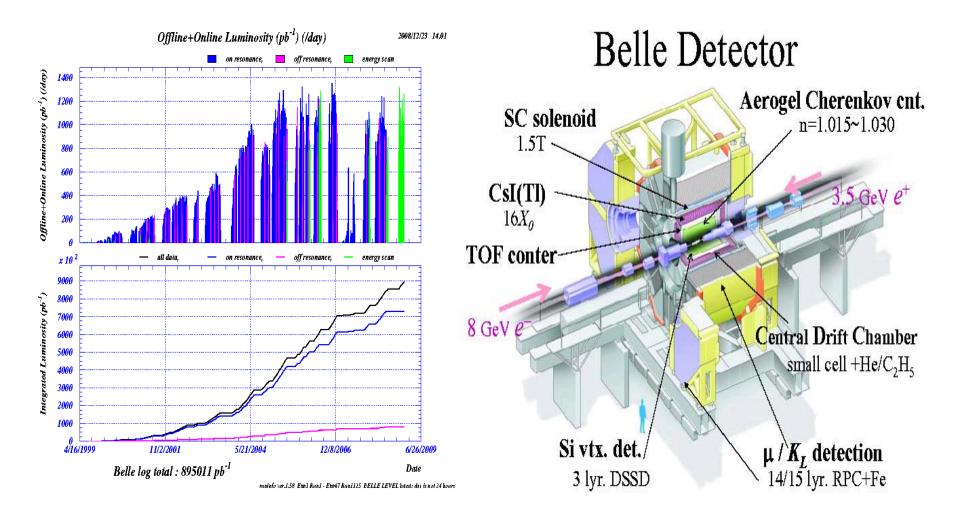
Research on Charm Physics at Belle

Review meeting for Sino-Japan Core-University Cooperative Program

> Changchun Zhang Institute of High Energy Physics, CAS

> > 8 April 2009

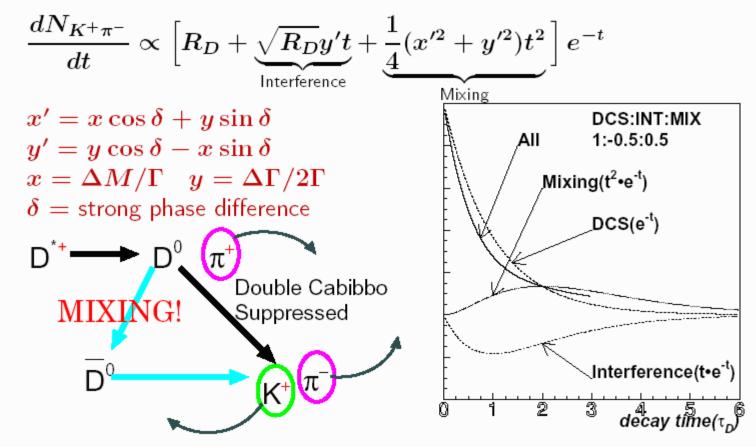
- 1. Physics motivation at Belle/KEKB
- **2.** Search for $D^0 \overline{D}^0$ mixing
- **3.** Search for exotic states via $B^- \rightarrow J/\psi + ...$ decays
- 4. Search for X(1835) and X(1812) states
- 5. Summary


Introduction

- Institutions and Members
 - Institute of High Energy Phys. (IHEP)
 - Peking University (PU)
 - Univ. of Science and Tech. of China (USTC)

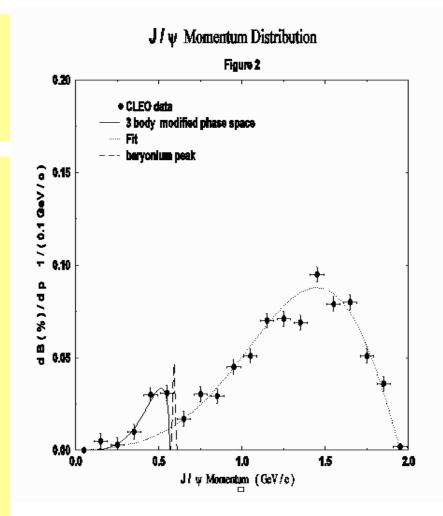
Institute	staff	Post-doc	graduate
IHEP	3	1	1
PU	1		2
USTC	1	1	2
total	5	2	5

- Funds (General) from NSFC : 220K RMB (2002-2004) 440K RMB (2006-2008)
- Funds (Innovation) from IHEP/CAS : 100K RMB (2001-2004)


KEKB and Belle detector

Belle collected total integrated luminosity : $> 894.8 \text{ fb}^{-1}$ till 2 Dec. 2008

Search for D⁰D⁰ mixing
Mixing between different flavor quarks had observed in K⁰K⁰ and B⁰B⁰, but not observed in D⁰D⁰ till 2007.
SM :D⁰D⁰ mixing is at ≤1% level, and CPV in D⁰ decay is at ≤0.1%.
New physics, if observed CP is at 1% level.


