Lepton Angular Distributions in Drell-Yan and Z-boson Production

Jen-Chieh Peng

University of Illinois at Urbana-Champaign

Workshop on "Parton Distributions in Modern Era" Peking University
July 14-16, 2017

Based on the paper of JCP, Wen-Chen Chang, Evan McClellan, Oleg Teryaev, Phys. Lett. B758 (2016) 384; and preprint

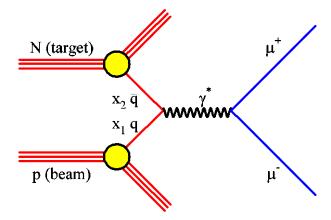
The Drell-Yan Process

MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES*

Sidney D. Drell and Tung-Mow Yan

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 (Received 25 May 1970)

On the basis of a parton model studied earlier we consider the production process of large-mass lepton pairs from hadron-hadron inelastic collisions in the limiting region, $s \to \infty$, Q^2/s finite, Q^2 and s being the squared invariant masses of the lepton pair and the two initial hadrons, respectively. General scaling properties and connections with deep inelastic electron scattering are discussed. In particular, a rapidly decreasing cross section as $Q^2/s \to 1$ is predicted as a consequence of the observed rapid falloff of the inelastic scattering structure function νW_2 near threshold.



$$\left(\frac{d^2\sigma}{dx_1dx_2}\right)_{DV} = \frac{4\pi\alpha^2}{9sx_1x_2} \sum_a e_a^2 \left[q_a(x_1)\overline{q}_a(x_2) + \overline{q}_a(x_1)q_a(x_2)\right]$$

Angular Distribution in the "Naïve" Drell-Yan

VOLUME 25, NUMBER 5

PHYSICAL REVIEW LETTERS

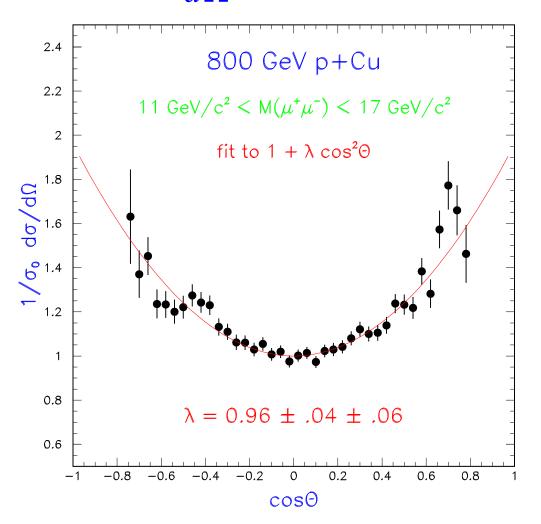
3 August 1970

(3) The virtual photon will be predominantly transversely polarized if it is formed by annihilation of spin- $\frac{1}{2}$ parton-antiparton pairs. This means a distribution in the di-muon rest system varying as $(1 + \cos^2\theta)$ rather than $\sin^2\theta$ as found in Sakurai's vector-dominance model, where θ is the angle of the muon with respect to the timelike photon momentum. The model used in Fig.

Drell-Yan angular distribution

Lepton Angular Distribution of "naïve" Drell-Yan:

$$\frac{d\sigma}{d\Omega} = \sigma_0 (1 + \lambda \cos^2 \theta); \quad \lambda = 1$$

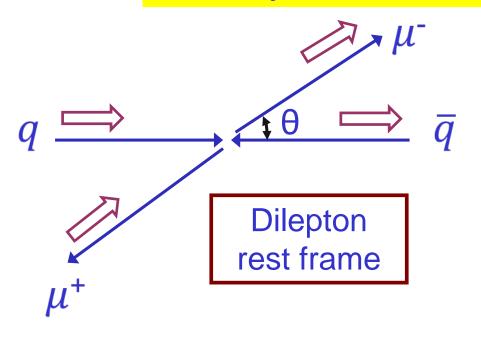


Data from Fermilab E772

(Ann. Rev. Nucl. Part. Sci. 49 (1999) 217-253)

Why is the lepton angular distribution $1 + \cos^2 \theta$?

