Parton Distributions from DIS (JLab/EIC)

Jian-ping Chen (陈剑平), Jefferson Lab, Virginia, USA Workshop on Parton Distributions in Modern Era, Peking University, July 14-16, 2017

- Introduction
- Unpolarized PDFs: d/u @ high-x, sea asymmetry, strange sea
- Polarized PDFs: A1 @ high-x, d2 moments
- 3-d Structure Study: TMDs, GPDs
- JLab12 SoLID Experiments
- Future Electron Ion Collider
- Summary

Introduction

Nucleon Structure and DIS JLab and 12 GeV Energy Upgrade

Nucleon Structure

- Nucleon: proton =(uud), neutron=(udd)
- Nucleon: 99% of the visible mass in universe
 - Proton momentum (unpolarized PDFs)

Quarks carry ~ 50% of proton's momentum *Glue carry the rest of the momentum*

Proton spin "puzzle" (polarized PDFs)

Quarks carry $\sim 30\%\,$ of proton's spin

How does quark and gluon dynamics generate the rest of the proton spin?

> 3D structure of nucleon: 3D in momentum or (2D space +1 in momentum)

+ sea quarks + gluons

Polarized Deep Inelastic Electron Scattering

 Q^2 = 4-momentum transfer of the virtual photon, ν = energy transfer, θ = scattering angle

All information about the nucleon vertex is contained in

 F_2 and F_1 the unpolarized (spin averaged) structure functions,

and

 g_1 and g_2 the spin dependent structure functions

Inclusive, Semi-Inclusive and Exclusive Processes

Inclusive electron scattering: only detect scattered electron elastic: form factors excitations: resonances, new states search DIS: structure functions, parton distributions (PDFs), spin distributions (polarized PDFs)
 Semi-inclusive: detect one additional particle SIDIS: flavor tagging, spin-flavor structure transverse momentum dependent distributions (TMDs)

 Exclusive: all final states are determined deep-virtual Compton Scattering (DVCS), …
 → generalized parton distributions (GPDs)

JLab and 12 GeV Energy Upgrade

Experimental Hall Detector Upgrade

12 GeV Upgrade Project

12 GeV Scientific Capabilities

Hall B – understanding nucleon structure via generalized parton distributions

Hall A – form factors, future new experiments (e.g., **SoLID** and MOLLER)

Hall D – exploring origin of confinement by studying exotic mesons

Hall C – precision determination of valence quark properties in nucleons/nuclei

Unpolarized Parton Distributions

Valence Quark Structure: d/u @ High-x Sea Quark Flavor Distributions: Light Sea Asymmetry, Strange Sea

Unpolarized Structure Function F₂

- Bjorken Scaling
- Scaling Violation
- Gluon radiation –
- QCD evolution NLO: Next-to-Leading-Order
- One of the best experimental tests of QCD

Unpolarized Parton Distribution Functions

valence region

Valence Quark Distributions: d/u@ High-x

High-x: valence quark dominating, clean region to study valence behavior d/u at high-x, not well-known due to large nuclear effect using effective neutron target JLab 12: 1) Hall A ³H/³He; 2) BONUS @ CLAS12, 3) SoLID PVDIS-proton

 Hall A ³H/³He: super ratio to minimize nuclear effect (this fall)

2) BONUS @ CLAS12 tag back scattering slow proton to minimize nuclear effect in deuteron

3) SoLID PVDIS-proton director probe d/u in proton using gamma and Z exchanges (without effective neutron)

Proton Sea not SU(3) Symmetric

□ The proton sea is not SU(3) symmetric!

Light Sea Quark Asymmetry: d_bar/u_bar

Fermi Lab SEAQUEST new results

JLab12: Possible SIDIS measurement, Hall C proposal projections

Strange Sea

Need additional observable in addition to inclusive DIS on p and n

Weak Interaction (Neutrino, PV) or SIDIS (Kaon)
 SIDIS (Kaon): in current fragmentation region? HERMES, probably mostly not?
 Issue with Kaon Fragmentation Function?

