Charm Mixing and CP Violation at B-factories

李龙科

lilongke@ihep.ac.cn

中国科学院高能物理研究所

全国第十五届重味物理和 CP 破坏研讨会 (HFCPV2017) 10 月 27 日至 29 日, 华中师大

Outline

- Belle @KEKB and Belle II @SuperKEKB
 - Accelerator; detectors; data set etc.
- D^0 - \overline{D}^0 mixing and CP violation
 - Formalism and status
 - Hadronic WS decay D^0 -> $K^+\pi^-$
 - Time-dependent analyses
- Time-integrated CP asymmetry
 - summary table of measurements
 - Search for CPV in D^0 -> K_SK_S
 - CPV in radiative decays D⁰->γV
 - T-odd asymmetry in D^0 -> $K_S \pi \pi \pi^0$
- ROE method for D⁰ flavor tagging at Belle II
- Summary

Experimental Charm Data set

> Available data sets from Charm factories, B-factories and hadron colliders

Experiment	Machine	C.M	Lumin.	N (<i>D</i>)	efficiency	©advantage / ©disadvantage		
CLEOC	CESR (e ⁺ e ⁻)	3.77 GeV	$0.8 \; { m fb}^{-1}$	$2.9 imes 10^6 \ 2.3 imes 10^6 (D^{\pm})$		extremely clean environmentpure D-beam, almost no bkg		
88 7 2		4.17 GeV	$0.6 \; { m fb^{-1}}$	0.6×10^{6}	~10-30%	quantum coherence		
рссπ	BEPC-II (e^+e^-)	3.77 GeV	$2.92 \; { m fb}^{-1}$	10.5×10^{6} $8.4 \times 10^{6} \ (D^{\pm})$	7010-3076	no CM boost, no T-dep analyses		
B€SII	, ,	4.18 GeV	$3~{ m fb^{-1}}$	3×10^{6}				
				*	***			
${\mathcal B}$	KEKB (e ⁺ e ⁻)	10.58 GeV	$1~ab^{-1}$	1.3×10^9		clear event environmenthigh trigger efficiency		
BELLE					~5-10%	high-efficiency detection of neutrals		
	PEP-II (e ⁺ e ⁻)	10.58 GeV	$0.5 \ ab^{-1}$	6.5×10^8	7~3-1076	many high-statistics control samplestime-dependent analysis		
				**	**	smaller cross-section than pp collider		
	Tevatron $(p\bar{p})$	1.96 TeV	$9.6~{ m fb}^{-1}$	1.3×10^{11}		(9) large production cross-section		
					<0.5%	large boost: excellent time resolution		
LHCb	LHC	7 TeV	1.0 fb ⁻¹	5.0×10^{12}	20.070	dedicated trigger required		
	(pp)	8 TeV	$2.0 \; { m fb}^{-1}$			hard to do neutrals and neutrinos		
				***	*			

here we used $\sigma(D^0D^0@3.77~GeV)=3.61$ nb, $\sigma(D^+D^-@3.77~GeV)=2.88$ nb, $\sigma(D^*D_s@4.17~GeV)=0.967$ nb, $\sigma(c\bar{c}@10.58~GeV)=1.3$ nb, $\sigma(D^0@LHCb)=1.661$ nb. This table mainly refers to IJMP **A 29** (2014) 24, 14300518 and G. Casarosa's report at SLAC experimental seminar 2016.

B-factories at KEK

1st Vs. 2nd generation B-factory

Nano-beam design (by P. Raimondi for SuperB)

$$\mathcal{L} = rac{\gamma_{\pm}}{2 extit{er}_e} \left(1 + rac{\sigma_y^*}{\sigma_x^*}
ight) rac{I_{\pm} \xi_{y\pm}}{eta_{y\pm}^*} \left(rac{R_L}{R_{\xi y}}
ight)$$

Detectors at (Super)KEKB

data set at Belle and Belle II

Each 1 ab^{-1} experimental data provides

- $\sim 1.1 \times 10^9 \ B\bar{B} \Rightarrow \text{a super B-factory};$
- $\sim 1.3 \times 10^9 \ c\bar{c} \Rightarrow$ a super charm factory;
- $\sim 0.9 \times 10^9~\tau^+\tau^- \Rightarrow$ a super τ factory;
- wide effective $E_{c.m}$ =[0.5-10] GeV via ISR process.

A rich platform for Charm physics

- ✓ Hadronic Modes
 - √ time-dependent CPV & mixing
 - √ time-integrated Acp
- √ semi-leptonic Modes
- ✓ Leptonic and Radiative Decays
- ✓ More exotic stuff (missing energy...)

Improved performance

- Higher beam-related and QED background(x20)
- Higher event rate (x10):
 - ✓ L1 trigger: 500Hz(Belle) Vs. 30kHz(Belle II)
- Improved performance:
 - ✓ vertex resolution; tracking;
 - ✓ particle identification;
 - **√** ...
- Important effects on Charm mixing and CPV

- ▶ Based on MC study, time resolution = 140 fs: $2 \times$ better than BaBar (270 fs)
- ▶ Time error σ_t : factor 3 improvement; and RMS(σ_t): reduced by a factor 2.
 - $Res = Gauss(\mu, k\sigma_t)$, so reduced RMS(σ_t) (higher weight in the fit) results in an increased statistics

Outline

- Belle @KEKB and Belle II @SuperKEKB
 - Accelerator; detectors; dataset etc.
- D^0 - \overline{D}^0 mixing and CP violation
 - Formalism and status
 - Hadronic WS decay D^0 -> $K^+\pi^-$
 - Time-dependent analyses
- Time-integrated CP asymmetry
 - summary table of measurements
 - Search for CPV in D^0 -> K_SK_S
 - CPV in radiative decays D⁰->γV
 - T-odd asymmetry in D^0 -> $K_S\pi\pi\pi^0$
- ROE method for D⁰ flavor tagging at Belle II
- Summary

Introduction to $D^0-\overline{D}^0$ mixing and CP violation

• Open-flavor neutral meson transforms to anti-meson:

$$K^0 \Leftrightarrow \overline{K^0}, B_d^0 \Leftrightarrow \overline{B_d^0}, B_s^0 \Leftrightarrow \overline{B_s^0}, D^0 \Leftrightarrow \overline{D^0}$$