Introduction: $D^0 \rightarrow K^+\pi^-$ time dependence

 R_D is ratio of DCS to CF decay rates

Physics motivation

- Slow J/ψ bump observed by CLEO, and confirmed by BaBar and Belle.
- Search for source of the excess from B decays.
- > Intrinsic charm $(c\overline{c})$ inside of B meson.
- ► Intermediate exotic state in $B^- \rightarrow J/\psi \Lambda p$ decay
- > excited gluonic state in $B \rightarrow J/\psi \eta' K$ decay

Search for new resonances X(1835) and X(1810), observed by BES

First talk on $D^0 D^0$ mixing

30 Aug 2002

arXiv:hep-ex/0208051 v1

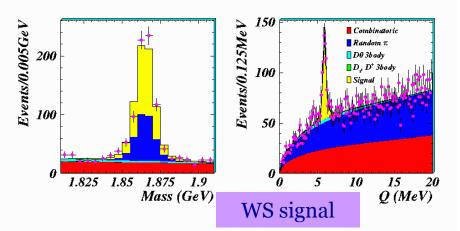


FIG. 6: Projections of M (left) and Q (right) for the wrong-sign data (points) and the fit functions (histograms), within a 3σ window in the complementary variable ($5.27 \le Q < 6.47$ MeV and $1.8445 \le M < 1.8845$ GeV respectively). The signal contribution is shaded yellow.

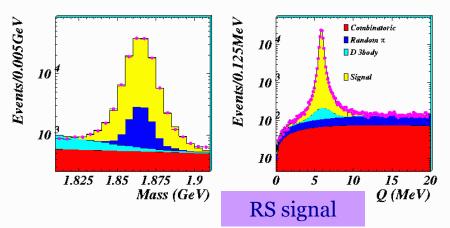


FIG. 5: Projections of M (left) and Q (right) for the right-sign data (points) and the fit functions (histograms), for the region $1.81 \le M < 1.91$ GeV and $0 \le Q < 20$ MeV. Note the logarithmic scale.

RELLE CONF 0254 ICHEP02 Parallel 8 ABS744 hep-ex/0208051

A measurement of the rate of wrong-sign decays $D^0 \rightarrow K^+\pi$

K. Abe,² K. Abe,⁴⁴ N. Abe,⁴⁷ R. Abe,³⁰ T. Abe,⁴⁸ I. Adachi,³ Byoung Sup Ahn,¹⁸
H. Aihara,⁴⁶ M. Akatau,²³ M. Asai,¹⁰ Y. Asaro,⁴⁷ T. Aso,⁴⁰ V. Aulchenko,² T. Aushev,¹³
A. M. Bakich,⁴⁷ Y. Ban,³⁴ E. Banas,³⁶ S. Banerjee,⁴⁴ A. Bay,¹⁸ I. Bedny,² P. K. Behera,⁴⁶
D. Beiline,² I. Biojak,¹⁴ A. Bondar,² A. Bozek,²⁴ M. Bračko,^{21,14} J. Brodzicka,²⁴
T. E. Browler,⁴ B. C. K. Casey,⁴ M.-C. Chang,²⁷ P. Chang,³⁷ Y. Chao,³⁷ K.-F. Chen,⁴⁷
B. G. Cheson,⁴⁴ R. Chintov,¹³ S.-K. Choi,⁷ Y. Choi,⁴⁴ Y. K. Choi,⁴⁴ M. Danikov,¹³
L. Y. Dong,¹¹ R. Dewel,²² J. Dragic,³² A. Drutskoy,¹³ S. Eidelman,² V. Eigen,¹³
Y. Enari,²⁴ C. W. Everton,³² F. Fang,⁶ H. Fujii,³ C. Fukunaga,⁴⁴ N. Gabyshev,⁸
A. Garmash,^{2,43} T. Gershon,⁸ B. Golob,^{30,14} A. Gordon,³² K. Gotov,⁴⁷ H. Guler,⁴

Ratio of WS (K⁺π⁻) over RS (K⁻π⁺) is measured to be

$$R_{WS} = \frac{D^0 \to K^+ \pi^-}{D^0 \to K^- \pi^+} = (0.372 \pm 0.025^{+0.009}_{-0.011})\%$$

Malmunoto,⁴⁴ Y. Mikami,⁴⁵ W. Mitaroli,¹² K. Miyabayashi,²⁴ Y. Miyabayashi,²³
H. Miyake,³² H. Miyata,³⁴ L. C. Mollitt,⁹² G. R. Moloney,²⁴ G. F. Moorheat,⁹² S. Mori,⁴¹
H. Miyake,³⁴ H. Miyata,³⁴ T. Nagamine,⁴⁴ Y. Nagasaka,¹⁰ T. Nakatisira,⁴⁶ T. Nakamura,⁴⁷
E. Nakano,³¹ M. Nakao,⁴ H. Nakazawa,⁴ J. W. Nami,⁴⁰ S. Narita,⁴⁶ Z. Nakaniec,²⁸
K. Neichi,⁴⁴ S. Nishikla,¹⁵ O. Nitoh,⁴⁴ S. Noguchi,²⁴ T. Nozaki,³ A. Ofuji,³² S. Ogawa,³³
F. Ohno,⁴⁷ T. Ohshima,³⁴ Y. Ohshima,⁴⁷ T. Okabe,²⁴ S. Okuno,¹⁸ S. Ogawa,³³
F. Ohno,⁴⁷ T. Ohshima,³⁴ Y. Ohshima,⁴⁷ T. Okabe,²⁴ S. Okuno,¹⁸ S. L. Olsen,⁴
Y. Omiki,³⁶ W. Ostrowicz,³⁶ H. Okaki,³ P. Pakhlov,¹³ H. Palka,²⁶ C. W. Park,¹⁶ H. Park,¹⁸
K. S. Park,⁴⁴ L. S. Peak,⁴¹ J.-P. Perrent,¹⁹ M. Peters,⁴¹ L. E. Pilonen,⁴⁶ E. Prebya,³⁶
J. L. Rodriguez,⁴⁷ F. J. Ronga,¹⁸ N. Rosd,² M. Rozanka,²⁶ K. Rybicki,²⁸ J. Ryuko,³²
H. Sagawa,⁴ S. Saitoh,⁴ Y. Sakai,³ H. Sakamoto,¹⁷ H. Sakaue,³¹ M. Satayathy,⁴⁹
A. Satayathy,³⁹ O. Schneider,¹⁸ S. Schrenk,⁶ C. Schwanda,³¹² S. Semenov,¹³ K. Senyo,²⁵