Comparison of Kaon Multiplicity Ratio

Kaon multiplicity ratio

• π case, there is a good agreement between COMPASS and HERMES for the $\pi^{+/}\pi^{-}$ multiplicity ratio

Despite the difference in the shape of π multiplicity sum

- K case: clear discrepancy between COMPASS and HERMES even for the K ⁺/K⁻ multiplicity ratio
- DSS next fit of Kaon FF

Nucleon Spin-flavor Structure

Valence Quark Flavor and Spin Distributions Sea Quark Flavor-Spin Distributions Gluon Spin Distribution

Polarized Structure functions

Polarized Parton Distributions

Nucleon Spin Structure Study

- 1980s: EMC (CERN) + early SLAC quark contribution to proton spin is very small $\Delta \Sigma = (12+-9+-14)\%!$ 'spin crisis'
- 1990s: SLAC, SMC (CERN), HERMES (DESY) $\Delta \Sigma = 20-30\%$, the rest: gluon and quark orbital angular momentum $(\frac{1}{2})\Delta \Sigma + Lq + \Delta G + L_G = 1/2$ gauge invariant $(\frac{1}{2})\Delta \Sigma + Lq + J_G = 1/2$
 - 2000s: COMPASS (CERN), HERMES, RHIC–Spin, JLab, ... : $\Delta\Sigma \sim 30\%$; Δ G contributes, orbital angular momentum significant Large-x (valence quark) behavior; Moments and sum rules Needs 3-d structure information to complete the proton spin puzzle

Reviews: Sebastian, Chen, Leader, arXiv:0812.3535, PPNP 63 (2009) 1;

JLab E99117: **Precision Measurement of A**₁ⁿ at High-x Valance Quark Flavor Separation

pQCD with Quark Orbital Angular Momentum

Inclusive Hall A and B and Semi-Inclusive Hermes

Avakian, Brodsky, Deur and Yuan, PRL 99, 082001 (2007)

Projections for JLab at 11 GeV

A₁ⁿ at 11 GeV

A₁^p at 11 GeV

g₂: twist-3, q-g correlations

- experiments: transversely polarized target SLAC E155x, (p/d)
 JLab Hall A (n), Hall C (p/d)
- g_2 leading twist related to g_1 by Wandzura-Wilczek relation $g_2(x,Q^2) = g_2^{WW}(x,Q^2) + g_2(x,Q^2)$ $g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int g_1(y,Q^2) \frac{dy}{v}$ • $g_2 - g_2^{WW}$: a clean way to access twist-3 contribution quantify q-g correlations

Color Polarizability (Lorentz Force): *d*₂

- 2^{nd} moment of $g_2 g_2^{WW}$
 - *d*₂: twist-3 matrix element

$$d_{2}(Q^{2}) = 3\int_{0}^{1} x^{2} [g_{2}(x,Q^{2}) - g_{2}^{WW}(x,Q^{2})] dx$$
$$= \int_{0}^{1} x^{2} [2g_{1}(x,Q^{2}) + 3g_{2}(x,Q^{2})] dx$$

 d_2 and g_2 - g_2^{WW} : clean access of higher twist (twist-3) effect: q-g correlations Color polarizabilities χ_E, χ_B are linear combination of d_2 and f_2 (X. Ji) Provide a benchmark test of Lattice QCD at high Q^2 Avoid issue of low-x extrapolation Color Lorentz (transverse) force (M. Burkardt) Relation to Sivers and other TMDs

World Measurements of d₂(Q²)

d₂ⁿ Result from JLab E06-014

Posik et al., PRL 113 022002 (2014)

JLab 12 Projection of d_2^n

Sea Quark Spin-Flavor Study with EIC

• Unique opportunity for Δs

energy reach current fragmentation region for Kaon tagging in SIDIS

- Significant improvement for Δu_bar , Δd_bar from SIDIS
- Increase in Q² range/precision for g₁ (and g₂) constraint on ∆g.