• Flavor eigenstate $(|D^0\rangle, |\overline{D^0}\rangle) \neq$ mass eigenstate $|D_{1,2}\rangle$ with $M_{1,2}$ and $\Gamma_{1,2}\rangle$

$$|D_{1,2}\rangle \equiv p|D^0\rangle \pm q|\overline{D^0}\rangle$$
 (CPT: p²+q²=1)

- Mixing parameters: $\mathbf{x} \equiv 2 \frac{M_1 M_2}{\Gamma_1 + \Gamma_2}$, $\mathbf{y} \equiv \frac{\Gamma_1 \Gamma_2}{\Gamma_1 + \Gamma_2}$
- Unique system: only up-type meson for mixing
- Standard Model(SM) predicts: $\sim \mathcal{O}(1\%)$

• Precise measurement of x, y: effectively limit the New Physics(NP) modes; and search for NP, eg: $|x| \gg |y|$

Three types of Charged-conjugated-Parity combined symmetry Violation (CPV):

$$A_{CP}^{f} = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})} = a_{d}^{f} + a_{m}^{f} + a_{i}^{f}$$

ullet a_d^f : (direct CPV) CPV in decay $|ar{A}_{ar{f}}/A_f|
eq 1$

$$\left| \frac{P^0}{f} \right|^2 \neq \left| \frac{P^0}{f} \right|^2$$

• a_m^f : CPV in mixing with $r_m = |q/p| \neq 1$

$$\left| \frac{P^0}{I} \right|^2 \neq \left| \frac{P^0}{I} \right|^2$$

• a_i^f : CPV in interference with $arg(q/p) \neq 0$

- SM with only a source: the phase in CKM
- ullet in charm sector, it's predicted at $\sim \mathcal{O}(10^{-3})$
- ullet $\sim 1\%$ exp. sensitivity to observe CPVightarrowNP

measurements of D⁰-D 0 mixing and CPV

summary table Mainly basing on HFLAV group

Decay Type	Final State	BELLE		THCP		CLEO	B€SⅢ
DCS 2-body(WS)	$K^+\pi^-$	*	☆	★ ^(a)	*	√	√ δΚπ
DCS 3-body(WS)	$K^+\pi^-\pi^0$	o(c)	☆			✓ A _{CP}	°δRS
CP-eigenstate	(even) <i>h</i> ⁺ <i>h</i> ⁻	☆	☆	$\stackrel{\leftrightarrow}{\approx}^{(b)}_{A_{CP}}$	✓ A _{CP}	✓	
	(odd) $K_S^0 \phi$	✓					
Self-conj. 3-body	$K_S^0\pi^+\pi^-$	✓	✓	✓	✓ A _{CP}	✓	\circ_{δ}
decay	$K_S^0K^+K^-$	0	✓	0			\circ_{δ}
decay	$K_S^0 \pi^0 \pi^0$					✓ Dalitz	ОУСР
Self-conj. SCS	$\pi^+\pi^-\pi^0$	✓ A _{CP}	✓ mixing A _{CP}	✓ A _{CP}			\circ_{δ}
3-body decay	$K^+K^-\pi^0$		✓ A _{CP}				\circ_{δ}
SCS 3-body	$K_S^0 K^\pm \pi^\mp$			✓ A _{CP}		\checkmark_{δ}	\circ_{δ}
Semileptonic decay	$K^+\ell^-\nu_\ell$	✓	✓			✓	
	$K^+\pi^-\pi^+\pi^-$	√ R _{WS}	✓	*			o _δ RS
$Multi-body(n \ge 4)$	$\pi^+\pi^-\pi^+\pi^-$	°A _{CP}		$\checkmark_{A_{CP}}^{(d)}$			
	$K^+K^-\pi^+\pi^-$	OAT	\checkmark_{A_T}	✓ ^(e) A _{CP}		✓ A _{CP}	0
	$K_S^0\pi^+\pi^-\pi^0$	\checkmark_{A_T}					
$\psi(3770) \rightarrow D^0 \overline{D^0} \text{ v}$	ia correlations					√ _δ Kπ	√ _{YCP}

In D^0 - $\overline{D^0}$ mixing measurements: \bigstar for observation (> 5σ); \bigstar for evidence (> 3σ); \checkmark for measurement published; \circ for analysis on going. A_T stands for measuring CP asymmetry using T-odd correlations.

- (a) LHCb gave the measurement of charm mixing and *CP* violation in $D^0 \to K^{\pm} h^{\mp}$ decay in PRD **95**, 052004 (2017).
- (b) LHCb gave the measurements of CP violation in $D^0 \rightarrow h^- h^+$ decay in PRL 112, 041801 (2014) and PRL 118, 261803 (2017).
- (c) Belle measured WS-to-RS ratio R_{WS} and A_{CP} in $D^0 \to K^\mp \pi^\pm \pi^0$ in PRL **95**, 231801 (2005).
- (d) LHCb also searched for CP violation in phase space of $D^0 \to \pi^+\pi^-\pi^+\pi^-$ decays in PLB **769**(2017) 345.
- (e) LHCb also searched for CP violation using T-odd correlations in $D^0 \to K^+ K^- \pi^+ \pi^-$ decays in JHEP 10(2014)005.

Hadronic WS decay for mixing & CPV

• Wrong-sign(WS) decay rates with $D^0-\overline{D^0}$ mixing or CPV-allowed:

$$\frac{N(D^0 \to f)}{dt} = e^{-\Gamma t} \left[R_D + \left| \frac{q}{p} \right| \sqrt{R_D} (y' \cos \phi - x' \sin \phi) (\Gamma t) + \left| \frac{q}{p} \right|^2 \frac{(x'^2 + y'^2)}{4} (\Gamma t)^2 \right]$$

$$\frac{N(D^0 \to f)}{dt} = e^{-\Gamma t} \left[R_D + \sqrt{R_D} y' (\Gamma t) + \frac{(x'^2 + y'^2)}{4} (\Gamma t)^2 \right] \text{ (no CPV)}$$
where $x' = x \cos \delta + y \sin \delta$, $y' = y \cos \delta - x \sin \delta$ with strong phase difference δ

first evidence for D^0 - $\overline{D^0}$ mixing [B. Aubert *et al.* PRL **98**, 211802 (2007)]

• fitting D^0 proper time distribution of WS sample (384 fb⁻¹)

$$\frac{T_{WS}(t)}{e^{-\Gamma t}} \propto R_D + \sqrt{R_D} y' \Gamma t + \frac{x'^2 + y'^2}{4} (\Gamma t)^2$$

first observation in e^+e^- collisions
[B.R. Ko *et al.* PRL **112**, 111801 (2014)]

