

Luminosity determination in *pp* collisions using the ATLAS detector at the LHC

Peilian LIU

Lawrence Berkeley National Laboratory March 23, 2017

OutLine

ATLAS experiment at LHC

The past, present and future of the ATLAS experiment

Luminosity measurement

- Bunch-by-bunch luminometers
- Bunch-integrating luminometers
- Luminosity uncertainty

Summary

Overall view of the LHC experiments

Overall view of the LHC experiments.

LHC Roadmap

- The LHC is built to collide 7 TeV protons/heavy-ions
- An incident in one of the main dipole circuits during the first commissioning in 2008
- The operation restarted at lower beam energy to minimize the risk
- LHC Run 1 with *pp* collisions at $\sqrt{s} = 7-8$ TeV (2011-2012, $26fb^{-1}$)

Higgs Boson discovered on July 4th, 2012

LHC Roadmap

- Currently in a high-energy phase $\sqrt{s} = 13-14 \text{ TeV}$, Run2 (2015-2018, $\sim 100 f b^{-1}$)
- LHC exceeded design luminosity $(10^{34} cm^{-2} s^{-1})$
- Run3: a bit higher luminosity ($\sim 300 f b^{-1}$)
- High-Luminosity LHC (HL-LHC) is planned (2026-, $\sim 300 f b^{-1}$ /year)

Motivation

- Luminosity measurement is essential input to most LHC measurements and searches
 - Understanding of the nature of the observed Higgs particle
 - Searches for new physics beyond the Standard Model
- Some precision measurements are limited by the accuracy of integrated luminosity

Physics measurement	√ <i>s</i> (TeV)	$\sigma_{sys.}$ (%) No lumi.	σ _{lumi.} (%)
Z fiducial cross section	13	2.1	2.1
Inelastic pp cross section	13	0.9	1.9
Inclusive $t\bar{t}$ cross section	13	3.6	2.3

Luminosity Measurement

• The bunch luminosity \mathcal{L}_b produced by a single pair of colliding bunches

 $\mathcal{L}_{b} = \frac{\mu \cdot f_{r}}{\sigma_{inel}}$ $\checkmark \mu : \text{number of inelastic interactions per bunch crossing (BC)}$ $\checkmark f_{r} : \text{bunch revolution frequency (11245.5Hz at LHC)}$ $\checkmark \sigma_{inel} = pp \text{ inelastic cross section}$

- ATLAS monitors \mathcal{L}_b by measuring the visible interaction rate μ_{vis}
 - $\mu_{vis} = \epsilon \cdot \mu$ is directly measurable (proportional to μ)
 - ϵ is the efficiency of the detector and algorithm (could be more than 1)
 - $\sigma_{vis} = \epsilon \cdot \sigma_{inel}$: the visible cross section for the same detector and algorithm

Luminometers

Bunch-by-bunch luminometers

- Dedicated two primary luminometers
 - ▹ BCM
 - > LUCID
- Track-counting

BCM (Beam Conditions Monitor)

- BCM is designed to detect accidents which might cause detector damage
 - Enormous instantaneous radiation dose if lost protons hit the TAS collimator
- Conditions monitor
 - Two symmetric stations at $z = \pm 184 \ cm$
 - Lost protons hit the two stations with $\Delta t = 2 * z/c = 12.5 ns$
 - Bunch spacing = 25 ns

\rightarrow optimally distinguish these two classes of events

- $R = 5.5 \ cm$
- 4 diamond sensors × 2

- Luminosity measurement at $|\eta|=4.2$
 - Counting hits in the sensors

$$\eta = -\ln \tan(\theta/2)$$

LUCID

(LUminosity measurement using a Cherenkov Integrating Detector)

- LUCID is a Cherenkov detector specifically designed to measure the luminosity
 - Aluminium tubes surround the beampipe
 - $z = \pm 17m$
 - Counting "hits" in PMTs
 - $5.6 < |\eta| < 6.0$

