# **MDI Status Report**

Hongbo Zhu 20 March 2017

## Full Partial Double Ring



# Updated Machine Parameters

|                                                                    | Pre-CDR     | Higgs              | W            | Z            |
|--------------------------------------------------------------------|-------------|--------------------|--------------|--------------|
| Number of IPs                                                      | 2           | 2                  | 2            | 2            |
| Energy (GeV)                                                       | 120         | 120                | 80           | 45.5         |
| Circumference (km)                                                 | 54          | 100                | 100          | 100          |
| SR loss/turn (GeV)                                                 | 3.1         | 1.67               | 0.33         | 0.034        |
| Half crossing angle (mrad)                                         | 0           | 16.5               | 16.5         | 16.5         |
| Piwinski angle                                                     | 0           | 3.19               | 5.26         | 4.29         |
| $N_e$ /bunch (10 <sup>11</sup> )                                   | 3.79        | 0.968              | 0.365        | 0.455        |
| Bunch number                                                       | 50          | 644 (412)          | 5534         | 21300        |
| Beam current (mA)                                                  | 16.6        | 29.97 (19.2)       | 97.1         | 465.8        |
| SR power /beam (MW)                                                | 51.7        | 50 (32)            | 32           | 16.1         |
| Bending radius (km)                                                | 6.1         | 11                 | 11           | 11           |
| Momentum compaction (10 <sup>-5</sup> )                            | 3.4         | 1.14               | 1.14         | 4.49         |
| $\beta_{IP} x/y (m)$                                               | 0.8/0.0012  | 0.171/0.002        | 0.2 /0.002   | 0.16/0.002   |
| Emittance $x/y$ (nm)                                               | 6.12/0.018  | 1.31/0.004         | 0.57/0.0017  | 1.48/0.0078  |
| Transverse $\sigma_{IP}$ (um)                                      | 69.97/0.15  | 15.0/0.089         | 10.7/0.059   | 15.4/0.125   |
| $\xi_x/\xi_v/\mathrm{IP}$                                          | 0.118/0.083 | 0.013/0.083        | 0.0064/0.062 | 0.008/0.054  |
| RF Phase (degree)                                                  | 153.0       | 128                | 126.8        | 165.3        |
| $V_{RF}(\text{GV})$                                                | 6.87        | 2.1                | 0.41         | 0.14         |
| $f_{RF}$ (MHz) (harmonic)                                          | 650         | 650                | 650 (217800) | 650 (217800) |
| <i>Nature</i> $\sigma_{z}$ (mm)                                    | 2.14        | 2.72               | 3.37         | 3.97         |
| Total $\sigma_z$ (mm)                                              | 2.65        | 2.9                | 3.4          | 4.0          |
| HOM power/cavity (kw)                                              | 3.6 (5cell) | 0.64(2cell) (0.41) | 0.72(2cell)  | 1.99(2cell)  |
| Energy spread (%)                                                  | 0.13        | 0.098              | 0.065        | 0.037        |
| Energy acceptance (%)                                              | 2           | 1.5                |              |              |
| Energy acceptance by RF (%)                                        | 6           | 2.1                | 1.1          | 1.1          |
| $n_{\gamma}$                                                       | 0.23        | 0.26               | 0.14         | 0.12         |
| Life time due to                                                   | 47          | 52                 |              |              |
| beamstrahlung_cal (minute)                                         |             |                    |              |              |
| F (hour glass)                                                     | 0.68        | 0.96               | 0.98         | 0.96         |
| $L_{max}$ /IP (10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ) | 2.04        | 3.13 (2.0)         | 5.12         | 11.9         |

#### Preliminary Lattice Design

#### Y. Wang



• Much improved from previous design (Ec ~ 1MeV), may have to bring down the Ec further

# **Revised Magnet Designs**

#### Y. Zhu

 Updated parameters of the magnets based on the new L\* = 2.2 m and lower detector solenoid of B=3 T

| Magnet                | Field Strength | Length (m) | Inner Radius (mm) |
|-----------------------|----------------|------------|-------------------|
| QD0                   | 150 T/m        | 1.7489     | 19                |
| QF1                   | 106 T/m        | 1.4636     | 26                |
| Compensating solenoid | 6.6 T          | 1.0        | 90                |
| Screening solenoid    | 2.5 T          | 1.7489     | 100               |