Helicity conservation and parity



Adding all four helicity configurations: $d\sigma \sim 1 + \cos^2 \theta$

$$RL \to RL$$

$$d\sigma \sim (1 + \cos \theta)^{2}$$

$$RL \to LR$$

$$d\sigma \sim (1 - \cos \theta)^{2}$$

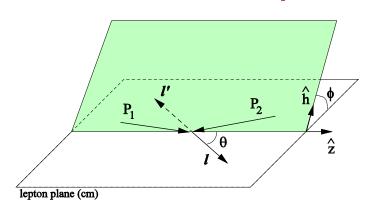
$$LR \to LR$$

$$d\sigma \sim (1 + \cos \theta)^{2}$$

$$LR \to RL$$

$$d\sigma \sim (1 - \cos \theta)^{2}$$

Drell-Yan lepton angular distributions



 Θ and Φ are the decay polar and azimuthal angles of the μ^- in the dilepton rest-frame

Collins-Soper frame

A general expression for Drell-Yan decay angular distributions:

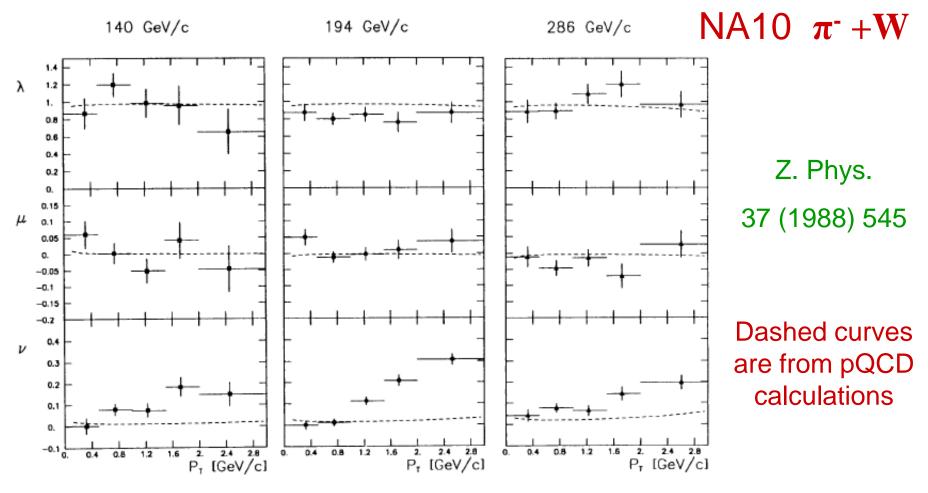
$$\left(\frac{1}{\sigma}\right)\left(\frac{d\sigma}{d\Omega}\right) = \left[\frac{3}{4\pi}\right]\left[1 + \lambda\cos^2\theta + \mu\sin 2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos 2\phi\right]$$

Lam-Tung relation: $1 - \lambda = 2\nu$

- Reflect the spin-1/2 nature of quarks
 (analog of the Callan-Gross relation in DIS)
- Insensitive to QCD corrections

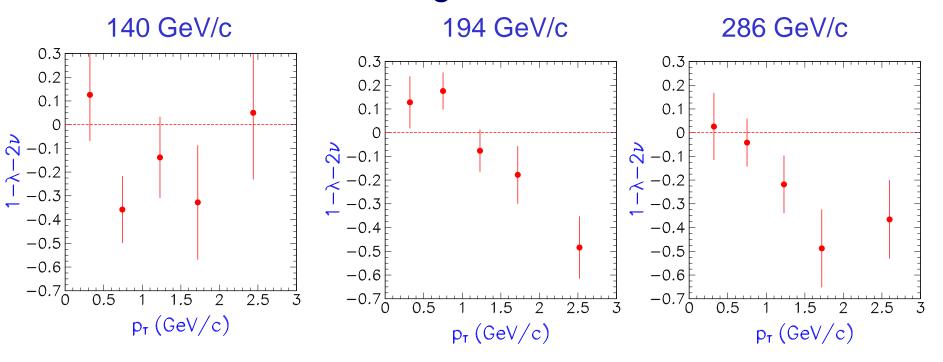
Decay angular distributions in pion-induced Drell-Yan

$$\left(\frac{1}{\sigma}\right)\left(\frac{d\sigma}{d\Omega}\right) = \left[\frac{3}{4\pi}\right]\left[1 + \lambda\cos^2\theta + \mu\sin 2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos 2\phi\right]$$



 $\nu \neq 0$ and ν increases with p_T

Decay angular distributions in pion-induced Drell-Yan Is the Lam-Tung relation violated?



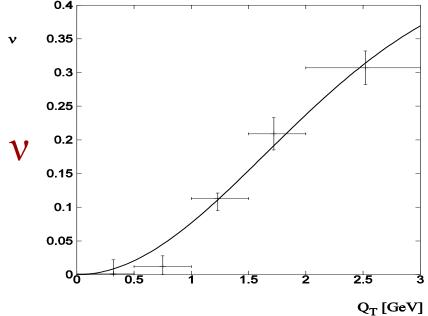
Data from NA10 (Z. Phys. 37 (1988) 545)

Violation of the Lam-Tung relation suggests interesting new origins (Brandenburg, Nachtmann, Mirkes, Brodsky, Khoze, Müller, Eskolar, Hoyer, Väntinnen, Vogt, etc.)