- BCM and LUCID are bunch-by-bunch luminometers
 - Fast detectors with electronics capable of reading out the signals for each BC
 - Both consist of two symmetric arms in the forward ("A") and backward ("C") direction
 - Independent measurements on A/C side

Determination of μ_{vis} with BCM and LUCID

• μ_{vis} in a bunch crossing obeys a Poisson distribution

 $P(k \text{ events in interval}) = \frac{\mu_{vis}^k e^{-\mu_{vis}}}{k!}$

- The probability of observing ≥ 1 hit anywhere in BCM/LUCID $P(k \geq 1) = 1 - P(k=0) = 1 - e^{-\mu_{vis}}$
- Obtained $\mu_{vis} = -\ln(1 \frac{N_{OR}}{N_{RC}})$
 - N_{OR} is the number of BCs in which at least one hit observed
 - N_{BC} is the total number of BCs
 - **Saturation** when $N_{OR}/N_{BC} = 1$
- Need *low acceptance* and *high-sensitivity* luminometers

12

Track-counting luminometer

- ATLAS inner Detector (ID)
 - $|\eta| < 2.5$
 - Pixel + Silicon micro-strip (SCT) + straw-tube transition-radiation (TRT)
- Counting charged tracks inside ID
 - Reconstructed with silicon detector only (Pixel + SCT)

- ***** Track-counting: $\mu_{vis} =$ Number of tracks
 - BCM/LUCID: $P(\geq 1 hits) = 1 e^{-\mu_{vis}}$

Determination of σ_{vis}

- To use μ_{vis} as a luminosity monitor, each detector & algorithm must be calibrated by determining its σ_{vis}
- σ_{vis} is determined by calibration of **absolute luminosity**

• The bunch luminosity \mathcal{L}_b in terms of colliding-beam parameters

 $\mathcal{L}_b = f_r n_1 n_2 \int \hat{\rho}_1(x, y) \,\hat{\rho}_2(x, y) dx dy$

- n_1, n_2 : bunch population
- $\hat{\rho}_1, \hat{\rho}_2$: normalized particle density in x-y plane
- * beam-overlap integral $\Omega_x(\rho_{x1}, \rho_{x2}) = \int \rho_{x1}(x) \rho_{x2}(x) dx$ (assume $\hat{\rho}(x, y) = \rho_x(x)\rho_y(y)$)

$$\mathcal{L}_{b} = f_{r} n_{1} n_{2} \Omega_{x} \Omega_{y}$$

$$\mathcal{L}_{b} = \frac{\mu_{vis} \cdot f_{r}}{\sigma_{vis}} \qquad \Rightarrow \sigma_{vis} = \mu_{vis} \frac{\Omega_{x} \Omega_{y}}{n_{1} n_{2}} \qquad 14$$

Determination of $\sigma_{vis}(\Omega_x, \Omega_y)$

- $\sigma_{vis} = \mu_{vis} \frac{\Omega_{\chi} \Omega_{\gamma}}{n_1 n_2}$
 - Beam-overlap integral $\Omega_x(\rho_{x1}, \rho_{x2}) = \int \rho_{x1}(x) \rho_{x2}(x) dx$
- Proposed by van der Meer
 - The overlap integral $\Omega_{\chi}(\rho_{\chi 1}, \rho_{\chi 2}) = \frac{R_{\chi}(0)}{\int R_{\chi}(\delta)d\delta}$
 - $R_{\chi}(\delta)$ is the luminosity when two beams are separated horizontally by the distance δ
- Ω_x and Ω_y are determined by measuring the specific visible interaction rate $\mu_{vis}/(n_1n_2)$ for each colliding-bunch pair, as a function of the nominal beam separation $\delta \rightarrow vdM$ scan

• If
$$R_{\chi}(\delta)$$
 is Gaussian, $\Omega_{\chi} = \frac{1}{\sqrt{2\pi}\Sigma_{\chi}} (\Sigma_{\chi} \text{ is the width })$

• Defining the convolved beam size $\Sigma_{\chi} = \frac{1}{\sqrt{2\pi} \cdot \Omega_{\chi}}$

$$\boldsymbol{\Sigma}_{\boldsymbol{y}} = \frac{1}{\sqrt{2\pi} \cdot \Omega_{\boldsymbol{y}}}$$

Bunch-integrating luminometers

- **TileCal** the barrel **hadronic** calorimeter
- The electromagnetic endcap (EMEC) and forward (FCal) calorimeters

Why Bunch-integrating algorithms?