EIC: Probe Polarized Gluons

A Polarized EIC:

- Tremendous improvement on ∆G
- Also improvement in $\Delta\Sigma$
- Spin Flavor decomposition of the Light Quark Sea

3-D Structure I

Transverse Momentum-Dependent Distributions

Unified View of Nucleon Structure

Wigner distributions

Towards Imaging - Two Approaches TMDs GPDs

2+1 D picture in momentum space

- ----, ---,
- intrinsic transverse motion
- spin-orbit correlations- relate to OAM
- non-trivial factorization
- accessible in SIDIS (and Drell-Yan)

2+1 D picture in **impact-parameter space**

 $^{{\}tt QCDSF}\ collaboration$

- collinear but long. momentum transfer
- indicator of OAM; access to Ji's total $J_{q,g}$
- existing factorization proofs
- DVCS, deep exclusive meson production

Leading-Twist TMD PDFs

Access TMDs through Hard Processes

Tool: Semi-inclusive DIS (SIDIS)

e'

e

Scattering plane

 \vec{p}_h

Gold mine for TMDs

U

d

d

 Access all eight leading-twist TMDs through spin-comb. & azimuthalmodulations

d

ū

Tagging quark flavor/kinematics

Separation of Collins, Sivers and pretzelocity effects through angular dependence

$$A_{UT}(\varphi_h^l,\varphi_S^l) = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$

= $A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S)$
+ $A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S)$

$$\begin{aligned} A_{UT}^{Collins} &\propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp} \\ A_{UT}^{Sivers} &\propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1 \\ A_{UT}^{Pretzelosity} &\propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp} \end{aligned}$$

COMPASS/HERMES: Sivers Asymmetries and Extraction of Sivers Function

³He (n) Target Single-Spin Asymmetry in SIDIS

JLab E06-010 collaboration, X. Qian at al., PRL 107:072003(2011)

 $n^{\uparrow}(e,e'h), h = \pi^+, \pi^-$

Blue band: model (fitting) uncertainties **Red band**: other systematic uncertainties

JLab 12 GeV Era: Precision Study of TMDs

- From exploration to precision study with 12 GeV JLab
- Transversity: fundamental *PDF*s, tensor charge
- TMDs: 3-d momentum structure of the nucleon
- \rightarrow Quark orbital angular momentum
- Multi-dimensional mapping of TMDs
 - 4-d (*x*,*z*,*P*⊥,Q²)
 - Multi-facilities, global effort
- Precision \rightarrow high statistics
 - high luminosity and large acceptance

Solenoidal Large Intensity Device

• Full exploitation of JLab 12 GeV Upgrade

→ A Large Acceptance Detector AND Can Handle High Luminosity (10³⁷-10³⁹) Take advantage of latest development in detectors, data acquisitions and simulations Reach ultimate precision for SIDIS (TMDs), PVDIS in high-x region and threshold J/ψ

•5 highly rated experiments approved

Three SIDIS experiments, one PVDIS, one J/ψ production (+4 run group experiments)
 Strong collaboration (250+ collaborators from 70+ institutes, 13 countries)
 International collaborations (significant Chinese contributions)

SoLID-Spin: SIDIS on ³He/Proton @ 11 GeV

E12-10-006: Single Spin Asymmetry on Transverse ³He, rating A E12-11-007: Single and Double Spin Asymmetries on ${}^{3}\text{He}$, rating A E12-11-108: Single and Double Spin Asymmetries on Transverse Proton, rating A

Two run group experiments DiHadron and Ay Sivers π⁻ @ z = 0.55 0-0.02 0.04 0.06 0.08 -0.1 A 0.8 0.6 0.4 0.2 0.2 0.2 0.1 0.2 0.3 0.4 0.5 0.6

Key of SoLID-Spin program: Large Acceptance + High Luminosity \rightarrow 4-D mapping of asymmetries \rightarrow Tensor charge, TMDs ... \rightarrow Lattice QCD, QCD Dynamics, Quark Orbital Angular Momentum, Imaging in 3-D momentum space.