Contribution paper to ICHEP2002hep-ex/0208051, 30 Aug 2002

First paper on $D^0 D^0$ mixing

PRL 94, 071801 (2005)

PHYSICAL REVIEW LETTERS

week ending 25 FEBRUARY 2005

Search for $D^0 \cdot \overline{D}^0$ Mixing in $D^0 \to K^+ \pi^-$ Decays and Measurement of the Doubly-Cabibbo-Suppressed Decay Rate

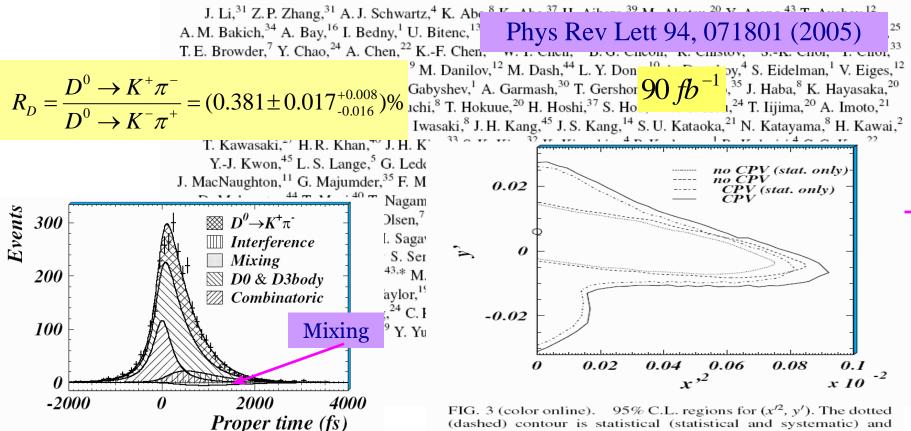
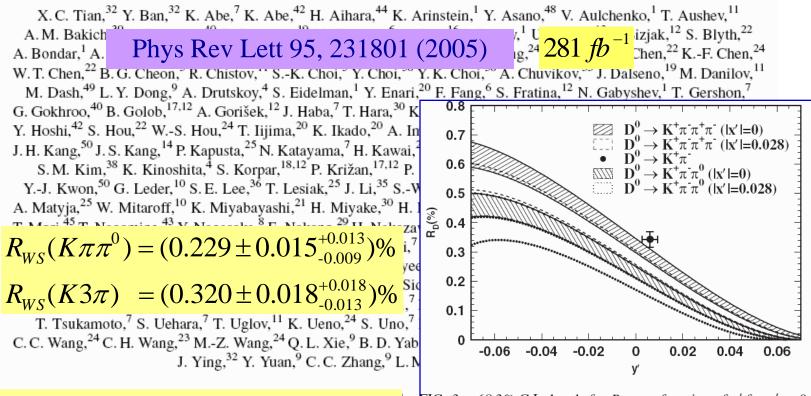


FIG. 2 (color online). The decay-time distribution for WS events satisfying $|m_{K\pi} - m_{D^0}| < 22 \text{ MeV}/c^2$ and |Q - 5.9 MeV| < 1.5 MeV. Superimposed on the data (points with error bars) are projections of the decay-time fit.

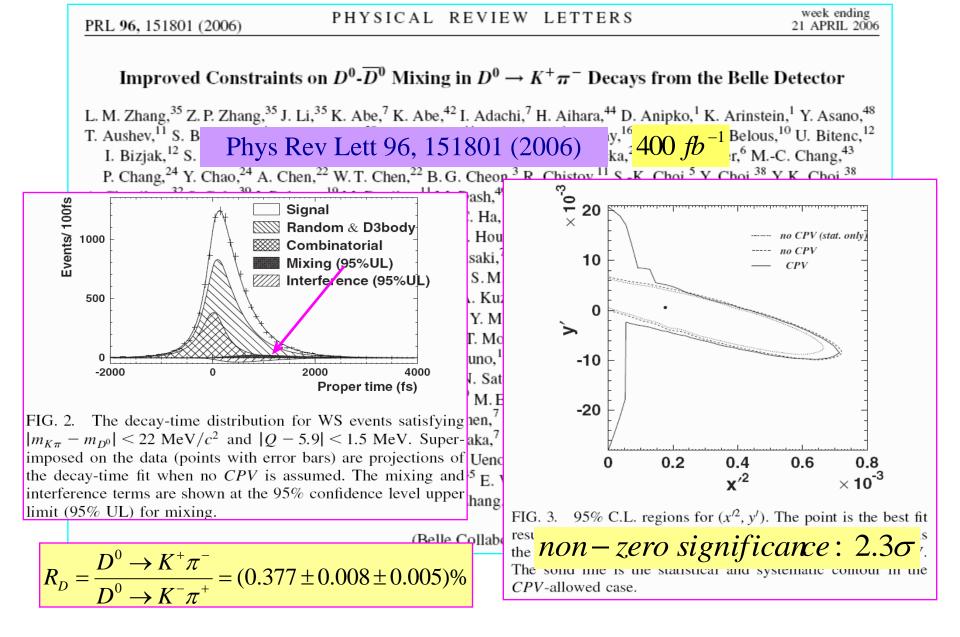
FIG. 3 (color online). 95% C.L. regions for $(x^{\prime 2}, y^{\prime})$. The dotted (dashed) contour is statistical (statistical and systematic) and corresponds to *CP* conservation. The dash-dotted (solid) contour is statistical (statistical and systematic) and allows for *CPV*. The open circle represents the most likely value when *CP* is conserved and $x^{\prime 2}$ is constrained to be ≥ 0 .