- Provide relative-luminosity monitoring on time scales of a few seconds rather than of a bunch crossing
- Allow independent checks of the linearity and long-term stability of the bunch-bybunch algorithms

TileCal

- TileCal
 - $|\eta| < 1.7$
 - Consists of a long central barrel (LB) and two smaller extended barrels (EB)
 - Plastic-tile scintillators as the active medium separated by steel absorber plates
 - Each cell is connected by fibers to two PMTs
- $\mu_{vis} =$ Current drawn by each PMT

Endcap Calorimeters

- Two endcap calorimeters used as luminometers
 - ElectroMagnetic Endcap Calorimeter (EMEC)
 - Forward Calorimeter (FCal1)

Only the first sampling is used for luminosity measurement.

EMEC and FCal1

• $\mu_{vis} = LAr-gap$ currents

- Voltage drop induced by the particle flux through a given HV sector is counterbalanced by a continuous injection of electrical current (to keep the electric field across each LAr gap constant)
- The LAr-gap current is proportional to the particle flux

Calibration of bunch-integrating luminometers

Calibration of μ_{vis} obtained TileCal and Endcap EM Calorimeters

- σ_{vis} not determined by vdM scan
 - Slow readout
 - Low-sensitivity under the low-luminosity conditions of *vdM* scans
- μ_{vis} obtained with the bunch-integrating luminometer are cross-calibrated to the luminosity reported by the baseline algorithm from *vdM* scan

$$- \mathcal{L} = \frac{\mu_{vis}^{LUCID} \cdot f_r \cdot n_b}{\sigma_{vis}^{LUCID}}; \ \mathcal{L} = \frac{\mu_{vis}^{TileCal} \cdot f_r \cdot n_b}{\sigma_{vis}^{TileCal}} \longrightarrow \sigma_{vis}^{TileCal} = \frac{\sigma_{vis}^{LUCID}}{\mu_{vis}^{LUCID}} \cdot \mu_{vis}^{TileCal}$$

- luminosity reported by the baseline algorithm are integrated over one high-luminosity reference physics run
- $\sigma_{vis}^{TileCal}$ are used for other physics runs

Uncertainties in the luminosity

Long-term stability $\mathcal{L}_{Alg}/\mathcal{L}_{TileCal}$

۲

- Bunch-integrating algorithms
 Consistent with each other and all stable along time
 - Bunch-by-bunch algorithms Track counting is stable along time, but BCM and LUCID are not

Calibration transfer

- Different beam conditions of *vdM* scan and physics fills
 - Low pile-up (μ) in *vdM* scan
 - Isolated bunches in vdM scan while bunch trains in physics fills
- Use runs with nominal conditions near the vdM scans and derive corrections/uncertianties based on comparisons

Track counting is the reference algorithm to correct LUCID

 Stable and provides bunch-by-bunch luminosity

Summary of the luminosity measurement at ATLAS

- Bunch-by-bunch luminosity
 - LUCID μ_{vis} is inferred from the 0-count rate ($R_0 = e^{-\mu_{vis}}$)
 - BCM
 - − Inner tracker \rightarrow μ_{vis} = number of tracks

Track counting is vital to transfer low luminosity to high luminosity calibration

luminosity scale σ_{vis} is obtained from dedicated beam-separation scans (vdM scan)

- Bunch-integrating luminosity (in a few seconds rather than of each BC)
 - Particle fulx in the PMTs of the hadronic calorimeter (TileCal)
 - Total ionization current flowing through a set of liquid-argon(LAr) calorimeter cells
- **Uncertainties** (%) in the luminosity values provided for physics analyses