• fitting time-dependent ratio of WS-to-RS decay (976 ${\rm fb}^{-1}$)

$$R_{WS}(t) = \frac{\Gamma_{WS}(t)}{\Gamma_{RS}(t)} \approx R_D + \sqrt{R_D} y' \Gamma t + \frac{x'^2 + y'^2}{4} (\Gamma t)^2$$

Pa	rameter	Belle	Belle II			
		976 /fb	5 /ab	20 /ab	50 /ab	
no	$\sigma(x'^2)(10^{-5})$	22	7.5	3.7	2.3	
CPV	$\sigma(y')$ (%)	0.34	0.11	0.056	0.035	
	$\sigma(x')$ (%)		0.37	0.23	0.15	
CPV-	$\sigma(y')$ (%)		0.26	0.17	0.10	
allowed	$\sigma(q/p)$		0.197	0.089	0.051	
	$\sigma(\phi)(^{o})$		15.5	9.2	5.7	

One order magnitude improvement at Belle II

Time-dept. analyses for mixing and CPV

- ▶ Time-dependent Dalitz plot(TDDP) provides an essential tool in studying D^0 - $\overline{D^0}$ mixing.
- ▶ Only method: sensitive to linear order in both mixing parameters, especially self-conjugated decays like $K_S^0 hh$ (not rotated by an unknown δ)
- ► TDDP fit on $D^0 \to K^+\pi^-\pi^0$ WS decays to extract mixing par. $(x''/r_0, y''/r_0)$ $|\mathcal{A}_{\bar{f}}|^2 = \left[|\mathcal{A}_{\bar{f}}^{DCS}|^2 e^{-\Gamma t} + \frac{(x^2 + y^2)}{4r_0^2} |\bar{\mathcal{A}}_{\bar{f}}^{CF}|^2 (\Gamma t)^2 e^{-\Gamma t} + \left(\frac{y''}{r_0} \operatorname{Re}[\mathcal{A}_{\bar{f}}^{DCS}\bar{\mathcal{A}}^*_{\bar{f}}^{CF}] + \frac{x''}{r_0} \operatorname{Im}[\mathcal{A}_{\bar{f}}^{DCS}\bar{\mathcal{A}}^*_{\bar{f}}^{CF}] \right) (\Gamma t) e^{-\Gamma t} \right] \otimes_t \operatorname{Res}(t)$ $x'' = x \cos \delta_{K\rho} + y \sin \delta_{K\rho}, \ y'' = y \cos \delta_{K\rho} - x \sin \delta_{K\rho}, \ r_0 = |A^{CF}|/|A^{DCS}|$
- ▶ BaBar: the evidence (3.2 σ) with 384 fb⁻¹: $\sigma(x'', y'') = \binom{+0.57}{-0.68}, \frac{+0.55}{-0.64}$ [PRL 103, 211801 (2009)]
- ▶ ToyMC: smear lifetime with Gauss(σ =140 fs); without considering bkg effects.
- ► Sensitivity estimation: one order of magnitude improvement than BaBar

More t-dept. measurements, like $D^0 \to K^+K^-, \pi^+\pi^-$, $D^0 \to K^0_S \pi^+\pi^-$ etc. in backup. (y_{CP}, A_Γ) $(x,y,|q/p|,\phi)$

Time-dept. analyses for mixing and CPV

L.M. Zhang et al. PRL 99, 131803 (2007) T. Peng et al. PRD 89, 091103(R) (2014)

- TDDA in self-conjugated decays:
 - (1) direct measurement for x and y; (2) search for CPV: $q/p \neq 1$
- $D^0 o K_S^0 \pi^+ \pi^-$ with qusai-two-body decays with difference physics process:

RS:
$$\mathcal{A}_f = \langle f | \mathcal{H} | D^0 \rangle$$
; $\frac{q}{p} \frac{\bar{\mathcal{A}}_f}{\mathcal{A}_f} = \left| \frac{\bar{\mathcal{A}}_f}{\mathcal{A}_f} \right| \frac{1-\epsilon}{1+\epsilon} e^{i(\delta+\phi)}$; eg: $D^0 \to K^{*-}\pi^+$ etc.
WS: $\mathcal{A}_{\bar{f}} = \langle \bar{f} | \mathcal{H} | D^0 \rangle$; $\frac{q}{p} \frac{\bar{\mathcal{A}}_{\bar{f}}}{\bar{\mathcal{A}}_{\bar{f}}} = \left| \frac{\bar{\mathcal{A}}_{\bar{f}}}{\mathcal{A}_{\bar{f}}} \right| \frac{1-\epsilon}{1+\epsilon} e^{-i(\delta-\phi)}$; eg: $D^0 \to K^{*+}\pi^-$ etc.

CP:
$$\mathcal{A}_+ = \langle + | \mathcal{H} | D^0 \rangle$$
 $\frac{q}{p} \frac{\overline{A}_+}{A_+} = + \frac{1-\epsilon}{1+\epsilon} e^{+i\phi}$; eg: $D^0 \to K_S^0 f_0$ etc.

CP:
$$\mathcal{A}_{-}=\langle -|\mathcal{H}|D^{0}\rangle$$
 $\frac{q}{\rho}\frac{\overline{A}_{-}}{A_{-}}=-\frac{1-\epsilon}{1+\epsilon}e^{-i\phi};$ eg: $D^{0}\to K_{S}^{0}\rho/K_{S}^{0}\omega$ etc.

- DP Model with Isobar: 12 BW+K-matrix($\pi\pi$ S-wave)+LASS($K\pi$ S-wave)
- ullet DP $m_-^2=m_{K^0_S\pi^-}^2$, $m_+^2=m_{K^0_S\pi^+}^2$ for D^0 , exchange for $\overline{D^0}$.