- Results are consistent with no mixing and no CPV.
- More restrictive than previous limits. No CPV (95%) $y'(\times 10^{-3})$ $x'^2(\times 10^{-3})$ Belle -8.2 < y' < 16 $x'^2 < 0.81$ BaBar2003 -27 < y' < 22 $x'^2 < 2.0$ CLEO2000 -52 < y' < 2 $x'^2 < 0.76$
- (When $x'^2 = 0$) y' prefer positive in the same direction as BaBar's result.
- $D^0 \rightarrow K^+ \pi^-$ result is about two sigma away from "no mixing".
- The future: More precise measurement is needed, with more Belle/BaBar data or CLEO-c and BES-III.


Search for $D^0 \overline{D}^0$ mixing

PRL 95, 231801 (2005)

PHYSICAL REVIEW LETTERS


week ending 2 DECEMBER 2005

Measurement of the Wrong-Sign Decays $D^0 \to K^+ \pi^- \pi^0$ and $D^0 \to K^+ \pi^- \pi^+ \pi^-$, and Search for *CP* Violation

No CP violation is observed.

botFIG. 3. 68.3% C.L. bands for R_D as a function of y' for x' = 0and |x'| = 0.028. The latter value is the upper limit obtained from our analysis of $D^0 \rightarrow K^+ \pi^-$ decays assuming no *CP* violation [6]. The point with 1σ error bars is the result from the $D^0 \rightarrow K^+ \pi^-$ analysis for x' = 0 (and no *CP* violation). Note that δ and, thus, x', y' may differ for the three modes.

PRL 99, 131803 (2007)

PHYSICAL REVIEW LETTERS

Measurement of $D^0 - \overline{D}^0$ Mixing Parameters in $D^0 \to K_s \pi^+ \pi^-$ Decays

L. M. Zhang,³⁷ Z. P. Zhang,³⁷ I. Adachi,⁷ H. Aihara,⁴⁵ V. Aulchenko,¹ T. Aushev,^{18,13} A. M. Bakich,⁴⁰ V. Balagura,¹³ E. Barberio,²¹ A. Pav ¹⁸ K. Palous ¹² II. Pitene,¹⁴ A. Ponder ¹ A. Ponder ¹ A. Ponder ²⁷ M. Pračke,^{20,14} I. Predzicka,⁷ T. E. Browder,⁶ P. Chang,²⁶ Y. C. Phys Rev Lett 99, 131803 (2007) C.-(540 fb^{-1} S. Cho,⁵⁰ Y. Choi,³⁹ Y. K. Choi,³⁹ J. Daiseno, M. Dannov, M. Dasn, A. Drutskoy, S. Eidennan, D. Epitanov, S. Fratina,¹⁴ N. Gabyshev,¹ G. Gokhroo,⁴¹ B. Golob,^{19,14} H. Ha,¹⁶ J. Haba,⁷ T. Hara,³² N. C. Hastings,⁴⁵ K. Hayasaka,²² H. Hayashii,²³ M. Hazumi,⁷ i,²² ⁶ Y. B. Hsiung, ····· no CPV (stat. only) Direct measurement : 32 Y. Iwasaki,⁷ N. - no CPV H. J. Kim,¹⁷ H ---- CPV (stat. only) ta,³ $x = (0.80 \pm 0.29^{+0.09+0.10}_{-0.07-0.14})\%$ ³³ C. C. Kuo,²⁴ --- CPV 38 e, 7 V. Lin.²⁶ Y. Liu $y = (0.33 \pm 0.24^{+0.08+0.06}_{-0.12-0.08})\%$ 8 iyake,³² H. Mi 27 S. Nishida,7 🕄 15 $non - zero \ significance: 2.2\sigma^{P. Pakhlov,^{13}G}$ 11 A. J. Schwartz,³ R. Seidl,^{9,35} K. Senyo,²² M. E. Sevior,²¹ M. Shapk 26 7 omov,³ N. Soni,³³ S. T Allowing for CPV saki,⁷ K. Tamai,⁷ N. T 31 о. 21 ^{,7} S. Uehara^{,7} K. Uen Y. $|q/p| = 0.86^{+0.30+0.06}_{-0.29-0.03} \pm 0.08$, S. Uehara, K. Uen A. Vinokurova, C. H. -1 15 -1 0 1 2 e. amaguchi.⁴⁴ Y. Yama x (%) $\arg(q/p) = (-14^{+16+5+2}_{-18-3-4})^0$ ang FIG. 4. 95% C.L. contours for (x, y): dotted (solid) corresponds to statistical (statistical and systematic) contour for no CPV, and dash-dotted (dashed) corresponds to statistical (statistical and systematic) contour for the CPV-allowed case. The point is the best-fit result for no CPV.