8

Boer-Mulders function h_1^{\perp}

- Boer pointed out that the cos2φ dependence can be caused by the presence of the Boer-Mulders function.
- h_1^{\perp} can lead to an azimuthal dependence with $v \propto \left(\frac{h_1^{\perp}}{f_1}\right) \left(\frac{\overline{h}_1^{\perp}}{\overline{f}_1}\right)$



$$h_1^{\perp}(x, k_T^2) = \frac{\alpha_T}{\pi} c_H \frac{M_C M_H}{k_T^2 + M_C^2} e^{-\alpha_T k_T^2} f_1(x)$$

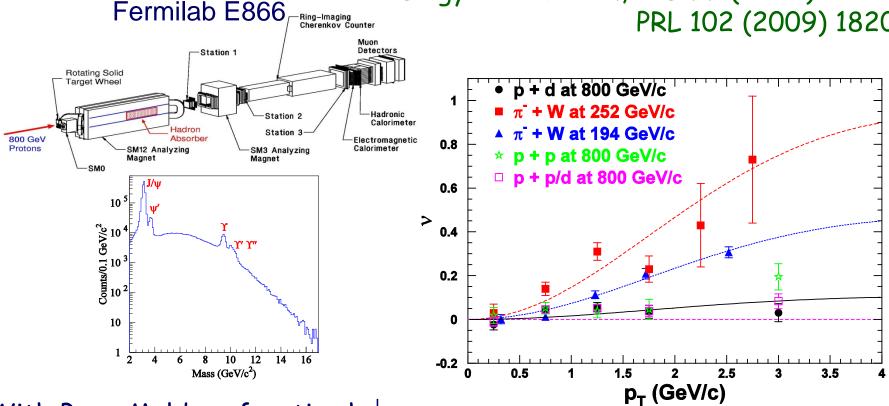
$$v = 16\kappa_1 \frac{Q_T^2 M_C^2}{(Q_T^2 + 4M_C^2)^2}$$

$$\kappa_1$$
=0.47, M_C =2.3 GeV

v>0 implies valence BM functions for pion and nucleon have same signs

Azimuthal cos24 Distribution in p+d Drell-Yan

Lingyan Zhu et al., PRL 99 (2007) 082301; PRL 102 (2009) 182001



With Boer-Mulders function h_1^{\perp} :

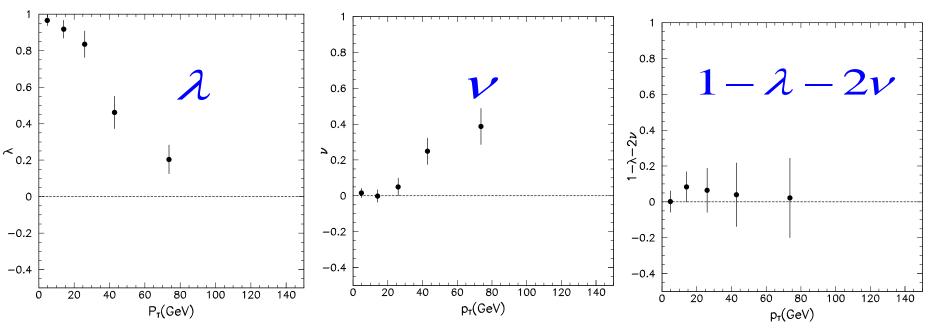
$$v(\pi^-W \rightarrow \mu^+\mu^+X) \sim [valence h_1^\perp(\pi)] * [valence h_1^\perp(p)]$$

 $v(pd \rightarrow \mu + \mu - X) \sim [valence h_1^{\perp}(p)] * [sea h_1^{\perp}(p)]$

Sea-quark BM function is much smaller than valence BM function

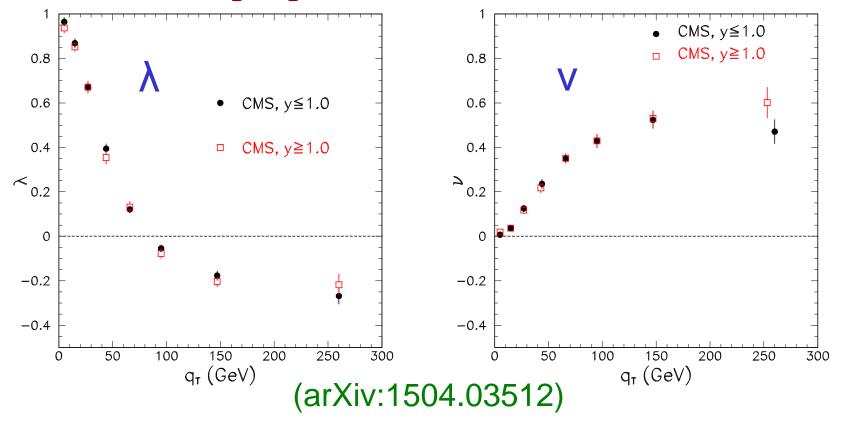
Lam-Tung relation from CDF Z-production

$$p + \overline{p} \rightarrow e^{+} + e^{-} + X$$
 at $\sqrt{s} = 1.96 \,\text{TeV}$ arXiv:1103.5699



