Hunting for exotic $QQ\bar{Q}\bar{Q}$ tetraquark states

Wei Chen

Sun Yat-Sen University

HFCPV-2017, CCNU, Wuhan October 27 – 29, 2017

Outline

- Background of the exotic hadron states
- 2 Briefly Introduction of QCD Sum Rules
- Moment sum rule analyses for mass spectra
- 4 Decay properties of the $QQ\bar{Q}\bar{Q}$ tetraquarks
- Summary

Overview of XYZ States

Experiments: Belle, BaBar, BESIII, CLEO, D0, LHCb...

$b \xrightarrow{\overline{c}} c$ $\overline{q} \xrightarrow{\overline{q}}$		e*	, m, e	$Y(4260)$ T^{\mp} Z_c^{\pm}
X(3872)	Y(4260)	X(3940)	X(3915)	$Z_c(3900)$
Y(3940)	Y(4008)	X(4160)	X(4350)	$Z_c(4025)$
Z ⁺ (4430)	Y(4360)		Z(3930)	$Z_c(4020)$
$Z^{+}(4051)$	Y(4630)			$Z_c(3885)$
Z ⁺ (4248)	Y(4660)			
Y(4140)				
Y(4274)				
$Z_c^+(4200)$				
Z ⁺ (4240)				
X(3823)				

H.X.Chen, W.Chen, X.Liu, S.L.Zhu, Phys.Rept.639(2016) 1-121.

Overview of XYZ States

S. L. Olsen, Front. Phys. 10 (2015) 101401

- Many charmonium-like states were discovered above the open-charm thresholds.
- Their masses and decay modes are different from the pure cc̄ charmonium states.
- Some charged Z_c states were observed, which are evidences for four-quark states (cc̄ud̄).
- They are good candidates for exotic hadron states!

Theoretical Models

- Theoretical configurations: tetraquark, molecule, hybrid,...
- Z_c states: tetraquark, molecule

• What happens as the mass of the light quarks is raised? Binding becomes stronger?

• QED analog: molecular positronium Ps₂ (bound state of $e^+e^-e^+e^-$) discovered in 2007 Nature 449 (09, 2007) 195-197.

5 / 19

Doubly hidden-flavor tetraquarks: $QQ\bar{Q}\bar{Q}$

$QQ\bar{Q}\bar{Q}$ Tetraquarks:

- They are far away from the mass range of the observed conventional $q\bar{q}$ hadrons and XYZ states.
- Can be clearly distinguished experimentally from the normal states.
- The light mesons $(\pi, \rho, \omega, \sigma...)$ can not be exchanged between two charmonia/bottomonia.
- The binding force comes from the short-range gluon exchange.
- A molecule configuration is not favored and thus the $QQ\bar{Q}\bar{Q}$ is a good candidate for compact tetraquark.

Experimental events:

- $J/\psi J/\psi$ pairs: Phys. Lett. B707, 52 (2012) (LHCb); JHEP 1409, 094(2014) (CMS); Phys. Rev. D90, 111101 (2014) (D0).
- $J/\psi \Upsilon(1S)$ events: Phys. Rev. Lett. 116, 082002 (2016) (D0); K. Dilsiz's talk at APS April Meeting 2016 on behalf of CMS, see https://absuploads.aps.org/presentation.cfm?pid=11931.
- $\Upsilon(1S)\Upsilon(1S)$ pairs: JHEP 05, 013 (2017) (CMS).

Theoretical works:

- Quark-Gluon models: Prog. Theor. Phys. 54, 492 (1975); Zeit. Phys. C7, 317 (1981).
- Potential model: Phys.Rev. D25, 2370 (1982); Phys. Lett. B123, 449 (1983).
- MIT bag model: Phys. Rev. D32, 755 (1985).
- Hyperspherical harmonic formalism: Phys. Rev. D73, 054004 (2006).
- BS or Schroedinger Eqs: Phys.Rev.D86, 034004 (2012); Phys.Lett.B718, 545 (2012).
- Recent studies: arXiv:1605.01134; 1612.00012; PRD95, 034011 (2017); EPJC77, 432 (2017);
 arXiv:1706.07553;1709.09605;1710.02540;1710.03236.
- Our study: Phys.Lett. B773 (2017) 247-251, by using moment sum rules.

