

Lattice Parton Physics Project (LP3)

https://www.pa.msu.edu/~hwlin/LP3/

(MSU)

HWL (MSU)

Xiangdong Ji (UMD)

Luchang Jin Peng Sun **Yi-Bo Yang** (BNL) (MSU) International collaborators

Yong Zhao (MIT)

Jiunn-Wei Chen Tomomi Ishikawa (NTU) (SJTU)

Jian-Hui Zhang (Regensburg)

Based on the work done in 1706.01295 (LP3) and ongoing work

Parton Distribution Functions

§ PDFs are universal quark/gluon distributions of nucleon

Many ongoing/planned experiments (BNL, JLab, J-PARC, COMPASS, GSI, EIC, LHeC, ...)

Electron Ion Collider: The Next QCD Frontier

Imaging of the proton

How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon? EIC White Paper, 1212.1701

Parton Distribution Functions

§ PDFs are universal quark/gluon distributions of nucleon

Many ongoing/planned experiments (BNL, JLab, J-PARC, COMPASS, GSI, EIC, LHeC, ...)

§ Important inputs to discern new physics at LHC

0.39 pb

0.13 pb

(J. Campbell, HCP2012)

5.1%

14.4%

NLO QCD

ZΗ

ttH

Global Analysis

§ Experiments cover diverse kinematics of parton variables

✤ Global analysis takes advantage of all data sets

Choice of data sets and kinematic cuts

 \sim Strong coupling constant $\alpha_s(M_Z)$

> How to parametrize the distribution

$$xf(x,\mu_0) = a_0 x^{a_1} (1-x)^{a_2} P(x)$$

Assumptions imposed

SU(3) flavor symmetry, charge symmetry, strange and sea distributions

$$s = \bar{s} = \kappa \big(\bar{u} + \bar{d} \big)$$

Global Analysis

§ Discrepancies appear when data is scarce § Many groups have tackled the analysis

Х

10-1

10-2

Parton Distributions and Lattice Calculations in the LHC era (PDFLattice 2017) 22-24 N

22-24 March 2017, Oxford, UK

MSTW08 ABM11

§ A first joint workshop with global-fitting community to address key LQCD inputs

<u>http://www.physics.ox.ac.uk</u> /confs/PDFlattice2017

 Whitepaper will study the needed precision of lattice
 PDFs in the large-x region

What can we do on the lattice?

PDFs on the Lattice

§ Lattice calculations rely on operator product expansion, only provide moments Quark density/unpolarized $\langle x^n \rangle_q = \int_{-1}^1 dx \, x^n q(x)$ most well known $\langle x^n \rangle_{\Delta q} = \int_{-1}^{1} dx \, x^n \Delta q(x)$ Helicity longitudinally polarized $\langle x^n \rangle_{\delta q} = \int_{-1}^{1} dx \, x^n \delta q(x)$ Transversity very poorly known transversely polarized

§ True distribution can only be recovered with all moments

Problem with Moments

§ For higher moments, ops mix with lower-dimension ops
 >> Renormalization is difficult too

Problem with Moments

§ For higher moments, ops mix with lower-dimension ops
 Renormalization is difficult too

§ Relative error grows in higher moments

Calculation would be costly and difficult

PDFs on the Lattice

- Long existing obstacle!
- § Holy grail of structure calculations
- § Applies to many structure quantities: Generalized parton distributions (GPDs), Transverse-momentum distributions (TMD), Meson distribution amplitudes, ...
- § A few ideas try to solve this problem
 A few ideas try to solve this problem
 A few ideas try to solve this problem

(Liu et al., hep-ph/9806491, ... 1603.07352)

OPE without OPE (QCDSF, hep-lat/9809171, ... 1004.2100)
 Fictitious heavy quarks (Detmold et al. hep-lat/0507007)
 Smeared lattice operators (Davoudi et al. 1204.4146)
 Looking forward to more developments here

A New Direction

Large-Momentum Effective Theory for PDFs 1) Calculate nucleon matrix elements on the lattice

2) Compute quasi-distribution via $\tilde{q}(x,\mu,P_z) = \int \frac{dz}{4\pi} e^{-izk_z} \langle P | \overline{\psi}(z) \Gamma \exp\left(-ig \int_0^z dz' A_z(z')\right) \psi(0) | P \rangle$ 3) Recover true distribution (take $P_z \rightarrow \infty$ limit) $q(x,\mu) = \tilde{q}(x,\mu,P_z) + \mathcal{O}(\alpha_s) + \mathcal{O}(M_N^2/P_z^2) + \mathcal{O}(\Lambda_{\rm QCD}^2/P_z^2)$ X. Xiong et al., 1310.7471; J.-W. Chen et al, 1603.06664

Sea Flavor Asymmetry

§ First time in LQCD history to study antiquark distribution! $\gg M_{\pi} \approx 310$ MeV, $a \approx 0.12$ fm

$$\bar{q}(x) = -q(-x)$$

Lost resolution in small-x region Future improvement: larger lattice volume

$$dx\left(\bar{u}(x) - \bar{d}(x)\right) \approx -0.16(7)$$

Experiment	x range	$\int_0^1 [\overline{d(x)} - \overline{u(x)}] dx$
E866	0.015< <i>x</i> <0.35	0.118 ± 0.012
NMC	0.004 < x < 0.80	0.148 ± 0.039
HERMES	0.020 < x < 0.30	0.16 ± 0.03

R. Towell et al. (E866/NuSea), Phys.Rev. D64, 052002 (2001)

Sea Flavor Asymmetry

§ First time in LQCD history to study antiquark distribution! $\gg M_{\pi} \approx 310$ MeV, $a \approx 0.12$ fm

Sea Flavor Asymmetry

§ Lattice exploratory study $\gg M_{\pi} \approx 310$ MeV, $a \approx 0.12$ fm

Compared with E866 Too good to be true?