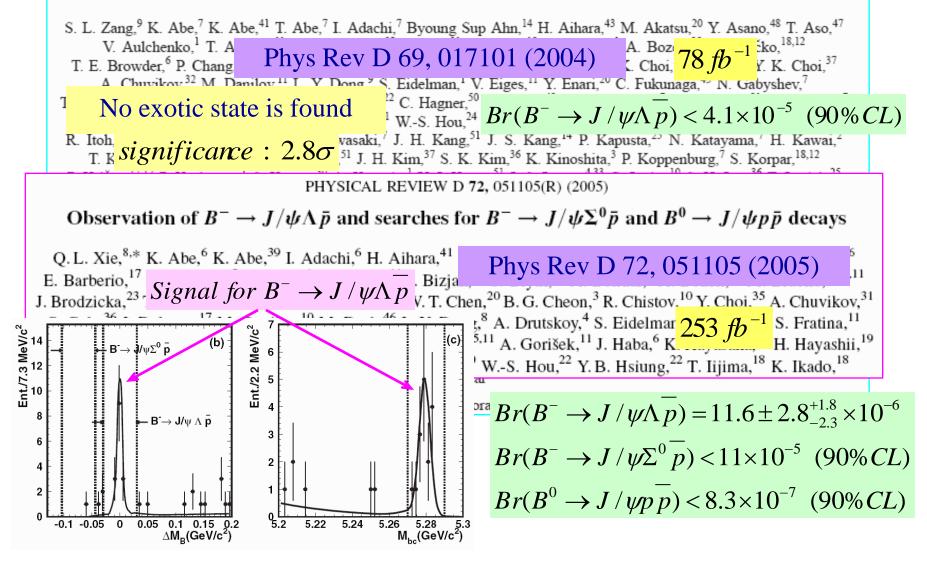
- Our observations show :
- Precise measurements of Rd agree with other experiments;
- > Significance for non-zero $D^0 D^0$ mixing

non-zero of x and y: 2.2σ for $D^0 \to K_s \pi \pi^0$

non-zero of x'^2 and y': 2.3σ for $D^0 \to K\pi$

* Other observations : σ difference in significance is about 2σ effect

3.9 σ for $D^0 \to K\pi$ (Babar)

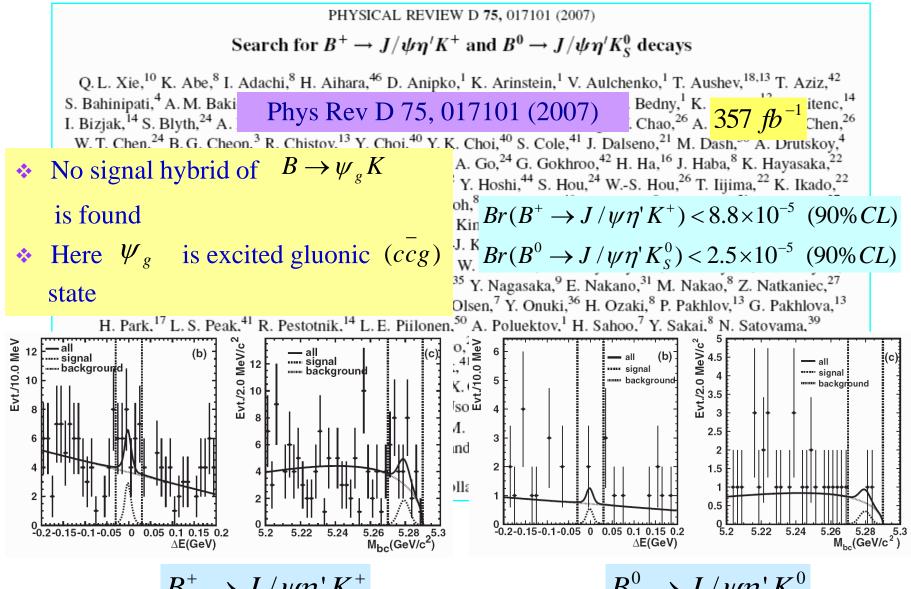

3.2 σ and 3.0 σ for $D^0 \to KK, \pi\pi$ (Belle and Babar)

Further study with 10 times more data are still required.

Search for $B^- \to J/\psi(\Lambda, \Sigma^0, p)\overline{p}$

PHYSICAL REVIEW D 69, 017101 (2004)