Time-dept. analyses for mixing and CPV

• Time-dependent DP fit on (m_-^2, m_+^2, t) to extract (x, y) and (|q/p|, arg(q/p))

$$\begin{split} |\mathcal{M}(f,t)|^2 &= \tfrac{e^{-\Gamma t}}{2} [(|\mathcal{A}_f|^2 + |\tfrac{q}{p}|^2 |\mathcal{A}_{\bar{f}}|^2) \cosh(y\Gamma t) + (|\mathcal{A}_f|^2 - |\tfrac{q}{p}|^2 |\mathcal{A}_{\bar{f}}|^2) \cos(\mathsf{x}\Gamma t) \\ &+ 2 \operatorname{Re} [\tfrac{q}{p} \mathcal{A}_{\bar{f}} \mathcal{A}_f^*] \sinh(y\Gamma t) + 2 \operatorname{Im} [\tfrac{q}{p} \mathcal{A}_{\bar{f}} \mathcal{A}_f^*] \sin(\mathsf{x}\Gamma t)] \end{split}$$

• fit results and prospect estimation:

Fit type	Para.	Belle Fit result	Belle II	prospect	model-indept.	LHCb
Tit type		921 fb^{-1}	$5~ab^{-1}$	50 ab^{-1}	100 M signals	$50 \ fb^{-1}$
No CPV	×(%)	$0.56 \pm 0.19^{+0.03+0.06}_{-0.09-0.09}$	$\pm 0.08 \pm 0.11$	$\pm 0.03 \pm 0.11$	± 0.017	
NO CF V	y(%)	$0.30 \pm 0.15^{+0.04+0.03}_{-0.05-0.06}$	$\pm 0.06 \pm 0.05$	$\pm 0.02 \pm 0.04$	± 0.019	
indirect	×(%)	$0.56 \pm 0.19^{+0.04}_{-0.08}$	$\pm 0.08 \pm 0.11$	$\pm 0.03 \pm 0.11$		0.04
mairect	y(%)	$0.30 \pm 0.15^{+0.04+0.03}_{-0.05-0.07}$	$\pm 0.06 \pm 0.05$	$\pm 0.02 \pm 0.04$		0.004
CPV	q/p	$0.90^{+0.16+0.05+0.06}_{-0.15-0.04-0.05}$	$\pm 0.069 \pm 0.073$	$\pm 0.022 \pm 0.069$		0.04
	$arg(q/p)(^{o})$	$-6\pm11\pm3^{+3}_{-4}$	$\pm 4.7 \pm 4.2$	$\pm 1.5 \pm 3.8$		3

Outline

- Belle @KEKB and Belle II @SuperKEKB
 - Accelerator; detectors; dataset etc.
- D^0 - \overline{D}^0 mixing and CP violation
 - Formalism and status
 - Hadronic WS decay D⁰->K⁺π⁻
 - Time-dependent analyses
- Time-integrated CP asymmetry
 - summary table of measurements
 - Search for CPV in D⁰->K_SK_S
 - CPV in radiative decays D⁰->γV
 - T-odd asymmetry in D^0 -> $K_S \pi \pi \pi^0$
- ROE method for D⁰ flavor tagging at Belle II
- Summary

Time-integrated CP asymmetry measurement

Time-integrated CP asymmetries are measured based on partial decay rates:

$$A_{CP}^f = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})} = a_d^f + a_{ind}^f \quad \text{e.g: in } D^0 \to K_S^0 h^+ \text{, measured asym.: } A_{raw} = A_{CP} + A_{FB} + A_{\varepsilon}^{h^+} + A_{CP}^{K^0}$$

• Several measurements are performed at Belle

<u> </u>							
Channel		Current measure	Belle II	LHCb			
	$\mathcal{L}(/fb)$	value(%)	References	50 ab ⁻¹ (%)	$50 \text{ fb}^{-1}(\%)$		
$D^0 ightarrow \pi^+\pi^-$	976	$+0.55 \pm 0.36 \pm 0.09$	PoS ICHEP2012 (2013) 353	±0.05	±0.03		
$D^0 ightarrow K^+ K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	PoS ICHEP2012 (2013) 353	±0.03	± 0.03		
$D^0 o\pi^0\pi^0$	966	$-0.03 \pm 0.64 \pm 0.10$	PRL 112, 211601 (2014)	± 0.09			
$D^0 o K_S^0 K_S^0$	921	$-0.02 \pm 1.53 \pm 0.17$	PRL 119 , 171801 (2017)	±0.20			
$D^0 o K_S^0\pi^0$	966	$-0.21 \pm 0.16 \pm 0.07$	PRL 112, 211601 (2014)	±0.03			
$D^0 ightarrow ilde{\mathcal{K}}^0_S \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	PRL 106 , 211801 (2011)	±0.07			
$D^0 o K_5^0\eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	PRL 106, 211801 (2011)	±0.09			
$D^0 ightarrow \pi^+\pi^-\pi^0$	532	$+0.43 \pm 0.41 \pm 1.23$	PLB 662 , 102 (2008)	±0.13			
$D^0 o K^+\pi^-\pi^0$	281	-0.60 ± 5.30	PRL 95, 231801 (2005)	±0.40			
$D^0 ightarrow K^+\pi^-\pi^+\pi^-$	281	$+0.43 \pm 1.30$	PRL 95, 231801 (2005)	±0.33			
$D^+ o \pi^0 \pi^+$	921	$+2.31\pm1.24\pm0.23$	Belle Preliminary	±0.40			
$D^+ o\phi\pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	PRL 108, 071801 (2012)	±0.04			
$D^+ o \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	PRL 107, 221801 (2011)	±0.14	± 0.01		
$D^+ o \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	PRL 107, 221801 (2011)	±0.14			
$D^+ ightarrow \dot{K}^0_S \pi^+$	977	$-0.363 \pm 0.094 \pm 0.067 (3.2\sigma)$	PRL 109, 021601 (2012)	±0.03	± 0.03		
$D^+ o K_S^0 K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	JHEP 02 (2013) 098	±0.05			
$D_s^+ o K_S^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	PRL 104, 181602 (2010)	±0.29	±0.03		
$D_s^+ o K_S^0 K^+$	673	$+0.12\pm0.36\pm0.22$	PRL 104 , 181602 (2010)	±0.05			

- ullet With respect to LHCb, Belle II has advantages of excellent γ and π^0 reconstruction.