³He p π^+ p π^{-} *41*

Transversity from SoLID

- Collins Asymmetries ~ Transversity (x) Collin Function
- Transversity: chiral-odd, not couple to gluons, valence behavior, largely unknown
- Global model fits to experiments (SIDIS and e+e-)
- SoLID with trans polarized n & $p \rightarrow$ Precision extraction of u/d quark transversity
- Collaborating with theory group (N. Sato, A. Prokudin, ...) on impact study

Z. Ye et al., PLB 767, 91 (2017)

Tensor Charge from SoLID

- Tensor charge (0th moment of transversity): fundamental property Lattice QCD, Bound-State QCD (Dyson-Schwinger) , ...
- SoLID with trans polarized n & p → determination of tensor charge

Tensor Charge and Neutron EDM

Electric Dipole Moment

Tensor charge and EDM

$$d_n = \delta_T u \, d_u + \delta_T d \, d_d + \delta_T s \, d_s$$

current neutron EDM limit

Mapping Sivers Asymmetries with SoLID

- Sivers Asymmetries ~ Sivers Function (x, k_T, Q²) (x)
 Fragmentation Function (z, p_T,Q²)
- Leading-twist/not Q power suppressed: Gauge Link/ QCD
 Final State Interaction
- Transverse Imaging
- QCD evolutions
- SoLID: precision multi-d mapping
- Collaborating with theory group: impact study

Sivers Asymmetries

 P_T vs. x for one (Q^2 , z) bin Total > 1400 data points

Liu, Sato, Prokudin,...

TMDs: Access Quark Orbital Angular Momentum

- TMDs : Correlations of transverse motion with quark spin and orbital motion
- Without OAM, off-diagonal TMDs=0, no direct model-independent relation to the OAM in spin sum rule yet
- Sivers Function: QCD lensing effects
- In a large class of models, such as light-cone quark models
 Pretzelosity: ΔL=2 (L=0 and L=2 interference, L=1 and -1 interference)
 Worm-Gear: ΔL=1 (L=0 and L=1 interference)
- SoLID with trans polarized n/p → quantitative knowledge of OAM

EIC Imaging in 3-d momentum space

3-D Structure II

Generalized Parton Distributions

E12-06-114 DVCS in Hall A (first 12 GeV era experiment)

100 PAC days approved:

- High impact experiment for nucleon
 3D imaging program
- High precision scaling tests of the DVCS cross section at constant x_B
- CEBAF12 will allow first time exploration of the high x_B region

Planned 50% of experiment completed in 2014-2016

Excellent coincident time resolution: 250 MHz beam structure

Analysis path:

- Jun'17: Report at JLab Summer Meeting.
- Jan'18: Preliminary results on π^0 at $x_B=0.36$
- Apr'18: Preliminary results on DVCS
- Jul'18 : Short paper submitted to PRL on π^0
- Jan'19: Letter to PRL on DVCS
- Jul'19: Long paper to PRC (DVCS & pi0)

CLAS12 - DVCS/BH Target Asymmetry Projection

Polarized DVCS @ EIC

Electron Ion Collider

NSAC 2007 Long-Range Plan:

"An Electron-Ion Collider (EIC) with polarized beams has been embraced by the U.S. nuclear science community as embodying the vision for reaching the next QCD frontier. EIC would provide unique capabilities for the study of QCD well beyond those available at existing facilities worldwide and complementary to those planned for the next generation of accelerators in Europe and Asia."

NSAC 2015 Long-Range Plan:

We recommend a high-energy high-luminosity polarized **EIC as the highest priority for new facility construction** following the completion of FRIB.

EIC Community White Paper arXiv:1212.1701v2

The Electron Ion Collider Two proposals for realization of the Science Case

Second phase for HIAF: EIC (3 x 12 GeV) in China

HIAF design maintains a well defined path for EIC In HIAF I: EIC Ion pre-Booster 10^{14~15} ppp → Lower energy EIC (Update +ERL)

See W. L. Zhan's talk@The 8th Workshop on Hadron Physics in China and Opportunities Worldwide (2016)

Overview of EIC Experiments

A Key Question for EIC:

"How are the sea quarks and gluons, and their spins distributed in space and momentum inside the nucleon?"