Search for $B^- \rightarrow J/\psi \Lambda p$ decay



Search for $B^{0(+)} \rightarrow J/\psi \overline{D}^0(\pi^+)$

PHYSICAL REVIEW D 71, 091107 (2005) Search for $B^0 \to J/\psi \bar{D}^0$ and $B^+ \to J/\psi \bar{D}^0 \pi^+$ decays L. M. Zhang,³³ Z. P. Zhang,³³ K. Abe,⁶ K. Abe,³⁹ I. Adachi,⁶ H. Aihara,⁴¹ Y. Asano,⁴⁵ T. Aushev,¹⁰ S. Bahinipati,⁴ Phys Rev D 71, 091107 (2005) $\int_{iistov,^{10} Y.C}^{24} M. Bračke \int_{iistov,^{10} Y.C}^{1711} \frac{1}{140} \int_{iistov,^{31}}^{1} \frac{1}{140} \int_{iistov,^{31}}^{1$ A. M. Bakich,³⁶ M. Barber T. E. Browder,⁵ Y. Chao,²³ S. Cole,³⁶ J. Dalseno,¹⁸ M. Danilov,¹⁰ M. Dash,⁴⁶ A. Drutskoy,⁴ S. Eidelman,¹ S. Fratina,¹¹ N. Gabysnev, 1. Gershon,⁶ G. Gokhroo,³⁷ B. Golob,^{16,11} A. Gorišek,¹¹ T. Hara,²⁸ K. Hayasaka,¹⁹ H. Hayashii,²⁰ M. Hazumi,⁶ L. Hinz,¹⁵ T. Hokuue,¹⁹ to.20 ayam $Br(B^+ \to J/\psi \overline{D}^0 \pi^+) < 2.5 \times 10^{-5} (90\% CL)$ Consistent with Babar's Kinc J. Li, $Br(B^0 \to J/\psi \overline{D}^0) < 2.0 \times 10^{-5} (90\% CL)$ Rule out possible charm M. Nakao,⁶ Z. Natkaniec,²⁴ S. Nishida,⁶ O. Nitoh,⁴⁴ S. Ogawa,³⁸ content at 1% level in the B Y. Onuki,²⁶ W. Ostrowicz,²⁴ H. Ozaki,⁶ H. Palka,²⁴ C. W. Park,³⁵ ⁶ H. Sagawa,⁶ Y. Sakai,⁶ N. Sato,¹⁹ T. Schietinger,¹⁵ O. Schneider,¹⁵ meson . Somov,⁴ R. Stamen,⁶ S. Stanič,^{45,*} M. Starič,¹¹ K. Sumisawa,²⁸ T. Sumiyoshi,⁴³ S. Suzuki,³² S. Y. Suzuki,⁶ O. Tajima,⁶ F. Takasaki,⁶ K. Tamai,⁶ N. Tamura,²⁶ M. Tanaka,⁶ Y. Teramoto,²⁷ X. C. Tian,³⁰ K. Trabelsi,⁵ T. Tsukamoto,⁶ S. Uehara,⁶ T. Uglov,¹⁰ K. Ueno,²³ S. Uno,⁶ P. Urquijo,¹⁸ G. Varner,⁵ K. E. Varvell,³⁶ S. Villa,¹⁵ C. C. Wang,²³ C. H. Wang,²² M.-Z. Wang,²³ Q. L. Xie,⁸ A. Yamaguchi,⁴⁰ H. Yamamoto,⁴⁰ Y. Yamashita,²⁵ M. Yamauchi,⁶ J. Ying,³⁰ C. C. Zhang,⁸ J. Zhang,⁶ and D. Žontar^{16,11}

(Belle Collaboration)

Search for $B^{+,0} \rightarrow J/\psi\eta'(K^+,K_s^0)$

 $B^+ \rightarrow J/\psi \eta' K^+$

 $B^0 \rightarrow J/\psi \eta' K_s^0$

Search for X(1812) in $B^{\pm} \to K^{\pm} \omega \phi$

Search for the X(1812) in $B^{\pm} \to K^{\pm} \omega \phi$

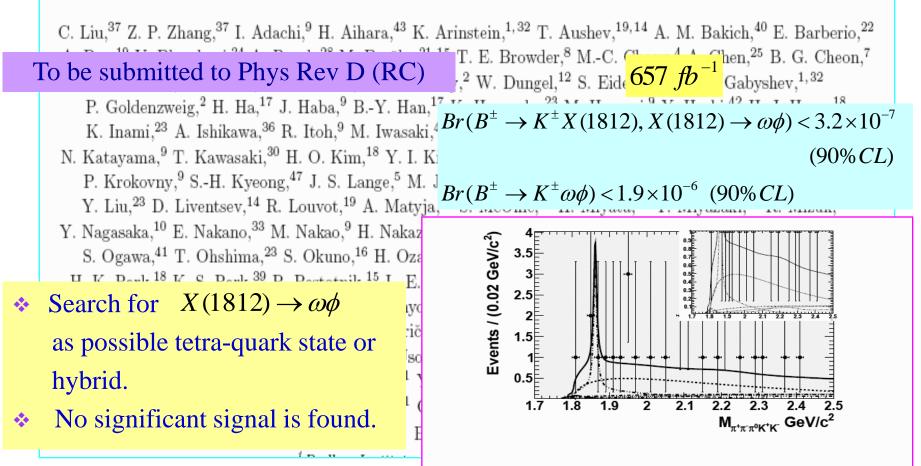
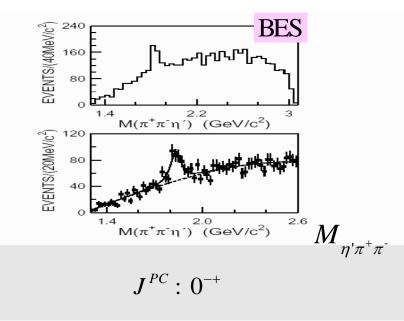
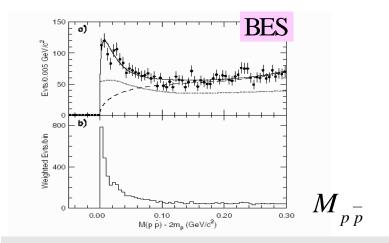