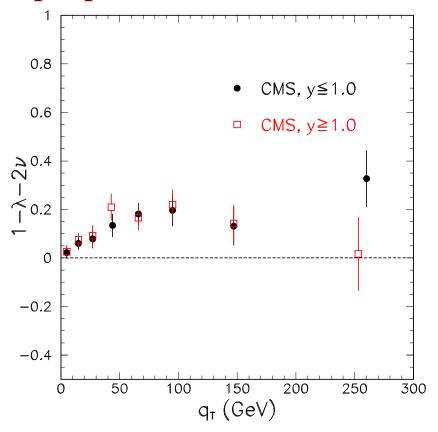
- Strong $p_T(q_T)$ dependence of λ and ν
- Lam-Tung relation $(1-\lambda = 2v)$ is satisfied within experimental uncertainties

Recent CMS data for Z-boson production in p+p collision at 8 TeV



- Striking q_T dependencies for λ and ν were observed at two rapidity regions
- Is Lam-Tung relation violated?

Recent data from CMS for Z-boson production in p+p collision at 8 TeV



- Yes, the Lam-Tung relation is violated $(1-\lambda > 2\nu)!$
- Can one understand the origin of the violation of the Lam-Tung relation?

Interpretation of the CMS Z-production results

$$\frac{d\sigma}{d\Omega} \propto (1 + \cos^2 \theta) + \frac{A_0}{2} (1 - 3\cos^2 \theta) + A_1 \sin 2\theta \cos \phi$$
$$+ \frac{A_2}{2} \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta$$
$$+ A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi$$

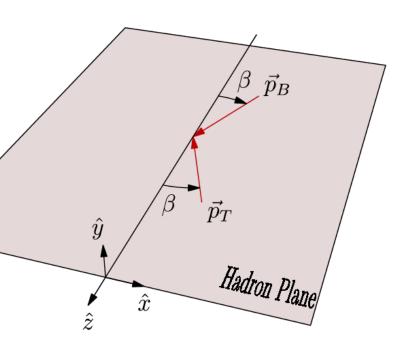
Questions:

- How is the above expression derived?
- Can one express $A_0 A_7$ in terms of some quantities?
- Can one understand the Q_T dependence of A_0, A_1, A_2 , etc?
- Can one understand the origin of the violation of Lam-Tung relation?

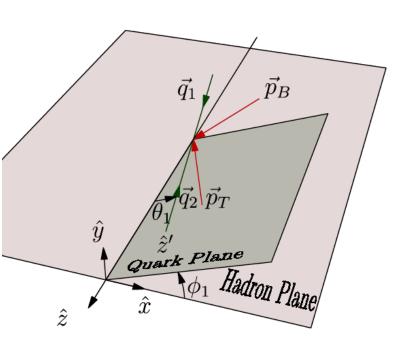
Define three planes in the Collins-Soper frame

1) Hadron Plane

- Contains the beam \vec{P}_B and target \vec{P}_T momenta
- Angle β satisfies the relation $\tan \beta = q_T / Q$



Define three planes in the Collins-Soper frame



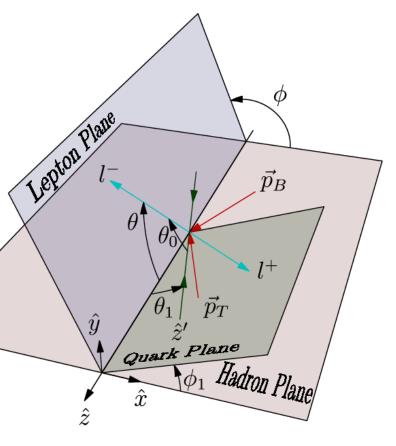
1) Hadron Plane

- Contains the beam \vec{P}_R and target \vec{P}_T momenta
- Angle β satisfies the relation $\tan \beta = q_T / Q$

2) Quark Plane

- q and \overline{q} have head-on collision along the \hat{z}' axis
- \hat{z}' axis has angles θ_1 and φ_1 in the C-S frame