Search for CPV in $D^0->K_S^0K_S^0$

PRL 119, 171801 (2017)

> The measured raw asymmetry:

$$A_{
m raw} = rac{N(D^0) - N(ar{D}^0)}{N(D^0) + N(ar{D}^0)} = A_{CP} + A_{
m FB} + A_{\epsilon}^{\pm} + A_{\epsilon}^{K}$$

 \triangleright Choose normalization mode: D⁰->K_S π ⁰:

$$\begin{split} A_{CP}(D^0 \to K^0_S K^0_S) = & A_{\rm raw}(D^0 \to K^0_S K^0_S) - A_{\rm raw}(D^0 \to K^0_S \pi^0) \, \overline{\mathbb{A}} \\ & + A_{CP}(D^0 \to K^0_S \pi^0) + A^K_\epsilon, \end{split}$$

$$\frac{\mathcal{B}(D^0 \to K_S^0 K_S^0)}{\mathcal{B}(D^0 \to K_S^0 \pi^0)} = \frac{(N/\epsilon)_{D^0 \to K_S^0 K_S^0}}{(N/\epsilon)_{D^0 \to K_S^0 \pi^0}}$$

ightharpoonup most precise measurement on both A_{CP} and BR for $D^0->K_sK_s$ mode:

$$A_{CP} = (-0.02\pm1.53\pm0.02\pm0.07)\%$$

BR = $(1.32\pm0.02\pm0.04\pm0.04)\times10^{-4}$

- A_{CP}: consistent with SM expectation (improved to LHCb in 2015: (-2.9±5.2±2.2)%)
- BR: consistent with PDG: $(1.8\pm0.4)\times10^{-4}$, but 2.3 σ away from BESIII result $(1.67\pm0.11\pm0.11)\times10^{-4}$ [PLB **765** (2017) 231]
- ➤ A_{CP} uncertainty dominated by stat. error → Prospect at Belle II: expect a precision of 0.2%

CPV in D⁰ radiative decays

- > branch ratio measurement in D⁰->γV
 - dominated by long-range contribution (10^{-5} , whereas short-range 10^{-8})
 - Belle gave first observation of $D^0 o \phi \gamma$ with 78.1/fb data [O. Tajima et al. PRL 92,101803 (2004)]
 - BABAR give first observation of $D^0 o \bar{K}^{*0} \gamma$ with 387.1/fb data [B. Aubert et al., PRD78,071101(R) (2008)]
 - using 943 fb⁻¹ of data; normalize to $D^0 \to K^+K^-/K^-\pi^+/\pi^+\pi^-$ respectively.
 - $M_{V\gamma}$ and $\cos \theta_H$ 2-dimension fit

$$M_{V\gamma}$$
 and $\cos \theta_H$ 2-dimension fit:

$$\mathcal{B}(D^0 \to \phi \gamma) = (2.78 \pm 0.30 \pm 0.27) \times 10^{-5}$$
 only $M_{V\gamma}$ fit, and $\cos \theta_H$ consistency check:

$$\mathcal{B}(D^0 \to \bar{K}^{*0}\gamma) = (3.28 \pm 0.20 \pm 0.27) \times 10^{-4}$$
 (first observation)

$$\mathcal{B}(\textit{D}^0 \rightarrow \phi \gamma) = (2.76 \pm 0.20 \pm 0.08) \times 10^{-5}$$
 (improved Belle result, \simeq W.A)

$$\mathcal{B}(\bar{D}^0 \to \bar{K}^{*0}\gamma) = (4.66 \pm 0.21 \pm 0.18) \times 10^{-4}$$

(3.3 σ away from BABAR analysis)

$$\mathcal{B}(\dot{D^0} \to \rho^0 \gamma) = (1.77 \pm 0.30 \pm 0.08) \times 10^{-5}$$

(first observation, \simeq theoretical predictions)

CPV in D⁰ radiative decays

Belle: First measurement of \mathcal{A}_{CP} in $D^0 o V\gamma$ [T. Nanut et al., PRL 118, 051801 (2017)]

- in radiative charm decays: $\mathcal{A}^{V\gamma}_{CP} > 3\% \Rightarrow \text{signal of NP}_{[RPL109,171801(2012)]}$
- raw asym.: $A_{raw} = \frac{N(D^0) N(\bar{D}^0)}{N(D^0) + N(\bar{D}^0)} = A_{CP} + A_{FB} + A_{\epsilon}^{\pm}$
- A_{FB} , A_{ϵ}^{\pm} : eliminated through a relative measurement: $\mathcal{A}_{CP}^{sig} = A_{raw}^{sig} A_{raw}^{norm} + \mathcal{A}_{CP}^{norm}$

 $A_{CP}^{\phi\gamma} = -0.094 \pm 0.066 \pm 0.001$

Belle II(50 ab⁻¹): σ =±0.01

$$\mathcal{A}_{\mathit{CP}}^{\bar{\mathit{K}}^{*0}\gamma} = -0.003 \pm 0.020 \pm 0.000$$
 $\mathcal{A}_{\mathit{CP}}^{\rho^0\gamma} = +0.056 \pm 0.151 \pm 0.006$

 $\sigma = \pm 0.003$

$$\mathcal{A}_{CP}^{\rho^0 \gamma} = +0.056 \pm 0.151 \pm 0.006$$

 $\sigma = \pm 0.02$

T-odd asymmetry in D⁰-> $K_S\pi^+\pi^-\pi^0$

PRD 95, 091101(R) (2017)

- ▶ T-odd correlations provides a powerful tool to indirectly search for CP violation:
 - (1) a triple product of momenta; (2) assuming CPT symmetry conservation
- ▶ Parity-odd observable $C_T = (\vec{p}_1 \times \vec{p}_2) \cdot \vec{p}_3$ and its CP-conjugated observable \overline{C}_T

$$A_{T} = \frac{\Gamma(C_{T} > 0) - \Gamma(C_{T} < 0)}{\Gamma(C_{T} > 0) + \Gamma(C_{T} < 0)} \qquad \overline{A}_{T} = \frac{\Gamma(-\overline{C}_{T} > 0) - \Gamma(-\overline{C}_{T} < 0)}{\Gamma(-\overline{C}_{T} > 0) + \Gamma(-\overline{C}_{T} < 0)}$$

