)
Type Z	(0.7, 1.0)	(0.7, 1.1)	(0.7, 1.1)	(0.8, 1.2)

Resulting intervals for the ratios obtained from the scans in various types of 2HDM

 $h \rightarrow (\eta_c, \eta_b) \ell^+ \ell^-$ is sensitive to 2HDM scenarios Type I, Type II, Type X

- Type II model is far more constrained than Type X because of (a) $B \rightarrow X_s \gamma$ constraint and from (b) direct searches
- Enhancement of $R_{\eta_b}^{\tau\tau}$ in 2HDM due to $\Gamma(h \to PA^* \to P\ell^+\ell^-) \propto m_{\ell}^2$
- These decay modes can serve as possible probes of the light CP-odd Higgs $(m_A \lesssim m_h)$

Large enhancements possible in full allowed region of the parameter space, making $h \rightarrow P\ell^+\ell^-$ the ideal channel to look for CP-odd Higgs *A*

- Correlation of the ratios R^{ττ}_{ηc} and R^{ττ}_{ηb} in Type I and Type X models (Yukawa couplings to A are equal for up and down quarks in these models)
- $\Gamma(h \to PA^* \to P\ell^+\ell^-) \propto (m_\ell \xi_A^I)^2 \xi_A^q$, $\xi_A^c = \xi_A^b$

Model	ξ ^d	ξA	ξÅ
Type I	$-\cot eta$	$\cot \beta$	$-\cot\beta$
Type X (lepton specific)	$-\cot\beta$	$\cot \beta$	$\tan \beta$

Higgs decays to bb, cc can be efficiently looked at the LHC, with improved b, c tagging

- Higgs decays to bb, cc can be efficiently looked at the LHC, with improved b, c tagging
- Exclusive Higgs decays involving quarkonia (h → QV) will be a promising channels to look for at the LHC

- Higgs decays to bb, cc can be efficiently looked at the LHC, with improved b, c tagging
- Exclusive Higgs decays involving quarkonia (h → QV) will be a promising channels to look for at the LHC

• $h \rightarrow Q\gamma$, ($Q = J/\psi, \Upsilon$), can serve as an alternative to constrain Yukawas Y_c, Y_b

- Higgs decays to bb, cc can be efficiently looked at the LHC, with improved b, c tagging
- Exclusive Higgs decays involving quarkonia (h → QV) will be a promising channels to look for at the LHC
- $h \rightarrow Q\gamma$, ($Q = J/\psi, \Upsilon$), can serve as an alternative to constrain Yukawas Y_c, Y_b
- *h* → η_{c,b}ℓℓ which has escaped attention so far, we find to be efficient channel to test the presence of light CP odd Higgs boson A

- Higgs decays to bb, cc can be efficiently looked at the LHC, with improved b, c tagging
- Exclusive Higgs decays involving quarkonia (h → QV) will be a promising channels to look for at the LHC
- $h \rightarrow Q\gamma$, ($Q = J/\psi, \Upsilon$), can serve as an alternative to constrain Yukawas Y_c, Y_b
- *h* → η_{c,b}ℓℓ which has escaped attention so far, we find to be efficient channel to test the presence of light CP odd Higgs boson A
- Correlations of the ratios R^{ττ}_{ηc} and R^{ττ}_{ηb} will be an efficient channel to disentagle among various 2HDM scenarios