Wei Chen $QQar{Q}ar{Q}$ states October 29, 2017 7 / 19

Tetraquark Sum Rules

• Study two-point correlation function of current J(x) with the same quantum numbers with hadron state:

$$\Pi(q^2) = i \int d^4x e^{iq\cdot x} \langle \Omega | T[J(x)J^{\dagger}(0)] | \Omega \rangle$$

- Classify states $|X\rangle$ by coupling to current $\langle \Omega | J(x) | X \rangle \neq 0$
- Currents are probes of spectrum and might not overlap with state

Interpolating currents with $J^{PC} = 0^{++}$:

$$\begin{split} J_1 &= Q_a^T C \gamma_5 Q_b \bar{Q}_a \gamma_5 C \bar{Q}_b^T \,, \\ J_2 &= Q_a^T C \gamma_\mu \gamma_5 Q_b \bar{Q}_a \gamma^\mu \gamma_5 C \bar{Q}_b^T \,, \\ J_3 &= Q_a^T C \sigma_{\mu\nu} Q_b \bar{Q}_a \sigma^{\mu\nu} C \bar{Q}_b^T \,, \\ J_4 &= Q_a^T C \gamma_\mu Q_b \bar{Q}_a \gamma^\mu C \bar{Q}_b^T \,, \\ J_5 &= Q_a^T C Q_b \bar{Q}_a C \bar{Q}_b^T \,, \end{split}$$

Hadron level: described by the dispersion relation

$$\Pi(q^2) = \frac{(q^2)^N}{\pi} \int \frac{\operatorname{Im}\Pi(s)}{s^N(s-q^2-i\epsilon)} ds + \sum_{n=0}^{N-1} b_n(q^2)^n,$$

$$\rho(s) = \frac{1}{\pi} \operatorname{Im}\Pi(s) = \sum_n \delta(s-m_n^2) \langle 0|J|n \rangle \langle n|J^{\dagger}|0 \rangle$$

$$= f_X^2 \delta(s-m_X^2) + \text{continuum},$$

Quark-gluon level: evaluated via operator product expansion(OPE)

$$\Pi(s) = \Pi^{pert}(s) + \Pi^{\langle GG \rangle}(s) + ...,$$

• Define moments in Euclidean region $Q^2 = -q^2 > 0$:

$$\begin{split} M_n(Q_0^2) &= \frac{1}{n!} \left(-\frac{d}{dQ^2} \right)^n \Pi(Q^2)|_{Q^2 = Q_0^2} \\ &= \int_{m_H^2}^{\infty} \frac{\rho(s)}{(s + Q_0^2)^{n+1}} ds = \frac{f_X^2}{(m_X^2 + Q_0^2)^{n+1}} \left[1 + \delta_n(Q_0^2) \right], \end{split}$$

where $\delta_n(Q_0^2)$ contains the higher states and continuum.

Ratio of the moments

$$r(n, Q_0^2) \equiv \frac{M_n(Q_0^2)}{M_{n+1}(Q_0^2)} = (m_X^2 + Q_0^2) \frac{1 + \delta_n(Q_0^2)}{1 + \delta_{n+1}(Q_0^2)}.$$

Predict hadron mass

$$m_X = \sqrt{r(n, Q_0^2) - Q_0^2}$$

for sufficiently large n when $\delta_n(Q_0^2) \cong \delta_{n+1}(Q_0^2)$ for convergence.