Define three planes in the Collins-Soper frame



1) Hadron Plane

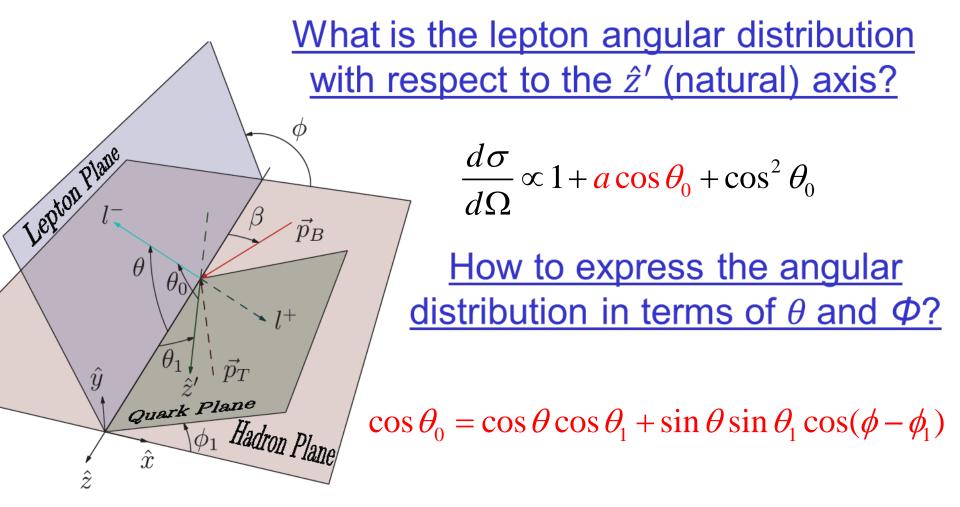
- Contains the beam \vec{P}_R and target \vec{P}_T momenta
- Angle β satisfies the relation $\tan \beta = q_T / Q$

2) Quark Plane

- q and \overline{q} have head-on collision along the \hat{z}' axis
- \hat{z}' axis has angles θ_1 and φ_1 in the C-S frame

3) Lepton Plane

- l^- and l^+ are emitted back-to-back with equal $|\vec{P}|$
- l^- is emitted at angle θ and φ in the C-S frame

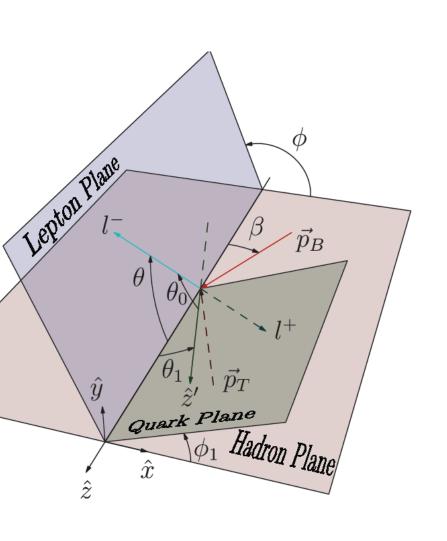


$$\begin{split} \frac{d\sigma}{d\Omega} &\propto (1+\cos^2\theta) + \frac{\sin^2\theta_1}{2}(1-3\cos^2\theta) \\ &+ (\frac{1}{2}\sin 2\theta_1\cos\phi_1)\sin 2\theta\cos\phi \\ &+ (\frac{1}{2}\sin^2\theta_1\cos 2\phi_1)\sin^2\theta\cos 2\phi \\ &+ (a\sin\theta_1\cos\phi_1)\sin\theta\cos\phi + (a\cos\theta_1)\cos\theta \\ &+ (\frac{1}{2}\sin^2\theta_1\sin 2\phi_1)\sin^2\theta\sin 2\phi \\ &+ (\frac{1}{2}\sin 2\theta_1\sin\phi_1)\sin 2\theta\sin\phi \\ &+ (a\sin\theta_1\sin\phi_1)\sin\theta\sin\phi. \end{split}$$

$$\frac{d\sigma}{d\Omega} \propto (1 + \cos^2 \theta) + \frac{A_0}{2} (1 - 3\cos^2 \theta) + A_1 \sin 2\theta \cos \phi + \frac{A_2}{2} \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta + A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi$$