Source	ICHEP 2016
vdM calibration	1.9
Calibration transfer	0.9
Long-term consistency	3.0
Others	0.1
Total $\Delta \mathcal{L}/\mathcal{L}$	3.7

The largest contribution arises from long-term consistency

ATLAS-CMS comparison

- LHC is supposed to deliver the same luminosity to ATLAS and CMS
- ATALS recorded smaller luminosity than CMS
 - Instrumental effects on ATLAS/CMS measurements
 - vdM calibration
 - Stability vs pile-up and time
 - Genuine imbalance of delivered luminosity
 - Beam parameters: $\epsilon, \beta^*, \alpha$ $L = \frac{n_b \times N_1 \times N_2 \times f_{rev}}{4\pi\beta^*\epsilon} \times F(\alpha, \beta^*, \epsilon, \ldots)$ beam size $\sigma_x \sigma_y$ crossing angle effect
 - Crossing angle in the y(x) axis at ATLAS (CMS)
 - Ideally $\sigma_x \sim \sigma_y$ round beam: $\sigma^{IP1}(ATLAS)$ vs $\sigma^{IP5}(CMS)$
 - Dedicated fill to investigate luminosity dependence of crossing angle
 - Clear effect from changing crossing angle on ATLAS/CMS luminosity ratio

Motivation of new algorithm

- Track counting is vital to transfer *vdM*-calibration scan to the high-luminosity regime
 - μ_{vis} = number of tracks
- A new algorithm I am working on: Pixel Cluster Counting (PCC)
 - μ_{vis} = number of pixel clusters
 - Provides independent check of tracking values
 - PCC is the baseline luminosity algorithm online for CMS

Pixel Cluster Counting in Insertable B-Layer (IBL)

• Pixel barrel detector during Run1

B-layer (closest to beam-pipe) + 2 outer layers

• A new 4th layer added for Run2

- Increased radiation level and pixel occupancy
- B-layer lost efficiency due to radiation damage
- Replacing B-layer takes > 1 year due to the long cooling down time of activated material
- Introduce a 4th pixel layer mounted on a new smaller radius beam-pipe

Why IBL? Higher capabilities of tracking, vertexing, and b-tagging !

Pixel Cluster Counting in IBL

- Pixel clusters : groups of adjacent fired pixels
- μ_{vis} = Number of **long** pixel clusters
- cluster length along Z
 - Long clusters from collision debris
 - Short clusters from material excited by charged particles, broken clusters, hot pixels, etc
- Higher η modules give better signal-background separation
 - Shallower particles result longer clusters
 - Only count clusters in 3D sensors (8 rings) in IBL

Short clusters

Long clusters

Cluster SizeZ [pixels]

Get number of long clusters (1)

- Fit to clusters' size along Z in each module
 Decaying exponential component (short clusters)
 Gaussian component (long clusters)
 - Number of long clusters = Area under Gaussian

• Why the long clusters' length in Z distribute in a Gaussian?

Expected cluster length in $Z = \frac{thickness(230\mu m)}{pitch(250\mu m)} * \frac{z - IP_Z}{r(33.25 mm)}$ Z is the position of 3D sensors (varying between 259 and 321 mm) IP_Z is the interaction location in z, which distributes in a Gaussian IP_Z is the interaction location in z, which distributes in a Gaussian IP_Z is the interaction location in z, which distributes in a Gaussian IP_Z is the interaction location in z, which distributes in a Gaussian IP_Z is the interaction location in z, which distributes in a Gaussian IP_Z is the interaction location in z, which distributes in a Gaussian IP_Z is the interaction location in z, which distributes in a Gaussian IP_Z is the interaction location in z, which distributes in a Gaussian IP_Z is the interaction location in z, which distributes in a Gaussian IP_Z is the interaction location in z, which distributes in a Gaussian IP_Z is the interaction location in z, which distributes in a Gaussian IP_Z is the interaction location in z, which distributes in a Gaussian IP_Z is the interaction location in z, which distributes in a Gaussian IP_Z is the interaction location in z, which distributes in a Gaussian IP_Z is the interaction location in z, which distributes in a Gaussian IP_Z is the interaction location in z, which distributes in a Gaussian IP_Z is the interaction of the interaction interaction