▶ T-odd asymmetry: remove strong phase introduced by FSI

$$\boxed{\mathbf{a}_{CP}^{\mathsf{T-odd}} = \frac{1}{2}(A_T - \overline{A}_T)}$$

- Observing a T-odd asymmetry would be a signal for processes beyond the SM.
- Status of T-odd asymmetries in charmed mesons decay-rates:

$$\begin{array}{lll} D^0 \to {\it K}_S^0 \pi^+ \pi^- \pi^0 & {\it a}_{\it CP}^{\rm T-odd} = (-0.28 \pm 1.38^{+0.23}_{-0.76}) \times 10^{-3} & {\rm Belle}^{[1]} \\ D^0 \to {\it K}^+ {\it K}^- \pi^+ \pi^- & {\it a}_{\it CP}^{\rm T-odd} = (+1.7 \pm 2.7) \times 10^{-3} & {\rm LHCb}^{[2]}, \, {\rm BaBar}^{[3]}, \, {\rm Focus}^{[4]} \\ D^+ \to {\it K}_S^0 {\it K}^+ \pi^+ \pi^- & {\it a}_{\it CP}^{\rm T-odd} = (-1.10 \pm 1.09) \times 10^{-2} & {\rm BaBar}^{[5]}, \, {\rm Focus}^{[4]} \\ D^+_s \to {\it K}_S^0 {\it K}^+ \pi^+ \pi^- & {\it a}_{\it CP}^{\rm T-odd} = (-1.39 \pm 0.84) \times 10^{-2} & {\rm BaBar}^{[5]}, \, {\rm Focus}^{[4]} \\ \end{array}$$

- [1] K. Prasanth et al.(Belle Collab.), Phys. Rev. D 95, 091101(R) (2017)
- [2] R. Aaij et al.(LHCb Collab.), JHEP 10, 5 (2014)
- [3] P. del Amo Sanchez et al. (BaBar Collab.), Phys. Rev. D 81, 111103(R) (2010)
- [4] J.M. Link et al.(FOCUS Collab.), Phys. Lett. B 622, 239 (2005)
- [5] J.P. Lees et al.(BaBar Collab.), Phys. Rev. D 84, 031103(R) (2011)

Belle II could improve these results with more precision benefited from the increased dataset.

Outline

- Belle @KEKB and Belle II @SuperKEKB
 - Accelerator; detectors; dataset etc.
- D^0 - \overline{D}^0 mixing and CP violation
 - Formalism and status
 - Hadronic WS decay D⁰->K⁺π⁻
 - Time-dependent analyses
- Time-integrated CP asymmetry
 - summary table of measurements
 - Search for CPV in D^0 -> K_SK_S
 - CPV in radiative decays D⁰->γV
 - T-odd asymmetry in D^0 -> $K_S\pi\pi\pi^0$
- ROE method for D⁰ flavor tagging at Belle II
- Summary

ROE method

- To measure CPV, the flavor of D^0 is determined effectively.
- At B-factories, the charge of π_s from $D^{*+} \to D^0 \pi_s^+$ is used to tag the flavor of D^0 ; but D^0 mesons from B decays are excluded. \Rightarrow only D^0 from $D^{*\pm}$ in $c\bar{c}$ events (25%) were used.

- ROE method: select events with only one K[±] in the Rest Of Event;
- the charge of this K^{\pm} in ROE to determine the flavor of D^0 .

$$c\bar{c} \rightarrow D^{*+}X, D^{*+} \rightarrow D^{0}\pi_{s}^{+}$$

 $c\bar{c} \rightarrow D^{*0}X, D^{*0} \rightarrow D^{0}\pi^{0}/D^{0}\gamma$
 $c\bar{c} \rightarrow D^{0}D^{-}X/D^{0}\bar{\Lambda}_{c}^{-}X$

$$rac{N_{tag}^0}{N_{tag}^*} = rac{\epsilon_{tag}^0}{\epsilon_{tag}^*} \cdot rac{N_{gen}^0 + (1 - \epsilon_{tag}^*) \cdot N_{gen}^*}{N_{gen}^*} {\sim 1}$$

here $\epsilon_{tag}^*(\epsilon_{tag}^0)$: tagging efficieny of $D^*(ROE)$ method with $80\% (\leqslant 20\%)$. $N_{gen}^*(N_{gen}^0)$: number of D^0 produced by a D^*

(other $c\bar{c}$ event) with $N_{gen}^0: N_{gen}^* \simeq 3:1$

A reduction of \sim 15% of $\sigma(stat)$ on A_{CP}

An additional D^0 sample from ROE for mixing and CPV measurements.

Summary

- Belle at KEKB have proven to be an excellent tool for charm physics

 - no hints for indirect CPV and no clear evidence for direct CPV
 - fruitful results on mixing/CPV measurement, but mostly under statistical limit
- Major upgrade at KEKB in 2010-17 → SuperKEKB £×40=50 ab⁻¹ before 2025. Belle II at SuperKEKB will have a rich charm physics program with much improved performance:
 - improve precision of mixing and CPV parameters, direct CP asymmetries.
 - Many final states studies (e.g. with π⁰/η/η' etc.) complementary to LHCb.
 - Some new techniques are developing, like ROE method.
- Detector is mostly installed and commissioned, will collect the first data in 2018.

Let's look forwards to the charming news of charm physic from Belle II (绝世美女二世).

今夕何夕,见此粲者? 子兮子兮,如此粲者何? --《诗经•绸缪》

backup

Longke LI (李龙科) Room A519, Main Building Institute of High Energy Physics, CAS (IHEP) 19B, Yuquan Road, Shijingshan District Beijing City, 100049, P. R. China

- (+86)-159-5693-4447
- lilongke_ustc
- lilongke@ihep.ac.cn

Damping Ring

prospect of mixing in three-body SCS decays

decay rate of WS-like and RS-like:

•
$$\Gamma(D^0 \to K_S^0 K^+ \pi^-) = e^{-\Gamma t} \left[r_D^2 + r_D R_D y' \Gamma t + \frac{(1 - r_D^2) x'^2 + (1 + r_D^2) y'^2}{4} (\Gamma t)^2 \right]$$

• $\Gamma(D^0 \to K_S^0 K^- \pi^+) = e^{-\Gamma t} \left[1 + r_D R_D y' \Gamma t + \frac{(1 + r_D^2) x'^2 - (1 - r_D^2) y'^2}{4} (\Gamma t)^2 \right]$
where $r_D = A_{sup.} / \bar{A}_{fav.}$, $y' = y \cos \delta_D - x \sin \delta_D$, coherence factor R_D : $A_f \bar{A}_f R_D e^{-i\delta_D} = A_f \bar{A}_f^*$

- Comparing with WS decays $D^0 o K^+\pi^-\colon r_D^{K\pi} \ll 1$ Vs. $r_D^{K_S^0K\pi} \sim 1$
- $D^0 o K_S^0 K \pi$: effectively sensitive to $y'(\text{large } R_D)$; higher purity (large r_D)
- ullet CLEO gave in $D^0 o K_S^0 K\pi$, $R_D=0.73\pm0.09$ and $\delta_D=(8.2\pm15.2)^o$ [PRD 85, 092016(2012)]
- sensitivity estimation of mixing: $\sigma(y')=0.55\%$ (80K signals) [PLB 701(2011)353]
- LHCb has performed Dalitz plot fit on these two decays. [PRD 93, 052018 (2016)]
- mixing and CPV measurement in these decays......