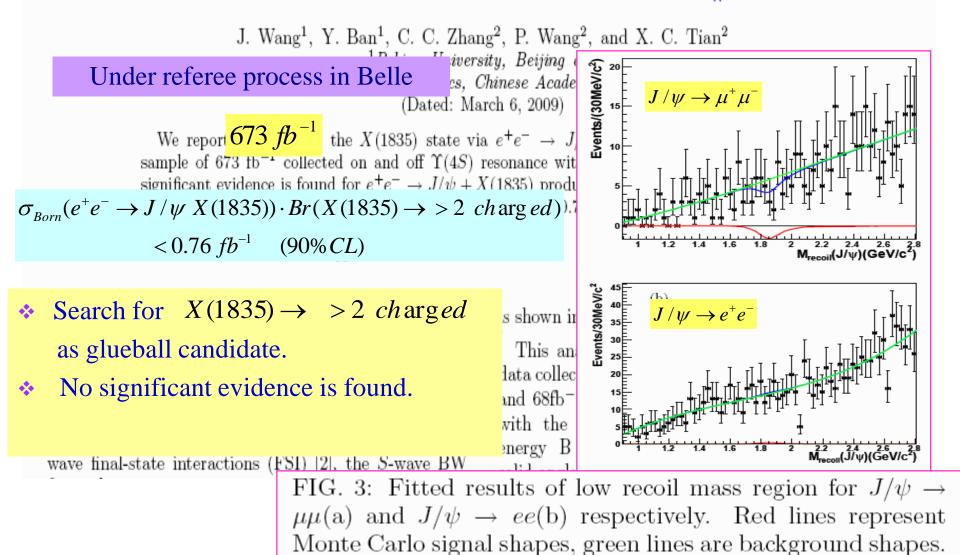
FIG. 2: Mass spectrum in the $\omega\phi$ fit with the following components: $B^+ \to K\omega\phi$ three-body (dotted), $B\overline{B}$ (dotdashed), $q\overline{q}$ (dashed), D^0 (dot-dot-dashed), D_s (dot-dot-dotdashed), $B^{\pm} \to K^{\pm}X(1812)$ (long-dashed), and total(solid). The spectrum is also shown in the inset with an expanded vertical scale

X(1835) observed by BESII


Observation of X(1835) $M = 1833.7 \pm 6.1 \pm 2.7 \, MeV/c^2$ $\Gamma = 67.7 \pm 20.3 \pm 7.7 \, MeV/c^2$ $Br(J/\psi \rightarrow \gamma X) \cdot B(X \rightarrow \pi^+ \pi^- \eta')$ $= (2.2 \pm 0.4 \pm 0.4) \times 10^{-4}$

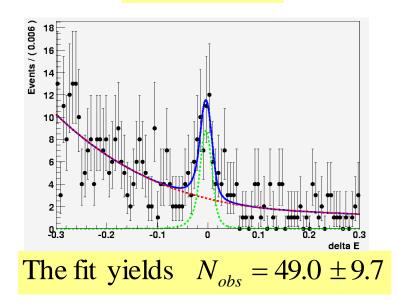
See: Phys. Rev. Lett. 95, 262001 (2005)

• Enhancement near $p \overline{p}$ threshold $M = 1859 \stackrel{+3+5}{_{-10-25}} MeV / c^2$ $Br(J/\psi \rightarrow \gamma X) \cdot B(X \rightarrow p \overline{p})$ $= (7.0 \pm 0.4 \stackrel{+1.9}{_{-0.8}}) \times 10^{-5}$


See : Phys. Rev. Lett. 91, 022001 (2003)

S-wave BW fit with FSI & zero isospin gives: $M = 1831 \pm 7 MeV/c^2$ $\Gamma < 157 MeV/c^2$ J^{PC} : 0⁺⁺ or 0⁻⁺

Search for X(1835) in $e^+e^- \rightarrow J/\psi X(1835)$


Search for X(1835) in $e^+e^- \rightarrow J/\psi + X(1835)$ in e^+e^- annihilation at $\sqrt{s} \approx 10.6$ GeV

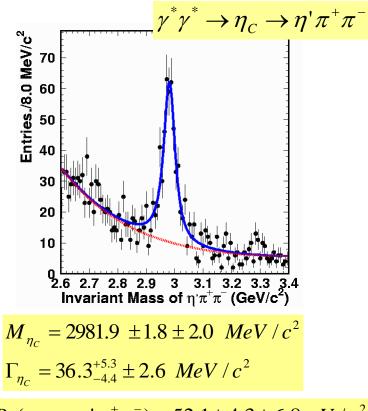
Measurement of η_c and search for X(1835)

 $B^{\pm} \to K^{\pm} \eta_C, \ \eta_C \to \eta' \pi^+ \pi^-$

 $Lint = 605 \ fb^{-1}$

 η_C signal for $B^{\pm} \rightarrow \eta_C K^{\pm}$ is observed. It is a first observation via $\eta_C \rightarrow \eta' \pi^+ \pi^$ decay mode. X(1835) is observed from J/psi decay by BESII.

 It could be produced in B decay and two-photon process, if it is an excited η' state.


presented at physics group meeting.