Get number of long clusters (2)

Module performance correction in each ring

- The 14 sensors in the same ring should perform consistently *same acceptance*
- Find the average signal region in an ring, and exclude outliers
- How to find the average signal region?
 - The IP is not always centered in x-y \rightarrow More (less) clusters in sensors closer to the IP (far away)
 - The circular symmetry of each ring implies :

Number of long clusters in each module in the same ring $\sim A * sin\left(2 * \frac{\pi}{14}(x - B)\right) + C$

• Total number of long clusters in each ring = 14 * C

IP location dependence

- Number of long clusters depends on where the interactions happen
 - More clusters in modules closer to the IP
 - The interaction location in the transverse plan is constrained well because the transverse size of the beam is too small
 - The positive and negative modules behave inversely

Total number of long clusters in all 3D sensors = N(interaction vertex z)

Interaction location dependence

- How the number of pixel clusters depends on the interaction location Z?
 - Counting the pixel clusters from interactions occurred at different Z
 - How to know where the interaction is ? Reconstruction of vertex (truth vertex in MC)

- Total number of clusters in all 3D sensors from one interaction at z = $N_0 * (1 + p_1 * z^2 + p_2 * z^4)$
 - The quadratic term dominates
 - $\succ N_0$ is the number of clusters when the interaction happens at z = 0

Beamspot shape dependence

- Multiple interactions in each bunch crossing
- The interaction vertices are in a 3D Gaussian distribution

 $\mu * Gauss(x) * Gauss(y) * Gauss(z)$

- Number of interactions in a bunch crossing is μ
- The interaction vertices density is a 3D Gaussian
- The total number of clusters produced by all interactions in one bunch crossing

$$N = \int N_0 * (1 + p_1 * z^2 + p_2 * z^4) * \mu * Gauss(z; \mu_z, \sigma_z) dz$$

= $(N_0 * \mu) * [1 + p_1 * (\mu_z^2 + \sigma_z^2) + p_2 * (\mu_z^4 + 6\mu_z^2 \sigma_z^2 + 3\sigma_z^4)]$

 N should be corrected, because the interaction vertices density varies in different BC

 $\frac{N}{1+p_1*(\mu_z^2+\sigma_z^2)+p_2*(\mu_z^4+6\mu_z^2\sigma_z^2+3\sigma_z^4)} \to N_0*\mu \quad \text{(all }\mu \text{ interactions at } z=0)$

MC samples to validate the correction

- Validate the dependence of the number of clusters on the vertices density $Gauss(z; \mu_z, \sigma_z)$
- We need several samples in which the interaction vertices distribute in a Gaussian but with different μ_z and/or σ_z
 - In the official simulated samples, the interaction vertices density in z direction = Gauss(0,53mm), and μ varies between 1 and 60
 - Sampling new z distribution of interaction vertices
 - Only use the simulated single interaction events
 - We couldnot identify which cluster from which interaction if there are more than one interactions

The correction works well

- The number of clusters obtained in one bunch crossing should be corrected according to the interaction vertices density in $z \sim Gauss(\mu_z, \sigma_z)$

$$\frac{N}{1 + p_1 * (\mu_z^2 + \sigma_z^2) + p_2 * (\mu_z^4 + 6\mu_z^2 \sigma_z^2 + 3\sigma_z^4)} \rightarrow N_0 * \mu$$

Single interaction samples ($\mu = 1$)

PCC results

Stable along time

■ Stable with respect to < µ >

- Comparable with other algorithms within ±1%
- Would be better after the correction of beamspot shape dependence

Plans for 2017

- Myself
 - Apply the Pixel Cluster Counting algorithm to Run2 data

Luminosity group

- Finalize understanding of ATLAS/CMS luminosity difference
- Discussions started for a strategy to guarantee "fair" luminosity share in 2017
 - \checkmark Direct measurement of crossing angle effect