Time-dependent Dalitz analysis

DP of 3-body decay described by Isobar model:

Phys. Rev. 123, 333 (1961)

$$\mathcal{M}(m_{ab}^2, m_{bc}^2) = \sum_r a_r e^{i\phi_r} \mathcal{A}_r(m_{ab}^2, m_{bc}^2) + a_{NR} e^{i\phi_{NR}}$$

here $a_r(\phi_r)$ is magnitude (phase) of resonance r .

usually use relativistic Breit-Wigner with mass dept. width For wide width or special resonances:

mass-threshold: Flatté model, eg: $f_0(980)(KK)$ / $a_0(980)(KK/\eta'\pi)$ $\pi\pi$ S-wave overlapping res.: K-matrix model EPJ A16 (2003) 229-258 $\pi\pi$ P-wave: ρ with Gounaris-Sakurai (GS) model PRL 24,244(1968) $K\pi$ S-wave: K_0^* (1430) with LASS model EPJ C74 (2014): 3026

 \triangleright W_r angular distribution:

- (1)Helicity form [PRD 78, 052001 (2008)]
- (2)Zemach covariant tensor form [PR 133, B1201 (1964), PR 140, B109 (1965)]

• \mathcal{A}_r : dynamics of $D \to (r \to ab)c$ PRD **63**, 092001 (2001)

$$\mathcal{A}_r(m_{ab}^2, m_{bc}^2) = F_D \times F_r \times T_r \times W_r$$

▷ F_r , F_D form factor: PR D 63, 092001 (2001) using Blatt-Weisskopt Barrier form factor, depend on orbital angular momentum ℓ (here $\ell = J$ (spin of res.)

$$\begin{split} F_{J=0} &= 1 \\ F_{J=1} &= \frac{\sqrt{1+z_r}}{\sqrt{1+z_{ab}}} \\ F_{J=2} &= \frac{\sqrt{(z_r-3)^2+9z_r}}{\sqrt{(z_{ab}-3)^2+9z_{ab}}} \\ F_{J=3} &= \frac{\sqrt{z_r(z_r-15)^2+9(2z_r-5)}}{\sqrt{z_{ab}(z_{ab}-15)^2+9(2z_{ab}-5)}} \\ F_{J=4} &= \frac{\sqrt{(z_r^2-45z_r+105)^2+15z_r(21z_r-21)^2}}{\sqrt{(z_{ab}^2-45z_{ab}+105)^2+15z_{ab}(21z_{ab}-21)^2}} \\ \text{here } z &= (R\cdot q)^2, \ R \ \text{is the radius of } D \ \text{or res. } r \end{split}$$

Time-dependent Dalitz analysis

- ▶ Dalitz plot(DP) fit
 - p.d.f of signal DP:
 - (1) efficiency plane € correction
 - (2) considering mass resolution Res(m)
 - (3) normalization

$$p_{\mathrm{sig}}(m_{12,i}^2,m_{23,i}^2) = \frac{|\mathcal{M}(m_{12,i}^2,m_{23,i}^2)|^2 \otimes_m \mathrm{Res}(m) \cdot \epsilon(m_{12,i}^2,m_{23,i}^2)}{\iint_{DP} dm_{12}^2 dm_{23}^2 \ |\mathcal{M}(m_{12}^2,m_{23}^2)|^2 \otimes_m \mathrm{Res}(m) \cdot \epsilon(m_{12}^2,m_{23}^2)}$$

fit method: unbinned maximum likelihood (UML)

$$2 \ln \mathcal{L} = 2 \sum_{i=1}^{n} \ln \left[\mathbf{f}_{sig}^{i} p_{\text{sig}}(m_{12,i}^{2}, m_{23,i}^{2}) + \sum_{X=bg} \mathbf{f}_{X}^{i} p_{X}(m_{12,i}^{2}, m_{23,i}^{2}) \right]$$
 signal-to-bkg \mathbf{f}^{i} determined by kinematic variable fit result, like M-Q.

- time-dependent Dalitz plot(TDDP) fit
 - p.d.f of signal TDDP with considering time resolution : $R_{sig}(t)$

$$p_{\text{sig}}(\textit{m}_{12,i}^{2}, \textit{m}_{23,i}^{2}, t_{i}, \sigma_{t}^{i}) = \frac{\int \textit{d}t' \textit{R}_{\text{sig}}(t_{i} - t', \sigma_{t}^{i}) \left| \mathcal{M}_{f}(\textit{m}_{12,i}^{2}, \textit{m}_{23,i}^{2}, t') \right|^{2} \cdot \varepsilon(\textit{m}_{12,i}^{2}, \textit{m}_{23,i}^{2})}{\int \textit{d}t \iint_{DP} \textit{d}\textit{m}_{12}^{2} \textit{d}\textit{m}_{23}^{2} \left| \mathcal{M}_{f}(\textit{m}_{12}^{2}, \textit{m}_{23}^{2}, t) \right|^{2} \varepsilon(\textit{m}_{12}^{2}, \textit{m}_{23}^{2})}$$

fit method: unbinned maximum likelihood (UML)

$$2 \ln \mathcal{L} = 2 \sum_{i}^{n} \{ \ln(f_{\mathrm{sig}}^{i} p_{\mathrm{sig}}(m_{12,i}^{2}, m_{23,i}^{2}, t_{i}, \sigma_{t}^{i}; \mathbf{x}, \mathbf{y}) p_{\mathrm{sig}}^{nc}(\sigma_{t}^{i}) + \sum_{x=bg} f_{x}^{i} p_{x}(m_{12,i}^{2}, m_{23,i}^{2}, t_{i}) p_{x}^{nc}(\sigma_{t}^{i})) \}$$
 here $p_{x}^{nc}(\sigma_{t}^{i})$ is global function for time error, independent on others.