Lost resolution in small-x region

Similar results repeated by ETMC, at $M_{\pi} \approx 373$ MeV ETMC, 1504.07455

Experiment	x range	$\int_0^1 [\overline{d(x)} - \overline{u(x)}] dx$
E866	0.015< <i>x</i> <0.35	0.118 ± 0.012
NMC	0.004 < x < 0.80	0.148 ± 0.039
HERMES	0.020 < x < 0.30	0.16 ± 0.03

R. Towell et al. (E866/NuSea), Phys.Rev. D64, 052002 (2001)

(7)

Míssíng Ingredient: Renormalization

Recent progress: 1705.00246, 1705.11193, 1706.00265, 1706.01295, 1706.08962 ...

§ Long-link operator

$$O_{\Gamma}(z) = \bar{\psi}(z) \Gamma W_z(z,0) \psi(0)$$

§ Vector operator mixing with scalar ones T. Ishikawa, this conference

$$\begin{pmatrix} O_{\gamma_{Z}}^{R}(z) \\ O_{\mathbb{I}}^{R}(z) \end{pmatrix} = \begin{pmatrix} Z_{VV}(z) & Z_{VS}(z) \\ Z_{SV}(z) & Z_{SS}(z) \end{pmatrix} \begin{pmatrix} O_{\gamma_{Z}}(z) \\ O_{\mathbb{I}}(z) \end{pmatrix}$$

§ RI/MOM renormalization scheme 1706.01295 (LP3) $\approx Z^{-1} =$

$$\frac{1}{12e^{-ip_{z}z}} \begin{pmatrix} \operatorname{Tr}[\tilde{\Gamma}\Lambda(p,z,\gamma_{z})] & \operatorname{Tr}[\tilde{\Gamma}\Lambda(p,z,\mathbb{I})] \\ \operatorname{Tr}[\Lambda(p,z,\gamma_{z})] & \operatorname{Tr}[\Lambda(p,z,\mathbb{I})] \end{pmatrix}_{p^{2}=\mu_{R}^{2}, p_{z}=P_{z}} \\ \Lambda(p,z,\Gamma) = S(p)^{-1} \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p,w) \right) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w+zn) \Gamma W_{z}(w+zn) S(p)^{-1} \\ \left(\sum_{w} S^{\dagger}(p,w) \right) S(p)^{-1} \\ \left(\sum_{w$$

projected with $\tilde{\Gamma} = p / p_z$ **>** Test case: $a \approx 0.12$ fm, $M_\pi \approx 310$ MeV, clover/HISQ Yi-Bo Yang (MSU)

Yong Zhao (MIT)

§ RI/MOM renormalization scheme

GAN STATE ERSITY Huey-Wen I

§ RI/MOM renormalization scheme

§ Effect on nucleon matrix elements as function of z $h_R \approx Z_{VV} h_{\gamma_Z}$ $M_{\pi} \approx 310$ MeV, $a \approx 0.12$ fm

Summary & Outlook

Exciting time for studying structure on the lattice

- § Overcoming longstanding obstacle to full x-distribution
 Most importantly, this can be done with today's computer
 First lattice approach to study sea asymmetry
 First look into PDA 1702.00008
- § Moving on to remove the systematics of earlier study
- Working on renormalization, statistics (all-mode averaging?), larger momentum boost, finer lattice-spacing ensembles, ...

 \gg Larger P_z with smaller *a* may reduce issues associated w/ larger *z*

Backup Slides

§ Effect on quasi-PDFs

$$\tilde{q}_R(x, P_z, \mu_R) = \int_{-\infty}^{\infty} \frac{dz}{2\pi} \ e^{ixP_z z} \tilde{h}_R(z, P_z, \mu_R)$$

Plot by Jianhui Zhang

§ Effect on quasi-PDFs

$$\tilde{q}_R(x, P_z, \mu_R) = \int_{-\infty}^{\infty} \frac{dz}{2\pi} e^{ixP_z z} \tilde{h}_R(z, P_z, \mu_R) + O(\alpha_s) \operatorname{error} + \operatorname{RI/MOM to} \overline{\mathrm{MS}} \operatorname{matching} (\mathsf{Zhao})$$

$a \approx 0.12$ fm, $M_{\pi} \approx 310$ MeV

Plot by Jianhui Zhang; 1706.01295 (LP3)

Power Divergence

§ Improved quasi-quark distribution $\approx \tilde{q}_{imp}(x, \Lambda, p_z) = \int_{-\infty}^{\infty} \frac{dz}{4\pi} e^{izk_z - \delta m|z|} \langle p|\bar{\psi}(0, 0_{\perp}, z)\gamma_z L(z, 0)\psi(0)|p\rangle$ § Wilson-line renormalization to remove power divergence $\approx a \approx 0.09 \text{ fm}, L \approx 6 \text{ fm}, M_{\pi} \approx 130 \text{ MeV}, \text{ clover/HISQ}$

Jian-Hui Zhang

Luchang Jin

Huey-Wen Lin — T.D. Lee Institute Workshop on PDFs