- Weaker QD0/QF1 field strengths would introduce less harder SR photons in the IR → easier collimation and less backgrounds
- Lower compensating solenoid makes it possible to construct the magnet with the cutting-edge superconducting magnet technology → motivation to increase L\* ( + clearance between electron/positron beam pipes)

# Updated Field Maps

• Updated calculation of the QD0/QF1 field maps





## Magnet Layout

• Magnets along the z-axis, outer radius (including cryogenics and mechanical structure) yet to be estimated  $\rightarrow$  defining the detector coverage in the forward region ( $\theta_{min}$ )



#### **Revised Magnet Parameters**

| Magnet name              | QD0                           |  |  |
|--------------------------|-------------------------------|--|--|
| Field gradient (T/m)     | 150                           |  |  |
| Magnetic length (m)      | 1.749                         |  |  |
| Coil turns per pole      | 25                            |  |  |
| Excitation current (A)   | 2300                          |  |  |
| Coil layers              | 2                             |  |  |
| Conductor size (mm)      | Rutherford Type NbTi-Cu Cable |  |  |
| Stored energy (KJ)       | 19.5                          |  |  |
| Inductance (H)           | 0.0074                        |  |  |
| Peak field in coil (T)   | 3.3                           |  |  |
| Coil inner diameter (mm) | 38                            |  |  |
| Coil out diameter (mm)   | 50                            |  |  |
| Cold mass weight (kg)    | 100                           |  |  |

Table 1: Main design parameters of CEPC interaction region quadrupole magnet

Table 2: Main design parameters of CEPC interaction region anti-solenoids

| Magnet name                  | Compensating solenoid<br>QD0 | Screening solenoid QD0 |
|------------------------------|------------------------------|------------------------|
| Central field (T)            | 6.6                          | 2.5                    |
| Magnetic length (m)          | 1.0                          | 1.75                   |
| Conductor Type               | NbTi-Cu, 4×2mm               | NbTi-Cu, 4×2mm         |
| Coil layers                  | 6                            | 4                      |
| Excitation current (kA)      | 2.0                          | 1.5                    |
| Stored energy (KJ)           | 500                          | 163                    |
| Inductance (H)               | 0.25                         | 0.14                   |
| Peak field in coil (T)       | 6.7                          | 2.6                    |
| Solenoid inner diameter (mm) | 160                          | 180                    |
| Solenoid outer diameter (mm) | 250                          | 280                    |
| Cold mass weight (kg)        | 350                          | 250                    |

## **Beam Pipes**

- Electron and positron beam pipe clearance areas → important input into the beam pipe shape design (ongoing effort)
- Central beam pipe not constraned

![](_page_8_Figure_3.jpeg)

S. Bai

# **Background Estimation**

#### Q. Xiu

- Impact of the lower detector solenoid (3.5 T  $\rightarrow$  3.0 T)
- Helixes formed by the electrons/positrons from the kinematic edge of pair production out of the beamstrahlung
- <u>To-Do</u>: Beam pipe position to be adjusted followed by the updated detector background estimation

![](_page_9_Figure_5.jpeg)

## Synchrotron Radiation

• SR Photon flux re-estimated with the preliminary lattice

![](_page_10_Figure_2.jpeg)

## SR Power Deposition

- Power deposition of SR photons along the z-axis
- Significant effect of the collimators even with low statistics → proof of principle, may have to consider more realistic designs

![](_page_11_Figure_3.jpeg)

## LumiCal

#### K. Zhu & L. Yang

10<sup>5</sup>

10<sup>4</sup>

- E<sub>CM</sub>=250 GeV, crossing angle = 33 mrad; detector positions: Z=950 mm, r1=200 mm (space constrained by the compensating magnet)
- Measurement with Bhabha events (target precision 0.1%)
  Bet Distribution
- Detector technology not considered yet

![](_page_12_Figure_5.jpeg)

# Systematic Uncertainties (selected)

- $\theta_{min}$ =60 mrad might be adopted given adequate statistics ( $\sigma \sim 1.8nb$ )
- Small  $\Delta \theta$  required to reduce the  $\Delta \sigma / \sigma$  to a preferred level

100 M Bhabha events ( $20 < \theta < 350$  mrad) generated with whizard-2.3.1)

![](_page_13_Figure_4.jpeg)

# **Re-designing Interaction Region**

- Comprehensive understanding of the requirements and constrains from both machine and detector
- <u>To be updated:</u>

![](_page_14_Figure_3.jpeg)