Time-dependent Dalitz analysis

Right-Sign(RS) abd Wrong-Sign(WS) decays

$$|\mathcal{M}_f(RS,t)|^2 = e^{-\Gamma t} |\bar{\mathcal{A}}_{\bar{f}}^{CF}|^2$$

$$\begin{split} \mathcal{A}_{\tilde{f}}/\bar{\mathcal{A}}_{\tilde{f}} &= -\sqrt{R_D}e^{-i\delta}; \ \boldsymbol{x}'' = \boldsymbol{x}\cos\delta + \boldsymbol{y}\sin\delta; \ \boldsymbol{y}'' = \boldsymbol{y}\cos\delta - \boldsymbol{x}\sin\delta \\ |\mathcal{M}_{\tilde{f}}(WS,t)|^2 &= e^{-\Gamma t}\Big\{|\mathcal{A}_{\tilde{f}}^{DCS}|^2 - (\frac{\boldsymbol{y}''}{r_0}\operatorname{Re}[\mathcal{A}_{\tilde{f}}^{DCS}\bar{\mathcal{A}}_{\tilde{f}}^{CF*}] + \frac{\boldsymbol{x}''}{r_0}\operatorname{Im}[\mathcal{A}_{\tilde{f}}^{DCS}\bar{\mathcal{A}}_{\tilde{f}}^{CF*}])\Gamma t + \frac{\boldsymbol{x}''^2 + \boldsymbol{y}''^2}{4r_0^2}|\bar{\mathcal{A}}_{\tilde{f}}^{CF}|^2(\Gamma t)^2\Big\} \end{split}$$

Self-conjugated CF/SCS decays

$$\begin{aligned} &\text{RS: } \mathcal{A}_f = \langle f | \mathcal{H} | D^0 \rangle; \text{ WS: } \mathcal{A}_{\bar{f}} = \langle \bar{f} | \mathcal{H} | D^0 \rangle; \text{ CP: } \mathcal{A}_{\pm} = \langle \pm | \mathcal{H} | D^0 \rangle \\ &D^0 \colon m_+^2 = m_{K_S^0 h^+}^2; \ m_-^2 = m_{K_S^0 h^-}; \ \overline{D^0} \colon m_-^2 = m_{K_S^0 h^+}^2; \ m_+^2 = m_{K_S^0 h^-} \\ &|\mathcal{M}_f|^2 = \Big\{ |A_1|^2 e^{-y\Gamma t} + |A_2|^2 e^{y\Gamma t} + 2 \operatorname{Re}[A_1 A_2^*] \cos(x\Gamma t) + 2 \operatorname{Im}[A_1 A_2^*] \sin(x\Gamma t) \Big\} e^{-\Gamma t} \\ &|\bar{\mathcal{M}}_f|^2 = \Big\{ |\bar{A}_1|^2 e^{-y\Gamma t} + |\bar{A}_2|^2 e^{y\Gamma t} + 2 \operatorname{Re}[\bar{A}_1 \bar{A}_2^*] \cos(x\Gamma t) + 2 \operatorname{Im}[\bar{A}_1 \bar{A}_2^*] \sin(x\Gamma t) \Big\} e^{-\Gamma t} \end{aligned}$$

SCS non-self-conjugated decays

(very difficult! No one experiment gives time-dept. amplitude analysis to date.)

$$\begin{split} &A = \langle K_S^0 K^- \pi^+ | \mathcal{H} | D^0 \rangle = \langle K_S^0 K^+ \pi^- | \mathcal{H} | \bar{D}^0 \rangle; \ B = \langle K_S^0 K^+ \pi^- | \mathcal{H} | D^0 \rangle = \langle K_S^0 K^- \pi^+ | \mathcal{H} | \bar{D}^0 \rangle \\ &|\mathcal{M}(RS,t)|^2 = \mathrm{e}^{-\Gamma t} \left\{ |A|^2 + \frac{x^2 + y^2}{4} r_D^2 |B|^2 (\Gamma t)^2 + r_D (y' \, \mathrm{Re}[AB^*] + x' \, \mathrm{Im}[AB^*]) \Gamma t \right\} \\ &|\mathcal{M}(WS,t)|^2 = \mathrm{e}^{-\Gamma t} \left\{ r_D^2 |B|^2 + \frac{x^2 + y^2}{4} |A|^2 (\Gamma t)^2 + r_D \cdot (y' \, \mathrm{Re}[BA^*] + x' \, \mathrm{Im}[BA^*]) \Gamma t \right\} \end{split}$$

search for CPV in $D^0->K_s^0K_s^0$

SM limit 1.1% for direct CPV in $D^0 \rightarrow K_s^0 K_s^0$

U. Nierste and A. Schacht, PRD 92 (2015) 054036

SCS decays (such as $D^0 \to K_s^0 K_s^0$) are special interest: possible interference with NP amplitude could lead to larger nonzero CPV The previous measured $A_{CP}(D^0 \to K_s^0 K_s^0)$:

CLEO
$$(-23 \pm 19)\%$$

$$13.7 \text{ fb}^{-1}$$

13.7 fb⁻¹ PRD 63 (2001) 071101

LHCb
$$(-2.9 \pm 5.2 \pm 2.2)\%$$

$$3 \text{ fb}^{-1}$$

JHEP 10 (2015) 055

$$\text{Method:} \quad A_{CP}^{} \left(D^0 \to K_S^{}^0 K_S^{}^0 \right) = (A_{_{\text{rec}}}^{} \left(K_S^{}^0 K_S^{}^0 \right) - A_{_{\text{rec}}}^{} \left(K_S^{}^0 \pi^0 \right)) + A_{CP}^{} \left(D^0 \to K_S^{}^0 \pi^0 \right) \\ + A_{KO/K^{^0}0}^{} \left(K_S^{}^0 \pi^0 K_S^{}^0 \Pi^0 H_S^{}^0 \Pi^0 H_S^{$$

 $A_{_{KO/K}^-0}$: Asymmetry originating from the different strong interaction of K0 and $\overline{K0}$ mesons with nucleons of the detector material = $(-0.11 \pm 0.01)\%$

$${\rm A_{_{CP}}}\,({\rm D^0}
ightarrow {\rm K_{_S}}^0\pi^{_0}) \,$$
 = (-0.20 \pm 0.17)%

[B. R. Ko et al., PRD 84 (2011) 111501]

[PDG]

N. Dash, ICHEP 2016