 $A_0 - A_7$ are entirely described by θ_1 , ϕ_1 and α

Angular distribution coefficients $A_0 - A_7$



$$A_{0} = \langle \sin^{2} \theta_{1} \rangle$$

$$A_{1} = \frac{1}{2} \langle \sin 2\theta_{1} \cos \phi_{1} \rangle$$

$$A_{2} = \langle \sin^{2} \theta_{1} \cos 2\phi_{1} \rangle$$

$$A_{3} = a \langle \sin \theta_{1} \cos \phi_{1} \rangle$$

$$A_{4} = a \langle \cos \theta_{1} \rangle$$

$$A_{5} = \frac{1}{2} \langle \sin^{2} \theta_{1} \sin 2\phi_{1} \rangle$$

$$A_{6} = \frac{1}{2} \langle \sin 2\theta_{1} \sin \phi_{1} \rangle$$

$$A_{7} = a \langle \sin \theta_{1} \sin \phi_{1} \rangle$$

Some implications of the angular distribution coefficients $A_0 - A_7$

$$A_{0} = \langle \sin^{2} \theta_{1} \rangle$$

$$A_{1} = \frac{1}{2} \langle \sin 2\theta_{1} \cos \phi_{1} \rangle$$

$$A_{2} = \langle \sin^{2} \theta_{1} \cos 2\phi_{1} \rangle$$

$$A_{3} = a \langle \sin \theta_{1} \cos \phi_{1} \rangle$$

$$A_{4} = a \langle \cos \theta_{1} \rangle$$

$$A_{5} = \frac{1}{2} \langle \sin^{2} \theta_{1} \sin 2\phi_{1} \rangle$$

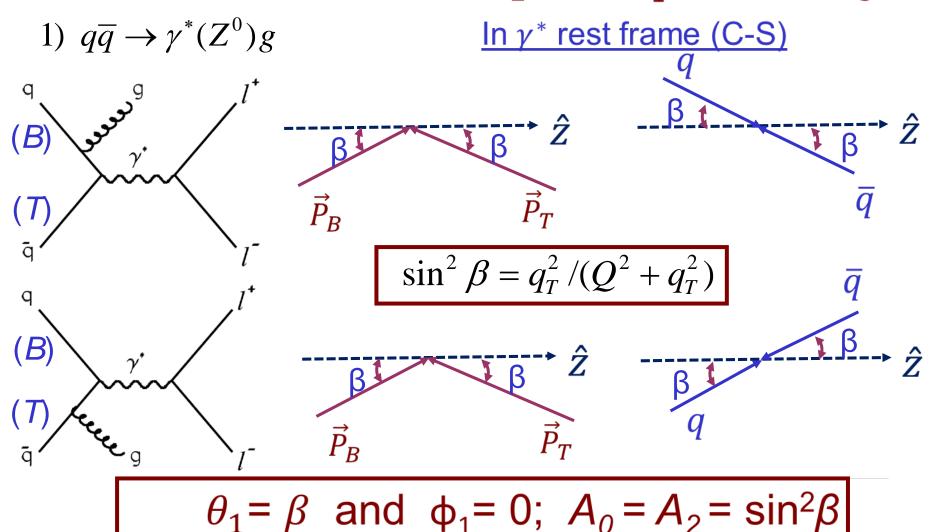
$$A_{6} = \frac{1}{2} \langle \sin 2\theta_{1} \sin \phi_{1} \rangle$$

$$A_{7} = a \langle \sin \theta_{1} \sin \phi_{1} \rangle$$

$$\bullet A_0 \ge A_2 \text{ (or } 1 - \lambda - 2\nu \ge 0)$$

- Lam-Tung relation $(A_0 = A_2)$ is satisfied when $\varphi_1 = 0$
- Forward-backward asymmetry, a, is reduced by a factor of $\langle \cos \theta_1 \rangle$ for A_4
- A_5 , A_6 , A_7 are odd function of φ_1 and must vanish from symmetry consideration
- Some equality and inequality relations among $A_0 A_7$ can be obtained

What are the values of θ_1 and ϕ_1 at order α_s ?



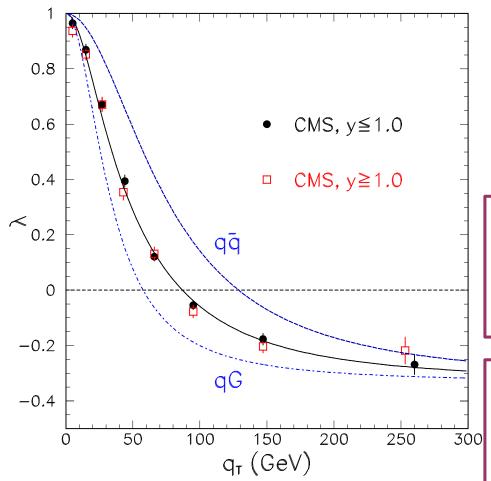
$$\lambda = \frac{2 - 3A_0}{2 + A_0} = \frac{2Q^2 - q_T^2}{2Q^2 + 3q_T^2}; \quad \nu = \frac{2A_2}{2 + A_0} = \frac{2q_T^2}{2Q^2 + 3q_T^2}$$

What are the values of θ_1 and ϕ_1 at order α_s ?