Limitations for (n, ξ) parameter space:

$$\xi=Q_0^2/16m_c^2, \, {\rm for} \, \, cc\bar c\bar c \, {\rm system};$$

$$\xi=Q_0^2/m_b^2, \, {\rm for} \, \, bb\bar b\bar b \, {\rm system}.$$

- Small ξ : higher dimensional condensates give large contributions to $M_n(Q_0^2)$, leading to bad OPE convergence.
- Large ξ : slower convergence of $\delta_n(Q_0^2)$. This can be compensated by taking higher derivative n for the lowest lying resonance to dominate.
- Large *n*: moving further away from the asymptotically free region. The OPE convergence would also become bad.
- Requiring $\Pi^{\langle GG \rangle}(s) \leq \Pi^{pert}(s)$ to obtain an upper limit n_{max} , which will increase with respect to ξ .
- Good (n, ξ) region: the lowest lying resonance dominates the moments while the OPE series has good convergence.

$$n_{max} = 75, 76, 77, 78$$
 for $\xi = 0.2, 0.4, 0.6, 0.8$

Wei Chen $QQ\bar{Q}\bar{Q}$ states October 29, 2017 11 / 19

Hölder's inequality:

$$R = \frac{M_n(Q_0^2)^2}{M_r(Q_0^2)M_{2n-r}(Q_0^2)} \le 1\,,$$

The boundary gives $(n, \xi) = (48, 0.2), (49, 0.4), (49, 0.6), (50, 0.8).$

Wei Chen $QQar{Q}ar{Q}$ states October 29, 2017 12/19

Mass for scalar $bb\bar{b}\bar{b}$ tetraquark: mass curves have plateaus at $(n,\xi)=(48,0.2),(49,0.4),(49,0.6),(50,0.8)$

$$m_{X_h} = (18.45 \pm 0.15) \, \text{GeV}.$$

Mass spectra for the $cc\bar{c}\bar{c}$ and $bb\bar{b}\bar{b}$ tetraquarks:

J^{PC}	Currents	$m_{X_c}(GeV)$	$m_{X_b}(GeV)$
0++	J_1	6.44 ± 0.15	18.45 ± 0.15
	J_2	6.59 ± 0.17	18.59 ± 0.17
	J_3	6.47 ± 0.16	18.49 ± 0.16
	J_4	6.46 ± 0.16	18.46 ± 0.14
	J_5	6.82 ± 0.18	19.64 ± 0.14
1++	$J_{1\mu}^{+}$	6.40 ± 0.19	18.33 ± 0.17
	$J^+_{1\mu} \ J^+_{2\mu}$	6.34 ± 0.19	18.32 ± 0.18
1+-		6.37 ± 0.18	18.32 ± 0.17
	$J_{1\mu}^- \ J_{2\mu}^+$	6.51 ± 0.15	18.54 ± 0.15
2++	$J_{1\mu u}$	6.51 ± 0.15	18.53 ± 0.15
	$J_{2\mu\nu}$	6.37 ± 0.19	18.32 ± 0.17
$^{0-+}$	J_1^+	6.84 ± 0.18	18.77 ± 0.18
	$J_1^+ \ J_2^+$	6.85 ± 0.18	18.79 ± 0.18
0	J_1^-	6.84 ± 0.18	18.77 ± 0.18
1^{-+}	J_{1}^{+}	6.84 ± 0.18	18.80 ± 0.18
	$J^+_{1\mu} \ J^+_{2\mu}$	6.88 ± 0.18	18.83 ± 0.18
1	$J_{1\mu}^-$	6.84 ± 0.18	18.77 ± 0.18
	$J_{2\mu}^{-}$	6.83 ± 0.18	18.77 ± 0.16

Spontaneous dissociation thresholds:

Decay behavior: $bb\bar{b}\bar{b}$ tetraquarks

- $X_{bb\bar{b}\bar{b}} o (b\bar{b}) + (b\bar{b})$: kinematically forbidden.
- $X_{bb\bar{b}\bar{b}} o (bbq) + (\bar{b}\bar{b}\bar{q})$: kinematically forbidden.
- $X_{bb\bar{b}\bar{b}} o (bqq) + (\bar{b}\bar{q}\bar{q})$: **suppressed** by two light quark pair creation.
- $X_{bb\bar{b}\bar{b}} \to (q\bar{b}) + (b\bar{q})$: **possible** in $B^{(*)}\bar{B}^{(*)}$ final states, with large phase space.
- $X_{bb\bar{b}\bar{b}} \rightarrow (b\bar{b}) + \gamma$: electromagnetic decay via $b\gamma_{\mu}\bar{b} \rightarrow \gamma$.
- $X_{bb\bar{b}\bar{b}} \to \Upsilon(1S)X \to I^+I^-I^+I^-$: multi-lepton final states could provide clean signals although the branching fraction may be small.

• These bbbb states are expected to be very narrow. They are good candidates for compact tetraquarks, if they do exist.

Decay behavior: ccc̄c̄ tetraquarks

- $cc\bar{c}\bar{c} \rightarrow (ccq) + (\bar{c}\bar{c}\bar{q})$: kinematically forbidden.
- $cc\bar{c}\bar{c} \rightarrow (cqq) + (\bar{c}\bar{q}\bar{q})$: suppressed by two light quark pair creation.
- $cc\bar{c}\bar{c} \rightarrow (c\bar{c}) + (c\bar{c})$: charm quark pair rearrangement or annihilation (suppressed). Phase space is small.
- $cc\bar{c}\bar{c} \rightarrow (q\bar{c}) + (c\bar{q})$: possible via a heavy quark pair annihilation and a light quark pair creation, with large phase space.
- $cc\bar{c}\bar{c}(L=1) \rightarrow cc\bar{c}\bar{c}(L=0) + (q\bar{q})_{I=0}$: OZI forbidden.

17 / 19

Spontaneous dissociations

J^{PC}	S-wave	P-wave
0++	$\eta_c(1S)\eta_c(1S), J/\psi J/\psi$	$\eta_c(1S)\chi_{c1}(1P), J/\psi h_c(1P)$
0^{-+}	$\eta_c(1S)\chi_{c0}(1P)$, $J/\psi h_c(1P)$	$J/\psi J/\psi$
0	$J/\psi\chi_{c1}(1P)$	$J/\psi\eta_c(1S)$
1++	$J/\psi J/\psi$	$J/\psi h_c(1P), \ \eta_c(1S)\chi_{c1}(1P), \ \eta_c(1S)\chi_{c0}(1P)$
1+-	$J/\psi\eta_c(1S)$	$J/\psi\chi_{c0}(1P)$, $J/\psi\chi_{c1}(1P)$, $\eta_c(1S)h_c(1P)$
1^{-+}	$J/\psi h_c(1P), \ \eta_c(1S)\chi_{c1}(1P)$	_
1	$J/\psi\chi_{c0}(1P)$, $J/\psi\chi_{c1}(1P)$, $\eta_c(1S)h_c(1P)$	$J/\psi\eta_{c}(1S)$

- We have calculated the mass spectra for the $cc\bar{c}\bar{c}$ and $bb\bar{b}\bar{b}$ tetraquark states.
- The $cc\bar{c}\bar{c}$ states lie above two charmonium thresholds and thus mainly decay via spontaneous dissociations.
- The $bb\bar{b}\bar{b}$ states are below $\eta_b\eta_b$ threshold, expected to be narrow. They are good candidate compact tetraquarks.
- They could be searched for in final states $B^{(*)}\bar{B}^{(*)}$, bottomonia+ γ , $I^+I^-I^+I^-$.
- The recent observations of the J/ψ pair, $J/\psi \Upsilon(1S)$ and $\Upsilon(1S)\Upsilon(1S)$ events shed some light for the production of these doubly hidden-charm/bottom tetraquarks.

Thank you for your attention!