- Spin and Flavor Structure of the Nucleon
- 3-d Structure in Momentum Space and Confined Motion of Partons inside the Nucleon
- 3-d Structure in Coordinator Space and Tomography of the Nucleon

Other Important Questions:

"Where does the saturation of gluon densities set in?

How does the nuclear environment affect the distribution of quarks and gluons and their interactions in nuclei?"

Opportunity for Low Energy Search of Physics Beyond SM

Parity Violating e-N

Summary

- Understand strong interaction/nucleon structure: A challenge
- JLab 12 GeV upgrade: Study Nucleon Structure in Valence Quark Region
- Highlights of JLab results and 12 GeV/SoLID program
 - Unpolarized PDF: d/u @ high-x, sea asymmetry d_bar/u_bar, strange sea polarized PDF: A1n @high-x, d2 moments 3-d Structure: TMDs and GPDs
- Future Electron-Ion Collider: understand sea quarks and gluons

Backup

Valence Quark Distributions: d/u@ High-x

Flavor decomposition with SIDIS

Δu and Δd at JLab 11 GeV

Polarized Sea

known information on GPDs

forward limit : ordinary parton distributions

 $egin{array}{rcl} H^q(x,\xi=0,t=0) &=& q(x) \ ilde{H}^q(x,\xi=0,t=0) &=& \Delta q(x) \end{array}$

unpolarized quark distribution

polarized quark distribution

 $E^{q},\, ilde{E}^{q}$: do NOT appear in DIS ightarrowdditional information

first moments : nucleon electroweak form factors

$$P - \Delta/2 \qquad P + \Delta/2 \qquad \int_{-1}^{1} dx \, H^{q}(x,\xi,t) = F_{1}^{q}(t) \quad \text{Dirac} \\ \int_{-1}^{1} dx \, E^{q}(x,\xi,t) = F_{2}^{q}(t) \quad \text{Pauli} \\ \int_{-1}^{1} dx \, \tilde{H}^{q}(x,\xi,t) = G_{A}^{q}(t) \quad \text{axial} \\ \int_{-1}^{1} dx \, \tilde{E}^{q}(x,\xi,t) = G_{P}^{q}(t) \quad \text{pseudo-scalar} \end{cases}$$

Access GPDs through DVCS x-section & asymmetries

Hall A DVCS Experiment Handbag Dominance at Modest Q²

The Twist-2 term can be extracted accurately from the cross-section difference Dominance of twist-2 \Rightarrow handbag dominance \Rightarrow DVCS interpretation

Quark Angular Momentum

$$J^{q}(t) = \int_{-1}^{+1} dx x [H^{q}(x,\xi,t) + E^{q}(x,\xi,t)]$$

→ Access to quark orbital angular momentum

3D Images of the Proton's Quark Content

EIC@HIAF Kinematic Coverage Comparison with JLab 12 GeV

e(3GeV) +p(12GeV), both polarized, L(max)~ 10³³cm²/s

EIC@HIAF Projections for SIDIS Asymmetry π^+

EIC@HIAF reach high precision similar to SoLID at lower x, higher Q2 region

Green (Blue) Points: SoLID projections for polarized NH₃ (³He/n) target Luminosity: 10³⁵ (10³⁶) (1/cm²/s); Time: 120 (90) days

Black points: EIC@HIAF projections for 3 GeV e and 12 GeV p Luminosity: 4 x 10^{32} /cm²/s; Time: 200 days

GPD Study at EIC@HIAF

- Unique opportunity for DVMP (pion/Kaon) flavor decomposition needs DVMP energy reach Q² > 5-10 GeV², scaling region for exclusive light meson production (JLab12 energy not high enough to have clean light meson deep exclusive process)
- Significant increase in range for DVCS combination of energy and luminosity
- Other opportunities: vector meson, heavy flavors?