No signal for $B^{\pm} \rightarrow K^{\pm}X(1835)$ with $X(1835) \rightarrow \eta' \pi^{+} \pi^{-}$ is found.

- Preliminary and unpublished
- Internal report only.

Measurement of η_c and search for X(1835)

via two-photon process:
$$\gamma^* \gamma^* \rightarrow \eta_C, X$$
 (1835)

 $\Gamma_{\gamma\gamma} Br(\eta_C \to \eta' \pi^+ \pi^-) = 52.1 \pm 4.3 \pm 6.8 \ eV/c^2$ (PDG08: 194±98 eV/c^2)

Direct measurement with improved precision

 $Lint = 673 \ fb^{-1}$

$$\gamma^* \gamma^* \to X(1835) \to \eta' \pi^+ \pi^-$$

Preliminar y search for X(1835) is presented at Belle Analysis Meeting.

PhD thesis on Belle physics

1. Ye Yuan (IHEP), 2002

"Measurement of $B \rightarrow \chi_{c1,c2} K^{(*)}$ decays at Belle/KEKB"

2. Zshilei Zang (IHEP), 2005

"Search for $B^- \to J/\psi \Lambda p$ decays at Belle"

- 3. Jin Li (USTC), 2004 "Search for $D^0 \overline{D^0}$ mixing via $D^0 \to K^+ \pi^-$ "
- 4. Qilin Xie (SCU), 2005 "Search for $B^- \to J/\psi(\Lambda, \Sigma^0, p)\overline{p}$ and $B^{+,0} \to J/\psi\eta'(K^+, K_s^0)$ at Belle"
- 5. Xinchun Tian (PKU), 2006

"Measurement of the wrong-sign decays $D^0 \to K^+\pi^-(\pi^0, \pi^+\pi^-)$ and search for CP violation"

6. Liming Zhang (USTC), 2006

"Search for $D^0 \overline{D^0}$ mixing in $D^0 \to K^+ \pi^-$ and Measurements of $B^{0(+)} \to J/\psi \overline{D}^0(\pi^+)$ "

Publication

- 1. "Search for $B^- \rightarrow J/\psi \Lambda p$ decay", Phys. Rev. D69, 017101 (2004)
- 2. "Observation of $B^- \to J/\psi \Lambda p$ and search for $B^- \to J/\psi \Sigma^0 p$ decay", Phys. Rev. D72, 051105 (2005)
- 3. "Search for $B^{0(+)} \to J/\psi \overline{D}^{0}(\pi^{+})$ decay", Phys. Rev. D71, 091107 (2005)
- 4. "Search for $D^0 \overline{D}^0$ mixing in $D^0 \to K^+ \pi^-$ decays",

Phys. Rev. Lett. 94, 071801 (2005)

5. "Measurement of WS $D^0 \rightarrow K^+\pi^-(\pi^0, \pi^+\pi^-)$ decays and Search for CPV", Phys. Rev. Lett. 95, 231801 (2005)

- 6. "Improved Constraints on $D^0 \overline{D}^0$ mixing in $D^0 \rightarrow K^+ \pi^-$ decays", Phys. Rev. Lett. 96, 151801 (2006)
- 7. "Proper-time resolution function in $D^0 \overline{D}^0$ mixing search",

Nucl. Instrum. Meth. A553,483 (2005)

- 8. "Search for $B^{-(0)} \to J/\psi\eta' K^{-}(K_{s}^{0})$ decays", Phys. Rev. D75, 017101 (2007)
- 9. "Measurement of $D^0 \overline{D}^0$ mixing parameters in $D^0 \to K_s \pi^+ \pi^-$ decays",

Phys. Rev. Lett., 99 131803 (2007)

PRL:	4 papers
PRD :	4 papers
NIM :	1 paper

Summary

- Contributions on Charm physics research to Belle experiment
 9 papers published (4 for PRL, 4 for PRD, 1 for NIM)
- Our results in $D^0 \overline{D}^0$ mixing disfavor the non-mixing point with 2.3 $\sigma(2.2\sigma)$ significance for $D^0 \to K^+ \pi^- (K_s \pi^+ \pi^-)$.
 - Continue effort in the search is expected at Super Belle
- No evidence for exotic states from B^(-,0) → J/ψ(Λp̄, D̄⁰(π⁰)) decays
 Br(B⁻ → J/ψΛp̄) is measured, and upper limits for others are obtained.
- More papers on X(1812) and X(1835) search will be published.

My appreciations to our colleagues at KEKB and Belle for their dedicate and successful works.

> JSPS fund NSFC fund Innovation(IHEP,CAS) fund CCAST fund

> > Thanks

Research on charm Physics at Belle

Brief status (continue)

- Conf. talk (Yuan Ye/IHEP)
 - "Branching fractions and Properties on B meson Decays to Charmonium"
 - presented at the Annual Meeting of Chinese Association of High Energy Physics, Oct. 2002, Xinxiang, China
- Conf. talk (Ban Y/PU, Dong L.Y./IHEP) "Measurement of R_{WS} $D^0 \rightarrow K^+\pi^-$ using 11 fb⁻¹" presented at Inter. Conf. of Flavor Physics, 2001, Hunan, China
- Conf. talk (Yuan.Y./IHEP)

"Selected topics from Belle experiment" presented at Workshop on B Physics at hadron colliders, 22-23 Nov. 2004, CCAST, Beijing