2)
$$qg o extstyle ag{2} o extstyle ag{2} o extstyle ag{4} o extstyle o extstyle ag{4} o extstyle ag{4} o extstyle ag{4} o e$$

Compare with CMS data on λ

(Z production in p+p collision at 8 TeV)



$$\lambda = \frac{2Q^2 - q_T^2}{2Q^2 + 3q_T^2} \quad \text{for } q\overline{q} \to Zg$$

$$\lambda = \frac{2Q^2 - 5q_T^2}{2Q^2 + 15q_T^2} \quad \text{for} \quad qG \to Zq$$

For both processes

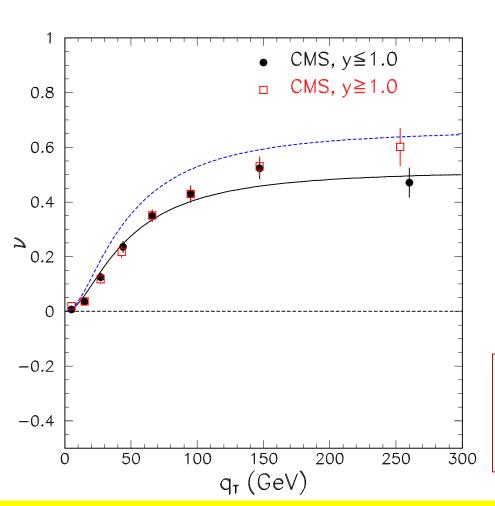
$$λ = 1 \text{ at } q_T = 0 \ (θ_1 = 0^0)$$

 $λ = -1/3 \text{ at } q_T = ∞ \ (θ_1 = 90^0)$

Data can be well described with a mixture of 58.5% qG and 41.5% $q\bar{q}$ processes

Compare with CMS data on v

(Z production in p+p collision at 8 TeV)



$$v = \frac{2q_T^2}{2Q^2 + 3q_T^2} \quad \text{for } q\overline{q} \to Zg$$

$$v = \frac{10q_T^2}{2Q^2 + 15q_T^2} \quad \text{for } qG \to Zq$$

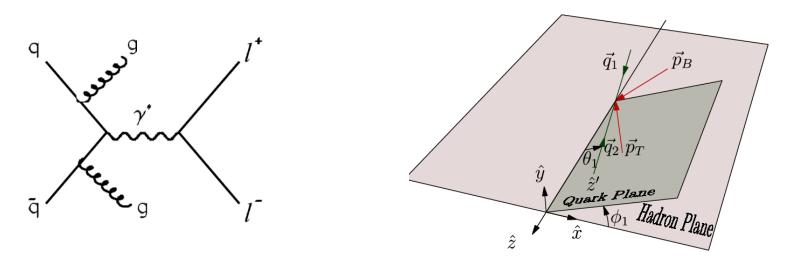
Dashed curve corresponds to a mixture of 58.5% qG and 41.5% $q\bar{q}$ processes

Solid curve corresponds to

$$\langle \sin^2 \theta_1 \cos 2\phi_1 \rangle / \langle \sin^2 \theta_1 \rangle = 0.77$$

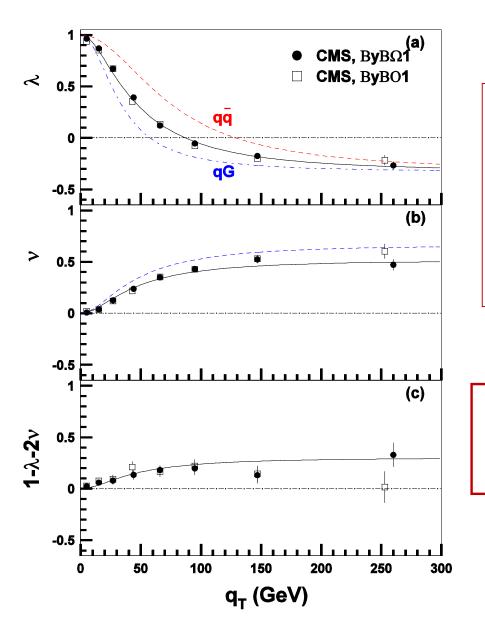
Origins of the non-coplanarity

1) Processes at order α_s^2 or higher



2) Intrinsic k_T from interacting partons

Compare with CMS data on Lam-Tung relation

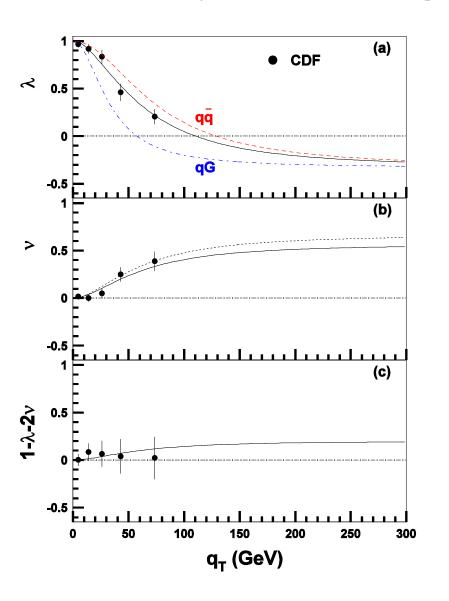


Solid curves correspond to a mixture of 58.5% qG and 41.5% $q\overline{q}$ processes, and $\langle \sin^2 \theta_1 \cos 2\phi_1 \rangle / \langle \sin^2 \theta_1 \rangle = 0.77$

Violation of Lam-Tung relation is well described

Compare with CDF data

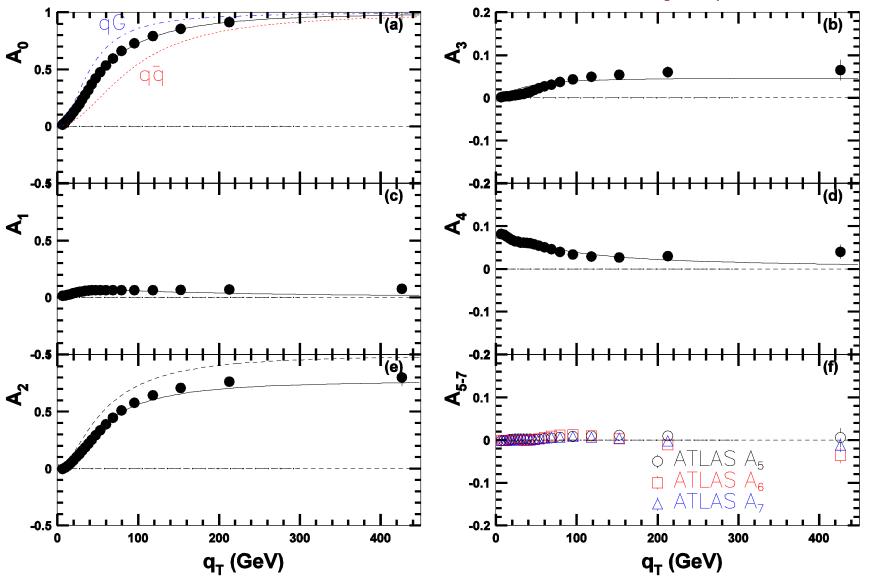
(Z production in $p + \bar{p}$ collision at 1.96 TeV)



Solid curves correspond to a mixture of 27.5% qG and 72.5% $q\overline{q}$ processes, and $\langle \sin^2 \theta_1 \cos 2\phi_1 \rangle / \langle \sin^2 \theta_1 \rangle = 0.85$

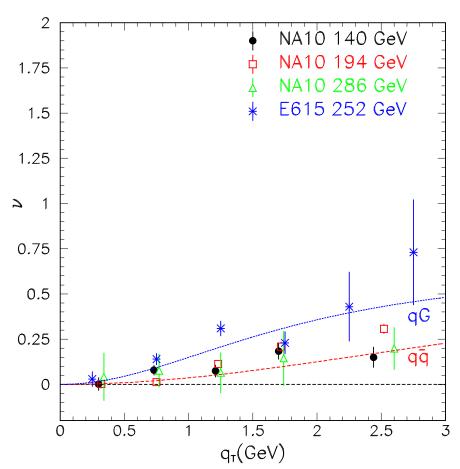
Violation of Lam-Tung relation is not ruled out

Compare with ATLAS data on A_0 - A_7



(Peng, Chang, McClellan, Teryaev, to be published)

Pion-induced D-Y



See Lambertsen and Vogelsang, arXiv: 1605.02625

30

- The ν data should be between the $q\overline{q}$ and qG curves, if the effect is entirely from pQCD. The $q\overline{q}$ process should dominate.
- Surprisingly large pQCD effect is predicted!
- Extraction of the B-M functions must remove the pQCD effect.

Summary

- The lepton angular distribution coefficients A_0 - A_7 are described in terms of the polar and azimuthal angles of the $q \bar{q}$ axis.
- The striking q_T dependence of A_0 (or equivalently, λ) can be well described by the mis-alignment of the $q \bar{q}$ axis and the Collins-Soper z-axis.
- Violation of the Lam-Tung relation $(A_0 \neq A_2)$ is described by the non-coplanarity of the $q \bar{q}$ axis and the hadron plane. This can come from order α_s^2 or higher processes or from intrinsic k_T .
- This study can be extended to fixed-target Drell-Yan data.